1
|
Alshamrani S, Mashraqi MM, Alzamami A, Alturki NA, Almasoudi HH, Alshahrani MA, Basharat Z. Mining Autoimmune-Disorder-Linked Molecular-Mimicry Candidates in Clostridioides difficile and Prospects of Mimic-Based Vaccine Design: An In Silico Approach. Microorganisms 2023; 11:2300. [PMID: 37764144 PMCID: PMC10536613 DOI: 10.3390/microorganisms11092300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular mimicry, a phenomenon in which microbial or environmental antigens resemble host antigens, has been proposed as a potential trigger for autoimmune responses. In this study, we employed a bioinformatics approach to investigate the role of molecular mimicry in Clostridioides difficile-caused infections and the induction of autoimmune disorders due to this phenomenon. Comparing proteomes of host and pathogen, we identified 23 proteins that exhibited significant sequence homology and were linked to autoimmune disorders. The disorders included rheumatoid arthritis, psoriasis, Alzheimer's disease, etc., while infections included viral and bacterial infections like HIV, HCV, and tuberculosis. The structure of the homologous proteins was superposed, and RMSD was calculated to find the maximum deviation, while accounting for rigid and flexible regions. Two sequence mimics (antigenic, non-allergenic, and immunogenic) of ≥10 amino acids from these proteins were used to design a vaccine construct to explore the possibility of eliciting an immune response. Docking analysis of the top vaccine construct C2 showed favorable interactions with HLA and TLR-4 receptor, indicating potential efficacy. The B-cell and T-helper cell activity was also simulated, showing promising results for effective immunization against C. difficile infections. This study highlights the potential of C. difficile to trigger autoimmunity through molecular mimicry and vaccine design based on sequence mimics that trigger a defensive response.
Collapse
Affiliation(s)
- Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah 11961, Saudi Arabia;
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh 11433, Saudi Arabia;
| | - Hassan H. Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | | |
Collapse
|
2
|
Mashraqi MM, Alzamami A, Alturki NA, Alshamrani S, Alshahrani MM, Almasoudi HH, Basharat Z. Molecular Mimicry Mapping in Streptococcus pneumoniae: Cues for Autoimmune Disorders and Implications for Immune Defense Activation. Pathogens 2023; 12:857. [PMID: 37513704 PMCID: PMC10383125 DOI: 10.3390/pathogens12070857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Streptococcus pneumoniae contributes to a range of infections, including meningitis, pneumonia, otitis media, and sepsis. Infections by this bacterium have been associated with the phenomenon of molecular mimicry, which, in turn, may contribute to the induction of autoimmunity. In this study, we utilized a bioinformatics approach to investigate the potential for S. pneumoniae to incite autoimmunity via molecular mimicry. We identified 13 S. pneumoniae proteins that have significant sequence similarity to human proteins, with 11 of them linked to autoimmune disorders such as psoriasis, rheumatoid arthritis, and diabetes. Using in silico tools, we predicted the sequence as well as the structural homology among these proteins. Database mining was conducted to establish links between these proteins and autoimmune disorders. The antigenic, non-allergenic, and immunogenic sequence mimics were employed to design and validate an immune response via vaccine construct design. Mimic-based vaccine construct can prove effective for immunization against the S. pneumoniae infections. Immune response simulation and binding affinity was assessed through the docking of construct C8 to human leukocyte antigen (HLA) molecules and TLR4 receptor, with promising results. Additionally, these mimics were mapped as conserved regions on their respective proteins, suggesting their functional importance in S. pneumoniae pathogenesis. This study highlights the potential for S. pneumoniae to trigger autoimmunity via molecular mimicry and the possibility of vaccine design using these mimics for triggering defense response.
Collapse
Affiliation(s)
- Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah 11961, Saudi Arabia
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh 11433, Saudi Arabia
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Mousa M Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | | |
Collapse
|
3
|
Wanja DW, Mbuthia PG, Bebora LC, Aboge GO, Ogoti B. Antimicrobial Usage, Susceptibility Profiles, and Resistance Genes in Campylobacter Isolated from Cattle, Chicken, and Water Samples in Kajiado County, Kenya. Int J Microbiol 2023; 2023:8394605. [PMID: 37009249 PMCID: PMC10060070 DOI: 10.1155/2023/8394605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/12/2023] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Campylobacter organisms are the major cause of bacterial gastroenteritis and diarrhoeal illness in man and livestock. Campylobacter is growingly becoming resistant to critically crucial antibiotics; thereby presenting public health challenge. This study aimed at establishing antimicrobial use, susceptibility profiles, and resistance genes in Campylobacter isolates recovered from chicken, cattle, and cattle-trough water samples. The study was conducted between October 2020 and May 2022 and involved the revival of cryopreserved Campylobacter isolates confirmed by PCR from a previous prevalence study in Kajiado County, Kenya. Data on antimicrobial use and animal health-seeking behaviour among livestock owners (from the same farms where sampling was done for the prevalence study) were collected through interview using a pretested semistructured questionnaire. One hundred and three isolates (29 C. coli (16 cattle isolates, 9 chicken isolates, and 4 water isolates) and 74 C. jejuni (38 cattle isolates, 30 chicken isolates, and 6 water isolates)) were assayed for phenotypic antibiotic susceptibility profile using the Kirby-Bauer disk diffusion method for ampicillin (AX), tetracycline (TE), gentamicin (GEN), erythromycin (E), ciprofloxacin (CIP), and nalidixic acid (NA). Furthermore, detection of genes conferring resistance to tetracyclines (tet (O), β-lactams (bla OXA-61), aminoglycosides (aph-3-1), (fluoro)quinolones (gyrA), and multidrug efflux pump (cmeB) encoding resistance to multiple antibiotics was detected by mPCR and confirmed by DNA sequencing. The correlation between antibiotic use and resistance phenotypes was determined using the Pearson's correlation coefficient (r) method. Tetracyclines, aminoglycosides, and β-lactam-based antibiotics were the most commonly used antimicrobials; with most farms generally reported using antimicrobials in chicken production systems than in cattle. The highest resistance amongst isolates was recorded in ampicillin (100%), followed by tetracycline (97.1%), erythromycin (75.7%), and ciprofloxacin (63.1%). Multidrug resistance (MDR) profile was observed in 99 of 103 (96.1%) isolates; with all the Campylobacter coli isolates displaying MDR. All chicken isolates (39/39, 100%) exhibited multidrug resistance. The AX-TE-E-CIP was the most common MDR pattern at 29.1%. The antibiotic resistance genes were detected as follows: tet (O), gyrA, cmeB, bla OXA-61 , and aph-3-1 genes were detected at 93.2%, 61.2%, 54.4%, 36.9%, and 22.3% of all Campylobacter isolates, respectively. The highest correlations were found between tet (O) and tetracycline-resistant phenotypes for C. coli (96.4%) and C. jejuni (95.8%). A moderate level of concordance was observed between the Kirby-Bauer disk diffusion method (phenotypic assay) and PCR (genotypic assay) for tetracycline in both C. coli (kappa coefficient = 0.65) and C. jejuni (kappa coefficient = 0.55). The study discloses relatively high resistance profiles and multidrug resistance to antibiotics of critical importance in humans. The evolution of the multidrug-resistantCampylobacter isolates has been linked to the use and misuse of antimicrobials. This poses a potential hazard to public and animal health, necessitating need to reduce the use of antibiotics in livestock husbandry practice coupled with stringent biosecurity measures to mitigate antimicrobial resistance.
Collapse
Affiliation(s)
- Daniel W. Wanja
- University of Nairobi, Faculty of Veterinary Medicine, Department of Veterinary Pathology, Microbiology and Parasitology, P.O. Box 29053, Kangemi, 00625 Nairobi, Kenya
- Animal Health and Industry Training Institute (AHITI) Kabete, P.O. Box 29040, Kangemi, 00625 Nairobi, Kenya
- Department of Animal Science, Chuka University, P.O. Box 109, 00625 Chuka, Kenya
| | - Paul G. Mbuthia
- University of Nairobi, Faculty of Veterinary Medicine, Department of Veterinary Pathology, Microbiology and Parasitology, P.O. Box 29053, Kangemi, 00625 Nairobi, Kenya
| | - Lilly C. Bebora
- University of Nairobi, Faculty of Veterinary Medicine, Department of Veterinary Pathology, Microbiology and Parasitology, P.O. Box 29053, Kangemi, 00625 Nairobi, Kenya
| | - Gabriel O. Aboge
- University of Nairobi, Faculty of Veterinary Medicine, Department of Public Health, Pharmacology and Toxicology, P.O. Box 29053, Kangemi, 00625 Nairobi, Kenya
| | - Brian Ogoti
- University of Nairobi, Faculty of Health Sciences, Center for Epidemiological Modelling and Analysis, Kenyatta National Hospital Nairobi, P.O. Box 19676, 00202 Nairobi, Kenya
| |
Collapse
|
4
|
Beretta G, Shala AL. Impact of Heat Shock Proteins in Neurodegeneration: Possible Therapeutical Targets. Ann Neurosci 2022; 29:71-82. [PMID: 35875428 PMCID: PMC9305912 DOI: 10.1177/09727531211070528] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/24/2021] [Indexed: 01/20/2023] Open
Abstract
Human neurodegenerative diseases occur as a result of various factors. Regardless of the variety in the etiology of development, many of these diseases are characterized by the accumulation of pathological, misfolded proteins; hence, such diseases are considered as proteinopathies. While plenty of research study has been conducted in order to identify the pathophysiology of these proteinopathies, there is still a lack of understanding in terms of potential therapeutic targets. Molecular chaperones present the main workforce for cellular protection and stress response. Therefore, considering these functions, molecular chaperones present a promising target for research within the field of conformational diseases that arise from proteinopathies. Since the association between neurodegenerative disorders and their long-term consequences is well documented, the need for the development of new therapeutic strategies becomes even more critical. In this review, we summarized the molecular function of heat shock proteins and recent progress on their role, involvement, and other mechanisms related to neurodegeneration caused by different etiological factors. Based on the relevant scientific data, we will highlight the functional classification of heat shock proteins, regulatin, and their therapeutic potential for neurodegenerative disorders.
Collapse
Affiliation(s)
- Giangiacomo Beretta
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Aida Loshaj Shala
- Department of Pharmacy, Faculty of Medicine, University Hasan Prishtina, Pristina, Kosovo
| |
Collapse
|
5
|
Baj J, Forma A, Flieger W, Morawska I, Michalski A, Buszewicz G, Sitarz E, Portincasa P, Garruti G, Flieger M, Teresiński G. Helicobacter pylori Infection and Extragastric Diseases-A Focus on the Central Nervous System. Cells 2021; 10:2191. [PMID: 34571840 PMCID: PMC8469861 DOI: 10.3390/cells10092191] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) is most known to cause a wide spectrum of gastrointestinal impairments; however, an increasing number of studies indicates that H. pylori infection might be involved in numerous extragastric diseases such as neurological, dermatological, hematologic, ocular, cardiovascular, metabolic, hepatobiliary, or even allergic diseases. In this review, we focused on the nervous system and aimed to summarize the findings regarding H. pylori infection and its involvement in the induction/progression of neurological disorders. Neurological impairments induced by H. pylori infection are primarily due to impairments in the gut-brain axis (GBA) and to an altered gut microbiota facilitated by H. pylori colonization. Currently, regarding a potential relationship between Helicobacter infection and neurological disorders, most of the studies are mainly focused on H. pylori.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (G.B.); (M.F.); (G.T.)
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Izabela Morawska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (A.M.)
| | - Adam Michalski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (A.M.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (G.B.); (M.F.); (G.T.)
| | - Elżbieta Sitarz
- Chair and I Department of Psychiatry, Psychotherapy, and Early Intervention, Medical University of Lublin, 20-439 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (G.B.); (M.F.); (G.T.)
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (G.B.); (M.F.); (G.T.)
| |
Collapse
|
6
|
|
7
|
Armijos-Jaramillo V, Espinosa N, Vizcaíno K, Santander-Gordón D. A Novel In Silico Method for Molecular Mimicry Detection Finds a Formin with the Potential to Manipulate the Maize Cell Cytoskeleton. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:815-825. [PMID: 33755496 DOI: 10.1094/mpmi-11-20-0332-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molecular mimicry is one of the evolutionary strategies that parasites use to manipulate the host metabolism and perform an effective infection. This phenomenon has been observed in several animal and plant pathosystems. Despite the relevance of this mechanism in pathogenesis, little is known about it in fungus-plant interactions. For that reason, we performed an in silico method to select plausible mimicry candidates for the Ustilago maydis-maize interaction. Our methodology used a tripartite sequence comparison between the parasite, the host, and nonparasitic organisms' genomes. Furthermore, we used RNA sequencing information to identify gene coexpression, and we determined subcellular localization to detect potential cases of colocalization in the imitator-imitated pairs. With these approximations, we found a putative extracellular formin in U. maydis with the potential to rearrange the host cell cytoskeleton. In parallel, we detected at least two maize genes involved in the cytoskeleton rearrangement differentially expressed under U. maydis infection; thus, this find increases the expectation for the potential mimicry role of the fungal protein. The use of several sources of data led us to develop a strict and replicable in silico methodology to detect molecular mimicry in pathosystems with enough information available. Furthermore, this is the first time that a genomewide search has been performed to detect molecular mimicry in a U. maydis-maize system. Additionally, to allow the reproducibility of this experiment and the use of this pipeline, we created a Web server called Molecular Mimicry Finder.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Vinicio Armijos-Jaramillo
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - Nicole Espinosa
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Karla Vizcaíno
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Daniela Santander-Gordón
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
8
|
Shang P, Zhu M, Wang Y, Zheng X, Wu X, Zhu J, Feng J, Zhang HL. Axonal variants of Guillain-Barré syndrome: an update. J Neurol 2021; 268:2402-2419. [PMID: 32140865 DOI: 10.1007/s00415-020-09742-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Axonal variants of Guillain-Barré syndrome (GBS) mainly include acute motor axonal neuropathy, acute motor and sensory axonal neuropathy, and pharyngeal-cervical-brachial weakness. Molecular mimicry of human gangliosides by a pathogen's lipooligosaccharides is a well-established mechanism for Campylobacter jejuni-associated GBS. New triggers of the axonal variants of GBS (axonal GBS), such as Zika virus, hepatitis viruses, intravenous administration of ganglioside, vaccination, and surgery, are being identified. However, the pathogenetic mechanisms of axonal GBS related to antecedent bacterial or viral infections other than Campylobacter jejuni remain unknown. Currently, autoantibody classification and serial electrophysiology are cardinal approaches to differentiate axonal GBS from the prototype of GBS, acute inflammatory demyelinating polyneuropathy. Newly developed technologies, including metabolite analysis, peripheral nerve ultrasound, and feature selection via artificial intelligence are facilitating more accurate diagnosis of axonal GBS. Nevertheless, some key issues, such as genetic susceptibilities, remain unanswered and moreover, current therapies bear limitations. Although several therapies have shown considerable benefits to experimental animals, randomized controlled trials are still needed to validate their efficacy.
Collapse
Affiliation(s)
- Pei Shang
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Mingqin Zhu
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Ying Wang
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Xiangyu Zheng
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Xiujuan Wu
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Jie Zhu
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Jiachun Feng
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Shuangqing Road 83#, Beijing, 100085, China.
| |
Collapse
|
9
|
Shoraka S, Ferreira MLB, Mohebbi SR, Ghaemi A. SARS-CoV-2 Infection and Guillain-Barré Syndrome: A Review on Potential Pathogenic Mechanisms. Front Immunol 2021; 12:674922. [PMID: 34040615 PMCID: PMC8141918 DOI: 10.3389/fimmu.2021.674922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
Since December 2019, the world has been facing an outbreak of a new disease called coronavirus disease 2019 (COVID-19). The COVID-19 pandemic is caused by a novel beta-coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 infection mainly affects the respiratory system. Recently, there have been some reports of extra-respiratory symptoms such as neurological manifestations in COVID-19. According to the increasing reports of Guillain-Barré syndrome following COVID-19, we mainly focused on SARS-CoV-2 infection and Guillain-Barré syndrome in this review. We tried to explain the possibility of a relationship between SARS-CoV-2 infection and Guillain-Barré syndrome and potential pathogenic mechanisms based on current and past knowledge.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Keddie S, Pakpoor J, Mousele C, Pipis M, Machado PM, Foster M, Record CJ, Keh RYS, Fehmi J, Paterson RW, Bharambe V, Clayton LM, Allen C, Price O, Wall J, Kiss-Csenki A, Rathnasabapathi DP, Geraldes R, Yermakova T, King-Robson J, Zosmer M, Rajakulendran S, Sumaria S, Farmer SF, Nortley R, Marshall CR, Newman EJ, Nirmalananthan N, Kumar G, Pinto AA, Holt J, Lavin TM, Brennan KM, Zandi MS, Jayaseelan DL, Pritchard J, Hadden RDM, Manji H, Willison HJ, Rinaldi S, Carr AS, Lunn MP. Epidemiological and cohort study finds no association between COVID-19 and Guillain-Barré syndrome. Brain 2021; 144:682-693. [PMID: 33313649 PMCID: PMC7799186 DOI: 10.1093/brain/awaa433] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Reports of Guillain-Barré syndrome (GBS) have emerged during the Coronavirus disease 2019 (COVID-19) pandemic. This epidemiological and cohort study sought to investigate any causative association between COVID-19 infection and GBS. The epidemiology of GBS cases reported to the UK National Immunoglobulin Database was studied from 2016 to 2019 and compared to cases reported during the COVID-19 pandemic. Data were stratified by hospital trust and region, with numbers of reported cases per month. UK population data for COVID-19 infection were collated from UK public health bodies. In parallel, but separately, members of the British Peripheral Nerve Society prospectively reported incident cases of GBS during the pandemic at their hospitals to a central register. The clinical features, investigation findings and outcomes of COVID-19 (definite or probable) and non-COVID-19 associated GBS cases in his cohort were compared. The incidence of GBS treated in UK hospitals from 2016 to 2019 was 1.65–1.88 per 100 000 individuals per year. In 2020, GBS and COVID-19 incidences varied between regions and did not correlate with one another (r = 0.06, 95% confidence interval: −0.56 to 0.63, P = 0.86). GBS incidence fell between March and May 2020 compared to the same months of 2016–19. In an independent cohort study, 47 GBS cases were reported (COVID-19 status: 13 definite, 12 probable, 22 non-COVID-19). There were no significant differences in the pattern of weakness, time to nadir, neurophysiology, CSF findings or outcome between these groups. Intubation was more frequent in the COVID-19 affected cohort (7/13, 54% versus 5/22, 23% in COVID-19-negative) likely related to COVID-19 pulmonary involvement. Although it is not possible to entirely rule out the possibility of a link this study finds no epidemiological or phenotypic clues of SARS-CoV-2 being causative of GBS. GBS incidence has fallen during the pandemic, which may be the influence of lockdown measures reducing transmission of GBS inducing pathogens such as Campylobacter jejuni and respiratory viruses.
Collapse
Affiliation(s)
- Stephen Keddie
- Department of Neuromuscular Diseases, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Christina Mousele
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Menelaos Pipis
- Department of Neuromuscular Diseases, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Pedro M Machado
- Department of Neuromuscular Diseases, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Mark Foster
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Ryan Y S Keh
- Lancashire Teaching Hospitals NHS Foundation Trust, UK
| | - Janev Fehmi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ross W Paterson
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.,Darent Valley Hospital, Dartford, UK
| | - Viraj Bharambe
- The Walton Centre National Health Service (NHS) Foundation Trust, Liverpool, UK
| | | | | | - Olivia Price
- Basildon and Thurrock University Hospital Trust, Basildon, UK
| | - Jasmine Wall
- Lancashire Teaching Hospitals NHS Foundation Trust, UK
| | | | | | - Ruth Geraldes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Wexham Park Hospital, Frimley Health Foundation Trust, Berkshire, UK
| | | | | | - Maya Zosmer
- North Middlesex University Hospital NHS Trust, London, UK
| | - Sanjeev Rajakulendran
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.,North Middlesex University Hospital NHS Trust, London, UK
| | - Sheetal Sumaria
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Simon F Farmer
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ross Nortley
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.,Wexham Park Hospital, Frimley Health Foundation Trust, Berkshire, UK
| | | | | | | | | | - Ashwin A Pinto
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - James Holt
- The Walton Centre National Health Service (NHS) Foundation Trust, Liverpool, UK
| | - Tim M Lavin
- Manchester Centre for Clinical Neuroscience, Salford Royal Hospital NHS Foundation Trust, Manchester, UK
| | | | - Michael S Zandi
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Dipa L Jayaseelan
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.,West Hertfordshire Hospitals NHS Trust, Watford, UK
| | | | | | - Hadi Manji
- Department of Neuromuscular Diseases, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Aisling S Carr
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Michael P Lunn
- Department of Neuromuscular Diseases, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
11
|
Sarhangi M, Bakhshi B, Peeraeyeh SN. High prevalence of Campylobacter jejuni CC21 and CC257 clonal complexes in children with gastroenteritis in Tehran, Iran. BMC Infect Dis 2021; 21:108. [PMID: 33485317 PMCID: PMC7824915 DOI: 10.1186/s12879-021-05778-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 01/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter jejuni (C. jejuni) is a leading cause of acute gastroenteritis in human worldwide. The aim of study was to assess the distribution of sialylated lipooligosaccharide (LOS) classes and capsular genotypes in C. jejuni isolated from Iranian children with gastroenteritis. Furthermore, the level of dnaK gene expression in C. jejuni strains with selected capsular genotypes and LOS classes was intended. Moreover, a comprehensive study of C. jejuni MLST-genotypes and inclusive comparison with peer sequences worldwide was intended. METHODS Twenty clinical C. jejuni strains were isolated from fecal specimens of 280 children aged 0-5 years, suspected of bacterial gastroenteritis, which admitted to 3 children hospitals from May to October, 2018. Distribution of sialylated LOS classes and specific capsular genotypes were investigated in C. jejuni of clinical origin. The expression of dnaK in C. jejuni strains was measured by Real-Time-PCR. MLST-genotyping was performed to investigate the clonal relationship of clinical C. jejuni strains and comparison with inclusive sequences worldwide. RESULTS C. jejuni HS23/36c was the predominant genotype (45%), followed by HS2 (20%), and HS19 and HS4 (each 10%). A total of 80% of isolates were assigned to LOS class B and C. Higher expression level of dnaK gene was detected in strains with HS23/36c, HS2 and HS4 capsular genotypes and sialylated LOS classes B or C. MLST analysis showed that isolates were highly diverse and represented 6 different sequence types (STs) and 3 clonal complexes (CCs). CC21 and CC257 were the most dominant CCs (75%) among our C. jejuni strains. No new ST and no common ST with our neighbor countries was detected. CONCLUSIONS The C. jejuni isolates with LOS class B or C, and capsular genotypes of HS23/36, HS2, HS4 and HS19 were dominant in population under study. The CC21 and CC257 were the largest CCs among our isolates. In overall picture, CC21 and CC353 complexes were the most frequently and widely distributed clonal complexes worldwide, although members of CC353 were not detected in our isolates. This provides a universal picture of movement of dominant Campylobacter strains worldwide.
Collapse
Affiliation(s)
- Mahnaz Sarhangi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116 Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116 Iran
| | - Shahin Najar Peeraeyeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116 Iran
| |
Collapse
|
12
|
Fourie KR, Wilson HL. Understanding GroEL and DnaK Stress Response Proteins as Antigens for Bacterial Diseases. Vaccines (Basel) 2020; 8:E773. [PMID: 33348708 PMCID: PMC7767184 DOI: 10.3390/vaccines8040773] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/16/2023] Open
Abstract
Bacteria do not simply express a constitutive panel of proteins but they instead undergo dynamic changes in their protein repertoire in response to changes in nutritional status and when exposed to different environments. These differentially expressed proteins may be suitable to use for vaccine antigens if they are virulence factors. Immediately upon entry into the host organism, bacteria are exposed to a different environment, which includes changes in temperature, osmotic pressure, pH, etc. Even when an organism has already penetrated the blood or lymphatics and it then enters another organ or a cell, it can respond to these new conditions by increasing the expression of virulence factors to aid in bacterial adherence, invasion, or immune evasion. Stress response proteins such as heat shock proteins and chaperones are some of the proteins that undergo changes in levels of expression and/or changes in cellular localization from the cytosol to the cell surface or the secretome, making them potential immunogens for vaccine development. Herein we highlight literature showing that intracellular chaperone proteins GroEL and DnaK, which were originally identified as playing a role in protein folding, are relocated to the cell surface or are secreted during invasion and therefore may be recognized by the host immune system as antigens. In addition, we highlight literature showcasing the immunomodulation effects these proteins can have on the immune system, also making them potential adjuvants or immunotherapeutics.
Collapse
Affiliation(s)
- Kezia R. Fourie
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), Saskatoon, SK S7N 5E3, Canada
| | - Heather L. Wilson
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
13
|
Asmai R, Karraouan B, Es-Soucratti K, En-Nassiri H, Bouchrif B, Karib H, Triqui R. Prevalence and antibiotic resistance of Campylobacter coli isolated from broiler farms in the Marrakesh Safi region, Morocco. Vet World 2020; 13:1892-1897. [PMID: 33132602 PMCID: PMC7566245 DOI: 10.14202/vetworld.2020.1892-1897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Campylobacteriosis is a common foodborne disease epidemiologically linked to the consumption of poultry products. However, other sources, such as raw or contaminated milk, contaminated water or ice, contact with infected livestock, and pets, are reported. This study aimed to evaluate the prevalence and resistance to microbial resistance of Campylobacter coli in broiler farms in the region of Marrakesh Safi, Morocco. MATERIALS AND METHODS The study was conducted between May and December 2017 and involved 35 broiler farms. One hundred and five cloacal swabs were collected from the eight provinces in the region of Marrakesh Safi, Morocco. Bacteriology method NM ISO/TS 10272-3: 2013 was used to isolate and identify Campylobacter spp. Molecular identification (polymerase chain reaction) was used for confirmation. A disk diffusion method on Mueller-Hinton agar was used for susceptibility testing. Five antibiotic agents, including first-line drugs, were evaluated. RESULTS Among 105 samples, 71.4% (75/105) were positive for Campylobacter spp. test and 56% (42/75) of isolates belonged to the species coli. Susceptibility profiles showed that 95.2% of C. coli strains were resistant to ampicillin, 92.8% to erythromycin and tetracycline, 85.7% to ciprofloxacin, and 7.1% to gentamicin. CONCLUSION This study underlines the need to strengthen implementation of specific control procedures to decrease contamination of poultry meat with Campylobacter spp. and to reduce the use of antibiotics in the poultry sector.
Collapse
Affiliation(s)
- Raja Asmai
- Unité HIDAOA, Departement de Pathologie et Santé Publique Vétérinaire, Institut Agronomique et Vétérinaire Hassan II, B.P. 6202, Rabat-Instituts, Rabat, Morocco
| | | | - Khadija Es-Soucratti
- Department of Biology, Ain Chock Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Houda En-Nassiri
- Department of Biology, Ain Chock Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | | | - Hakim Karib
- Unité HIDAOA, Departement de Pathologie et Santé Publique Vétérinaire, Institut Agronomique et Vétérinaire Hassan II, B.P. 6202, Rabat-Instituts, Rabat, Morocco
| | - Réda Triqui
- Unité HIDAOA, Departement de Pathologie et Santé Publique Vétérinaire, Institut Agronomique et Vétérinaire Hassan II, B.P. 6202, Rabat-Instituts, Rabat, Morocco
| |
Collapse
|
14
|
de la Fuente J, Pacheco I, Contreras M, Mateos-Hernández L, Villar M, Cabezas-Cruz A. Guillain-Barré and Alpha-gal Syndromes: Saccharides-induced Immune Responses. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2019; 000:000-000. [DOI: 10.14218/erhm.2019.00027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Macario AJ, de Macario EC. Molecular mechanisms in chaperonopathies: clues to understanding the histopathological abnormalities and developing novel therapies. J Pathol 2019; 250:9-18. [PMID: 31579936 DOI: 10.1002/path.5349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Molecular chaperones, many of which are heat shock proteins (Hsps), are components of the chaperoning system and when defective can cause disease, the chaperonopathies. Chaperone-gene variants cause genetic chaperonopathies, whereas in the acquired chaperonopathies the genes are normal, but their protein products are not, due to aberrant post-transcriptional mechanisms, e.g. post-translational modifications (PTMs). Since the chaperoning system is widespread in the body, chaperonopathies affect various tissues and organs, making these diseases of interest to a wide range of medical specialties. Genetic chaperonopathies are uncommon but the acquired ones are frequent, encompassing various types of cancer, and inflammatory and autoimmune disorders. The clinical picture of chaperonopathies is known. Much less is known on the impact that pathogenic mutations and PTMs have on the properties and functions of chaperone molecules. Elucidation of these molecular alterations is necessary for understanding the mechanisms underpinning the tissue and organ abnormalities occurring in patients. To illustrate this issue, we discuss structural-functional alterations caused by mutation in the chaperones CCT5 and HSPA9, and PTM effects on Hsp60. The data provide insights into what may happen when CCT5 and HSPA9 malfunction in patients, e.g. accumulation of cytotoxic protein aggregates with tissue destruction; or for Hsp60 with aberrant PTM, degradation and/or secretion of the chaperonin with mitochondrial damage. These and other possibilities are now open for investigation. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alberto Jl Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD, USA.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD, USA.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| |
Collapse
|
16
|
Igwaran A, Okoh AI. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019; 5:e02814. [PMID: 31763476 PMCID: PMC6861584 DOI: 10.1016/j.heliyon.2019.e02814] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/07/2019] [Accepted: 11/07/2019] [Indexed: 01/18/2023] Open
Abstract
Campylobacter species are among the leading cause of bacterial foodborne and waterborne infections. In addition, Campylobacter is one of the major causative agent of bacterial gastrointestinal infections and the rise in the incidence of Campylobacter infections have been reported worldwide. Also, the emergence of some Campylobacter species as one of the main causative agent of diarrhea and the propensity of these bacteria species to resist the actions of antimicrobial agents; position them as a serious threat to the public health. This paper reviews Campylobacter pathogenicity, infections, isolation and diagnosis, their reservoirs, transmission pathways, epidemiology of Campylobacter outbreaks, prevention and treatment option, antibiotics resistance and control of antibiotics use.
Collapse
Affiliation(s)
- Aboi Igwaran
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| |
Collapse
|
17
|
Hoter A, Naim HY. The Functions and Therapeutic Potential of Heat Shock Proteins in Inflammatory Bowel Disease-An Update. Int J Mol Sci 2019; 20:ijms20215331. [PMID: 31717769 PMCID: PMC6862201 DOI: 10.3390/ijms20215331] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial human intestinal disease that arises from numerous, yet incompletely defined, factors. Two main forms, Crohn's disease (CD) and ulcerative colitis (UC), lead to a chronic pathological form. Heat shock proteins (HSPs) are stress-responsive molecules involved in various pathophysiological processes. Several lines of evidence link the expression of HSPs to the development and prognosis of IBD. HSP90, HSP70 and HSP60 have been reported to contribute to IBD in different aspects. Moreover, induction and/or targeted inhibition of specific HSPs have been suggested to ameliorate the disease consequences. In the present review, we shed the light on the role of HSPs in IBD and their targeting to prevent further disease progression.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt or
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Hassan Y. Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Correspondence: ; Tel.: +49-511-953-8780; Fax: +49-511-953-8585
| |
Collapse
|
18
|
Taheri N, Fällman M, Wai SN, Fahlgren A. Accumulation of virulence-associated proteins in Campylobacter jejuni Outer Membrane Vesicles at human body temperature. J Proteomics 2019; 195:33-40. [DOI: 10.1016/j.jprot.2019.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/28/2023]
|
19
|
Cappello F, Mazzola M, Jurjus A, Zeenny MN, Jurjus R, Carini F, Leone A, Bonaventura G, Tomasello G, Bucchieri F, Conway de Macario E, Macario AJL. Hsp60 as a Novel Target in IBD Management: A Prospect. Front Pharmacol 2019; 10:26. [PMID: 30800066 PMCID: PMC6376446 DOI: 10.3389/fphar.2019.00026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) encompasses various pathological conditions similar but distinct that share a multifactorial etiology, including involvement of the intestinal barrier function, the immune system, and intestinal microorganisms. Hsp60 is a chaperonin component of the chaperoning system, present in all cells and tissues, including the intestine. It plays important roles in cell physiology outside and inside mitochondria, its canonical place of residence. However, Hsp60 can also be pathogenic in many conditions, the Hsp60 chaperonopathies, possibly including IBD. The various clinico-pathological types of IBD have a complicated mix of causative factors, among which Hsp60 can be considered a putatively important driver of events and could play an etiopathogenic role. This possibility is discussed in this review. We also indicate that Hsp60 can be a biomarker useful in disease diagnosing and monitoring and, if found active in pathogenesis, should become a target for developing new therapies. The latter are particularly needed to alleviate patient suffering and to prevent complications, including colon cancer.
Collapse
Affiliation(s)
- Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- *Correspondence: Francesco Cappello,
| | - Margherita Mazzola
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Marie-Noel Zeenny
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy and Cell Biology, Faculty Development Associate for Education Research, Center for Faculty Excellence, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Francesco Carini
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Angelo Leone
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Giuseppe Bonaventura
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Giovanni Tomasello
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Fabio Bucchieri
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore – Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore – Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| |
Collapse
|
20
|
Polak D, Shmueli A, Brenner T, Shapira L. Oral infection with P. gingivalis exacerbates autoimmune encephalomyelitis. J Periodontol 2018; 89:1461-1466. [PMID: 30030849 DOI: 10.1002/jper.17-0531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 05/26/2018] [Accepted: 05/27/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oral infection of mice with P. gingivalis induces periodontal inflammation and attachment loss. The aim of the present study was to investigate whether infection of mice with P. gingivalis, exacerbates the clinical course of experimental autoimmune encephalomyelitis (EAE)-a mouse model of multiple sclerosis (MS). METHODS Induction of EAE was carried out by immunization of C57BL/6 mice with myelin oligodentrocyte glycoprotein (MOG35-55 ). P. gingivalis infection was induced via subcutaneous chambers model and the oral gavage. The severity of EAE was measured using a clinical severity score. Ex-vivo reactivation of lymphocytes with the encephalitogenic peptide MOG35-55 was also tested. RESULTS Subcutaneous as well as oral infection with live P. gingivalis led to significant aggravation of the severity of EAE. Lymph node cells harvested from mice with EAE following P. gingivalis infection showed augmented lymphocyte proliferation towards the encephlatigenic MOG moiety compared to mice with EAE only. CONCLUSIONS The present results indicate that oral infection with P. gingivalis augmented the severity of EAE. This may stem from the systemic pro-inflammatory response triggered by P. gingivalis infection or via antigen mimicking. The present study provides evidence that periodontal infection may play a role as modifier in CNS inflammatory disorders, such as MS.
Collapse
Affiliation(s)
- David Polak
- Department of Periodontology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Aviv Shmueli
- Department of Pediatric Dentistry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Talma Brenner
- Laboratory of Neuroimmunology, Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lior Shapira
- Department of Periodontology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
21
|
Quantification of the Campylobacter contamination on broiler carcasses during the slaughter of Campylobacter positive flocks in semi-industrialized slaughterhouses. Int J Food Microbiol 2018; 269:75-79. [DOI: 10.1016/j.ijfoodmicro.2018.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/24/2017] [Accepted: 01/26/2018] [Indexed: 11/23/2022]
|
22
|
Cagnone M, Bardoni A, Iadarola P, Viglio S. Could Proteomics Become a Future Useful Tool to Shed Light on the Mechanisms of Rare Neurodegenerative Disorders? High Throughput 2018; 7:ht7010002. [PMID: 29485613 PMCID: PMC5876528 DOI: 10.3390/ht7010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022] Open
Abstract
Very often the clinical features of rare neurodegenerative disorders overlap with those of other, more common clinical disturbances. As a consequence, not only the true incidence of these disorders is underestimated, but many patients also experience a significant delay before a definitive diagnosis. Under this scenario, it appears clear that any accurate tool producing information about the pathological mechanisms of these disorders would offer a novel context for their precise identification by strongly enhancing the interpretation of symptoms. With the advent of proteomics, detection and identification of proteins in different organs/tissues, aimed at understanding whether they represent an attractive tool for monitoring alterations in these districts, has become an area of increasing interest. The aim of this report is to provide an overview of the most recent applications of proteomics as a new strategy for identifying biomarkers with a clinical utility for the investigation of rare neurodegenerative disorders.
Collapse
Affiliation(s)
- Maddalena Cagnone
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| | - Anna Bardoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| | - Paolo Iadarola
- Department of Biology and Biotechnologies "L. Spallanzani", Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| | - Simona Viglio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
23
|
Loshaj-Shala A, Colzani M, Brezovska K, Poceva Panovska A, Suturkova L, Beretta G. Immunoproteomic identification of antigenic candidate Campylobacter jejuni and human peripheral nerve proteins involved in Guillain-Barré syndrome. J Neuroimmunol 2018; 317:77-83. [PMID: 29338928 DOI: 10.1016/j.jneuroim.2018.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/04/2018] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
Abstract
Immunoproteomics is become a potent methodology used for identifying immunoreactive proteins. In this study, an immunoproteomic approach based on 2-dimensional gel electrophoresis (2D-PAGE) and immunoblotting combined with high resolution mass spectrometry (MS) was used to identify immunoreactive proteins that might be involved in mechanisms of Guillain-Barré syndrome (GBS) development, regardless of their potential reciprocal molecular mimicry. Proteins isolated from C. jejuni and human peripheral nerve tissue (HPN) were separated with 2D SDS-PAGE and subjected to western blotting using serum samples from GBS patients. The peptides generated after proteolysis of the immunoreactive proteins were submitted to nanoflow-high performance liquid chromatography-nano electrospray ionization coupled to high resolution mass spectrometry (nHPLC-nESI-MS and MS/MS) followed by SEQUESTdata analysis for proteins identification. In C. jejuni, immunoreactivity was found for GroEL and DnaK, structural proteins (MOMP), key enzymatic proteins necessary for the microbial proliferation (adenylate kinase, enolase, inorganic pyrophosphatase and aspartate ammonia-lyase), and antioxidant enzymes (alkyl hydroperoxide reductase-AhpC and DNA protection during starvation protein - DNA protection factor against Fe2+-mediated oxidative stress). HPN immunoreactive proteins identified were heat shock proteins (HSP), intermediate filaments (vimentin and desmin), and other proteins and enzymes such as troponin/tropomyosin complex and ATP synthase subunit beta and the keratan sulfate proteoglycan lumican. The targeting of vimentin and desmin, suggested that the neuronal autoimmune damage is specifically directed to intermediate neuronal (vimentin) and neuromuscular IF, probably localized nearby cell surface, affording increased accessibility to autoantibodies. These findings suggest that the post-infectious development of GBS may be also associated to additional concomitant immune factors that lead to nerve damage generated by auto-immune trigger(s) different from molecular mimicry.
Collapse
Affiliation(s)
- Aida Loshaj-Shala
- Department of Pharmacy, Faculty of Medicine, University Hasan Prishtina, Pristina, Kosovo
| | - Mara Colzani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Katerina Brezovska
- Faculty of Pharmacy, University Ss. Cyril and Methodius, Skopje, Macedonia
| | | | - Ljubica Suturkova
- Faculty of Pharmacy, University Ss. Cyril and Methodius, Skopje, Macedonia
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
24
|
Rose NR. Negative selection, epitope mimicry and autoimmunity. Curr Opin Immunol 2017; 49:51-55. [DOI: 10.1016/j.coi.2017.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/26/2017] [Indexed: 12/17/2022]
|
25
|
Abstract
Environmental enteropathy is a chronic condition of the small intestine associated with increased intestinal permeability, mucosal inflammation, malabsorption, and systemic inflammation. It is commonly accompanied by enteric infections and is misleadingly considered a subclinical disease. Potential effects of enteric infections and enteropathy on vaccine responses, child growth, cognitive development, and even later life obesity, diabetes, and metabolic syndrome are increasingly being recognized. Herein, we review the evolving challenges to defining environmental enteropathy and enteric infections, current evidence for the magnitude and determinants of its burden, new assessment tools, and relevant interventions.
Collapse
Affiliation(s)
- Elizabeth T Rogawski
- Department of Public Health Sciences, University of Virginia, PO Box 801379, Carter Harrison Research Building MR-6, 345 Crispell Drive, Room 2520, Charlottesville, VA 22908-1379, USA; Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, PO Box 801379, Carter Harrison Research Building MR-6, 345 Crispell Drive, Room 2520, Charlottesville, VA 22908-1379, USA.
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, PO Box 801379, Carter Harrison Research Building MR-6, 345 Crispell Drive, Room 2520, Charlottesville, VA 22908-1379, USA
| |
Collapse
|
26
|
Nosadini M, Mohammad SS, Corazza F, Ruga EM, Kothur K, Perilongo G, Frigo AC, Toldo I, Dale RC, Sartori S. Herpes simplex virus-induced anti-N-methyl-d-aspartate receptor encephalitis: a systematic literature review with analysis of 43 cases. Dev Med Child Neurol 2017; 59:796-805. [PMID: 28439890 DOI: 10.1111/dmcn.13448] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2017] [Indexed: 01/05/2023]
Abstract
AIM To conduct a systematic literature review on patients with biphasic disease with herpes simplex virus (HSV) encephalitis followed by anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. METHOD We conducted a case report and systematic literature review (up to 10 December 2016), focused on differences between herpes simplex encephalitis (HSE) and anti-NMDAR encephalitis phases, age-related characteristics of HSV-induced anti-NMDAR encephalitis, and therapy. For statistical analyses, McNemar's test, Fisher's test, and Wilcoxon rank sum test were used (two-tailed significance level set at 5%). RESULTS Forty-three patients with biphasic disease were identified (31 children). Latency between HSE and anti-NMDAR encephalitis was significantly shorter in children than adults (median 24 vs 40.5d; p=0.006). Compared with HSE, anti-NMDAR encephalitis was characterized by significantly higher frequency of movement disorder (2.5% vs 75% respectively; p<0.001), and significantly lower rate of seizures (70% vs 30% respectively; p=0.001). Compared with adults, during anti-NMDAR encephalitis children had significantly more movement disorders (86.7% children vs 40% adults; p=0.006), fewer psychiatric symptoms (41.9% children vs 90.0% adults; p=0.025), and a slightly higher median modified Rankin Scale score (5 in children vs 4 in adults; p=0.015). During anti-NMDAR encephalitis, 84.6 per cent of patients received aciclovir (for ≤7d in 22.7%; long-term antivirals in 18.0% only), and 92.7 per cent immune therapy, but none had recurrence of HSE clinically or using cerebrospinal fluid HSV polymerase chain reaction (median follow-up 7mo). INTERPRETATION Our review suggests that movement disorder may help differentiate clinically an episode of HSV-induced anti-NMDAR encephalitis from HSE relapse. Compared with adults, children have shorter latency between HSE and anti-NMDAR encephalitis and, during anti-NMDAR encephalitis, more movement disorder, fewer psychiatric symptoms, and slightly more severe disease. According to our results, immune therapy given for HSV-induced anti-NMDAR encephalitis does not predispose patients to HSE recurrence.
Collapse
Affiliation(s)
- Margherita Nosadini
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Shekeeb S Mohammad
- Neuroimmunology Group, Institute for Neuroscience and Muscle Research, Kids Research Institute at the Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | - Francesco Corazza
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Ezia Maria Ruga
- Department of Paediatrics, University of Padua, Padua, Italy
| | - Kavitha Kothur
- Neuroimmunology Group, Institute for Neuroscience and Muscle Research, Kids Research Institute at the Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | | | - Anna Chiara Frigo
- Department of Cardiac, Thoracic and Vascular Sciences, Biostatistics, Epidemiology and Public Health Unit, University of Padua, Padua, Italy
| | - Irene Toldo
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Russell C Dale
- Neuroimmunology Group, Institute for Neuroscience and Muscle Research, Kids Research Institute at the Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | - Stefano Sartori
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| |
Collapse
|
27
|
Vinueza-Burgos C, Wautier M, Martiny D, Cisneros M, Van Damme I, De Zutter L. Prevalence, antimicrobial resistance and genetic diversity of Campylobacter coli and Campylobacter jejuni in Ecuadorian broilers at slaughter age. Poult Sci 2017; 96:2366-2374. [PMID: 28339716 PMCID: PMC5850218 DOI: 10.3382/ps/pew487] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/20/2016] [Indexed: 01/28/2023] Open
Abstract
Thermotolerant Campylobacter spp. are a major cause of foodborne gastrointestinal infections worldwide. The linkage of human campylobacteriosis and poultry has been widely described. In this study we aimed to investigate the prevalence, antimicrobial resistance and genetic diversity of C. coli and C. jejuni in broilers from Ecuador. Caecal content from 379 randomly selected broiler batches originating from 115 farms were collected from 6 slaughterhouses located in the province of Pichincha during 1 year. Microbiological isolation was performed by direct plating on mCCDA agar. Identification of Campylobacter species was done by PCR. Minimum inhibitory concentration (MIC) values for gentamicin, ciprofloxacin, nalidixic acid, tetracycline, streptomycin, and erythromycin were obtained. Genetic variation was assessed by RFLP-flaA typing and Multilocus Sequence Typing (MLST) of selected isolates. Prevalence at batch level was 64.1%. Of the positive batches 68.7% were positive for C. coli, 18.9% for C. jejuni, and 12.4% for C. coli and C. jejuni. Resistance rates above 67% were shown for tetracycline, ciprofloxacin, and nalidixic acid. The resistance pattern tetracycline, ciprofloxin, and nalidixic acid was the dominant one in both Campylobacter species. RFLP-flaA typing analysis showed that C. coli and C. jejuni strains belonged to 38 and 26 profiles respectively. On the other hand MLST typing revealed that C. coli except one strain belonged to CC-828, while C. jejuni except 2 strains belonged to 12 assigned clonal complexes (CCs). Furthermore 4 new sequence types (STs) for both species were described, whereby 2 new STs for C. coli were based on new allele sequences. Further research is necessary to estimate the impact of the slaughter of Campylobacter positive broiler batches on the contamination level of carcasses in slaughterhouses and at retail in Ecuador.
Collapse
Affiliation(s)
| | - Magali Wautier
- Center for Molecular Diagnosis, LHUB-ULB, Brussels, Belgium
| | - Delphine Martiny
- National Reference Center for Campylobacter, CHU Saint-Pierre, Brussels, Belgium
- Department of Immunology and Microbiology, Université Libre de Bruxelles, Brussels, Belgium
| | - Marco Cisneros
- Facultad de Medicina Veterinaria y Zootecnia. Universidad Central del Ecuador, Quito, Ecuador
| | - Inge Van Damme
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary. Ghent University, Merelbeke, Belgium
| | - Lieven De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary. Ghent University, Merelbeke, Belgium
| |
Collapse
|
28
|
Tuusa J, Raasakka A, Ruskamo S, Kursula P. Myelin-derived and putative molecular mimic peptides share structural properties in aqueous and membrane-like environments. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s40893-017-0021-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update on the clinical, public health and economic consequences of Campylobacter infection. RECENT FINDINGS Campylobacter is a leading bacterial cause of food-related illness. Its importance is enhanced by the chronic sequelae that can result from acute infection. Recent advances include a new clinical classification system for neurological sequelae with the aim of speeding accurate diagnosis and appropriate treatment, a better understanding of the mechanisms underlying postinfectious functional gastrointestinal disorders, the emergence of Campylobacter concisus and Campylobacter showae as potential aetiological agents in inflammatory bowel disease, a new mechanism for antimicrobial resistance in campylobacters and a better appreciation of the economic costs. SUMMARY Campylobacter infection is very common and can lead to serious chronic sequelae and considerable personal, healthcare and societal costs.
Collapse
|
30
|
Krauer F, Riesen M, Reveiz L, Oladapo OT, Martínez-Vega R, Porgo TV, Haefliger A, Broutet NJ, Low N. Zika Virus Infection as a Cause of Congenital Brain Abnormalities and Guillain-Barré Syndrome: Systematic Review. PLoS Med 2017; 14:e1002203. [PMID: 28045901 PMCID: PMC5207634 DOI: 10.1371/journal.pmed.1002203] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/16/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The World Health Organization (WHO) stated in March 2016 that there was scientific consensus that the mosquito-borne Zika virus was a cause of the neurological disorder Guillain-Barré syndrome (GBS) and of microcephaly and other congenital brain abnormalities based on rapid evidence assessments. Decisions about causality require systematic assessment to guide public health actions. The objectives of this study were to update and reassess the evidence for causality through a rapid and systematic review about links between Zika virus infection and (a) congenital brain abnormalities, including microcephaly, in the foetuses and offspring of pregnant women and (b) GBS in any population, and to describe the process and outcomes of an expert assessment of the evidence about causality. METHODS AND FINDINGS The study had three linked components. First, in February 2016, we developed a causality framework that defined questions about the relationship between Zika virus infection and each of the two clinical outcomes in ten dimensions: temporality, biological plausibility, strength of association, alternative explanations, cessation, dose-response relationship, animal experiments, analogy, specificity, and consistency. Second, we did a systematic review (protocol number CRD42016036693). We searched multiple online sources up to May 30, 2016 to find studies that directly addressed either outcome and any causality dimension, used methods to expedite study selection, data extraction, and quality assessment, and summarised evidence descriptively. Third, WHO convened a multidisciplinary panel of experts who assessed the review findings and reached consensus statements to update the WHO position on causality. We found 1,091 unique items up to May 30, 2016. For congenital brain abnormalities, including microcephaly, we included 72 items; for eight of ten causality dimensions (all except dose-response relationship and specificity), we found that more than half the relevant studies supported a causal association with Zika virus infection. For GBS, we included 36 items, of which more than half the relevant studies supported a causal association in seven of ten dimensions (all except dose-response relationship, specificity, and animal experimental evidence). Articles identified nonsystematically from May 30 to July 29, 2016 strengthened the review findings. The expert panel concluded that (a) the most likely explanation of available evidence from outbreaks of Zika virus infection and clusters of microcephaly is that Zika virus infection during pregnancy is a cause of congenital brain abnormalities including microcephaly, and (b) the most likely explanation of available evidence from outbreaks of Zika virus infection and GBS is that Zika virus infection is a trigger of GBS. The expert panel recognised that Zika virus alone may not be sufficient to cause either congenital brain abnormalities or GBS but agreed that the evidence was sufficient to recommend increased public health measures. Weaknesses are the limited assessment of the role of dengue virus and other possible cofactors, the small number of comparative epidemiological studies, and the difficulty in keeping the review up to date with the pace of publication of new research. CONCLUSIONS Rapid and systematic reviews with frequent updating and open dissemination are now needed both for appraisal of the evidence about Zika virus infection and for the next public health threats that will emerge. This systematic review found sufficient evidence to say that Zika virus is a cause of congenital abnormalities and is a trigger of GBS.
Collapse
Affiliation(s)
- Fabienne Krauer
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Maurane Riesen
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Ludovic Reveiz
- Pan American Health Organization, Washington DC, United States of America
| | - Olufemi T. Oladapo
- UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction (HRP), Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Ruth Martínez-Vega
- Escuela de Microbiologia, Universidad Industrial de Santander, Santander, Colombia
| | - Teegwendé V. Porgo
- UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction (HRP), Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
- Department of Social and Preventative Medicine, Laval University, Québec, Canada
| | - Anina Haefliger
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Nathalie J. Broutet
- UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction (HRP), Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Nicola Low
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | | |
Collapse
|
31
|
Abstract
The term Guillain-Barré syndrome (GBS), the most frequent cause of acute paralytic neuropathy, covers a number of recognisably distinct variants. The exact cause of GBS is unknown, but 50-70% of cases appear 1-2weeks after a respiratory or gastrointestinal infection, or another immune stimulus that induces an aberrant autoimmune response targeting peripheral nerves and their spinal roots. The interplay between the microbial and host factors that dictate whether and how the immune response shifts towards autoreactivity is still unclear, and nothing is known about the genetic and environmental factors that affect an individual's susceptibility to the disease. All patients with GBS need meticulous monitoring, and can benefit from supportive care and the early start of specific treatment. This review summarises the clinical features and diagnostic criteria of GBS and proposes an algorithm for its management. An analysis of the literature showed that, about one century after it was first described, new information concerning its etiopathogenesis has allowed the development of new treatment strategies that should be started immediately after diagnosis; however, the available therapies are not sufficient in many patients, especially in the presence of the acute inflammatory demyelinating polyneuropathy. New post-infectious forms, such as those caused by Zika virus and enterovirus D68, need to be carefully analysed and, in order to improve patient outcomes, research should continue to aim at identifying new biomarkers of disease severity and better means of avoiding axonal injury.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Maria Roberta Longo
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
32
|
Créange A. Guillain-Barré syndrome: 100 years on. Rev Neurol (Paris) 2016; 172:770-774. [PMID: 27866731 DOI: 10.1016/j.neurol.2016.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 11/24/2022]
Abstract
The Guillain-Barré syndrome is associated with acute polyradiculoneuritis for almost one century. Its spectrum has considerably been enlarged since its first description. It now includes pure motor or sensory syndromes, focal forms, demyelinating and axonal neurophysiological features that characterise excitability dysfunctions, and immunological differentiations. We can hope that this improved classification will facilitate development of treatment innovations for a condition that is still a life-threatening condition with a severe functional prognosis in a significant proportion of cases.
Collapse
Affiliation(s)
- A Créange
- Service de neurologie, université Paris Est (EA4391), hôpital Henri-Mondor, avenue Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France.
| |
Collapse
|
33
|
Mateos-Hernández L, Villar M, Doncel-Pérez E, Trevisan-Herraz M, García-Forcada Á, Ganuza FR, Vázquez J, de la Fuente J. Quantitative proteomics reveals Piccolo as a candidate serological correlate of recovery from Guillain-Barré syndrome. Oncotarget 2016; 7:74582-74591. [PMID: 27776345 PMCID: PMC5342688 DOI: 10.18632/oncotarget.12789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023] Open
Abstract
Guillain-Barré syndrome (GBS) is an autoimmune-mediated peripheral neuropathy of unknown cause. However, about a quarter of GBS patients have suffered a recent bacterial or viral infection, and axonal forms of the disease are especially common in these patients. Proteomics is a good methodological approach for the discovery of disease biomarkers. Until recently, most proteomics studies of GBS and other neurodegenerative diseases have focused on the analysis of the cerebrospinal fluid (CSF). However, serum represents an attractive alternative to CSF because it is easier to sample and has potential for biomarker discovery. The goal of this research was the identification of serum biomarkers associated with recovery from GBS. To address this objective, a quantitative proteomics approach was used to characterize differences in the serum proteome between a GBS patient and her healthy identical twin in order to lessen variations due to differences in genetic background, and with additional serum samples collected from unrelated GBS (N = 3) and Spinal Cord Injury (SCI) (N = 3) patients with similar medications. Proteomics results were then validated by ELISA using sera from additional GBS patients (N = 5) and healthy individuals (N = 3). All GBS and SCI patients were recovering from the acute phase of the disease. The results showed that Piccolo, a protein that is essential in the maintenance of active zone structure, constitutes a potential serological correlate of recovery from GBS. These results provided the first evidence for the Piccolo´s putative role in GBS, suggesting a candidate target for developing a serological marker of disease recovery.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernández
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Ernesto Doncel-Pérez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | | | - Ángel García-Forcada
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Francisco Romero Ganuza
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
34
|
Ward DM. What Are the Newer Applications for Therapeutic Apheresis in Nephrology?: What Is on the Horizon for Therapeutic Apheresis Medicine in Nephrology? Semin Dial 2016; 29:354-7. [PMID: 27461836 DOI: 10.1111/sdi.12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- David M Ward
- Division of Nephrology, Department of Medicine, University of California San Diego, San Diego, California. .,Therapeutic Apheresis Program, UCSD Medical Center, San Diego, California. .,Kidney & Pancreas Transplant Program, UCSD Medical Center, San Diego, California.
| |
Collapse
|
35
|
Loshaj-Shala A, Poceva Panovska A, Brezovska K, Beretta G, Suturkova L, Apostolski S. Involvement of serum HSP 70 in Guillain-Barré Syndrome: An exploratory study and a review of current literature. MAKEDONSKO FARMACEVTSKI BILTEN 2015. [DOI: 10.33320/maced.pharm.bull.2015.61.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionary conserved family of heat shock proteins (HSP) is responsible for protecting cells against different types of stress. Although the levels of HSP can be readily measured in serum, the levels of HSP 70 in patients Guillain-Barre Syndrome (GBS) have not been studied before. To this aim we investigate whether patients with GBS (n=21) had altered serum HSP 70 levels compared to healthy controls (HC, n=9) and to patients affected by other immune disorders such as multifocal motor neuropathy (MMN, n=4) and chronic inflammatory demyelinating polyneuropathy (CIDP, n=6). The highest HSP 70 value (15.78 ± 1.72 ng/mL) was found in one patient in the GBS group, although we have found that serum HSP70 levels were significantly higher in 2 out of the 21 GBS patients (9.5%). Hence, it is of interest to underline that the patient with the highest HSP70 level, had also the best recovery rate. Моrе extensive research is required in order to support the hypothesis that HSP 70 serum concentration may be a useful biomarker for the prediction of remission outcome for GBS patients.
Collapse
|