1
|
Shi Z, Li Z, Wang K, Yang F. The causal role of gastroesophageal reflux disease in endometriosis: a bidirectional Mendelian randomization study. Front Med (Lausanne) 2024; 11:1440157. [PMID: 39540050 PMCID: PMC11558527 DOI: 10.3389/fmed.2024.1440157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Observational studies have reported an association between gastroesophageal reflux disease (GERD) and endometriosis. We conducted a two-sample and bidirectional Mendelian randomization analysis to determine whether those associations are causal. Two-sample and bidirectional MR analyses were performed using summary statistics from the European Individual Genome-Wide Association Study (GWAS). The inverse variance weighting (IVW) method is used as the main analysis method to evaluate causality. Sensitivity analyses were performed to assess heterogeneity, horizontal versatility, and stability. The results showed no significant causal association between GERD in women with endometriosis in the UK Bank database [ratio (OR) ≈ 0, 95% adjusted interval (CI) 1.0007∼1.0044, P = 0.006] and Finn databases [ratio (OR) = 1.29, 95% adjusted interval (CI) 0.99∼1.67, P = 0.06]. However, when studying the Finn database only for endometriosis, which is confined to the uterus, a significant increase in GERD was limited to the risk of endometriosis in the uterus [ratio (OR) = 1.47, 95% adjusted interval (CI) 1.00∼2.17, P = 0.05]. Sensitivity analysis showed that the results were robust and did not detect multi efficacy or heterogeneity. Meanwhile, reverse MR analysis showed that endometriosis did not increase the risk of GERD. This MR study supports a causal relationship between GERD and an increased risk of endometriosis confined to the uterus. Therefore, patients with gastric esophageal reflux should be treated with gynecological examination to avoid and prevent the development of endometriosis.
Collapse
Affiliation(s)
- Zunlin Shi
- College of Electronics and Information Engineering, University of Sichuan, Chengdu, China
| | - Zhi Li
- College of Electronics and Information Engineering, University of Sichuan, Chengdu, China
| | - Kana Wang
- Department of Gynecology and Obstetrics, West China Second Hospital, University of Sichuan, Chengdu, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, University of Sichuan, Chengdu, China
| | - Fan Yang
- Department of Gynecology and Obstetrics, West China Second Hospital, University of Sichuan, Chengdu, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, University of Sichuan, Chengdu, China
| |
Collapse
|
2
|
Alberti A, Araujo Coelho DR, Vieira WF, Moehlecke Iser B, Lampert RMF, Traebert E, Silva BBD, Oliveira BHD, Leão GM, Souza GD, Dallacosta FM, Kades G, Madeira K, Chupel MU, Grossl FS, Souza R, Hur Soares B, Endrigo Ruppel da Rocha R, da Silva Sipriano E, Fernandes Martins D, Agostinetto L. Factors Associated with the Development of Depression and the Influence of Obesity on Depressive Disorders: A Narrative Review. Biomedicines 2024; 12:1994. [PMID: 39335507 PMCID: PMC11429137 DOI: 10.3390/biomedicines12091994] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
Depression affects several aspects of life, including socioeconomic status, relationships, behavior, emotions, and overall health. The etiology of depression is complex and influenced by various factors, with obesity emerging as a significant contributor. This narrative review aims to investigate the factors associated with the development of depression, with a particular focus on the role of obesity. The literature search was conducted on PubMed, Embase, and PsycINFO from May to July 2024. The review highlights the impact of environmental and socioeconomic conditions; lifestyle choices, including physical activity and dietary habits; stress; traumatic experiences; neurotransmitter imbalances; medical and psychological conditions; hormone fluctuations; and epigenetic factors on depression. A key emphasis is placed on the inflammatory processes linked to obesity, which may drive the bidirectional relationship between obesity and depression. The findings suggest that obesity is associated with an increased risk of depression, potentially due to chronic inflammation, neurochemical dysregulation, and the emotional and social challenges related to weight stigma and obesity management. Understanding these interconnected factors is important for developing targeted interventions to address both obesity and depression, leading to improved quality of life for those affected.
Collapse
Affiliation(s)
- Adriano Alberti
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
- Graduate Program in Environment and Health, University of Planalto Catarinense-UNIPLAC, Lages 88509-900, Brazil
| | | | - Willians Fernando Vieira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 5508-000, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas 13045-755, Brazil
| | - Betine Moehlecke Iser
- Department of Biological and Health Sciences Posgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão 88704-900, Brazil
| | - Rose Meiry Fernandez Lampert
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
| | - Eliane Traebert
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
| | - Bruna Becker da Silva
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
| | - Bruna Hoffmann de Oliveira
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
| | - Graziela Marques Leão
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
| | - Gabriela de Souza
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
| | | | - Gabriela Kades
- Department of Biosciences and Health, University of West Santa Catarina, Joaçaba 89600-000, Brazil
| | - Kristian Madeira
- Department of Mathematics and Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma 88806-000, Brazil
| | - Matheus Uba Chupel
- Hurvitz Brain Sciences, Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Fernando Schorr Grossl
- Department of Biosciences and Health, University of West Santa Catarina, Joaçaba 89600-000, Brazil
| | - Renan Souza
- Department of Biosciences and Health, University of West Santa Catarina, Joaçaba 89600-000, Brazil
| | - Ben Hur Soares
- Department of Physical Education and Physiotherapy, University of Passo Fundo, Passo Fundo 99052-900, Brazil
| | - Ricelli Endrigo Ruppel da Rocha
- Department of the Graduate Program in Development and Society-PPGEDS (UNIARP), University of Alto Vale do Rio do Peixe, Caçador 89500-199, Brazil
| | - Erica da Silva Sipriano
- Department of Mathematics and Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma 88806-000, Brazil
| | - Daniel Fernandes Martins
- Department of Biological and Health Sciences Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça 88132-260, Brazil
| | - Lenita Agostinetto
- Graduate Program in Environment and Health, University of Planalto Catarinense-UNIPLAC, Lages 88509-900, Brazil
| |
Collapse
|
3
|
Brum EDS, Fialho MFP, Becker G, Nogueira CW, Oliveira SM. Involvement of peripheral mast cells in a fibromyalgia model in mice. Eur J Pharmacol 2024; 967:176385. [PMID: 38311276 DOI: 10.1016/j.ejphar.2024.176385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Fibromyalgia is a painful disorder of unknown aetiology that presents activation and recruitment of innate immune cells, including mast cells. Efforts have been made to understand its pathogenesis to manage it better. Thus, we explored the involvement of peripheral mast cells in an experimental model of fibromyalgia induced by reserpine. Reserpine (1 mg/kg) was subcutaneously (s.c.) injected once daily in the back of male Swiss mice for three consecutive days. We analysed mechanical and cold allodynia, muscle fatigue and number of mast cell in plantar tissue. The fibromyalgia induction produced mast cell infiltration (i.e., mastocytosis) in the mice's plantar tissue. The depletion of mast cell mediators with the compound 48/80 (0.5-4 mg/kg, intraperitoneal (i.p.)) or the mast cell membrane stabilizer ketotifen fumarate (10 mg/kg, oral route (p.o.) widely (80-90 %) and extensively (from 1 up to 10 days) prevented reserpine-induced mechanical and cold allodynia and muscle fatigue. Compound 48/80 also prevented the reserpine-induced mastocytosis. Finally, we demonstrated that PAR-2, 5-HT2A, 5-HT3, H1, NK1 and MrgprB2 receptors, expressed in neuronal or mast cells, seem crucial to mediate fibromyalgia-related cardinal symptoms since antagonists or inhibitors of these receptors (gabexate (10 mg/kg, s.c.), ENMD-1068 (10 mg/kg, i.p.), ketanserin (1 mg/kg, i.p.), ondansetron (1 mg/kg, p.o.), promethazine (1 mg/kg, i.p.), and L733,060 (5 mg/kg, s.c.), respectively) transiently reversed the reserpine-induced allodynia and fatigue. The results indicate that mast cells mediate painful and fatigue behaviours in this fibromyalgia model, representing potential therapy targets to treat fibromyalgia syndrome.
Collapse
Affiliation(s)
- Evelyne da Silva Brum
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cristina Wayne Nogueira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
4
|
Gugliandolo E, Franco GA, Marino Y, Peritore AF, Impellizzeri D, Cordaro M, Siracusa R, Fusco R, D’Amico R, Macrì F, Di Paola R, Cuzzocrea S, Crupi R. Uroprotective and pain-relieving effect of dietary supplementation with micronized palmitoyl-glucosamine and hesperidin in a chronic model of cyclophosphamide-induced cystitis. Front Vet Sci 2024; 10:1327102. [PMID: 38249555 PMCID: PMC10797840 DOI: 10.3389/fvets.2023.1327102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Feline idiopathic cystitis is a common, chronic-relapsing disorder of the lower urinary tract. In addition to environmental modification/enrichment, long-term and safe treatment targeting specific pathophysiological changes may be of help. In this context, effective dietary interventions hold clinical promise. Palmitoyl-glucosamine (PGA) and hesperidin (HSP) are safe and authorized feed ingredients for animal nutrition under European regulations. Methods The current study aimed to investigate whether a 3:1 mixture of micronized PGA and HSP could represent a novel mechanism-oriented approach to chronic cystitis management. A newly validated rat model of cyclophosphamide (CYP)-induced chronic cystitis was used (40 mg/kg, three intraperitoneal injections every 3rd day). Animals were randomized to orally receive either vehicle or PGA-HSP at a low (72 + 24 mg/kg) or high (doubled) dose for 13 days, starting 3 days before the chronic CYP protocol, with mesna (2-mercaptoethane-sulfonate) being used as a reference drug. Results Higher PGA-HSP dose was effective at relieving chronic visceral pain, as measured by mechanical allodynia test (von Frey test). The severity of cystitis was also significantly improved, as shown by the reduced sonographic thickening of the bladder wall, as well as the decrease in edema, bleeding and bladder to body weight ratio compared to the vehicle treated group. A significant decrease of MPO activity, MDA level and fibrosis at Masson's trichrome staining was also observed in animals administered PGA-HSP in comparison to vehicle treated ones. The CYP-induced increase in bladder mRNA expression of pro-inflammatory cytokines was also significantly counteracted by the study mixture. Moreover, CYP-induced bladder mast cell accumulation and releasability were significantly decreased by PGA-HSP (even at the low dose), as determined by metachromatic staining, chymase and tryptase immunostaining as well as enzyme-linked immunosorbent assay for histamine and 5-hydoxytriptamine. Discussion PGA-HSP is able to block CYP-induced decrease of tight junction proteins, claudin-1 and occludin, thus preserving the urothelial bladder function. Finally, neuroinflammatory changes were investigated, showing that dietary supplementation with PGA-HSP prevented the activation of neurons and non-neuronal cells (i.e., microglia, astrocytes and mast cells) at the spinal level, and counteracted CYP-induced increase of spinal mRNA encoding for pro-inflammatory cytokines. Altogether, the present findings confirm the uroprotective and pain-relieving effect of PGA-HSP and pave the way to potential and relevant clinical applications of the study supplement in feline idiopathic cystitis.
Collapse
Affiliation(s)
| | | | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | | | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Marika Cordaro
- BioMorf Department, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Messina, Italy
| |
Collapse
|
5
|
Namakin K, Moghaddam MH, Sadeghzadeh S, Mehranpour M, Vakili K, Fathi M, Golshan A, Bayat AH, Tajik AH, Eskandari N, Mohammadzadeh I, Benisi SZ, Aliaghaei A, Abdollahifar MA. Elderberry diet improves gut-brain axis dysfunction, neuroinflammation, and cognitive impairment in the rat model of irritable bowel syndrome. Metab Brain Dis 2023; 38:1555-1572. [PMID: 36877342 DOI: 10.1007/s11011-023-01187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
Irritable bowel syndrome (IBS) is related to a problem in the gut-brain axis. This experimental research aimed to shed light on the potential therapeutic application of elderberry (EB), which can work on the axis and get better the IBS symptoms. There were three groups (36 Sprague-Dawley rats) in this experiment, including control, IBS, and IBS with EB diet (IBS + EB). Making use of intracolonic instillation of 1 ml of 4% acetic acid for 30 s, IBS was induced. 7 days later, the EB extract (2%) was added to the diets of all animals for 8 weeks. Some histological, behavioral, and stereological techniques were used to detect the effects of EB on the gut and brain tissues. The findings showed that the EB diet improved locomotion and decreased anxiety-like behavior in the rat models of IBS. Moreover, the diet dropped the expression of TNF-α and increased mucosal layer thickness and the number of goblet and mast cells in colon tissue samples. In the hippocampal samples, administration of EB prevented astrogliosis and astrocyte reactivity. Although hippocampal and cortical neurons decreased markedly in the IBS group, EB prevented the drop in the number of neurons. Although lots of research is needed to elucidate the effectiveness of EB in IBS and its exact molecular mechanism, the result of this study showed that EB as an antioxidant and immune-modulatory agent could be a promising research target to prevent the impairment in the gut-brain axis, and could ameliorative classic IBS symptoms.
Collapse
Affiliation(s)
- Kosar Namakin
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Sara Sadeghzadeh
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mehranpour
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Golshan
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Hossein Bayat
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir-Hossein Tajik
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Eskandari
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ibrahim Mohammadzadeh
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, 1385/768, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Amin Abdollahifar
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Babina M, Franke K, Bal G. How "Neuronal" Are Human Skin Mast Cells? Int J Mol Sci 2022; 23:ijms231810871. [PMID: 36142795 PMCID: PMC9505265 DOI: 10.3390/ijms231810871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Mast cells are evolutionarily old cells and the principal effectors in allergic responses and inflammation. They are seeded from the yolk sac during embryogenesis or are derived from hematopoietic progenitors and are therefore related to other leukocyte subsets, even though they form a separate clade in the hematopoietic system. Herein, we systematically bundle information from several recent high-throughput endeavors, especially those comparing MCs with other cell types, and combine such information with knowledge on the genes’ functions to reveal groups of neuronal markers specifically expressed by MCs. We focus on recent advances made regarding human tissue MCs, but also refer to studies in mice. In broad terms, genes hyper-expressed in MCs, but largely inactive in other myelocytes, can be classified into subcategories such as traffic/lysosomes (MLPH and RAB27B), the dopamine system (MAOB, DRD2, SLC6A3, and SLC18A2), Ca2+-related entities (CALB2), adhesion molecules (L1CAM and NTM) and, as an overall principle, the transcription factors and modulators of transcriptional activity (LMO4, PBX1, MEIS2, and EHMT2). Their function in MCs is generally unknown but may tentatively be deduced by comparison with other systems. MCs share functions with the nervous system, as they express typical neurotransmitters (histamine and serotonin) and a degranulation machinery that shares features with the neuronal apparatus at the synapse. Therefore, selective overlaps are plausible, and they further highlight the uniqueness of MCs within the myeloid system, as well as when compared with basophils. Apart from investigating their functional implications in MCs, a key question is whether their expression in the lineage is due to the specific reactivation of genes normally silenced in leukocytes or whether the genes are not switched off during mastocytic development from early progenitors.
Collapse
Affiliation(s)
- Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
- Correspondence:
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
7
|
Gao Y, Mei C, Chen P, Chen X. The contribution of neuro-immune crosstalk to pain in the peripheral nervous system and the spinal cord. Int Immunopharmacol 2022; 107:108700. [DOI: 10.1016/j.intimp.2022.108700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 12/16/2022]
|
8
|
Kokoti L, Al-Mahdi Al-Karagholi M, Elbahi FA, Coskun H, Ghanizada H, Amin FM, Ashina M. Effect of K ATP channel blocker glibenclamide on PACAP38-induced headache and hemodynamic. Cephalalgia 2022; 42:846-858. [PMID: 35301859 DOI: 10.1177/03331024221080574] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To determine whether glibenclamide, a non-selective adenosine 5'-triphosphate-sensitive K+ (KATP) channel blocker, attenuates pituitary adenylate cyclase-activating polypeptide-38 (PACAP38)-induced headache and vascular changes in healthy volunteers. METHODS In a double-blind, randomized, placebo controlled and crossover design, 22 healthy volunteers were assigned to receive an intravenous infusion of 10 picomole/kg/min pituitary adenylate cyclase-activating polypeptide-38 over 20 minutes followed by oral administration of 10 mg glibenclamide or placebo. The primary endpoint was the difference in incidence of headache (0-12 hours) between glibenclamide and placebo. The secondary endpoints were a difference in area under the curve for headache intensity scores, middle cerebral artery velocity (VmeanMCA), superficial temporal artery diameter, radial artery diameter, heart rate, mean arterial blood pressure and facial skin blood flow between the two study days. RESULTS Twenty participants completed the study. We found no difference in the incidence of pituitary adenylate cyclase-activating polypeptide-38-induced headache after glibenclamide (19/20, 95%) compared to placebo (18/20, 90%) (P = 0.698). The area under the curve for headache intensity, middle cerebral artery velocity, superficial temporal artery diameter, radial artery diameter, facial skin blood flow, heart rate and mean arterial blood pressure did not differ between pituitary adenylate cyclase-activating polypeptide-38-glibenclamide day compared to pituitary adenylate cyclase-activating polypeptide-38-placebo day (P > 0.05). CONCLUSIONS Posttreatment with 5'-triphosphate-sensitive K+ channel inhibitor glibenclamide did not attenuate pituitary adenylate cyclase-activating polypeptide-38-induced headache and hemodynamic changes in healthy volunteers. We suggest that pituitary adenylate cyclase-activating polypeptide-38-triggered signaling pathway could be mediated by specific isoforms of sulfonylurea receptor subunits of 5'-triphosphate-sensitive K+ channels and other types of potassium channels.
Collapse
Affiliation(s)
- Lili Kokoti
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Fatima Azzahra Elbahi
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hande Coskun
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Danish Headache Knowledge Center, Rigshospitalet - Glostrup, Glostrup, Denmark
| |
Collapse
|
9
|
Gao R, Ye T, Zhu Z, Li Q, Zhang J, Yuan J, Zhao B, Xie Z, Wang Y. Small extracellular vesicles from iPSC-derived mesenchymal stem cells ameliorate tendinopathy pain by inhibiting mast cell activation. Nanomedicine (Lond) 2022; 17:513-529. [PMID: 35289187 DOI: 10.2217/nnm-2022-0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: This study aimed to explore the effect of small extracellular vesicles from induced pluripotent stem cell-derived mesenchymal stem cells (iMSC-sEVs) on acute pain and investigate the underlying mechanisms. Materials & methods: The pathology of tendons was accessed by hematoxylin and eosin staining, immunohistochemical and immunofluorescent staining. The pain degree was measured by pain-related behaviors. In vitro, we performed β-hexosaminidase release assay, RT-qPCR, toluidine blue staining, ELISA and RNA sequencing. Results: iMSC-sEVs effectively alleviated acute pain in tendinopathy as well as inhibiting activated mast cell infiltration and interactions with nerve fibers in vivo. In vitro, iMSC-sEVs reduced the degranulation of mast cells and the expression of proinflammatory cytokines and genes involved in the HIF-1 signaling pathway. Conclusion: This study demonstrated that iMSC-sEVs relieved tendinopathy-related pain through inhibiting mast cell activation via the HIF-1 signaling pathway.
Collapse
Affiliation(s)
- Renzhi Gao
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Teng Ye
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Zhaochen Zhu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Juntao Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Ji Yuan
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Bizeng Zhao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Zongping Xie
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
10
|
Alvarado D, Maurer M, Gedrich R, Seibel SB, Murphy MB, Crew L, Goldstein J, Crocker A, Vitale LA, Morani PA, Thomas LJ, Hawthorne TR, Keler T, Young D, Crowley E, Kankam M, Heath‐Chiozzi M. Anti-KIT monoclonal antibody CDX-0159 induces profound and durable mast cell suppression in a healthy volunteer study. Allergy 2022; 77:2393-2403. [PMID: 35184297 PMCID: PMC9544977 DOI: 10.1111/all.15262] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Background Mast cells (MC) are powerful inflammatory immune sentinel cells that drive numerous allergic, inflammatory, and pruritic disorders when activated. MC‐targeted therapies are approved in several disorders, yet many patients have limited benefit suggesting the need for approaches that more broadly inhibit MC activity. MCs require the KIT receptor and its ligand stem cell factor (SCF) for differentiation, maturation, and survival. Here we describe CDX‐0159, an anti‐KIT monoclonal antibody that potently suppresses MCs in human healthy volunteers. Methods CDX‐0159‐mediated KIT inhibition was tested in vitro using KIT‐expressing immortalized cells and primary human mast cells. CDX‐0159 safety and pharmacokinetics were evaluated in a 13‐week good laboratory practice (GLP)‐compliant cynomolgus macaque study. A single ascending dose (0.3, 1, 3, and 9 mg/kg), double‐blinded placebo‐controlled phase 1a human healthy volunteer study (n = 32) was conducted to evaluate the safety, pharmacokinetics, and pharmacodynamics of CDX‐0159. Results CDX‐0159 inhibits SCF‐dependent KIT activation in vitro. Fc modifications in CDX‐0159 led to elimination of effector function and reduced serum clearance. In cynomolgus macaques, multiple high doses were safely administered without a significant impact on hematology, a potential concern for KIT inhibitors. A single dose of CDX‐0159 in healthy human subjects was generally well tolerated and demonstrated long antibody exposure. Importantly, CDX‐0159 led to dose‐dependent, profound suppression of plasma tryptase, a MC‐specific protease associated with tissue MC burden, indicative of systemic MC suppression or ablation. Conclusion CDX‐0159 administration leads to systemic mast cell ablation and may represent a safe and novel approach to treat mast cell‐driven disorders.
Collapse
Affiliation(s)
| | - Marcus Maurer
- Dermatological Allergology Allergie‐Centrum‐Charité Department of Dermatology and Allergy Charité ‐ Universtätsmedizin Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology Berlin Germany
| | | | | | | | - Linda Crew
- Celldex Therapeutics Hampton New Jersey USA
| | | | | | | | | | | | | | | | | | | | - Martin Kankam
- Altasciences Clinical Kansas Overland Park Kansas USA
| | | |
Collapse
|
11
|
Louwies T, Meerveld BGV. Abdominal Pain. COMPREHENSIVE PHARMACOLOGY 2022:132-163. [DOI: 10.1016/b978-0-12-820472-6.00037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Martínez-Aguirre C, Cinar R, Rocha L. Targeting Endocannabinoid System in Epilepsy: For Good or for Bad. Neuroscience 2021; 482:172-185. [PMID: 34923038 DOI: 10.1016/j.neuroscience.2021.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
Epilepsy is a neurological disorder with a high prevalence worldwide. Several studies carried out during the last decades indicate that the administration of cannabinoids as well as the activation of the endocannabinoid system (ECS) represent a therapeutic strategy to control epilepsy. However, there are controversial studies indicating that activation of ECS results in cell damage, inflammation and neurotoxicity, conditions that facilitate the seizure activity. The present review is focused to present findings supporting this issue. According to the current discrepancies, it is relevant to elucidate the different effects induced by the activation of ECS and determine the conditions under which it facilitates the seizure activity.
Collapse
Affiliation(s)
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Rockville, USA
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies, Mexico City, Mexico.
| |
Collapse
|
13
|
Pergolizzi JV, Varrassi G, Magnusson P, Breve F, Raffa RB, Christo PJ, Chopra M, Paladini A, LeQuang JA, Mitchell K, Coluzzi F. Pharmacologic agents directed at the treatment of pain associated with maladaptive neuronal plasticity. Expert Opin Pharmacother 2021; 23:105-116. [PMID: 34461795 DOI: 10.1080/14656566.2021.1970135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The definition of nociplastic pain in 2016 has changed the way maladaptive chronic pain is viewed in that it may emerge without neural lesions or neural disease. Many endogenous and pharmacologic substances are being investigated for their role in treating the pain associated with neuronal plasticity. AREAS COVERED The authors review promising pharmacologic agents for the treatment of pain associated with maladaptive neuronal plasticity. The authors then provide the reader with their expert opinion and provide their perspectives for the future. EXPERT OPINION An imbalance between the amplification of ascending pain signals and the poor activation of descending inhibitory signals may be at the root of many chronic pain syndromes. The inhibitory activity of noradrenaline reuptake may play a role in neuropathic and nociplastic analgesia. A better understanding of the brain's pain matrix, its signaling cascades, and the complex bidirectional communication between the immune system and the nervous system may help meet the urgent and unmet medical need for safe, effective chronic pain treatment, particularly for pain with a neuropathic and/or nociplastic component.
Collapse
Affiliation(s)
| | | | - Peter Magnusson
- Centre for Research and Development, Region Gävleborg/Uppsala University, Gävle, Sweden.,Department of Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Frank Breve
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, USA
| | - Robert B Raffa
- College of Pharmacy (Adjunct), University of Arizona, Tucson, USA.,Temple University School of Pharmacy (Professor Emeritus), Philadelphia, USA
| | - Paul J Christo
- Associate Professor, the Johns Hopkins School of Medicine, Baltimore, USA
| | | | | | | | | | - Flaminia Coluzzi
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
14
|
Lee JH, Kim W. Involvement of Serotonergic System in Oxaliplatin-Induced Neuropathic Pain. Biomedicines 2021; 9:970. [PMID: 34440174 PMCID: PMC8394518 DOI: 10.3390/biomedicines9080970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Oxaliplatin is a chemotherapeutic agent widely used against colorectal and breast cancers; however, it can also induce peripheral neuropathy that can rapidly occur even after a single infusion in up to 80-90% of treated patients. Numerous efforts have been made to understand the underlying mechanism and find an effective therapeutic agent that could diminish pain without damaging its anti-tumor effect. However, its mechanism is not yet clearly understood. The serotonergic system, as part of the descending pain inhibitory system, has been reported to be involved in different types of pain. The malfunction of serotonin (5-hydroxytryptamine; 5-HT) or its receptors has been associated with the development and maintenance of pain. However, its role in oxaliplatin-induced neuropathy has not been clearly elucidated. In this review, 16 in vivo studies focused on the role of the serotonergic system in oxaliplatin-induced neuropathic pain were analyzed. Five studies analyzed the involvement of 5-HT, while fourteen studies observed the role of its receptors in oxaliplatin-induced allodynia. The results show that 5-HT is not involved in the development of oxaliplatin-induced allodynia, but increasing the activity of the 5-HT1A, 5-HT2A, and 5-HT3 receptors and decreasing the action of 5-HT2C and 5-HT6 receptors may help inhibit pain.
Collapse
Affiliation(s)
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
| |
Collapse
|
15
|
Bioactive Compounds in Food as a Current Therapeutic Approach to Maintain a Healthy Intestinal Epithelium. Microorganisms 2021; 9:microorganisms9081634. [PMID: 34442713 PMCID: PMC8401766 DOI: 10.3390/microorganisms9081634] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium serves as an effective barrier against the external environment, hampering the passage of potentially harmful substances (such as pathogenic microbes) that could trigger an exacerbated host immune response. The integrity of this barrier is thus essential for the maintenance of proper intestinal homeostasis and efficient protective reactions against chemical and microbial challenges. The principal consequence of intestinal barrier defects is an increase in intestinal permeability, which leads to an increased influx of luminal stressors, such as pathogens, toxins, and allergens, which in turn trigger inflammation and immune response. The fine and fragile balance of intestinal homeostasis can be altered by multiple factors that regulate barrier function, many of which are poorly understood. This review will address the role of gut microbiota as well as food supplements (such as probiotics, prebiotics, and synbiotics) in modulating gut health and regulating intestinal barrier function. In particular, we will focus on three human pathologies: inflammatory bowel disease, irritable bowel syndrome, and food allergy.
Collapse
|
16
|
Jin X, Gharibani P, Yin J, Chen JDZ. Neuro-Immune Modulation Effects of Sacral Nerve Stimulation for Visceral Hypersensitivity in Rats. Front Neurosci 2021; 15:645393. [PMID: 34276280 PMCID: PMC8282909 DOI: 10.3389/fnins.2021.645393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Visceral hypersensitivity (VH) is one of the underlying pathophysiologies of irritable bowel syndrome. Mast cell overactivation has been found to be one of the main causes of VH. We investigated the effects and mechanisms of actions of sacral nerve stimulation (SNS) on visceral pain in a rodent model of VH. Methods: The VH was established by an intrarectal infusion of AA in 10-day-old pups. Rats were chronically implanted with electrodes for SNS and recording electromyogram (EMG) and electrocardiogram. The acute study was performed in 2-randomized sessions with SNS (14 Hz, 330 μs, 40% motor threshold or MT, 30 min) or sham-SNS. Later on, rats were randomized into SNS/sham-SNS groups and a chronic study was performed with 2 h-daily SNS or sham-SNS for 21 days. Visceromotor reflexes were assessed by abdominal EMG and withdrawal reflex (AWR). Colon tissues were collected to study colonic acetylcholine (ACh), the enteric neurons (ChAT, nNOS, and PGP9.5), mast cells activity [Tryptase, prostaglandins E2 (PGE2), and cyclooxygenases-2 (COX2)] and pain markers [nerve growth factor (NGF) and Sub-P]. Key Results: Sacral nerve stimulation significantly improved visceromotor reflexes assessed by the EMG and AWR, compared with sham-SNS. SNS normalized the protein expressions of ChAT and nNOS and regulated mast cells activity by downregulating Tryptase, COX2, and PGE2. Neonatal AA administration upregulated NGF and Sub-P; chronic SNS significantly decreased these pain biomarkers. Concurrently, chronic SNS increased ACh in colon tissues and vagal efferent activity. Conclusions: Sacral nerve stimulation reduces VH in rats and this ameliorating effect might be attributed to the suppression of mast cell overactivation in the colon tissue via the modulation of autonomic nervous system functions.
Collapse
Affiliation(s)
- Xue Jin
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Payam Gharibani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jieyun Yin
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Bae SJ, Ji JY, Oh JY, Won J, Ryu YH, Lee H, Jung HS, Park HJ. The Role of Skin Mast Cells in Acupuncture Induced Analgesia in Animals: A Preclinical Systematic Review and Meta-analysis. THE JOURNAL OF PAIN 2021; 22:1560-1577. [PMID: 34182104 DOI: 10.1016/j.jpain.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/08/2021] [Accepted: 06/05/2021] [Indexed: 01/28/2023]
Abstract
While mast cells (MCs) are previously well-known as a pathological indicator of pain, their role in alleviating pain is recently emerged in acupuncture research. Thus, this study systematically reviews the role of MC in acupuncture analgesia. Animal studies on MC changes associated with the acupuncture analgesia were searched in PubMed and EMBASE. The MC number, degranulation ratio and pain threshold changes were collected as outcome measures for meta-analyses. Twenty studies were included with 13 suitable for meta-analysis, most with a moderate risk of bias. A significant MC degranulation after acupuncture was indicated in the normal and was significantly higher in the pain model. In the subgroup analysis by acupuncture type, manual (MA) and electrical (EA, each P < .00001) but not sham acupuncture had significant MC degranulation. Meta-regression revealed the linear proportionality between MC degranulation and acupuncture-induced analgesia (P < .001), which was found essential in MA (P < .00001), but not in EA (P = .45). MC mediators, such as adenosine and histamine, are involved in its mechanism. Taken together, skin MC is an essential factor for acupuncture-induced analgesia, which reveals a new aspect of MC as a pain alleviator. However, its molecular mechanism requires further study. PERSPECTIVE: This systematic review synthesizes data from studies that examined the contribution of skin MC in acupuncture analgesia. Current reports suggest a new role for skin MC and its mediators in pain alleviation and explain a peripheral mechanism of acupuncture analgesia, with suggesting the need of further studies to confirm these findings.
Collapse
Affiliation(s)
- Sun-Jeong Bae
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Yeon Ji
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ju-Young Oh
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jiyoon Won
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yeon-Hee Ryu
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hyangsook Lee
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyuk-Sang Jung
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Infection-Associated Mechanisms of Neuro-Inflammation and Neuro-Immune Crosstalk in Chronic Respiratory Diseases. Int J Mol Sci 2021; 22:ijms22115699. [PMID: 34071807 PMCID: PMC8197882 DOI: 10.3390/ijms22115699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive airway diseases are characterized by airflow obstruction and airflow limitation as well as chronic airway inflammation. Especially bronchial asthma and chronic obstructive pulmonary disease (COPD) cause considerable morbidity and mortality worldwide, can be difficult to treat, and ultimately lack cures. While there are substantial knowledge gaps with respect to disease pathophysiology, our awareness of the role of neurological and neuro-immunological processes in the development of symptoms, the progression, and the outcome of these chronic obstructive respiratory diseases, is growing. Likewise, the role of pathogenic and colonizing microorganisms of the respiratory tract in the development and manifestation of asthma and COPD is increasingly appreciated. However, their role remains poorly understood with respect to the underlying mechanisms. Common bacteria and viruses causing respiratory infections and exacerbations of chronic obstructive respiratory diseases have also been implicated to affect the local neuro-immune crosstalk. In this review, we provide an overview of previously described neuro-immune interactions in asthma, COPD, and respiratory infections that support the hypothesis of a neuro-immunological component in the interplay between chronic obstructive respiratory diseases, respiratory infections, and respiratory microbial colonization.
Collapse
|
19
|
Héron A, Papillon V, Dubayle D. Medical, neurobiological, and psychobehavioral perspectives of mastocytosis: a case report. J Med Case Rep 2021; 15:176. [PMID: 33781336 PMCID: PMC8008611 DOI: 10.1186/s13256-021-02757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/23/2021] [Indexed: 11/12/2022] Open
Abstract
Background Cutaneous mastocytosis is a rare pathology characterized by an abnormal proliferation and degranulation of mast cells, affecting the skin. Here we present the case of a patient suffering from chronic resistant mastocytosis. An original integrative method of evaluation was tested in this patient, to improve therapeutic management. It integrated the interactions between stressful life events and medical history as well as psychobehavioral components and neurobiological factors. Case presentation The patient was a 65-year-old Caucasian woman. The cutaneous symptoms of mastocytosis had progressively evolved over the past 36 years, increasingly affecting the patient’s quality of life. At the time of the evaluation, psoralen and ultraviolet A therapy had reduced pruritus, but very unsightly brown-red maculopapules persisted on the chest, back, and arms. We proposed an integrative diagnosis that combined a semistructured interview, a psychometric assessment with the Millon Behavioral Medicine Diagnostic tool, and the collection of medical data. The medical data were compared with the analysis of the significant events in the patient’s life, to determine the threshold of tolerance to stress beyond which the skin symptoms led to profuse thrusts of pruritus. At the same time, the psychobehavioral profile of the patient was determined; this highlighted how social isolation, the denigrated coping style, and problematic compliance could influence the extension of dermatological symptoms. The effects of stressors on the infiltration and degranulation of skin mast cells have been discussed in light of the neurobiological processes currently known. At the end of the evaluation, a new therapeutic strategy was proposed. Conclusion This case report reveals the mind–body relationship of a patient suffering from mastocytosis. It highlights the points of vulnerability and the adaptative strategies specific to each patient to be considered in therapeutic management of other resistant chronic diseases.
Collapse
Affiliation(s)
- A Héron
- Faculté de Santé, Université de Paris, Physiologie Humaine, 4 avenue de l'Observatoire, 75006, Paris, France. .,Groupement Hospitalier de Territoire, Unité de Recherche Clinique URC28, Centre Hospitalier Général Victor Jousselin, 44 avenue JF Kennedy, 28100, Dreux, France.
| | - V Papillon
- Groupement Hospitalier de Territoire, Unité de Recherche Clinique URC28, Centre Hospitalier Général Victor Jousselin, 44 avenue JF Kennedy, 28100, Dreux, France
| | - D Dubayle
- Université de Paris, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, 45 rue des Saints Pères, Paris, France
| |
Collapse
|
20
|
della Rocca G, Gamba D. Chronic Pain in Dogs and Cats: Is There Place for Dietary Intervention with Micro-Palmitoylethanolamide? Animals (Basel) 2021; 11:952. [PMID: 33805489 PMCID: PMC8065429 DOI: 10.3390/ani11040952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The management of chronic pain is an integral challenge of small animal veterinary practitioners. Multiple pharmacological agents are usually employed to treat maladaptive pain including opiates, non-steroidal anti-inflammatory drugs, anticonvulsants, antidepressants, and others. In order to limit adverse effects and tolerance development, they are often combined with non-pharmacologic measures such as acupuncture and dietary interventions. Accumulating evidence suggests that non-neuronal cells such as mast cells and microglia play active roles in the pathogenesis of maladaptive pain. Accordingly, these cells are currently viewed as potential new targets for managing chronic pain. Palmitoylethanolamide is an endocannabinoid-like compound found in several food sources and considered a body's own analgesic. The receptor-dependent control of non-neuronal cells mediates the pain-relieving effect of palmitoylethanolamide. Accumulating evidence shows the anti-hyperalgesic effect of supplemented palmitoylethanolamide, especially in the micronized and co-micronized formulations (i.e., micro-palmitoylethanolamide), which allow for higher bioavailability. In the present paper, the role of non-neuronal cells in pain signaling is discussed and a large number of studies on the effect of palmitoylethanolamide in inflammatory and neuropathic chronic pain are reviewed. Overall, available evidence suggests that there is place for micro-palmitoylethanolamide in the dietary management of chronic pain in dogs and cats.
Collapse
Affiliation(s)
- Giorgia della Rocca
- Department of Veterinary Medicine, Centro di Ricerca sul Dolore Animale (CeRiDA), Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Davide Gamba
- Operational Unit of Anesthesia, Centro Veterinario Gregorio VII, 00165 Roma, Italy;
- Freelance, DG Vet Pain Therapy, 24124 Bergamo, Italy
| |
Collapse
|
21
|
Ma J, Wang FY, Xu L, Wang YF, Tang XD. Mechanism of mast cell-mediated COX2-PGE2-Eps signaling pathway in visceral hypersensitivity in irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2021; 29:306-311. [DOI: 10.11569/wcjd.v29.i6.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder (FGID) whose pathophysiological mechanism is complex, involving genetic factors, psychosocial factors, low-grade mucosal inflammation, changes in the intestinal barrier, bacterial flora disorder, neuroimmune abnormalities, and high visceral sensitivity. In recent years, the mechanism of visceral hypersensitivity in IBS has become a hot research topic. Mast cells (MCs) are a group of immune cells that are distributed in the central nervous system and digestive system. The COX2-PGE2-Eps signaling pathway plays a major role in the visceral hypersensitivity in IBS, from peripheral sensitization to central sensitization, which provides a new idea for further clarifying the pathological mechanism of IBS.
Collapse
Affiliation(s)
- Jing Ma
- Graduate School of China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Feng-Yun Wang
- Department of Spleen and Stomach, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lin Xu
- Graduate School of China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Yi-Fan Wang
- Peking University Traditional Chinese Medicine Clinical Medical School, Beijing 100091, China
| | - Xu-Dong Tang
- China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
22
|
Kilinc E, Torun IE, Cetinkaya A, Tore F. Mast cell activation ameliorates pentylenetetrazole-induced seizures in rats: The potential role for serotonin. Eur J Neurosci 2021; 55:2912-2924. [PMID: 33565644 DOI: 10.1111/ejn.15145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Neuroinflammation plays a key role in the pathogenesis of epilepsy, but the underlying mechanisms are not well understood. Mast cells are multifunctional immune cells that are also activated by stress. The effects of activated mast cells on epileptogenesis are not yet known. This study investigated the effects and mechanisms of compound 48/80-stimulated mast cell activation on pentylenetetrazole-induced epileptic seizures in rats. Male Wistar rats were separated into seven groups (n = 12). Group-1(NS+PTZ) received intraperitoneal saline solution, while groups 2(C-48/80+PTZ-1), 3(C-48/80+PTZ-2), and 4(C-48/80+PTZ-3) received compound-48/80 at doses of 0.5, 1, and 2 mg/kg, respectively, 30 min before 45 mg/kg pentylenetetrazole administration. Similarly, Group-5(Cr+C-48/80+PTZ) received 10 mg/kg cromolyn plus 2 mg/kg compound-48/80 before pentylenetetrazole, and Group-6(MC Dep+C-48/80+PTZ) was exposed to a mast cell-depletion process, and then received 2 mg/kg compound-48/80. Group-7(5-HT+PTZ) received 10 mg/kg serotonin. Seizure stages were evaluated using Racine's scale. Compound-48/80 at 2 mg/kg induced anticonvulsive effects against pentylenetetrazole-induced seizures by extending onset-times of both myoclonic-jerk and generalized tonic-clonic seizures (p = 0.0001), and by shortening the duration of generalized tonic-clonic seizure (p = 0.008). These effects were reversed by cromolyn (p = 0.0001). These effects were not observed in mast cell-depleted rats. Similarly to compound 48/80, serotonin also exhibited anticonvulsive effects against seizures (p < 0.05). Compound 48/80 acts as an anticonvulsant by activating mast cells in a dose-dependent manner. The anticonvulsive effects of mast cell activation may be mediated by serotonin. Mast cell activation may therefore provide protective activity against seizures under appropriate circumstances.
Collapse
Affiliation(s)
- Erkan Kilinc
- Department of Physiology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | | | - Ayhan Cetinkaya
- Department of Physiology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Fatma Tore
- Department of Physiology, Istanbul Health and Technology University, Istanbul, Turkey
| |
Collapse
|
23
|
Green DP. The role of Mrgprs in pain. Neurosci Lett 2021; 744:135544. [PMID: 33421487 DOI: 10.1016/j.neulet.2020.135544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022]
Abstract
Owing to their functional diversity, the Mas-related G-protein-coupled receptor (Mrgpr) family has a role in both itch and pain modulation. While primarily linked to pruritis, Mrgprs were originally characterized in small-diameter nociceptive neurons of dorsal root ganglia (DRG) and trigeminal ganglia. This review will focus on the role Mrgpr's have in pain physiology, discussing recent discoveries as well as how Mrgpr's may provide a new target for the treatment of pathological pain.
Collapse
Affiliation(s)
- Dustin P Green
- Department of Neuroscience, Cell Biology, & Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
24
|
Lagomarsino VN, Kostic AD, Chiu IM. Mechanisms of microbial-neuronal interactions in pain and nociception. NEUROBIOLOGY OF PAIN 2020; 9:100056. [PMID: 33392418 PMCID: PMC7772816 DOI: 10.1016/j.ynpai.2020.100056] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Molecular mechanisms of how microorganisms communicate with sensory afferent neurons. How pathogenic microorganisms directly communicate with nociceptor neurons to inflict pain on the host. Symbiotic bacterial communication with gut-extrinsic sensory afferent neurons. Plausible roles on how gut symbionts directly mediate pain and nociception.
Nociceptor sensory neurons innervate barrier tissues that are constantly exposed to microbial stimuli. During infection, pathogenic microorganisms can breach barrier surfaces and produce pain by directly activating nociceptors. Microorganisms that live in symbiotic relationships with their hosts, commensals and mutualists, have also been associated with pain, but the molecular mechanisms of how symbionts act on nociceptor neurons to modulate pain remain largely unknown. In this review, we will discuss the known molecular mechanisms of how microbes directly interact with sensory afferent neurons affecting nociception in the gut, skin and lungs. We will touch on how bacterial, viral and fungal pathogens signal to the host to inflict or suppress pain. We will also discuss recent studies examining how gut symbionts affect pain. Specifically, we will discuss how gut symbionts may interact with sensory afferent neurons either directly, through secretion of metabolites or neurotransmitters, or indirectly,through first signaling to epithelial cells or immune cells, to regulate visceral, neuropathic and inflammatory pain. While this area of research is still in its infancy, more mechanistic studies to examine microbial-sensory neuron crosstalk in nociception may allow us to develop new therapies for the treatment of acute and chronic pain.
Collapse
Affiliation(s)
- Valentina N Lagomarsino
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.,Joslin Diabetes Center, Boston, MA 02115, USA.,Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandar D Kostic
- Joslin Diabetes Center, Boston, MA 02115, USA.,Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Kundu D, Kennedy L, Meadows V, Baiocchi L, Alpini G, Francis H. The Dynamic Interplay Between Mast Cells, Aging/Cellular Senescence, and Liver Disease. Gene Expr 2020; 20:77-88. [PMID: 32727636 PMCID: PMC7650013 DOI: 10.3727/105221620x15960509906371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mast cells are key players in acute immune responses that are evidenced by degranulation leading to a heightened allergic response. Activation of mast cells can trigger a number of different pathways contributing to metabolic conditions and disease progression. Aging results in irreversible physiological changes affecting all organs, including the liver. The liver undergoes senescence, changes in protein expression, and cell signaling phenotypes during aging, which regulate disease progression. Cellular senescence contributes to the age-related changes. Unsurprisingly, mast cells also undergo age-related changes in number, localization, and activation throughout their lifetime, which adversely affects the etiology and progression of many physiological conditions including liver diseases. In this review, we discuss the role of mast cells during aging, including features of aging (e.g., senescence) in the context of biliary diseases such as primary biliary cholangitis and primary sclerosing cholangitis and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Debjyoti Kundu
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lindsey Kennedy
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vik Meadows
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leonardo Baiocchi
- †Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gianfranco Alpini
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- ‡Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Heather Francis
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- ‡Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
26
|
Coll RC, Vargas PM, Mariani ML, Penissi AB. Natural α,β-unsaturated lactones inhibit neuropeptide-induced mast cell activation in an in vitro model of neurogenic inflammation. Inflamm Res 2020; 69:1039-1051. [PMID: 32666125 DOI: 10.1007/s00011-020-01380-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Mast cells are involved in not only inducing, but also maintaining neurogenic inflammation and neuropathic pain. In previous work, we have demonstrated that dehydroleucodine, xanthatin and 3-benzyloxymethyl-5H-furan-2-one inhibit rat peritoneal and human LAD2 mast cell degranulation induced by compound 48/80 and calcium ionophore A23187. However, the effect of these molecules on neuropeptide-induced mast cell activation has not been studied so far. OBJECTIVE The aim of this study was to determine whether dehydroleucodine, xanthatin, and 3-benzyloxymethyl-5H-furan-2-one inhibit neuropeptide-induced mast cell activation. METHODS This work is based on in vitro simulation of a neurogenic inflammation scenario involving neuropeptides and mast cells, to subsequently analyze potential therapeutic strategies for neuropathic pain. RESULTS Neuromedin-N did not stimulate mast cell serotonin release but substance P and neurotensin did induce serotonin release from peritoneal mast cells in a dose-dependent manner. Mast cell serotonin release induced by substance P and neurotensin was inhibited by dehydroleucodine and xanthatin, but not by 3-benzyloxymethyl-5H-furan-2-one. The inhibitory potency of dehydroleucodine and xanthatin was higher than that obtained with the reference compounds, ketotifen and sodium chromoglycate, when mast cells were preincubated with dehydroleucodine before substance P incubation, and with dehydroleucodine or xanthatin before neurotensin incubation. CONCLUSIONS These results are the first strong evidence supporting the hypothesis that dehydroleucodine and xanthatin inhibit substance P- and neurotensin-induced serotonin release from rat peritoneal mast cells. Our findings suggest, additionally, that these α,β-unsaturated lactones could be of value in future pharmacological research related to inappropriate mast cell activation conditions such as neurogenic inflammation and neuropathic pain.
Collapse
Affiliation(s)
- Roberto Carlos Coll
- Instituto de Histología Y Embriología "Dr. Mario H. Burgos" (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56. (5500), Mendoza, Argentina
| | - Patricia María Vargas
- Instituto de Histología Y Embriología "Dr. Mario H. Burgos" (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56. (5500), Mendoza, Argentina
| | - María Laura Mariani
- Instituto de Histología Y Embriología "Dr. Mario H. Burgos" (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56. (5500), Mendoza, Argentina
| | - Alicia Beatriz Penissi
- Instituto de Histología Y Embriología "Dr. Mario H. Burgos" (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56. (5500), Mendoza, Argentina.
| |
Collapse
|
27
|
Lambertini C, Bombardi C, Zannoni A, Bernardini C, Dondi F, Morini M, Rinnovati R, Spadari A, Romagnoli N. Proteinase Activated Receptor 4 in the Jejunum of Healthy Horses and of Horses With Epiploic Hernia. Front Vet Sci 2020; 7:158. [PMID: 32296721 PMCID: PMC7136499 DOI: 10.3389/fvets.2020.00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/04/2020] [Indexed: 11/24/2022] Open
Abstract
Proteinase activated receptor 4 (PAR4) in the gastrointestinal tract is involved in the regulation of inflammation and pain pathways. The aim of the present study was to evaluate the distribution and expression of PAR4 in the jejunum of healthy horses and in the pathologic tracts from horses undergoing surgery for herniation of the small intestine through the epiploic foramen. Eight healthy horses (Group H) and eight horses with epiploic hernia (Group EH) were included; the jejunum samples were collected at the slaughter or intraoperatively after enterectomy, respectively. To evaluate PAR4 expression in sections of the jejunum, immunofluorescence, western blot and quantitative polymerase chain reaction (qRT-PCR) were performed. Immunohistochemistry of PAR4 in the jejunum of the healthy horses showed that receptors are predominantly expressed in the immune cell population scattered throughout the lamina propria of the mucosa and in the submucosa. Quantitative PCR data demonstrated that PAR4 mRNA was detectable in all of the samples analyzed without any difference between the H and the EH groups, however the PAR4 protein level was significantly lower in the jejunums of the EH horses. In the Group EH horses, PAR4 immunoreactivity was mainly expressed in the mast cells and was extensively distributed in the sierosa. In the lamina propria of mucosa of Group EH, leukocytes were less abundant than in Group H. In this study, the distribution and expression of PAR4 in the jejunums of the healthy horses and in those with spontaneous occurring epiploic hernia was demonstrated.
Collapse
Affiliation(s)
- Carlotta Lambertini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Dell'Emilia, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Dell'Emilia, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Dell'Emilia, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Dell'Emilia, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Dell'Emilia, Italy
| | - Maria Morini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Dell'Emilia, Italy
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Dell'Emilia, Italy
| | - Alessandro Spadari
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Dell'Emilia, Italy
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Dell'Emilia, Italy
| |
Collapse
|
28
|
Ghanizada H, Al-Karagholi MAM, Arngrim N, Mørch-Rasmussen M, Metcalf-Clausen M, Larsson HBW, Amin FM, Ashina M. Investigation of sumatriptan and ketorolac trometamol in the human experimental model of headache. J Headache Pain 2020; 21:19. [PMID: 32093617 PMCID: PMC7038568 DOI: 10.1186/s10194-020-01089-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) induces headache in healthy volunteers but the precise mechanisms by which PACAP38 leads to headache are unclear. We investigated the headache preventive effect of sumatriptan and ketorolac on PACAP38-induced headache in healthy volunteers. In addition, we explored contribution of vascular mechanisms to PACAP38-induced headache using high resolution magnetic resonance angiography. METHODS Thirty-four healthy volunteers were divided in two groups (A and B) and received infusion of PACAP38 (10 picomol/kg/min) over 20 min. Group A was pretreated with intravenous sumatriptan (4 mg) or ketorolac (30 mg) 20 min before infusion of PACAP38. Group B received infusion of sumatriptan or ketorolac as post-treatment 90 min after infusion of PACAP38. In both experiments, we used a randomized, double-blind, cross-over design. We recorded headache characteristics and circumference of extra-intracerebral arteries. RESULTS We found no difference in AUC (0-6 h) of PACAP38-induced headache in group A, pretreated with sumatriptan or ketorolac (p = 0.297). There was no difference between sumatriptan and ketorolac in PACAP38-induced circumference change (AUCBaseline-110 min) of MMA (p = 0.227), STA (p = 0.795) and MCA (p = 0.356). In group B, post-treatment with ketorolac reduced PACAP38-headache compared to sumatriptan (p < 0.001). Post-treatment with sumatriptan significantly reduced the circumference of STA (p = 0.039) and MMA (p = 0.015) but not of MCA (p = 0.981) compared to ketorolac. In an explorative analysis, we found that pre-treatment with sumatriptan reduced PACAP38-induced headache compared to no treatment (AUC0-90min). CONCLUSIONS Post-treatment with ketorolac was more effective in attenuating PACAP38-induced headache compared to sumatriptan. Ketorolac exerted its effect without affecting PACAP38-induced arterial dilation, whereas sumatriptan post-treatment attenuated PACAP38-induced dilation of MMA and STA. Pre-treatment with sumatriptan attenuated PACAP38-induced headache without affecting PACAP38-induced arterial dilation. Our findings suggest that ketorolac and sumatriptan attenuated PACAP38-induced headache in healthy volunteers without vascular effects. TRIAL REGISTRATION Clinicaltrials.gov (NCT03585894). Registered 13 July 2018.
Collapse
Affiliation(s)
- Hashmat Ghanizada
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Nanna Arngrim
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Mette Mørch-Rasmussen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Matias Metcalf-Clausen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark.
| |
Collapse
|
29
|
Banfi G, Diani M, Pigatto PD, Reali E. T Cell Subpopulations in the Physiopathology of Fibromyalgia: Evidence and Perspectives. Int J Mol Sci 2020; 21:ijms21041186. [PMID: 32054062 PMCID: PMC7072736 DOI: 10.3390/ijms21041186] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Fibromyalgia is one of the most important “rheumatic” disorders, after osteoarthritis. The etiology of the disease is still not clear. At the moment, the most defined pathological mechanism is the alteration of central pain pathways, and emotional conditions can trigger or worsen symptoms. Increasing evidence supports the role of mast cells in maintaining pain conditions such as musculoskeletal pain and central sensitization. Importantly, mast cells can mediate microglia activation through the production of proinflammatory cytokines such as IL-1β, IL-6, and TNFα. In addition, levels of chemokines and proinflammatory cytokines are enhanced in serum and could contribute to inflammation at systemic level. Despite the well-characterized relationship between the nervous system and inflammation, the mechanism that links the different pathological features of fibromyalgia, including stress-related manifestations, central sensitization, and dysregulation of the innate and adaptive immune responses is largely unknown. This review aims to provide an overview of the current understanding of the role of adaptive immune cells, in particular T cells, in the physiopathology of fibromyalgia. It also aims at linking the latest advances emerging from basic science to envisage new perspectives to explain the role of T cells in interconnecting the psychological, neurological, and inflammatory symptoms of fibromyalgia.
Collapse
Affiliation(s)
- Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, 20161Milan, Italy; (G.B.); (M.D.); (P.D.P.)
- School of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Marco Diani
- IRCCS Istituto Ortopedico Galeazzi, 20161Milan, Italy; (G.B.); (M.D.); (P.D.P.)
| | - Paolo D. Pigatto
- IRCCS Istituto Ortopedico Galeazzi, 20161Milan, Italy; (G.B.); (M.D.); (P.D.P.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Eva Reali
- IRCCS Istituto Ortopedico Galeazzi, 20161Milan, Italy; (G.B.); (M.D.); (P.D.P.)
- Correspondence:
| |
Collapse
|
30
|
Fusco R, Siracusa R, D’Amico R, Peritore AF, Cordaro M, Gugliandolo E, Crupi R, Impellizzeri D, Cuzzocrea S, Di Paola R. Melatonin Plus Folic Acid Treatment Ameliorates Reserpine-Induced Fibromyalgia: An Evaluation of Pain, Oxidative Stress, and Inflammation. Antioxidants (Basel) 2019; 8:antiox8120628. [PMID: 31817734 PMCID: PMC6943570 DOI: 10.3390/antiox8120628] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Fibromyalgia is a chronic condition characterized by increased sensory perception of pain, neuropathic/neurodegenerative modifications, oxidative, and nitrosative stress. An appropriate therapy is hard to find, and the currently used treatments are able to target only one of these aspects. Methods: The aim of this study is to investigate the beneficial effects of melatonin plus folic acid administration in a rat model of reserpine-induced fibromyalgia. Sprague–Dawley male rats were injected with 1 mg/kg of reserpine for three consecutive days and later administered with melatonin, folic acid, or both for twenty-one days. Results: Administration of reserpine led to a significant decrease in the nociceptive threshold as well as a significant increase in depressive-like symptoms. These behavioral changes were accompanied by increased oxidative and nitrosative stress. Lipid peroxidation was significantly increased, as well as nitrotyrosine and PARP expression, while superoxide dismutase, nonprotein thiols, and catalase were significantly decreased. Endogenously produced oxidants species are responsible for mast cell infiltration, increased expression pro-inflammatory mediators, and microglia activation. Conclusion: Melatonin plus acid folic administration is able to ameliorate the behavioral defects, oxidative and nitrosative stress, mast cell infiltration, inflammatory mediators overexpression, and microglia activation induced by reserpine injection with more efficacy than their separate administration.
Collapse
Affiliation(s)
- Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
- Correspondence: (D.I.); (S.C.); Tel.: +39-90-6765208 (D.I. & S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
- Correspondence: (D.I.); (S.C.); Tel.: +39-90-6765208 (D.I. & S.C.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy; (R.F.); (R.S.); (A.F.P.); (M.C.); (E.G.); (R.C.); (R.D.P.)
| |
Collapse
|
31
|
Meijerink M, van den Broek TJ, Dulos R, Garthoff J, Knippels L, Knipping K, Harthoorn L, Houben G, Verschuren L, van Bilsen J. Network-Based Selection of Candidate Markers and Assays to Assess the Impact of Oral Immune Interventions on Gut Functions. Front Immunol 2019; 10:2672. [PMID: 31798593 PMCID: PMC6863931 DOI: 10.3389/fimmu.2019.02672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/29/2019] [Indexed: 12/05/2022] Open
Abstract
To assess the safety and efficacy of oral immune interventions, it is important and required by regulation to assess the impact of those interventions not only on the immune system, but also on other organs such as the gut as the porte d'entrée. Despite clear indications that the immune system interacts with several physiological functions of the gut, it is still unknown which pathways and molecules are crucial to assessing the impact of nutritional immune interventions on gut functioning. Here we used a network-based systems biology approach to clarify the molecular relationships between immune system and gut functioning and to identify crucial biomarkers to assess effects on gut functions upon nutritional immune interventions. First, the different gut functionalities were categorized based on literature and EFSA guidance documents. Moreover, an overview of the current assays and methods to measure gut function was generated. Secondly, gut-function related biological processes and adverse events were selected and subsequently linked to the physiological functions of the GI tract. Thirdly, database terms and annotations from the Gene ontology database and the Comparative Toxicogenomics Database (CTD) related to the previously selected gut-function related processes were selected. Next, database terms and annotations were used to identify the pathways and genes involved in those gut functionalities. In parallel, information from CTD was used to identify immune disease related genes. The resulting lists of both gut and immune function genes showed an overlap of 753 genes out of 1,296 gut-function related genes indicating the close gut-immune relationship. Using bioinformatics enrichment tools DAVID and Panther, the identified gut-immune markers were predicted to be involved in motility, barrier function, the digestion and absorption of vitamins and fat, regulation of the digestive system and gastric acid, and protection from injurious or allergenic material. Concluding, here we provide a promising systems biology approach to identify genes that help to clarify the relationships between immune system and gut functioning, with the aim to identify candidate biomarkers to monitor nutritional immune intervention assays for safety and efficacy in the general population. This knowledge helps to optimize future study designs to predict effects of nutritional immune intervention on gut functionalities.
Collapse
Affiliation(s)
| | | | | | | | - Léon Knippels
- Danone Nutricia Research, Utrecht, Netherlands
- Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Karen Knipping
- Danone Nutricia Research, Utrecht, Netherlands
- Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | | | | | | | | |
Collapse
|
32
|
Kuffler DP. Injury-Induced Effectors of Neuropathic Pain. Mol Neurobiol 2019; 57:51-66. [PMID: 31701439 DOI: 10.1007/s12035-019-01756-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Injuries typically result in the development of neuropathic pain, which decreases in parallel with wound healing. However, the pain may remain after the injury appears to have healed, which is generally associated with an ongoing underlying pro-inflammatory state. Injury induces many cells to release factors that contribute to the development of a pro-inflammatory state, which is considered an essential first step towards wound healing. However, pain elimination requires a transition of the injury site from pro- to anti-inflammatory. Therefore, developing techniques that eliminate chronic pain require an understanding of the cells resident at and recruited to injury sites, the factors they release, that promote a pro-inflammatory state, and promote the subsequent transition of that site to be anti-inflammatory. Although a relatively large number of cells, factors, and gene expression changes are involved in these processes, it may be possible to control a relatively small number of them leading to the reduction and elimination of chronic neuropathic pain. This first of two papers examines the roles of the most salient cells and mediators associated with the development and maintenance of chronic neuropathic pain. The following paper examines the cells and mediators involved in reducing and eliminating chronic neuropathic pain.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, 201 Blvd. del Valle, San Juan, PR, 00901, USA.
| |
Collapse
|
33
|
Theoharides TC, Tsilioni I, Bawazeer M. Mast Cells, Neuroinflammation and Pain in Fibromyalgia Syndrome. Front Cell Neurosci 2019; 13:353. [PMID: 31427928 PMCID: PMC6687840 DOI: 10.3389/fncel.2019.00353] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/16/2019] [Indexed: 02/04/2023] Open
Abstract
Fibromyalgia Syndrome (FMS) is a disorder of chronic, generalized muscular pain, accompanied by sleep disturbances, fatigue and cognitive dysfunction. There is no definitive pathogenesis except for altered central pain pathways. We previously reported increased serum levels of the neuropeptides substance P (SP) and its structural analogue hemokinin-1 (HK-1) together with the pro-inflammatory cytokines IL-6 and TNF in FMS patients as compared to sedentary controls. We hypothesize that thalamic mast cells contribute to inflammation and pain, by releasing neuro-sensitizing molecules that include histamine, IL-1β, IL-6 and TNF, as well as calcitonin-gene related peptide (CGRP), HK-1 and SP. These molecules could either stimulate thalamic nociceptive neurons directly, or via stimulation of microglia in the diencephalon. As a result, inhibiting mast cell stimulation could be used as a novel approach for reducing pain and the symptoms of FMS.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States.,Department of Internal Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Psychiatry, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Irene Tsilioni
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Mona Bawazeer
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States.,Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Traina G. Mast Cells in Gut and Brain and Their Potential Role as an Emerging Therapeutic Target for Neural Diseases. Front Cell Neurosci 2019; 13:345. [PMID: 31417365 PMCID: PMC6682652 DOI: 10.3389/fncel.2019.00345] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The mast cells (MCs) are the leader cells of inflammation. They are well known for their involvement on allergic reactions through degranulation and release of vasoactive, inflammatory, and nociceptive mediators. Upon encountering potential danger signal, MCs are true sensors of the environment, the first to respond in rapid and selective manner. The MC activates the algic response and modulates the evolution of nociceptive pain, typical of acute inflammation, to neuropathic pain, typical not only of chronic inflammation but also of the dysregulation of the pain system. Yet, MC may contribute to modulate intensity of the associated depressive and anxiogenic component on the neuronal and microglial biological front. Chronic inflammation is a common mediator of these co-morbidities. In parallel to the removal of the etiological factors of tissue damage, the modulation of MC hyperactivity and the reduction of the release of inflammatory factors may constitute a new frontier of pharmacological intervention aimed at preventing the chronicity of inflammation, the evolution of pain, and also the worsening of the depression and anxiogenic state associated with it. So, identifying specific molecules able to modify MC activity may be an important therapeutic tool. Various preclinical evidences suggest that the intestinal microbiota contributes substantially to mood and behavioral disorders. In humans, conditions of the microbiota have been linked to stress, anxiety, depression, and pain. MC is likely the crucial neuroimmune connecting between these components. In this review, the involvement of MCs in pain, stress, and depression is reviewed. We focus on the MC as target that may be mediating stress and mood disorders via microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
35
|
Li YJ, Dai C, Jiang M. Mechanisms of Probiotic VSL#3 in a Rat Model of Visceral Hypersensitivity Involves the Mast Cell-PAR2-TRPV1 Pathway. Dig Dis Sci 2019; 64:1182-1192. [PMID: 30560330 DOI: 10.1007/s10620-018-5416-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mast cells (MCs), PAR2 and TRPV1, play a key role in the regulation of visceral pain. Several studies have found that probiotics regulate visceral sensitivity. AIMS The purpose of the current study was to explore the role of MC-PAR2-TRPV1 in VH and the mechanism of VSL#3 in a rat model of VH. METHODS A total of 64 rats were randomly divided into eight groups: Control VH, VH + ketotifen, VH + FSLLRY-NH2, VH + SB366791, VH + VSL#3, VH + VSL#3 + capsaicin, and VH + VSL#3 + SLIGRL-NH2. The rat model of VH was induced by acetic acid enema and the partial limb restraint method. VH was assessed by the abdominal withdrawal reflex score. MCs in colonic tissue were detected by the toluidine blue staining assay. The expression of PAR2 and TRPV1 in DRGs (L6-S1) was measured by immunohistochemistry and Western blotting. RESULTS The established VH was abolished by treatment with ketotifen, a mast cell stabilizer FSLLRY-NH2, a PAR2 antagonist SB366791 a TRPV1 antagonist, and probiotic VSL#3 in rats. The administration of ketotifen or probiotic VSL#3 caused a decrease in mast cell number in the colon and decreased PAR2 and TRPV1 expression in DRGs. Intrathecal injection of FSLLRY-NH2 or SB366791 caused decreased expression of PAR2 and/or TRPV1 in DRGs in VH rats. SLIGRL-NH2, a PAR2 agonist, and capsaicin, a TRPV1 agonist, blocked the effects of probiotic VSL#3. CONCLUSIONS The probiotic VSL#3 decreases VH in rat model of VH. The mechanism may be related with the mast cell-PAR2-TRPV1 signaling pathway.
Collapse
Affiliation(s)
- Ying-Jie Li
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, No. 92 of Beier Road, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Cong Dai
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, No. 92 of Beier Road, Heping District, Shenyang City, 110001, Liaoning Province, China.
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, No. 92 of Beier Road, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
36
|
Green DP, Limjunyawong N, Gour N, Pundir P, Dong X. A Mast-Cell-Specific Receptor Mediates Neurogenic Inflammation and Pain. Neuron 2019; 101:412-420.e3. [PMID: 30686732 DOI: 10.1016/j.neuron.2019.01.012] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/29/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022]
Abstract
Mast cells can be found in close proximity to peripheral nerve endings where, upon activation, they release a broad range of pro-inflammatory cytokines and chemokines. However, the precise mechanism underlying this so-called neurogenic inflammation and associated pain has remained elusive. Here we report that the mast-cell-specific receptor Mrgprb2 mediates inflammatory mechanical and thermal hyperalgesia and is required for recruitment of innate immune cells at the injury site. We also found that the neuropeptide substance P (SP), an endogenous agonist of Mrgprb2, facilitates immune cells' migration via Mrgprb2. Furthermore, SP activation of the human mast cell led to the release of multiple pro-inflammatory cytokines and chemokines via the human homolog MRGPRX2. Surprisingly, the SP-mediated inflammatory responses were independent of its canonical receptor, neurokinin-1 receptor (NK-1R). These results identify Mrgprb2/X2 as an important neuroimmune modulator and a potential target for treating inflammatory pain.
Collapse
Affiliation(s)
- Dustin P Green
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Naina Gour
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Priyanka Pundir
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
37
|
Tsuji S, Tsuji K, Otsuka H, Murakami T. Increased mast cells in endocervical smears of women with dysmenorrhea. Cytojournal 2018; 15:27. [PMID: 30534182 PMCID: PMC6243853 DOI: 10.4103/cytojournal.cytojournal_54_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/21/2018] [Indexed: 11/17/2022] Open
Abstract
Background: Mast cells are observed in peritoneal endometriosis which causes dysmenorrhea. However, there is no report about the relationship between endocervical mast cells and dysmenorrhea. The aim of this study is to evaluate the relationship using endocervical smears. Materials and Methods: Between January 2016 and June 2016, patients filled out a questionnaire regarding dysmenorrhea and were classified into the dysmenorrhea or the control group (without dysmenorrhea). Patients underwent endocervical brushing and endocervical smears were obtained. The smears were stained with methylene blue to detect mast cells. The number of mast cells per slide was counted by microscopy and recorded. Results: Eighty-nine patients were enrolled in this study (dysmenorrhea group, 34; control group, 55). The median number of mast cells present in the endocervical one slides was 35 (interquartile range, 17–58) and 2 (interquartile range, 0–6) in the dysmenorrhea and control groups, respectively. There was a significant difference in the number of mast cells between the two groups (P < 0.0001). Conclusion: More mast cells were observed in the endocervical smears of women with dysmenorrhea than in those of women without dysmenorrhea.
Collapse
Affiliation(s)
- Shunichiro Tsuji
- Address: Department of Obstetrics and Gynecology, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | | | | | - Takashi Murakami
- Address: Department of Obstetrics and Gynecology, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| |
Collapse
|
38
|
Dallazen JL, Maria-Ferreira D, da Luz BB, Nascimento AM, Cipriani TR, de Souza LM, Glugoski LP, Silva BJG, Geppetti P, de Paula Werner MF. Distinct mechanisms underlying local antinociceptive and pronociceptive effects of natural alkylamides from Acmella oleracea compared to synthetic isobutylalkyl amide. Fitoterapia 2018; 131:225-235. [DOI: 10.1016/j.fitote.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
|
39
|
Esquerre N, Basso L, Dubuquoy C, Djouina M, Chappard D, Blanpied C, Desreumaux P, Vergnolle N, Vignal C, Body-Malapel M. Aluminum Ingestion Promotes Colorectal Hypersensitivity in Rodents. Cell Mol Gastroenterol Hepatol 2018; 7:185-196. [PMID: 30534582 PMCID: PMC6280602 DOI: 10.1016/j.jcmgh.2018.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022]
Abstract
Background & Aims Irritable bowel syndrome (IBS) is a multifactorial disease arising from a complex interplay between genetic predisposition and environmental influences. To date, environmental triggers are not well known. Aluminum is commonly present in food, notably by its use as food additive. We investigated the effects of aluminum ingestion in rodent models of visceral hypersensitivity, and the mechanisms involved. Methods Visceral hypersensitivity was recorded by colorectal distension in rats administered with oral low doses of aluminum. Inflammation was analyzed in the colon of aluminum-treated rats by quantitative PCR for cytokine expression and by immunohistochemistry for immune cells quantification. Involvement of mast cells in the aluminum-induced hypersensitivity was determined by cromoglycate administration of rats and in mast cell-deficient mice (KitW-sh/W-sh). Proteinase-activated receptor-2 (PAR2) activation in response to aluminum was evaluated and its implication in aluminum-induced hypersensitivity was assessed in PAR2 knockout mice. Results Orally administered low-dose aluminum induced visceral hypersensitivity in rats and mice. Visceral pain induced by aluminum persisted over time even after cessation of treatment, reappeared and was amplified when treatment resumed. As observed in humans, female animals were more sensitive than males. Major mediators of nociception were up-regulated in the colon by aluminum. Activation of mast cells and PAR2 were required for aluminum-induced hypersensitivity. Conclusions These findings indicate that oral exposure to aluminum at human dietary level reproduces clinical and molecular features of IBS, highlighting a new pathway of prevention and treatment of visceral pain in some susceptible patients.
Collapse
Key Words
- AlCi, aluminum citrate
- CRD, colorectal distension
- IBS, irritable bowel syndrome
- IHC, immunohistochemistry
- KO, knockout
- MGG, May-Grünwald Giemsa
- MPO, myeloperoxidase
- Mast Cells
- PAR, proteinase-activated receptor
- PAR2
- PCR, polymerase chain reaction
- Risk Factors
- Visceral Hypersensitivity
- WT, wild-type
- ZnCi, zinc citrate
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Nicolas Esquerre
- Université Lille, INSERM, CHR Lille, Lille Inflammation Research International Center, U995, Lille, France
| | - Lilian Basso
- INSERM U1043, CNRS U5282, Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse UPS, Toulouse, France
| | | | - Madjid Djouina
- Université Lille, INSERM, CHR Lille, Lille Inflammation Research International Center, U995, Lille, France
| | - Daniel Chappard
- GEROM, Groupe d'Etudes sur le Remodelage Osseux et les bioMatériaux, IRIS-IBS, CHU Angers, Angers, France
| | - Catherine Blanpied
- INSERM U1043, CNRS U5282, Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse UPS, Toulouse, France
| | - Pierre Desreumaux
- Université Lille, INSERM, CHR Lille, Lille Inflammation Research International Center, U995, Lille, France
| | - Nathalie Vergnolle
- INSERM U1043, CNRS U5282, Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse UPS, Toulouse, France
| | - Cécile Vignal
- Université Lille, INSERM, CHR Lille, Lille Inflammation Research International Center, U995, Lille, France.
| | - Mathilde Body-Malapel
- Université Lille, INSERM, CHR Lille, Lille Inflammation Research International Center, U995, Lille, France
| |
Collapse
|
40
|
Zhang L, Song J, Bai T, Wang R, Hou X. Sustained pain hypersensitivity in the stressed colon: Role of mast cell-derived nerve growth factor-mediated enteric synaptic plasticity. Neurogastroenterol Motil 2018; 30:e13430. [PMID: 30069980 DOI: 10.1111/nmo.13430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/23/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sustained pain hypersensitivity is the hallmark of stressed colon which could be partially explained by central sensitization with synaptic plasticity, the key mechanism of memory. We previously identified that synaptic plasticity of enteric nerve system (ENS) contributed to peripheral pain maintaining in the gut. However, the mechanisms of enteric "memory" formation remain elusive. METHODS In this study, rats were exposed to water avoidance stress (WAS) or sham stress (SS), with cromolyn sodium or physiological saline injected intraperitoneally 30 minutes before stress every day. The abdominal withdrawal reflex scores, mesenteric afferent nerve activity, enteric neural c-fos expression, and enteric synaptic plasticity were assessed, and mast cell infiltration and degranulation. Furthermore, colonic mucosal mediators-induced enteric synaptic plasticity and the role of mast cell-derived nerve growth factor (NGF), tryptase, and histamine were investigated via ex vivo longitudinal muscle-myenteric plexus (LMMP) organotypic culture. KEY RESULTS It is shown that mast cell stabilizing inhibited WAS-induced visceral hypersensitivity through enhancing visceral pain threshold, decreasing spontaneous and distention-induced mesenteric afferent firing, and downregulating enteric neural activation (c-fos). Importantly, WAS led to evident enteric synaptic plasticity, but decreased by cromolyn. Water avoidance stress-derived mucosal supernatants markedly enhanced the c-fos expression and enteric synaptic plasticity in LMMP tissues, which could be eliminated by mast cell inhibition or NGF neutralization, but not tryptase or histamine blocking. CONCLUSIONS & INFERENCES In conclusion, mast cells/NGF pathway may be the key regulator of synaptic plasticity of ENS and participate in the formation of chronic stress-induced sustained visceral hypersensitivity.
Collapse
Affiliation(s)
- L Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - T Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - R Wang
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - X Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Sensitization of C-fiber nociceptors in mice with sickle cell disease is decreased by local inhibition of anandamide hydrolysis. Pain 2018; 158:1711-1722. [PMID: 28570479 DOI: 10.1097/j.pain.0000000000000966] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic pain and hyperalgesia, as well as pain resulting from episodes of vaso-occlusion, are characteristic features of sickle cell disease (SCD) and are difficult to treat. Since there is growing evidence that increasing local levels of endocannabinoids can decrease hyperalgesia, we examined the effects of URB597, a fatty acid amide hydrolase (FAAH) inhibitor, which blocks the hydrolysis of the endogenous cannabinoid anandamide, on hyperalgesia and sensitization of cutaneous nociceptors in a humanized mouse model of SCD. Using homozygous HbSS-BERK sickle mice, we determined the effects of URB597 on mechanical hyperalgesia and on sensitization of C-fiber nociceptors in vivo. Intraplantar administration of URB597 (10 μg in 10 μL) decreased the frequency of withdrawal responses evoked by a von Frey monofilament (3.9 mN bending force) applied to the plantar hind paw. This was blocked by the CB1 receptor antagonist AM281 but not by the CB2 receptor antagonist AM630. Also, URB597 decreased hyperalgesia in HbSS-BERK/CB2R sickle mice, further confirming the role of CB1 receptors in the effects produced by URB597. Electrophysiological recordings were made from primary afferent fibers of the tibial nerve in anesthetized mice. The proportion of Aδ- and C-fiber nociceptors that exhibited spontaneous activity and responses of C-fibers to mechanical and thermal stimuli were greater in HbSS-BERK sickle mice as compared to control HbAA-BERK mice. Spontaneous activity and evoked responses of nociceptors were decreased by URB597 via CB1 receptors. It is suggested that enhanced endocannabinoid activity in the periphery may be beneficial in alleviating chronic pain associated with SCD.
Collapse
|
42
|
Brennan TA, Lindborg CM, Bergbauer CR, Wang H, Kaplan FS, Pignolo RJ. Mast cell inhibition as a therapeutic approach in fibrodysplasia ossificans progressiva (FOP). Bone 2018; 109:259-266. [PMID: 28851540 PMCID: PMC7805128 DOI: 10.1016/j.bone.2017.08.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Episodic flare-ups of fibrodysplasia ossificans progressiva (FOP) are characterized clinically by severe, often posttraumatic, connective tissue swelling and intramuscular edema, followed histologically by an intense and highly angiogenic fibroproliferative reaction. This early inflammatory and angiogenic fibroproliferative response is accompanied by the presence of abundant mast cells far in excess of other reported myopathies. RESULTS Using an injury-induced, constitutively-active transgenic mouse model of FOP we show that mast cell inhibition by cromolyn, but not aprepitant, results in a dramatic reduction of heterotopic ossification. Cromolyn, but not aprepitant, significantly decreases the total number of mast cells in FOP lesions. Furthermore, cromolyn specifically diminishes the number of degranulating and resting degranulated mast cells in pre-osseous lesions. CONCLUSIONS This work demonstrates that consideration of FOP as a type of localized mastocytosis may offer new therapeutic interventions for treatment of this devastating condition.
Collapse
Affiliation(s)
- Tracy A Brennan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Carter M Lindborg
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Christian R Bergbauer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Haitao Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Frederick S Kaplan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Robert J Pignolo
- Department of Medicine, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
43
|
Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front Cell Neurosci 2018; 12:72. [PMID: 29618972 PMCID: PMC5871676 DOI: 10.3389/fncel.2018.00072] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
44
|
Cui X, Liu K, Xu D, Zhang Y, He X, Liu H, Gao X, Zhu B. Mast cell deficiency attenuates acupuncture analgesia for mechanical pain using c-kit gene mutant rats. J Pain Res 2018; 11:483-495. [PMID: 29551908 PMCID: PMC5842768 DOI: 10.2147/jpr.s152015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Acupuncture therapy plays a pivotal role in pain relief, and increasing evidence demonstrates that mast cells (MCs) may mediate acupuncture analgesia. The present study aims to investigate the role of MCs in acupuncture analgesia using c-kit gene mutant-induced MC-deficient rats. Materials and methods WsRC-Ws/Ws rats and their wild-type (WT) littermates (WsRC-+/+) were used. The number of MCs in skin of ST36 area was compared in two rats after immunofluorescence labeling. Mechanical withdrawal latency (MWL), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL) were measured on bilateral plantar for pain threshold evaluation before and after each stimulus. Acupuncture- and moxibustion-like stimuli (43°C, 46°C heat, 1 mA electroacupuncture [EA], 3 mA EA, and manual acupuncture [MA]) were applied randomly on different days. Results Fewer MCs were observed in the skin of ST36 in mutant rats compared to WT rats (P<0.001). For pain thresholds, MWL and MWT were higher in WsRC-Ws/Ws compared to WsRC-+/+ on bilateral paws (P<0.05), but TWL was not different between the two rats (P>0.05). Bilateral MWL and MWT in WsRC-+/+ rats increased significantly after each stimulus compared to baseline (P<0.01, P<0.001). In WsRC-Ws/Ws rats, only noxious stimuli could produce anti-nociceptive effects for mechanical pain (46°C, 3 mA EA, MA) (P<0.01, P<0.001). Additionally, the net increases in MWL and MWT induced by most stimuli were greater in WT than in mutant rats (P<0.05). For thermal nociception, either high- or low-intensity stimuli could significantly augment TWL in two rats (P<0.001), and the net increases of TWL evoked by most stimuli were to the same extent in two genetic variants. Conclusion MCs influence the basic mechanical but not thermal pain threshold. MCs participate in acupuncture analgesia in mechanical but not in thermal nociception, in that MC deficiency may attenuate the mechanical analgesia evoked by high-intensity stimuli and eliminate analgesia provoked by low-intensity stimuli.
Collapse
Affiliation(s)
- Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.,College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Kun Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dandan Xu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.,Classic TCM Department, The Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Youyou Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.,Acupuncture and Massage Department, Hangzhou Qihuang Traditional Chinese Medicine Clinic, Hangzhou, China
| | - Xun He
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.,TCM and Rehabilitation Department, The Third Hospital of Ulanchap, Ulanchap, China
| | - Xinyan Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
45
|
Viganò D, Zara F, Usai P. Irritable bowel syndrome and endometriosis: New insights for old diseases. Dig Liver Dis 2018; 50:213-219. [PMID: 29396128 DOI: 10.1016/j.dld.2017.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome and endometriosis are two diseases affecting a significant part of the female population, either together or individually, with remarkable consequences in the quality of life. Several studies suggest an epidemiological association between them. Their association may not be just an epidemiological phenomenon, but the manifestation of a pathophysiological correlation, which probably generates a mutual promotion phenomenon. In particular, both clinical entities share the presence of a chronic low-grade inflammatory state at the basis of the disease persistence. Recognizing this association is highly significant due to their prevalence and the common clinical manifestation occurring with a chronic abdominal pain. A further multi disciplinary approach is suggested in these patients' management in order to achieve an adequate diagnostic work up and a targeted therapy. This paper analyses some common pathophysiological mechanisms, such as activation of mast cell line, neuronal inflammation, dysbiosis and impaired intestinal permeability. The aim was to investigate their presence in both IBS and endometriosis, and to show the complexity of their relationship in the generation and maintenance of chronic inflammation.
Collapse
Affiliation(s)
- Davide Viganò
- Department of Medical Sciences and Public Health, University of Cagliari, Italy; Presidio Policlinico of Monserrato, Cagliari, Italy
| | - Federica Zara
- Department of Medical Sciences and Public Health, University of Cagliari, Italy; Presidio Policlinico of Monserrato, Cagliari, Italy
| | - Paolo Usai
- Department of Medical Sciences and Public Health, University of Cagliari, Italy; Presidio Policlinico of Monserrato, Cagliari, Italy.
| |
Collapse
|
46
|
Chavan SS, Ma P, Chiu IM. Neuro-immune interactions in inflammation and host defense: Implications for transplantation. Am J Transplant 2018; 18:556-563. [PMID: 28941325 PMCID: PMC5820210 DOI: 10.1111/ajt.14515] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/13/2017] [Accepted: 09/16/2017] [Indexed: 01/25/2023]
Abstract
Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine.
Collapse
Affiliation(s)
- Sangeeta S. Chavan
- Center for Biomedical Science, Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Pingchuan Ma
- Harvard Medical School, Department of Microbiology and Immunobiology, Division of Immunology, Boston, MA, USA
| | - Isaac M. Chiu
- Harvard Medical School, Department of Microbiology and Immunobiology, Division of Immunology, Boston, MA, USA
| |
Collapse
|
47
|
Kilinc E, Dagistan Y, Kukner A, Yilmaz B, Agus S, Soyler G, Tore F. Salmon calcitonin ameliorates migraine pain through modulation of CGRP release and dural mast cell degranulation in rats. Clin Exp Pharmacol Physiol 2018; 45:536-546. [PMID: 29344989 DOI: 10.1111/1440-1681.12915] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
The exact mechanism of migraine pathophysiology still remains unclear due to the complex nature of migraine pain. Salmon calcitonin (SC) exhibits antinociceptive effects in the treatment of various pain conditions. In this study, we explored the mechanisms underlying the analgesic effect of salmon calcitonin on migrane pain using glyceryltrinitrate (GTN)-induced model of migraine and ex vivo meningeal preparations in rats. Rats were intraperitoneally administered saline, GTN (10 mg/kg), vehicle, saline + GTN, SC (50 μg/kg) + GTN, and SC alone. Also, ex vivo meningeal preparations were applied topically 100 μmol/L GTN, 50 μmol/L SC, and SC + GTN. Calcitonin gene-related peptide (CGRP) contents of plasma, trigeminal neurons and superfusates were measured using enzyme-immunoassays. Dural mast cells were stained with toluidine blue. c-fos neuronal activity in trigeminal nucleus caudalis (TNC) sections were determined by immunohistochemical staining. The results showed that GTN triggered the increase in CGRP levels in plasma, trigeminal ganglion neurons and ex vivo meningeal preparations. Likewise, GTN-induced c-fos expression in TNC. In in vivo experiments, GTN caused dural mast cell degranulation, but similar effects were not seen in ex vivo experiments. Salmon calcitonin administration ameliorated GTN-induced migraine pain by reversing the increases induced by GTN. Our findings suggested that salmon calcitonin could alleviate the migraine-like pain by modulating CGRP release at different levels including the generation and conduction sites of migraine pain and mast cell behaviour in the dura mater. Therefore salmon calcitonin may be a new therapeutic choice in migraine pain relief.
Collapse
Affiliation(s)
- Erkan Kilinc
- Department of Physiology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Yasar Dagistan
- Department of Neurosurgery, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Aysel Kukner
- Department of Histology and Embryology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Sami Agus
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Gizem Soyler
- Department of Histology and Embryology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Fatma Tore
- Department of Physiology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| |
Collapse
|
48
|
Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, Shore EM. Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an Acvr1 R206H Mouse Model of Fibrodysplasia Ossificans Progressiva. J Bone Miner Res 2018; 33:269-282. [PMID: 28986986 PMCID: PMC7737844 DOI: 10.1002/jbmr.3304] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Heterotopic ossification (HO) is a clinical condition that often reduces mobility and diminishes quality of life for affected individuals. The most severe form of progressive HO occurs in those with fibrodysplasia ossificans progressiva (FOP; OMIM #135100), a genetic disorder caused by a recurrent heterozygous gain-of-function mutation (R206H) in the bone morphogenetic protein (BMP) type I receptor ACVR1/ALK2. In individuals with FOP, episodes of HO frequently follow injury. The first sign of active disease is commonly an inflammatory "flare-up" that precedes connective tissue degradation, progenitor cell recruitment, and endochondral HO. We used a conditional-on global knock-in mouse model expressing Acvr1R206H (referred to as Acvr1cR206H/+ ) to investigate the cellular and molecular inflammatory response in FOP lesions following injury. We found that the Acvr1 R206H mutation caused increased BMP signaling in posttraumatic FOP lesions and early divergence from the normal skeletal muscle repair program with elevated and prolonged immune cell infiltration. The proinflammatory cytokine response of TNFα, IL-1β, and IL-6 was elevated and prolonged in Acvr1cR206H/+ lesions and in Acvr1cR206H/+ mast cells. Importantly, depletion of mast cells and macrophages significantly impaired injury-induced HO in Acvr1cR206H/+ mice, reducing injury-induced HO volume by ∼50% with depletion of each cell population independently, and ∼75% with combined depletion of both cell populations. Together, our data show that the immune system contributes to the initiation and development of HO in FOP. Further, the expression of Acvr1R206H in immune cells alters cytokine expression and cellular response to injury and unveils novel therapeutic targets for treatment of FOP and nongenetic forms of HO. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael R Convente
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Salin A Chakkalakal
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - EnJun Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Caron
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deyu Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
49
|
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Via S. Costanzo, 06126 Perugia, Italy. Tel.: ; Fax: ; E-mail:
| |
Collapse
|
50
|
Bais S, Kumari R, Prashar Y, Gill NS. Review of various molecular targets on mast cells and its relation to obesity: A future perspective. Diabetes Metab Syndr 2017; 11 Suppl 2:S1001-S1007. [PMID: 28778429 DOI: 10.1016/j.dsx.2017.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 01/02/2023]
Abstract
Mast cells are stimulatory factors in prognosis of various immunogenic and allergic diseases in human body. These cells play an important role in various immunological and metabolic diseases. The aim of present article is to explore the molecular targets to suppress the over expression of mast cells in obesity. The last 20 years literature were searched by various bibliographic data bases like Pubmed, google Scholar, Scopus and web of Science. The data were collected by keywords like "Mast Cell" "obesity" and "role of mast cell or role in obesity". Articles and their abstract were reviewed with a counting of 827 publications, in which 87 publications were considered for study and remaining was excluded because of its specificity to the subject. This review explains the characteristics, molecular targets and role of mast cells in obesity and existing research with mast cells to the area of metabolic diseases.
Collapse
Affiliation(s)
- Souravh Bais
- Department of Pharmacology, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India.
| | - Reena Kumari
- Department of Pharmacology, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India
| | - Yash Prashar
- Department of Pharmacology, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India
| | - N S Gill
- Department of Pharmaceutical Chemistry, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India
| |
Collapse
|