1
|
Pongratz G, Straub RH. Chronic Effects of the Sympathetic Nervous System in Inflammatory Models. Neuroimmunomodulation 2023; 30:113-134. [PMID: 37231902 DOI: 10.1159/000530969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
The immune system is embedded in a network of regulatory systems to keep homeostasis in case of an immunologic challenge. Neuroendocrine immunologic research has revealed several aspects of these interactions over the past decades, e.g., between the autonomic nervous system and the immune system. This review will focus on evidence revealing the role of the sympathetic nervous system (SNS) in chronic inflammation, like colitis, multiple sclerosis, systemic sclerosis, lupus erythematodes, and arthritis with a focus on animal models supported by human data. A theory of the contribution of the SNS in chronic inflammation will be presented that spans these disease entities. One major finding is the biphasic nature of the sympathetic contribution to inflammation, with proinflammatory effects until the point of disease outbreak and mainly anti-inflammatory influence thereafter. Since sympathetic nerve fibers are lost from sites of inflammation during inflammation, local cells and immune cells achieve the capability to endogenously produce catecholamines to fine-tune the inflammatory response independent of brain control. On a systemic level, it has been shown across models that the SNS is activated in inflammation as opposed to the parasympathetic nervous system. Permanent overactivity of the SNS contributes to many of the known disease sequelae. One goal of neuroendocrine immune research is defining new therapeutic targets. In this respect, it will be discussed that at least in arthritis, it might be beneficial to support β-adrenergic and inhibit α-adrenergic activity besides restoring autonomic balance. Overall, in the clinical setting, we now need controlled interventional studies to successfully translate the theoretical knowledge into benefits for patients.
Collapse
Affiliation(s)
- Georg Pongratz
- Department of Gastroenterology, Division of Rheumatology and Clinical Immunology, St. John of God Hospital, Regensburg, Germany
- Medical Faculty of the University of Regensburg, Regensburg, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Akyuz E, Celik BR, Aslan FS, Sahin H, Angelopoulou E. Exploring the Role of Neurotransmitters in Multiple Sclerosis: An Expanded Review. ACS Chem Neurosci 2023; 14:527-553. [PMID: 36724132 DOI: 10.1021/acschemneuro.2c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). Although emerging evidence has shown that changes in neurotransmitter levels in the synaptic gap may contribute to the pathophysiology of MS, their specific role has not been elucidated yet. In this review, we aim to analyze preclinical and clinical evidence on the structural and functional changes in neurotransmitters in MS and critically discuss their potential role in MS pathophysiology. Preclinical studies have demonstrated that alterations in glutamate metabolism may contribute to MS pathophysiology, by causing excitotoxic neuronal damage. Dysregulated interaction between glutamate and GABA results in synaptic loss. The GABAergic system also plays an important role, by regulating the activity and plasticity of neural networks. Targeting GABAergic/glutamatergic transmission may be effective in fatigue and cognitive impairment in MS. Acetylcholine (ACh) and dopamine can also affect the T-mediated inflammatory responses, thereby being implicated in MS-related neuroinflammation. Also, melatonin might affect the frequency of relapses in MS, by regulating the sleep-wake cycle. Increased levels of nitric oxide in inflammatory lesions of MS patients may be also associated with axonal neuronal degeneration. Therefore, neurotransmitter imbalance may be critically implicated in MS pathophysiology, and future studies are needed for our deeper understanding of their role in MS.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Betul Rana Celik
- Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Feyza Sule Aslan
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Humeyra Sahin
- School of Medicine, Bezmialem Vakif University, Istanbul, Turkey, 34093
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece, 115 27
| |
Collapse
|
3
|
Yoo DY, Jung HY, Kim W, Hahn KR, Kwon HJ, Nam SM, Chung JY, Yoon YS, Kim DW, Hwang IK. Entacapone Treatment Modulates Hippocampal Proteins Related to Synaptic Vehicle Trafficking. Cells 2020; 9:cells9122712. [PMID: 33352833 PMCID: PMC7765944 DOI: 10.3390/cells9122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/29/2022] Open
Abstract
Entacapone, a reversible inhibitor of catechol-O-methyl transferase, is used for patients in Parkinson’s disease because it increases the bioavailability and effectiveness of levodopa. In the present study, we observed that entacapone increases novel object recognition and neuroblasts in the hippocampus. In the present study, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were performed to compare the abundance profiles of proteins expressed in the hippocampus after entacapone treatment in mice. Results of 2-DE, MALDI-TOF mass spectrometry, and subsequent proteomic analysis revealed an altered protein expression profile in the hippocampus after entacapone treatment. Based on proteomic analysis, 556 spots were paired during the image analysis of 2-DE gels and 76 proteins were significantly changed more than two-fold among identified proteins. Proteomic analysis indicated that treatment with entacapone induced expressional changes in proteins involved in synaptic transmission, cellular processes, cellular signaling, the regulation of cytoskeletal structure, energy metabolism, and various subcellular enzymatic reactions. In particular, entacapone significantly increased proteins related to synaptic trafficking and plasticity, such as dynamin 1, synapsin I, and Munc18-1. Immunohistochemical staining showed the localization of the proteins, and western blot confirmed the significant increases in dynamin I (203.5% of control) in the hippocampus as well as synapsin I (254.0% of control) and Munc18-1 (167.1% of control) in the synaptic vesicle fraction of hippocampus after entacapone treatment. These results suggest that entacapone can enhance hippocampal synaptic trafficking and plasticity against various neurological diseases related to hippocampal dysfunction.
Collapse
Affiliation(s)
- Dae Young Yoo
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea;
| | - Sung Min Nam
- Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Iksan 54538, Korea;
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea;
- Correspondence: (D.W.K.); (I.K.H.)
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
- Correspondence: (D.W.K.); (I.K.H.)
| |
Collapse
|
4
|
Chokeberry anthocyanins and their metabolites ability to cross the blood-cerebrospinal fluid barrier. Food Chem 2020; 346:128730. [PMID: 33293147 DOI: 10.1016/j.foodchem.2020.128730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
The aim of this study was to determine whether anthocyanins and their phase II metabolites permeate the blood-cerebrospinal fluid barrier (B-CSF-B) of sheep and to profile these compounds in sheep biofluids after chokeberry intraruminal administration. Anthocyanins were analyzed using micro-HPLC-MS/MS. After chokeberry administration, anthocyanins were absorbed and occurred in body fluids mainly in the form of methylated, glucuronidated, and sulfated derivatives (in total, 21 derivatives were identified). The study showed that anthocyanins penetrated the B-CSF-B and their change in profile and concentration in the cerebrospinal fluid (CSF) resulted from fluctuations in concentrations of these compounds in blood plasma, although the presence of various cyanidin derivatives in CSF also depended on their chemical structure. The biological fate of chokeberry anthocyanins, from absorption into blood to penetration into CSF, was tracked to facilitate the design of further experimental procedures to determine the biological properties of these compounds, including potentially neuroprotective activities.
Collapse
|
5
|
Changes of central noradrenaline transporter availability in immunotherapy-naïve multiple sclerosis patients. Sci Rep 2020; 10:14651. [PMID: 32887904 PMCID: PMC7474089 DOI: 10.1038/s41598-020-70732-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
The neurotransmitter noradrenaline (NA) mediates arousal, attention and mood, and exerts anti-inflammatory and neuroprotective effects. Alterations of monoamine signalling were reported in multiple sclerosis (MS) and psychiatric illness and may account for the high prevalence of comorbid depression and fatigue in MS patients. We assessed central noradrenaline transporter (NAT) availability using positron emission tomography (PET) and the NAT selective radiotracer S,S-[11C]O-methylreboxetine in immunotherapy-naïve patients with relapsing–remitting MS (RRMS; n = 11) compared to healthy controls (HC; n = 12), and its association to lesion load, time since manifestation, the expanded disability status scale (EDSS), the fatigue scale Würzburger Erschöpfungsinventar bei MS (WEIMuS) and Beck Depression Inventory (BDI). We found NAT availability to be increased in the thalamus, amygdala, putamen and pons/midbrain of MS patients. No relation to clinical or psychometric variables was found. These first data indicate higher NAT availability in subcortical brain regions of immunotherapy-naïve RRMS patients. If these changes of noradrenergic neurotransmission predispose to psychiatric symptoms or associate with disease activity needs to be investigated in longitudinal studies or a larger sample which allows subgroup analyses.
Collapse
|
6
|
Platosz N, Bączek N, Topolska J, Szawara-Nowak D, Misztal T, Wiczkowski W. The Blood-Cerebrospinal Fluid Barrier Is Selective for Red Cabbage Anthocyanins and Their Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8274-8285. [PMID: 32640787 DOI: 10.1021/acs.jafc.0c03170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study aim was to determine whether strongly bioactive hydrophilic red cabbage anthocyanins possess the ability to cross the blood-cerebrospinal fluid barrier (blood-CSF barrier) and whether there is a selectivity of this barrier toward these compounds. To fulfill objectives, red cabbage preparation, containing nonacylated and acylated anthocyanins, was administered to 16 sheep with implanted cannulas into the brain third ventricle, and next, within 10 h, blood, urine, and the cerebrospinal fluid (CSF) were collected and analyzed with HPLC-MS/MS. Though, in blood plasma and urine after red cabbage intake, both, acylated and nonacylated anthocyanins and their metabolites occurred, but only nonacylated derivatives were present in the CSF, and their changes in the profile and concentration in the CSF resulted from the fluctuation of these pigments' concentration and profile in blood, their different abilities to permeate via the blood-CSF barrier, and their transformations in this barrier. Results indicate that the blood-CSF barrier is selective for red cabbage anthocyanins.
Collapse
Affiliation(s)
- Natalia Platosz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10 Str., 10-748 Olsztyn, Poland
| | - Natalia Bączek
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10 Str., 10-748 Olsztyn, Poland
| | - Joanna Topolska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10 Str., 10-748 Olsztyn, Poland
| | - Dorota Szawara-Nowak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10 Str., 10-748 Olsztyn, Poland
| | - Tomasz Misztal
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabl̷onna, Poland
| | - Wieslaw Wiczkowski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10 Str., 10-748 Olsztyn, Poland
| |
Collapse
|
7
|
Akhtar MJ, Yar MS, Grover G, Nath R. Neurological and psychiatric management using COMT inhibitors: A review. Bioorg Chem 2020; 94:103418. [DOI: 10.1016/j.bioorg.2019.103418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
|
8
|
Zorec R, Parpura V, Verkhratsky A. Preventing neurodegeneration by adrenergic astroglial excitation. FEBS J 2018; 285:3645-3656. [PMID: 29630772 DOI: 10.1111/febs.14456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/17/2018] [Accepted: 03/28/2018] [Indexed: 01/22/2023]
Abstract
Impairment of the main noradrenergic nucleus of the human brain, the locus coeruleus (LC), which has been discovered in 1784, represents one of defining factors of neurodegenerative diseases progression. Projections of LC neurons release noradrenaline/norepinephrine (NA), which stimulates astrocytes, homeostatic neuroglial cells enriched with adrenergic receptors. There is a direct correlation between the reduction in noradrenergic innervations and cognitive decline associated with ageing and neurodegenerative diseases. It is, therefore, hypothesized that the resilience of LC neurons to degeneration influences the neural reserve that in turn determines cognitive decline. Deficits in the noradrenergic innervation of the brain might be reversed or restrained by increasing the activity of existing LC neurons, transplanting noradrenergic neurons, and/or using drugs that mimic the activity of NA on astroglia. Here, these strategies are discussed with the aim to understand how astrocytes integrate neuronal network activity in the brain information processing in health and disease.
Collapse
Affiliation(s)
- Robert Zorec
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Slovenia.,Celica, BIOMEDICAL, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, University of Alabama, Birmingham, AL, USA
| | - Alexei Verkhratsky
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Slovenia.,Celica, BIOMEDICAL, Ljubljana, Slovenia.,Faculty of Biology, Medicine and Health, The University of Manchester, UK.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain
| |
Collapse
|
9
|
Kim N, Yoo HS, Ju YJ, Oh MS, Lee KT, Inn KS, Kim NJ, Lee JK. Synthetic 3',4'-Dihydroxyflavone Exerts Anti-Neuroinflammatory Effects in BV2 Microglia and a Mouse Model. Biomol Ther (Seoul) 2018; 26:210-217. [PMID: 29462849 PMCID: PMC5839500 DOI: 10.4062/biomolther.2018.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is an immune response within the central nervous system against various proinflammatory stimuli. Abnormal activation of this response contributes to neurodegenerative diseases such as Parkinson disease, Alzheimer’s disease, and Huntington disease. Therefore, pharmacologic modulation of abnormal neuroinflammation is thought to be a promising approach to amelioration of neurodegenerative diseases. In this study, we evaluated the synthetic flavone derivative 3′,4′-dihydroxyflavone, investigating its anti-neuroinflammatory activity in BV2 microglial cells and in a mouse model. In BV2 microglial cells, 3′,4′-dihydroxyflavone successfully inhibited production of chemokines such as nitric oxide and prostaglandin E2 and proinflammatory cytokines such as tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 in BV2 microglia. It also inhibited phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation. This indicates that the anti-inflammatory activities of 3′,4′-dihydroxyflavone might be related to suppression of the proinflammatory MAPK and NF-κB signaling pathways. Similar anti-neuroinflammatory activities of the compound were observed in the mouse model. These findings suggest that 3′,4′-dihydroxyflavone is a potential drug candidate for the treatment of microglia-related neuroinflammatory diseases.
Collapse
Affiliation(s)
- Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyung-Seok Yoo
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon-Joo Ju
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Soo Inn
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Braun D, Feinstein DL. The locus coeruleus neuroprotective drug vindeburnol normalizes behavior in the 5xFAD transgenic mouse model of Alzheimer's disease. Brain Res 2017; 1702:29-37. [PMID: 29274883 DOI: 10.1016/j.brainres.2017.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
Abstract
Damage to noradrenergic neurons in the Locus coeruleus (LC) occurs contributes to neuropathology and behavioral deficits in Alzheimer's disease (AD); methods to reduce LC damage may therefore be of benefit. We previously showed that vindeburnol, a derivative of the plant alkaloid vincamine, reduced neuroinflammation, amyloid burden, and LC damage in a mouse model of AD; however, effects on behavior were not tested. We now tested the effects of vindeburnol on anxiety-like behavior in 5xFAD mice which develop robust amyloid burden at early ages. During novel object recognition testing, we observed that 5xFAD mice spent more time exploring than wildtype littermates, and that time was reduced by vindeburnol. Vindeburnol also reduced hyperlocomotion in the 5xFAD mice which may have contributed to their increased exploration times. In an open field test, vindeburnol normalized the increase of time spent in the center, and the decrease of time spent near the walls in 5xFAD mice. Vindeburnol reduced amyloid burden in the hippocampus and cortex, areas that contribute to regulation of anxiety-like behavior. In vitro, vindeburnol increased neuronal BDNF expression in a cAMP-dependent manner; and inhibited phosphodiesterase activity with an EC50 near 50 μM. These findings suggest that cAMP-mediated increases in neurotrophic factors contribute to beneficial effects of vindeburnol within the context of LC damage, which may be of value for treatment of some neuropsychiatric symptoms of AD.
Collapse
Affiliation(s)
- David Braun
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, United States
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL 60614, United States; Jesse Brown VA Medical Center, Chicago, IL 60614, United States.
| |
Collapse
|
11
|
Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem 2016; 139 Suppl 2:154-178. [PMID: 26968403 DOI: 10.1111/jnc.13447] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022]
Abstract
Aside from its roles in as a classical neurotransmitter involved in regulation of behavior, noradrenaline (NA) has other functions in the CNS. This includes restricting the development of neuroinflammatory activation, providing neurotrophic support to neurons, and providing neuroprotection against oxidative stress. In recent years, it has become evident that disruption of physiological NA levels or signaling is a contributing factor to a variety of neurological diseases and conditions including Alzheimer's disease (AD) and Multiple Sclerosis. The basis for dysregulation in these diseases is, in many cases, due to damage occurring to noradrenergic neurons present in the locus coeruleus (LC), the major source of NA in the CNS. LC damage is present in AD, multiple sclerosis, and a large number of other diseases and conditions. Studies using animal models have shown that experimentally induced lesion of LC neurons exacerbates neuropathology while treatments to compensate for NA depletion, or to reduce LC neuronal damage, provide benefit. In this review, we will summarize the anti-inflammatory and neuroprotective actions of NA, summarize examples of how LC damage worsens disease, and discuss several approaches taken to treat or prevent reductions in NA levels and LC neuronal damage. Further understanding of these events will be of value for the development of treatments for AD, multiple sclerosis, and other diseases and conditions having a neuroinflammatory component. The classical neurotransmitter noradrenaline (NA) has critical roles in modulating behaviors including those involved in sleep, anxiety, and depression. However, NA can also elicit anti-inflammatory responses in glial cells, can increase neuronal viability by inducing neurotrophic factor expression, and can reduce neuronal damage due to oxidative stress by scavenging free radicals. NA is primarily produced by tyrosine hydroxylase (TH) expressing neurons in the locus coeruleus (LC), a relatively small brainstem nucleus near the IVth ventricle which sends projections throughout the brain and spinal cord. It has been known for close to 50 years that LC neurons are lost during normal aging, and that loss is exacerbated in neurological diseases including Parkinson's disease and Alzheimer's disease. LC neuronal damage and glial activation has now been documented in a variety of other neurological conditions and diseases, however, the causes of LC damage and cell loss remain largely unknown. A number of approaches have been developed to address the loss of NA and increased inflammation associated with LC damage, and several methods are being explored to directly minimize the extent of LC neuronal cell loss or function. In this review, we will summarize some of the consequences of LC loss, consider several factors that likely contribute to that loss, and discuss various ways that have been used to increase NA or to reduce LC damage. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA. .,Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - David Braun
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|