1
|
Oliveri F, Mink D, Muchamuel T, Basler M. Immunoproteasome Inhibition Impairs Differentiation but Not Survival of T Helper 17 Cells. Cells 2025; 14:689. [PMID: 40422192 DOI: 10.3390/cells14100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Autoimmune and inflammatory diseases are characterized by aberrant immune responses. The immunoproteasome was proposed as a target for such Th cell-mediated diseases due to its role in the activation, differentiation and function of T cells. Even though many studies demonstrated reductions in Th17 cells upon immunoproteasome inhibition, it is still unclear if the differentiation or survival of these cells is affected. Therefore, this study used DSS-induced colitis and house dust mite airway inflammation mouse models to investigate the effect of immunoproteasome inhibition on Th17 cells and Tregs at different time points. Th17 cells were almost abolished when immunoproteasome inhibition was applied continuously in DSS-induced colitis. In contrast, immunoproteasome inhibition did not decrease levels of already differentiated Th17 cells and did not enhance Treg induction. Dendritic cells were barely affected by immunoproteasome inhibition. Moreover, immunoproteasome inhibition reduced T cell activation in vitro and in vivo, suggesting impaired activation as the underlying mechanism for reduced Th17 differentiation. In conclusion, immunoproteasome inhibition reduces Th17 differentiation by impairing the activation of naïve T cells, but it does not affect the survival of already-differentiated Th17 cells and Tregs.
Collapse
Affiliation(s)
- Franziska Oliveri
- Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Dennis Mink
- Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Tony Muchamuel
- Department of Research, Kezar Life Sciences, Inc., South San Francisco, CA 94080, USA
| | - Michael Basler
- Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
2
|
Mok CC. Targeting the ubiquitin-proteasome pathway in systemic lupus erythematosus. Expert Rev Clin Immunol 2025; 21:531-542. [PMID: 40266558 DOI: 10.1080/1744666x.2025.2497845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
INTRODUCTION The ubiquitin-proteasome system (UPS) is the major non-lysosomal mechanism for selective degradation of intracellular proteins that is essential for the regulation of cellular functions and survival. Modulation of the proteasomes and cereblon E3 ligase promotes degradation of polyubiquitin-tagged transcription factors and oncoproteins, leading to depletion of long-lived plasma cells, diminished autoantibody and interferon-α production, reduced T-cell polarization to the proinflammatory phenotypes and increased regulatory T-cell activity that are relevant to the therapy of systemic lupus erythematosus (SLE). AREAS COVERED Selective immunoproteasome inhibitors and newer generation cereblon modulators have improved safety profiles compared to conventional compounds. This article summarizes the literature regarding the modulation of the UPS in murine and human SLE. EXPERT OPINION Bortezomib and the selective immunoproteasome inhibitors, ONX-0914 and zetomipzomib, ameliorate renal disease in murine lupus models. While clinically effective in refractory SLE, bortezomib is limited by its toxicities. Zetomipzomib shows promising data in phase Ib/II studies of SLE and lupus nephritis. Thalidomide and lenalidomide are effective in refractory cutaneous lupus but again limited by their off-target effects. A phase II RCT of iberdomide shows favorable results in SLE, especially chronic and subacute cutaneous lesions. These molecules should be further explored in larger clinical trials of renal and cutaneous SLE.
Collapse
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong, SAR, China
| |
Collapse
|
3
|
Malek N, Gladysz R, Stelmach N, Drag M. Targeting Microglial Immunoproteasome: A Novel Approach in Neuroinflammatory-Related Disorders. ACS Chem Neurosci 2024; 15:2532-2544. [PMID: 38970802 PMCID: PMC11258690 DOI: 10.1021/acschemneuro.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.
Collapse
Affiliation(s)
- Natalia Malek
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Radoslaw Gladysz
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Natalia Stelmach
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Drag
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
4
|
Schaftenaar FH, van Dam AD, de Bruin G, Depuydt MA, de Mol J, Amersfoort J, Douna H, Meijer M, Kröner MJ, van Santbrink PJ, Bernabé Kleijn MN, van Puijvelde GH, Florea BI, Slütter B, Foks AC, Bot I, Rensen PC, Kuiper J. Immunoproteasomal Inhibition With ONX-0914 Attenuates Atherosclerosis and Reduces White Adipose Tissue Mass and Metabolic Syndrome in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1346-1364. [PMID: 38660806 PMCID: PMC11188635 DOI: 10.1161/atvbaha.123.319701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Atherosclerosis is the major underlying pathology of cardiovascular disease and is driven by dyslipidemia and inflammation. Inhibition of the immunoproteasome, a proteasome variant that is predominantly expressed by immune cells and plays an important role in antigen presentation, has been shown to have immunosuppressive effects. METHODS We assessed the effect of ONX-0914, an inhibitor of the immunoproteasomal catalytic subunits LMP7 (proteasome subunit β5i/large multifunctional peptidase 7) and LMP2 (proteasome subunit β1i/large multifunctional peptidase 2), on atherosclerosis and metabolism in LDLr-/- and APOE*3-Leiden.CETP mice. RESULTS ONX-0914 treatment significantly reduced atherosclerosis, reduced dendritic cell and macrophage levels and their activation, as well as the levels of antigen-experienced T cells during early plaque formation, and Th1 cells in advanced atherosclerosis in young and aged mice in various immune compartments. Additionally, ONX-0914 treatment led to a strong reduction in white adipose tissue mass and adipocyte progenitors, which coincided with neutrophil and macrophage accumulation in white adipose tissue. ONX-0914 reduced intestinal triglyceride uptake and gastric emptying, likely contributing to the reduction in white adipose tissue mass, as ONX-0914 did not increase energy expenditure or reduce total food intake. Concomitant with the reduction in white adipose tissue mass upon ONX-0914 treatment, we observed improvements in markers of metabolic syndrome, including lowered plasma triglyceride levels, insulin levels, and fasting blood glucose. CONCLUSIONS We propose that immunoproteasomal inhibition reduces 3 major causes underlying cardiovascular disease, dyslipidemia, metabolic syndrome, and inflammation and is a new target in drug development for atherosclerosis treatment.
Collapse
MESH Headings
- Animals
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Atherosclerosis/drug therapy
- Atherosclerosis/immunology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Metabolic Syndrome/drug therapy
- Metabolic Syndrome/immunology
- Disease Models, Animal
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/pathology
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Proteasome Endopeptidase Complex/metabolism
- Mice, Inbred C57BL
- Male
- Proteasome Inhibitors/pharmacology
- Apolipoprotein E3/genetics
- Apolipoprotein E3/metabolism
- Aortic Diseases/prevention & control
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/enzymology
- Aortic Diseases/immunology
- Aortic Diseases/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/immunology
- Plaque, Atherosclerotic
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Mice, Knockout, ApoE
- Mice
- Energy Metabolism/drug effects
- Oligopeptides
Collapse
Affiliation(s)
- Frank H. Schaftenaar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Andrea D. van Dam
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (A.D.D., P.C.N.R.)
| | - Gerjan de Bruin
- Department of Chemical Biology, Leiden Institute of Chemistry, the Netherlands (G.d.B., B.I.F.)
| | - Marie A.C. Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Jill de Mol
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Jacob Amersfoort
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Hidde Douna
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Menno Meijer
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Mara J. Kröner
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Peter J. van Santbrink
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Mireia N.A. Bernabé Kleijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Gijs H.M. van Puijvelde
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Bogdan I. Florea
- Department of Chemical Biology, Leiden Institute of Chemistry, the Netherlands (G.d.B., B.I.F.)
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Patrick C.N. Rensen
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (A.D.D., P.C.N.R.)
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| |
Collapse
|
5
|
Ünlü S, Sánchez Navarro BG, Cakan E, Berchtold D, Meleka Hanna R, Vural S, Vural A, Meisel A, Fichtner ML. Exploring the depths of IgG4: insights into autoimmunity and novel treatments. Front Immunol 2024; 15:1346671. [PMID: 38698867 PMCID: PMC11063302 DOI: 10.3389/fimmu.2024.1346671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising only 3-5% of antibodies circulating in the bloodstream. These antibodies possess unique structural features, notably their ability to undergo a process known as fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily block and exert immunomodulatory effects, particularly in the context of IgE isotype-mediated hypersensitivity reactions. In the context of disease, IgG4 antibodies are prominently observed in various autoimmune diseases combined under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase (MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly, both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying immunopathologies. This review aims to provide a comprehensive exploration of B cells, antibody subclasses, and their general properties before examining the distinctive characteristics of IgG4 subclass antibodies in the context of health, IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic strategies for these conditions, with a special focus on leveraging insights gained from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our understanding of the pathogenesis of IgG4-mediated diseases and identify promising possibilities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Selen Ünlü
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Blanca G. Sánchez Navarro
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elif Cakan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Daniel Berchtold
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rafael Meleka Hanna
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Secil Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Dermatology and Venereology, Koç University School of Medicine, İstanbul, Türkiye
| | - Atay Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology, Koç University School of Medicine, İstanbul, Türkiye
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam L. Fichtner
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Zhou J, Li C, Lu M, Jiang G, Chen S, Li H, Lu K. Pharmacological induction of autophagy reduces inflammation in macrophages by degrading immunoproteasome subunits. PLoS Biol 2024; 22:e3002537. [PMID: 38447109 PMCID: PMC10917451 DOI: 10.1371/journal.pbio.3002537] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Defective autophagy is linked to proinflammatory diseases. However, the mechanisms by which autophagy limits inflammation remain elusive. Here, we found that the pan-FGFR inhibitor LY2874455 efficiently activated autophagy and suppressed expression of proinflammatory factors in macrophages stimulated by lipopolysaccharide (LPS). Multiplex proteomic profiling identified the immunoproteasome, which is a specific isoform of the 20s constitutive proteasome, as a substrate that is degraded by selective autophagy. SQSTM1/p62 was found to be a selective autophagy-related receptor that mediated this degradation. Autophagy deficiency or p62 knockdown blocked the effects of LY2874455, leading to the accumulation of immunoproteasomes and increases in inflammatory reactions. Expression of proinflammatory factors in autophagy-deficient macrophages could be reversed by immunoproteasome inhibitors, confirming the pivotal role of immunoproteasome turnover in the autophagy-mediated suppression on the expression of proinflammatory factors. In mice, LY2874455 protected against LPS-induced acute lung injury and dextran sulfate sodium (DSS)-induced colitis and caused low levels of proinflammatory cytokines and immunoproteasomes. These findings suggested that selective autophagy of the immunoproteasome was a key regulator of signaling via the innate immune system.
Collapse
Affiliation(s)
- Jiao Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chunxia Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Meng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Gaoyue Jiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Shanze Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Huihui Li
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
7
|
Muchamuel T, Fan RA, Anderl JL, Bomba DJ, Johnson HWB, Lowe E, Tuch BB, McMinn DL, Millare B, Kirk CJ. Zetomipzomib (KZR-616) attenuates lupus in mice via modulation of innate and adaptive immune responses. Front Immunol 2023; 14:1043680. [PMID: 36969170 PMCID: PMC10036830 DOI: 10.3389/fimmu.2023.1043680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Zetomipzomib (KZR-616) is a selective inhibitor of the immunoproteasome currently undergoing clinical investigation in autoimmune disorders. Here, we characterized KZR-616 in vitro and in vivo using multiplexed cytokine analysis, lymphocyte activation and differentiation, and differential gene expression analysis. KZR-616 blocked production of >30 pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs), polarization of T helper (Th) cells, and formation of plasmablasts. In the NZB/W F1 mouse model of lupus nephritis (LN), KZR-616 treatment resulted in complete resolution of proteinuria that was maintained at least 8 weeks after the cessation of dosing and was mediated in part by alterations in T and B cell activation, including reduced numbers of short and long-lived plasma cells. Gene expression analysis of human PBMCs and tissues from diseased mice revealed a consistent and broad response focused on inhibition of T, B, and plasma cell function and the Type I interferon pathway and promotion of hematopoietic cell lineages and tissue remodeling. In healthy volunteers, KZR-616 administration resulted in selective inhibition of the immunoproteasome and blockade of cytokine production following ex vivo stimulation. These data support the ongoing development of KZR-616 in autoimmune disorders such as systemic lupus erythematosus (SLE)/LN.
Collapse
|
8
|
Li Y, Fan H, Han X, Sun J, Ni M, Zhang L, Fang F, Zhang W, Ma P. PR-957 Suppresses Th1 and Th17 Cell Differentiation via Inactivating PI3K/AKT Pathway in Alzheimer's Disease. Neuroscience 2023; 510:82-94. [PMID: 36581132 DOI: 10.1016/j.neuroscience.2022.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/19/2022] [Accepted: 10/24/2022] [Indexed: 12/27/2022]
Abstract
PR-957 [low molecular mass polypeptide (LMP)-7 selective inhibitor] regulates T helper (Th) cell differentiation and inflammatory response in multiple neurological diseases. Hence, this study aimed to explore the effect of PR-957 on Th1/Th2/Th17 cell differentiation, therapeutic efficacy and its potential mechanisms in Alzheimer's disease (AD). The LMP7 expressions in peripheral blood mononuclear cells from 30 AD patients and 30 healthy controls (HC) were detected. PR-957 was added for the incubation of naive cluster of differentiation (CD)4+ T cells from AD patients, then SC79 [phosphorylated protein kinase B (pAKT) agonist] was added. LMP7, Th1 cells, and Th17 cells were upregulated, while Th2 cells were downregulated in AD patients compared to HC. Also, LMP7 was positively related to Th1 cells and Th17 cells, but it did not correlate with Th2 cells in AD patients. PR-957 treatment downregulated Th1 cells, Th17 cells, and their secreted cytokines as well as phosphorylated phosphoinositide 3-kinase (pPI3K)/PI3K and pAKT/AKT expressions in AD CD4+ T cells. SC79 addition upregulated pAKT/AKT expression, Th1 cells, and Th17 cells, while downregulated Th2 cells; also SC79 could alleviate the effect of PR-957 on regulating PI3K/AKT pathway and Th1, Th2, and Th17 cell differentiation in AD CD4+ T cells. Furthermore, PR-957 attenuated cognitive impairment and neurofibrillary tangle; also it inhibited Th17 cell differentiation and PI3K/AKT pathway in the brain and spleen of AD mice. In conclusion, PR-957 suppresses Th1 and Th17 cell differentiation, attenuates neural injury and improves cognitive function via inactivating PI3K/AKT pathway in AD.
Collapse
Affiliation(s)
- Yuanlong Li
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan, China
| | - Hua Fan
- School of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Xiong Han
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China
| | - Jun Sun
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan, China
| | - Ming Ni
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Clinical Pharmacy, Fuwai Central China Cardiovascular Hospital, Zhengzhou 450003, Henan, China
| | - Lulu Zhang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan, China
| | - Fengqin Fang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan, China
| | - Wei Zhang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan, China
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou 450003, Henan, China.
| |
Collapse
|
9
|
Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmun Rev 2022; 21:103104. [PMID: 35452851 DOI: 10.1016/j.autrev.2022.103104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
The presence of autoantibodies directed against the muscle nicotinic acetylcholine receptor (AChR) is the most common cause of myasthenia gravis (MG). These antibodies damage the postsynaptic membrane of the neuromuscular junction and cause muscle weakness by depleting AChRs and thus impairing synaptic transmission. As one of the best-characterized antibody-mediated autoimmune diseases, AChR-MG has often served as a reference model for other autoimmune disorders. Classical pharmacological treatments, including broad-spectrum immunosuppressive drugs, are effective in many patients. However, complete remission cannot be achieved in all patients, and 10% of patients do not respond to currently used therapies. This may be attributed to production of autoantibodies by long-lived plasma cells which are resistant to conventional immunosuppressive drugs. Hence, novel therapies specifically targeting plasma cells might be a suitable therapeutic approach for selected patients. Additionally, in order to reduce side effects of broad-spectrum immunosuppression, targeted immunotherapies and symptomatic treatments will be required. This review presents established therapies as well as novel therapeutic approaches for MG and related conditions, with a focus on AChR-MG.
Collapse
|
10
|
Parihar N, Bhatt LK. Deubiquitylating enzymes: potential target in autoimmune diseases. Inflammopharmacology 2021; 29:1683-1699. [PMID: 34792672 DOI: 10.1007/s10787-021-00890-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
The ubiquitin-proteasome pathway is responsible for the turnover of different cellular proteins, such as transport proteins, presentation of antigens to the immune system, control of the cell cycle, and activities that promote cancer. The enzymes which remove ubiquitin, deubiquitylating enzymes (DUBs), play a critical role in central and peripheral immune tolerance to prevent the development of autoimmune diseases and thus present a potential therapeutic target for the treatment of autoimmune diseases. DUBs function by removing ubiquitin(s) from target protein and block ubiquitin chain elongation. The addition and removal of ubiquitin molecules have a significant impact on immune responses. DUBs and E3 ligases both specifically cleave target protein and modulate protein activity and expression. The balance between ubiquitylation and deubiquitylation modulates protein levels and also protein interactions. Dysregulation of the ubiquitin-proteasome pathway results in the development of various autoimmune diseases such as inflammatory bowel diseases (IBD), psoriasis, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). This review summarizes the current understanding of ubiquitination in autoimmune diseases and focuses on various DUBs responsible for the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
11
|
A Nut for Every Bolt: Subunit-Selective Inhibitors of the Immunoproteasome and Their Therapeutic Potential. Cells 2021; 10:cells10081929. [PMID: 34440698 PMCID: PMC8394499 DOI: 10.3390/cells10081929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
At the heart of the ubiquitin-proteasome system, the 20S proteasome core particle (CP) breaks down the majority of intracellular proteins tagged for destruction. Thereby, the CP controls many cellular processes including cell cycle progression and cell signalling. Inhibitors of the CP can suppress these essential biological pathways, resulting in cytotoxicity, an effect that is beneficial for the treatment of certain blood cancer patients. During the last decade, several preclinical studies demonstrated that selective inhibition of the immunoproteasome (iCP), one of several CP variants in mammals, suppresses autoimmune diseases without inducing toxic side effects. These promising findings led to the identification of natural and synthetic iCP inhibitors with distinct chemical structures, varying potency and subunit selectivity. This review presents the most prominent iCP inhibitors with respect to possible scientific and medicinal applications, and discloses recent trends towards pan-immunoproteasome reactive inhibitors that cumulated in phase II clinical trials of the lead compound KZR-616 for chronic inflammations.
Collapse
|
12
|
Choi AY, Manook M, Olaso D, Ezekian B, Park J, Freischlag K, Jackson A, Knechtle S, Kwun J. Emerging New Approaches in Desensitization: Targeted Therapies for HLA Sensitization. Front Immunol 2021; 12:694763. [PMID: 34177960 PMCID: PMC8226120 DOI: 10.3389/fimmu.2021.694763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 01/11/2023] Open
Abstract
There is an urgent need for therapeutic interventions for desensitization and antibody-mediated rejection (AMR) in sensitized patients with preformed or de novo donor-specific HLA antibodies (DSA). The risk of AMR and allograft loss in sensitized patients is increased due to preformed DSA detected at time of transplant or the reactivation of HLA memory after transplantation, causing acute and chronic AMR. Alternatively, de novo DSA that develops post-transplant due to inadequate immunosuppression and again may lead to acute and chronic AMR or even allograft loss. Circulating antibody, the final product of the humoral immune response, has been the primary target of desensitization and AMR treatment. However, in many cases these protocols fail to achieve efficient removal of all DSA and long-term outcomes of patients with persistent DSA are far worse when compared to non-sensitized patients. We believe that targeting multiple components of humoral immunity will lead to improved outcomes for such patients. In this review, we will briefly discuss conventional desensitization methods targeting antibody or B cell removal and then present a mechanistically designed desensitization regimen targeting plasma cells and the humoral response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stuart Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
13
|
Cao Y, Zhu H, He R, Kong L, Shao J, Zhuang R, Xi J, Zhang J. Proteasome, a Promising Therapeutic Target for Multiple Diseases Beyond Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4327-4342. [PMID: 33116419 PMCID: PMC7585272 DOI: 10.2147/dddt.s265793] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Proteasome is vital for intracellular protein homeostasis as it eliminates misfolded and damaged protein. Inhibition of proteasome has been validated as a powerful strategy for anti-cancer therapy, and several drugs have been approved for treatment of multiple myeloma. Recent studies indicate that proteasome has potent therapeutic effects on a variety of diseases besides cancer, including parasite infectious diseases, bacterial/fungal infections diseases, neurodegenerative diseases and autoimmune diseases. In this review, recent developments of proteasome inhibitors for various diseases and related structure activity relationships are going to be summarized.
Collapse
Affiliation(s)
- Yu Cao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Limin Kong
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| |
Collapse
|
14
|
Recent insights how combined inhibition of immuno/proteasome subunits enables therapeutic efficacy. Genes Immun 2020; 21:273-287. [PMID: 32839530 DOI: 10.1038/s41435-020-00109-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
The proteasome is a multicatalytic protease in the cytosol and nucleus of all eukaryotic cells that controls numerous cellular processes through regulated protein degradation. Proteasome inhibitors have significantly improved the survival of multiple myeloma patients. However, clinically approved proteasome inhibitors have failed to show efficacy against solid tumors, neither alone nor in combination with other therapies. Targeting the immunoproteasome with selective inhibitors has been therapeutically effective in preclinical models for several autoimmune diseases and colon cancer. Moreover, immunoproteasome inhibitors prevented the chronic rejection of allogeneic organ transplants. In recent years, it has become apparent that inhibition of one single active center of the proteasome is insufficient to achieve therapeutic benefits. In this review we summarize the latest insights how targeting multiple catalytically active proteasome subunits can interfere with disease progression in autoimmunity, growth of solid tumors, and allograft rejection.
Collapse
|
15
|
Menon D, Barnett C, Bril V. Novel Treatments in Myasthenia Gravis. Front Neurol 2020; 11:538. [PMID: 32714266 PMCID: PMC7344308 DOI: 10.3389/fneur.2020.00538] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
Myasthenia gravis (MG) is the prototypical autoimmune disorder caused by specific autoantibodies at the neuromuscular junction. Broad-based immunotherapies, such as corticosteroids, azathioprine, mycophenolate, tacrolimus, and cyclosporine, have been effective in controlling symptoms of myasthenia. While being effective in a majority of MG patients many of these immunosuppressive agents are associated with long-term side effects, often intolerable for patients, and take several months to be effective. With advances in translational research and drug development capabilities, more directed therapeutic agents that can alter the future of MG treatment have been developed. This review focuses on the aberrant immunological processes in MG, the novel agents that target them along with the clinical evidence for efficacy and safety. These agents include terminal complement C5 inhibitors, Fc receptor inhibitors, B cell depleting agents (anti CD 19 and 20 and B cell activating factor [BAFF)]inhibitors), proteosome inhibitors, T cells and cytokine based therapies (chimeric antigen receptor T [CART-T] cell therapy), autologous stem cell transplantation, and subcutaneous immunoglobulin (SCIG). Most of these new agents have advantages over conventional immunosuppressive treatment (IST) for MG therapy in terms of faster onset of action, favourable side effect profile and the potential for a sustained and long-term remission.
Collapse
Affiliation(s)
| | | | - Vera Bril
- Ellen & Martin Prosserman Centre for Neuromuscular Diseases, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Smith BC, Sinyuk M, Jenkins JE, Psenicka MW, Williams JL. The impact of regional astrocyte interferon-γ signaling during chronic autoimmunity: a novel role for the immunoproteasome. J Neuroinflammation 2020; 17:184. [PMID: 32532298 PMCID: PMC7291495 DOI: 10.1186/s12974-020-01861-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022] Open
Abstract
Background In early autoimmune neuroinflammation, interferon (IFN)γ and its upregulation of the immunoproteasome (iP) is pathologic. However, during chronic multiple sclerosis (MS), IFNγ has protective properties. Although dysregulation of the iP has been implicated in neurodegeneration, its function remains to be fully elucidated. Here, we demonstrate that IFNγ signaling in regional astrocytes induces the iP and promotes protection of the CNS during chronic autoimmunity. Methods In a multiple sclerosis (MS) brain, we evaluated mRNA expression and labeled postmortem MS brainstem and spinal cord for iP subunits and indicators of oxidative stress. Primary regional human astrocytes were analyzed for iP regulation and function by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot, OxyBlot, and reactive oxygen species and caspase activity detection assays. Following immunization with myelin oligodendrocyte glycoprotein (MOG)35-55, the role of IFNγ signaling and the iP during chronic experimental autoimmune encephalomyelitis (EAE) were assessed using pharmacologic inhibition of the iP and genetic interruption of IFNγ signaling specifically in astrocytes. Central nervous system (CNS) tissues were analyzed by immunohistochemistry (IHC) and immunofluorescence, and cell-specific colocalization was quantified. Results In MS tissue, iP expression was enhanced in the spinal cord compared to brainstem lesions, which correlated with a decrease in oxidative stress. In vitro, IFNγ stimulation enhanced iP expression, reduced reactive oxygen species burden, and decreased oxidatively damaged and poly-ubiquitinated protein accumulation preferentially in human spinal cord astrocytes, which was abrogated with the use of the iP inhibitor, ONX 0914. During the chronic phase of an MS animal model, EAE, ONX 0914 treatment exacerbated the disease and led to increased oxidative stress and poly-ubiquitinated protein buildup. Finally, mice with astrocyte-specific loss of the IFNγ receptor exhibited worsened chronic EAE associated with reduced iP expression, enhanced lesion size and oxidative stress, and poly-ubiquitinated protein accumulation in astrocytes. Conclusions Taken together, our data reveal a protective role for IFNγ in chronic neuroinflammation and identify a novel function of the iP in astrocytes during CNS autoimmunity.
Collapse
Affiliation(s)
- Brandon C Smith
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Maksim Sinyuk
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Julius E Jenkins
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Morgan W Psenicka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jessica L Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Brain Health Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
17
|
Fichtner ML, Jiang R, Bourke A, Nowak RJ, O'Connor KC. Autoimmune Pathology in Myasthenia Gravis Disease Subtypes Is Governed by Divergent Mechanisms of Immunopathology. Front Immunol 2020; 11:776. [PMID: 32547535 PMCID: PMC7274207 DOI: 10.3389/fimmu.2020.00776] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is a prototypical autoantibody mediated disease. The autoantibodies in MG target structures within the neuromuscular junction (NMJ), thus affecting neuromuscular transmission. The major disease subtypes of autoimmune MG are defined by their antigenic target. The most common target of pathogenic autoantibodies in MG is the nicotinic acetylcholine receptor (AChR), followed by muscle-specific kinase (MuSK) and lipoprotein receptor-related protein 4 (LRP4). MG patients present with similar symptoms independent of the underlying subtype of disease, while the immunopathology is remarkably distinct. Here we highlight these distinct immune mechanisms that describe both the B cell- and autoantibody-mediated pathogenesis by comparing AChR and MuSK MG subtypes. In our discussion of the AChR subtype, we focus on the role of long-lived plasma cells in the production of pathogenic autoantibodies, the IgG1 subclass mediated pathology, and contributions of complement. The similarities underlying the immunopathology of AChR MG and neuromyelitis optica (NMO) are highlighted. In contrast, MuSK MG is caused by autoantibody production by short-lived plasmablasts. MuSK MG autoantibodies are mainly of the IgG4 subclass which can undergo Fab-arm exchange (FAE), a process unique to this subclass. In FAE IgG4, molecules can dissociate into two halves and recombine with other half IgG4 molecules resulting in bispecific antibodies. Similarities between MuSK MG and other IgG4-mediated autoimmune diseases, including pemphigus vulgaris (PV) and chronic inflammatory demyelinating polyneuropathy (CIDP), are highlighted. Finally, the immunological distinctions are emphasized through presentation of biological therapeutics that provide clinical benefit depending on the MG disease subtype.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Ruoyi Jiang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Aoibh Bourke
- Trinity Hall, University of Cambridge, Cambridge, United Kingdom
| | - Richard J Nowak
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States
| | - Kevin C O'Connor
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
18
|
Huda R. New Approaches to Targeting B Cells for Myasthenia Gravis Therapy. Front Immunol 2020; 11:240. [PMID: 32153573 PMCID: PMC7047318 DOI: 10.3389/fimmu.2020.00240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/29/2020] [Indexed: 01/06/2023] Open
Abstract
Current therapies for myasthenia gravis (MG) are limited, and many investigations have recently focused on target-specific therapies. B cell-targeting monoclonal antibody (mAb) therapies for MG are increasingly attractive due to their specificity and efficacy. The targeted B cell biomarkers are mainly the cluster of differentiation (CD) proteins that mediate maturation, differentiation, or survival of pathogenic B cells. Additional B cell-directed therapies include non-specific peptide inhibitors that preferentially target specific B cell subsets. The primary goals of such therapies are to intercept autoantibodies and prevent the generation of an inflammatory response that contributes to the pathogenesis of MG. Treatment of patients with MG using B cell-directed mAbs, antibody fragments, or selective inhibitors have exhibited moderate to high efficacy in early studies, and some of these therapies appear to be highly promising for further drug development. Numerous other biologics targeting various B cell surface molecules have been approved for the treatment of other conditions or are either in clinical trials or preclinical development stages. These approaches remain to be tested in patients with MG or animal models of the disease. This review article provides an overview of B cell-targeted treatments for MG, including those already available and those still in preclinical and clinical development. We also discuss the potential benefits as well as the shortcomings of these approaches to development of new therapies for MG and future directions in the field.
Collapse
Affiliation(s)
- Ruksana Huda
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
19
|
Cao HJ, Fang J, Zhang YL, Zou LX, Han X, Yang J, Yan X, Li PB, Wang HX, Guo SB, Li HH. Genetic ablation and pharmacological inhibition of immunosubunit β5i attenuates cardiac remodeling in deoxycorticosterone-acetate (DOCA)-salt hypertensive mice. J Mol Cell Cardiol 2019; 137:34-45. [PMID: 31629736 DOI: 10.1016/j.yjmcc.2019.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/23/2019] [Accepted: 09/19/2019] [Indexed: 01/04/2023]
Abstract
Hypertensive cardiac remodeling is a major cause of heart failure. The immunoproteasome is an inducible form of the proteasome and its catalytic subunit β5i (also named LMP7) is involved in angiotensin II-induced atrial fibrillation; however, its role in deoxycorticosterone-acetate (DOCA)-salt-induced cardiac remodeling remains unclear. C57BL/6 J wild-type (WT) and β5i knockout (β5i KO) mice were subjected to uninephrectomy (sham) and DOCA-salt treatment for three weeks. Cardiac function, fibrosis, and inflammation were evaluated by echocardiography and histological analysis. Protein and gene expression levels were analyzed by quantitative real-time PCR and immunoblotting. Our results showed that after 21 days of DOCA-salt treatment, β5i expression and chymotrypsin-like activity were the most significantly increased factors in the heart compared with the sham control. Moreover, DOCA-salt-induced elevation of blood pressure, adverse cardiac function, chamber and myocyte hypertrophy, interstitial fibrosis, oxidative stress, and inflammation were markedly attenuated in β5i KO mice. These findings were verified in β5i inhibitor PR-957-treated mice. Moreover, blocking of PTEN (the gene of phosphate and tensin homolog deleted on chromosome ten) markedly attenuated the inhibitory effect of β5i knockout on DOCA-salt-induced cardiac remodeling. Mechanistically, DOCA-salt stress upregulated the expression of β5i, which promoted the degradation of PTEN and the activation of downstream signals (AKT/mTOR, TGF-β1/Smad2/3, NOX, and NF-κB), which ultimately led to cardiac hypertrophic remodeling. This study provides new evidence of the critical role of β5i in DOCA-salt-induced cardiac remodeling through the regulation of PTEN stability, and indicates that the inhibition of β5i may be a promising therapeutic target for the treatment of hypertensive heart diseases.
Collapse
Affiliation(s)
- Hua-Jun Cao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Jiao Fang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Yun-Long Zhang
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Lei-Xin Zou
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Xiao Han
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Jie Yang
- School of Public Health, Dalian Medical University, Dalian 116004, China
| | - Xiao Yan
- School of Public Health, Dalian Medical University, Dalian 116004, China
| | - Pang-Bo Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hong-Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shu-Bin Guo
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China.
| |
Collapse
|
20
|
Beecher G, Putko BN, Wagner AN, Siddiqi ZA. Therapies Directed Against B-Cells and Downstream Effectors in Generalized Autoimmune Myasthenia Gravis: Current Status. Drugs 2019; 79:353-364. [PMID: 30762205 DOI: 10.1007/s40265-019-1065-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myasthenia gravis is a rare, heterogeneous, classical autoimmune disease characterized by fatigable skeletal muscle weakness, which is directly mediated by autoantibodies targeting various components of the neuromuscular junction, including the acetylcholine receptor, muscle specific tyrosine kinase, and lipoprotein-related protein 4. Subgrouping of myasthenia gravis is dependent on the age of onset, pattern of clinical weakness, autoantibody detected, type of thymic pathology, and response to immunotherapy. Generalized immunosuppressive therapies are effective in all subgroups of myasthenia gravis; however, approximately 15% remain refractory and more effective treatments with improved safety profiles are needed. In recent years, successful utilization of targeted B-cell therapies in this disease has triggered renewed focus in unraveling the underlying immunopathology in attempts to identify newer therapeutic targets. While myasthenia gravis is predominantly B-cell mediated, T cells, T cell-B cell interactions, and B-cell-related factors are increasingly recognized to play key roles in its immunopathology, particularly in autoantibody production, and novel therapies have focused on targeting these specific immune system components. This overview describes the current understanding of myasthenia gravis immunopathology before discussing B-cell-related therapies, their therapeutic targets, and the rationale and evidence for their use. Several prospective studies demonstrated efficacy of rituximab in various myasthenia gravis subtypes, particularly that characterized by antibodies against muscle-specific tyrosine kinase. However, a recent randomized control trial in patients with acetylcholine receptor antibodies was negative. Eculizumab, a complement inhibitor, has recently gained regulatory approval for myasthenia gravis based on a phase III trial that narrowly missed its primary endpoint while achieving robust results in all secondary endpoints. Zilucoplan is a subcutaneously administered terminal complement inhibitor that recently demonstrated significant improvements in functional outcome measures in a phase II trial. Rozanolixizumab, CFZ533, belimumab, and bortezomib are B-cell-related therapies that are in the early stages of evaluation in treating myasthenia gravis. The rarity of myasthenia gravis, heterogeneity in its clinical manifestations, and variability in immunosuppressive regimens are challenges to conducting successful trials. Nonetheless, these are promising times for myasthenia gravis, as renewed research efforts provide novel insights into its immunopathology, allowing for development of targeted therapies with increased efficacy and safety.
Collapse
Affiliation(s)
- Grayson Beecher
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta Hospital, 7-112 Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Brendan Nicholas Putko
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta Hospital, 7-112 Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Amanda Nicole Wagner
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta Hospital, 7-112 Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Zaeem Azfer Siddiqi
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta Hospital, 7-112 Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
21
|
Immunoproteasome inhibition induces plasma cell apoptosis and preserves kidney allografts by activating the unfolded protein response and suppressing plasma cell survival factors. Kidney Int 2019; 95:611-623. [PMID: 30685098 DOI: 10.1016/j.kint.2018.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/06/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
Chronic antibody-mediated rejection is the leading cause of allograft dysfunction and loss after kidney transplantation, and current immunosuppressive regimens fail to target the plasma cells that produce alloantibodies. We previously showed that treatment with the immunoproteasome inhibitor ONX 0914 prevented the expansion of plasma cells and prevented chronic allograft nephropathy and organ failure after kidney transplantation in rats, but the mechanism has remained elusive. In the current study, we confirmed a long-term reduction in alloantibody production and improvements in allograft histology in rats treated with ONX 0914 or with the broad-spectrum proteasome inhibitor bortezomib. Plasma cells from allotransplanted rats expressed immunoproteasomes at high levels. Immunoproteasome inhibition with ONX 0914 led to ubiquitin-conjugate accumulation, activation of the unfolded protein response, and induction of apoptosis in plasma cells. In addition, ONX 0914 suppressed the expression of adhesion molecules (VLA-4 and LFA-1), plasma cell survival factors (APRIL and IL-6), and IFN-γ-inducible chemokines in bone marrow, while the APRIL receptor BCMA, the IL-6 receptor, and the chemokine receptors CXCR4 and CXCR3 were down-regulated on plasma cells. Taken together, immunoproteasome inhibition blocked alloantibody production by inducing apoptosis of plasma cells through activating the unfolded protein response and suppressing plasma cell survival factors in the bone marrow.
Collapse
|
22
|
Abstract
Acquired Myasthenia Gravis (MG) is a neuromuscular disease caused by autoantibodies against components of the neuromuscular junction. It is a prototype organ-specific autoimmune disease with well-defined antigenic targets mainly the nicotinic acetylcholine receptor (AChR). Patients suffer from fluctuating, fatigable muscle weakness that worsens with activity and improves with rest. Various therapeutic strategies have been used over the years to alleviate MG symptoms. These strategies aim at improving the transmission of the nerve impulse to muscle or at lowering the immune system with steroids or immunosuppressant drugs. Nevertheless, MG remains a chronic disease and symptoms tend to persist in many patients, some being or becoming refractory over time. In this review, based on recent experimental data on MG or based on results from clinical trials for other autoimmune diseases, we explore new potential therapeutic approaches for MG patients, going from non-specific approaches with the use of stem cells with their anti-inflammatory and immunosuppressive properties to targeted therapies using monoclonal antibodies specific for cell-surface antigens or circulating molecules.
Collapse
Affiliation(s)
- Anthony Behin
- APHP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France, Institut de Myologie, GH Pitié-Salpêtrière, Paris, France.,AIM, Institut de Myologie, Paris, France
| | - Rozen Le Panse
- INSERM U974, Paris, France.,UPMC Sorbonne Université, Paris, France.,AIM, Institut de Myologie, Paris, France
| |
Collapse
|
23
|
Schmidt C, Berger T, Groettrup M, Basler M. Immunoproteasome Inhibition Impairs T and B Cell Activation by Restraining ERK Signaling and Proteostasis. Front Immunol 2018; 9:2386. [PMID: 30416500 PMCID: PMC6212513 DOI: 10.3389/fimmu.2018.02386] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022] Open
Abstract
Immunoproteasome (IP) inhibition holds potential as a novel treatment option for various immune-mediated pathologies. The IP inhibitor ONX 0914 reduced T cell cytokine secretion and Th17 polarization and showed pre-clinical efficacy in a range of autoimmune disorders, transplant-allograft rejection, virus-mediated tissue damage, and colon cancer progression. However, the molecular basis of these effects has remained largely elusive. Here, we have analyzed the effects of ONX 0914 in primary human and mouse lymphocytes. ONX 0914-treatment impaired primary T cell activation in vitro and in vivo. IP inhibition reduced ERK-phosphorylation sustainment, while leaving NF-κB and other signaling pathways unaffected. Naïve T and B cells expressed nearly exclusively immuno- or mixed proteasomes but no standard proteasomes and IP inhibition but not IP-deficiency induced mild proteostasis stress, reduced DUSP5 expression and enhanced DUSP6 protein levels due to impaired degradation. However, accumulation of DUSP6 did not cause the reduced ERK-phosphorylation in a non-redundant manner. We show that broad-spectrum proteasome inhibition and immunoproteasome inhibition have distinct effects on T cell activation at the molecular level. Notably, ONX 0914-treated T cells recovered from proteostasis stress without apoptosis induction, apparently via Nrf1-mediated up-regulation of standard proteasomes. In contrast, B cells were more susceptible to apoptosis after ONX 0914-treatment. Our data thus provide mechanistic insights how IP inhibition functionally impedes T and B cells likely accounting for its therapeutic benefits.
Collapse
Affiliation(s)
- Christian Schmidt
- Chair of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Thilo Berger
- Chair of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Chair of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Michael Basler
- Chair of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
24
|
On the role of the immunoproteasome in transplant rejection. Immunogenetics 2018; 71:263-271. [PMID: 30220008 DOI: 10.1007/s00251-018-1084-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
The immunoproteasome is expressed in cells of hematopoietic origin and is induced during inflammation by IFN-γ. Targeting the immunoproteasome with selective inhibitors has been shown to be therapeutically effective in pre-clinical models for autoimmune diseases, colitis-associated cancer formation, and transplantation. Immunoproteasome inhibition prevents activation and proliferation of lymphocytes, lowers MHC class I cell surface expression, reduces the expression of cytokines of activated immune cells, and curtails T helper 1 and 17 cell differentiation. This might explain the in vivo efficacy of immunoproteasome inhibition in different pre-clinical disease models for autoimmunity, cancer, and transplantation. In this review, we summarize the effect of immunoproteasome inhibition in different animal models for transplantation.
Collapse
|
25
|
Ohkusu-Tsukada K, Ito D, Takahashi K. The Role of Proteasome Inhibitor MG132 in 2,4-Dinitrofluorobenzene-Induced Atopic Dermatitis in NC/Nga Mice. Int Arch Allergy Immunol 2018; 176:91-100. [PMID: 29669333 DOI: 10.1159/000488155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/05/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although immunosuppressants for therapy of atopic dermatitis (AD) are still being sought, proteasome inhibitors are also potential candidates for the treatment of AD. Proteasome inhibitors exert various effects by blocking proteasomal degradation and help regulate processes such as apoptosis induction via caspase-9, cell cycle progression via cyclins, NF-κB inactivation via IκB, and downregulation of antigen cross-presentation. The cells targeted by proteasome inhibitors are therefore activated cells undergoing proliferation or differentiation, and antigen-presenting cells carrying out protein degradation. OBJECTIVES This study investigated the therapeutic effects and side effects of a proteasome inhibitor, MG132, on the treatment of AD. METHODS AD-like disease in NC/Nga mice housed under specific pathogen-free conditions was induced by repeated application of 2,4-dinitrofluorobenzene (DNFB). Disease progression was evaluated by inflammation score, histopathology, and serum IgE level, and the effects of systemic MG132 administration were investigated. The percentages and absolute numbers for each population of Th1, Th2, and Th17 cells in the axillary lymph nodes were analyzed by flow cytometry. RESULTS DNFB application increased the expression of a unique major histocompatibility complex class I mutant molecule D/Ldm7 in dendritic cells (DCs), and increased Th1 and Th17 cells in NC/Nga mice. In vivo MG132 administration to NC/Nga mice with DNFB-induced dermatitis reduced Th17 cells but maintained the level of Th1 cells, resulting in the alleviation of dermatitis lesions by decreasing both serum IgE hyperproduction and mast cell migration. To understand the mechanisms maintaining Th1 cell levels following in vivo MG132-administration, we focused on the role of proteasomes regulating D/Ldm7 expression. Interestingly, 20S proteasome activity was higher in NC/Nga DCs than in BALB/c DCs. In vitro MG132 administration partially increased D/Ldm7 expression in a dose-dependent manner during DC maturation, and induced IFN-γ production from autoreactive CD8+ T cells but not from CD4+ T cells following coculturing with D/Ldm7-upregulated DCs. CONCLUSION Although MG132 administration temporarily alleviated AD pathogenesis in NC/Nga mice, prolonged MG132 treatment may result in immunopathogenesis leading to chronic AD due to its side effect of maintaining Th1 levels via autoreactive CD8+ T cells.
Collapse
|
26
|
Bakas NA, Schultz CR, Yco LP, Roberts CC, Chang CEA, Bachmann AS, Pirrung MC. Immunoproteasome inhibition and bioactivity of thiasyrbactins. Bioorg Med Chem 2017; 26:401-412. [PMID: 29269255 DOI: 10.1016/j.bmc.2017.11.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Abstract
A family of macrodilactam natural products, the syrbactins, are known proteasome inhibitors. A small group of syrbactin analogs was prepared with a sulfur-for-carbon substitution to enhance synthetic accessibility and facilitate modulation of their solubility. Two of these compounds surprisingly proved to be inhibitors of the trypsin-like catalytic site, including of the immunoproteasome. Their bound and free conformations suggest special properties of the thiasyrbactin ring are responsible for this unusual preference, which may be exploited to develop drug-like immunoproteasome inhibitors. These compounds show greater selectivity than earlier compounds used to infer phenotypes of immunoproteasome inhibition, like ONX-0914.
Collapse
Affiliation(s)
- Nicole A Bakas
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Chad R Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Lisette P Yco
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | | | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA.
| | - Michael C Pirrung
- Department of Chemistry, University of California, Riverside, CA 92521, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|