1
|
Cotrin JC, Dos Santos Junior GC, Cadaxo AS, Pereira JS, Spitz M, de Rosso ALZ, Veras RP, Valente AP, Pimentel MMG, Santos-Rebouças CB. Plasma and urinary metabolomic signatures differentiate genetic and idiopathic Parkinson's disease. Brain Res 2025; 1858:149625. [PMID: 40204143 DOI: 10.1016/j.brainres.2025.149625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Parkinson's disease (PD) is marked by alpha-synuclein accumulation and progressive dopaminergic neuron loss. Using Nuclear Magnetic Resonance (NMR)-based metabolomics, we uncovered metabolic disturbances in idiopathic PD (iPD) and PD linked to LRRK2, GBA1, and PRKN variants in a Brazilian ethnically diverse cohort, free of comorbidities, in comparison to healthy, age-matched controls. In plasma, significant PD-associated metabolites included histidine, acetate, acetoacetate, glutamine, glucose, lipids and lipoproteins, N-acetyl-glycoproteins, and sarcosine. Urine samples revealed alterations in creatine, creatinine, L-asparagine, trimethylamine, 3-beta-hydroxybutyrate, isovaleric acid, glutamine, urea, glycine, choline, arginine, and cysteine in association with PD. Notably, creatine, creatinine, acetate, glucose, and histidine showed pathway influences from LRRK2, GBA1, and PRKN variants. Enrichment analyses highlighted disruptions in glyoxylate and dicarboxylate metabolism (plasma) as well as serine, threonine, and glycine metabolism (urine). Additionally, a metabolite-gene-disease interaction network identified 15 genes associated with PD that interact with key metabolites, highlighting MAPT, SNCA, RERE, and KCNN3 as key players in both plasmaandurine. NMR in saliva samples did not show significant differences between PD groups and controls. Our findings underscore PD-associated metabolites, particularly related to arginine metabolism, the urea cycle, glutamate metabolism, glucose metabolism, and gut microbiota. These pathways and gene interactions may serve as potential biomarkers for PD diagnosis and precision medicine strategies.
Collapse
Affiliation(s)
- Juliana Cordovil Cotrin
- Human Genetics Service, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Gilson Costa Dos Santos Junior
- Laboratory of Metabolomics, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - André Simões Cadaxo
- Human Genetics Service, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Joao Santos Pereira
- Movement Disorders Clinic, Neurology Service, Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Mariana Spitz
- Movement Disorders Clinic, Neurology Service, Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Lúcia Zuma de Rosso
- Department of Neurology, Hospital Universitário Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Peixoto Veras
- Institute of Human Aging, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Paula Valente
- National Center of Nuclear Magnetic Resonance, Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Márcia Mattos Gonçalves Pimentel
- Human Genetics Service, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Cíntia Barros Santos-Rebouças
- Human Genetics Service, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Bhilare KD, Dobariya P, Lee A, Xie W, Xie J, Meints J, Vince R, Lee MK, More SS. Intranasal Delivery of Metabolically Resilient Glutathione: In Vivo Pharmacokinetic, Permeation, and Efficacy Studies. Mol Pharm 2025. [PMID: 40401709 DOI: 10.1021/acs.molpharmaceut.5c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Nose-to-brain delivery is an attractive drug delivery strategy for the treatment of Alzheimer's disease (AD) as it offers direct penetration of drugs into the brain by surpassing the blood-brain barrier, while reducing the potential systemic side effects. We developed a glutathione analogue, ψ-GSH, that resists catabolism and reduces AD-related behavioral and pathological abnormalities in vivo. Although ψ-GSH is effective via intraperitoneal administration, limited oral availability hinders the clinical translation of ψ-GSH. In this study, we sought to evaluate if intranasal ψ-GSH administration can provide neuroprotection in an acute mouse model of AD-related pathology. The pharmacokinetic analysis confirmed brain delivery of the compound to levels 4-fold higher than those achieved by an efficacious systemic dose of ψ-GSH. Unaffected stability in simulated nasal fluid and mucosa further displayed the feasibility of this delivery method. Repeated intranasal administration of ψ-GSH prevented cognitive impairment induced by the intracerebroventricular injection of Aβ1-42 without significant adverse effects. Biochemical and immunohistochemical analyses displayed the beneficial effect of the treatment on oxidative stress and inflammatory markers by engaging GSH-dependent mechanisms, mirroring the pharmacological effects of intraperitoneal ψ-GSH. Additionally, in vitro directional transport studies using a human nasal epithelial cell line showed directional brain transport of ψ-GSH, without compromising the integrity of tight junction proteins. Collectively, our results demonstrate intranasal delivery as a safe and effective alternative for brain delivery of ψ-GSH at pharmacologically relevant concentrations for the treatment of neurological conditions. The study supports future formulation studies for intranasal ψ-GSH administration and its efficacy evaluation in transgenic AD mouse models for preclinical advancement.
Collapse
Affiliation(s)
- Kiran D Bhilare
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Prakashkumar Dobariya
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Antonio Lee
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joyce Meints
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Swati S More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
McIntyre CW, Jain A. Dialysis and cognitive impairment. Nat Rev Nephrol 2025:10.1038/s41581-025-00960-3. [PMID: 40275017 DOI: 10.1038/s41581-025-00960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
People with chronic kidney disease who require maintenance dialysis characteristically experience accelerated and aggravated cognitive decline compared with those with advanced kidney disease who are not receiving this form of kidney replacement therapy. This effect is inadequately appreciated, but of crucial importance to patients, their carers and the health-care systems that support them. Although many of the comorbid conditions prevalent in this patient population have the potential to affect brain structure and function, an evolving body of evidence indicates that the dialysis therapy itself has a central role in the pathophysiology of progressive cognitive impairment. Both haemodialysis and peritoneal dialysis are associated with structural and functional changes in the brain that can lead to characteristic short-term symptoms, such as headache, confusion, delirium and brain fog, as well as long-term reductions in cognitive functional ability. Here, we explore the mechanisms, both established and putative, underlying these effects and consider approaches to addressing this issue with both single and complex therapeutic interventions.
Collapse
Affiliation(s)
- Chris W McIntyre
- Lilibeth Caberto Kidney Clinical Research Unit, Lawson Health Research Institute, London, Ontario, Canada.
- Departments of Medicine, Medical Biophysics and Paediatrics, Western University, London, Ontario, Canada.
| | - Arsh Jain
- Lilibeth Caberto Kidney Clinical Research Unit, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
4
|
Smykiewicz J, Tomasiuk R, Cemaga R, Buczkowski J, Maciejczyk M. Association of inflammation and protein carbamylation in patients with COVID-19. Front Med (Lausanne) 2025; 12:1561670. [PMID: 40241896 PMCID: PMC11999942 DOI: 10.3389/fmed.2025.1561670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Carbamylation involves the non-enzymatic binding of isocyanic acid to the amino groups of proteins, making it associated with many pathological conditions, including inflammation, aging, arteriosclerosis, and renal failure. However, there are no data on protein carbamylation in patients with COVID-19. Our study is the first to evaluate the association between blood inflammation and protein carbamylation in patients who died from COVID-19 compared to COVID-19 survivors. Methods The study included 50 patients admitted to Dr. Tytus Chałubiński Specialist Hospital in Radom, Poland. Twenty-five of them were COVID-19 survivors (15 men, 10 women), and 25 were COVID-19 deceased patients (15 men, 10 women). The number of subjects was based on a pilot study assuming a significance level of 0.05 and a test power of 0.8. Plasma/serum samples were assayed for carbamyl-lysine (CBL) and inflammatory biomarkers (CRP, procalcitonin, D-dimer, IL-6, and WBC). The concentration of CBL was measured using an enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using the Mann-Whitney U test and Spearman rank correlation. Receiver Operating Characteristic (ROC) analysis was used to assess the diagnostic utility of serum CBL. Results Serum CBL levels were significantly higher in patients who died from COVID-19 compared to COVID-19 survivors (p = 0.0011). There was a positive correlation of serum CBL with IL-6, D-dimer, and WBC. Serum CBL levels >101 ng/mL, with moderate sensitivity and specificity, differentiate COVID-19 deceased from recovered patients (area under the curve 0.76). Discussion In conclusion, COVID-19 is associated with excessive protein carbamylation. Inflammation may be a source of higher CBL production in COVID-19. A thorough understanding of the consequences of increased protein carbamylation may clarify the consequences of COVID-19 complications.
Collapse
Affiliation(s)
| | - Ryszard Tomasiuk
- Faculty of Medical Sciences and Health Sciences, Casimir Pulaski University of Radom, Radom, Poland
| | - Roman Cemaga
- Students’ Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Białystok, Poland
| | - Jakub Buczkowski
- Faculty of Medical Sciences and Health Sciences, Casimir Pulaski University of Radom, Radom, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
5
|
Pawlukianiec C, Lauko KK, Michalak D, Żendzian-Piotrowska M, Zalewska A, Maciejczyk M. A comparative study on the antioxidant and antiglycation properties of different vitamin D forms. Eur J Med Chem 2025; 285:117263. [PMID: 39823810 DOI: 10.1016/j.ejmech.2025.117263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
Vitamin D plays multiple roles in the body. Recently, there has been an increase in its popularity and growing interest in vitamin D supplementation. However, the mechanisms of vitamin D action have not yet been sufficiently explored. Our study focused on the antioxidant and antiglycation properties of the four primary forms of vitamin D such as cholecalciferol, calcifediol, alfacalcidol, and calcitriol. For this purpose, we used an in vitro bovine serum albumin model. Glucose, fructose, ribose, galactose, glyoxal, and methylglyoxal were glycation factors. The antiglycative mechanism of vitamin D was evaluated through in silico docking. We showed that all forms of vitamin D exhibit antioxidant and antiglycation activity, although calcitriol demonstrated the most potent effect. We observed decreased levels of advanced glycation end products and advanced oxidation protein products in samples with the addition of different vitamin D forms compared to positive control. Notably, the antioxidant and antiglycation activity is similar to routinely used antioxidants (reduced glutathione) and protein glycation inhibitors (aminoguanidine). Molecular docking analyses revealed that calcitriol demonstrated strong binding affinities with human and bovine serum albumin forming polar contacts with lysine residues highly susceptible to glycation. Calcitriol also exhibited significant interactions with the receptor for advanced glycation endproducts (RAGE). The pleiotropic action of vitamin D, especially calcitriol, may indicate a high therapeutic potential of vitamin D supplementation in various diseases with carbonyl stress etiology. Further research is needed to fully understand the underlying mechanisms of vitamin D pleiotropic effects and determine the optimal dosages for clinical use.
Collapse
Affiliation(s)
- Cezary Pawlukianiec
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, 15-233, Bialystok, Poland.
| | - Kamil Klaudiusz Lauko
- Students Scientific Club "Biochemistry of Civilization Diseases" at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, 15-233, Bialystok, Poland.
| | - Daniel Michalak
- Students Scientific Club "Biochemistry of Civilization Diseases" at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, 15-233, Bialystok, Poland.
| | - Małgorzata Żendzian-Piotrowska
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, 15-233, Bialystok, Poland.
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street, 15-274, Bialystok, Poland.
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, 15-233, Bialystok, Poland.
| |
Collapse
|
6
|
Baldensperger T, Preissler M, Becker CFW. Non-enzymatic posttranslational protein modifications in protein aggregation and neurodegenerative diseases. RSC Chem Biol 2025; 6:129-149. [PMID: 39722676 PMCID: PMC11667106 DOI: 10.1039/d4cb00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Highly reactive metabolic intermediates and other small molecules frequently react with amino acid side chains, leading to non-enzymatic posttranslational modifications (nPTMs) of proteins. The abundance of these modifications increases under high metabolic activity or stress conditions and can dramatically impact protein structure and function. Although protein quality control mechanisms typically mitigate the effects of these impaired proteins, in long-lived and degradation-resistant proteins, nPTMs accumulate. In some cases, such as cataract development and diabetes, clear links between nPTMs, aging, and disease progression have been established. In neurodegenerative diseases such as Alzheimer's and Parkinson's disease, a key question is whether accumulation of nPTMs is a cause or consequence of protein aggregation. This review focuses on major nPTMs found on proteins with central roles in neurodegenerative diseases such as α-synuclein, β-amyloid, and tau. We summarize current knowledge on the formation of these modifications and discuss their potential impact on disease onset and progression. Additionally, we examine what is known to date about how nPTMs impair cellular detoxification, repair, and degradation systems. Finally, we critically discuss the available methodologies to systematically investigate nPTMs at the molecular level and outline suitable approaches to study their effects on protein aggregation. We aim to foster more research into the role of nPTMs in neurodegeneration by adapting methodologies that have proven successful in studying enzymatic posttranslational modifications. Specifically, we advocate for site-specific incorporation of these modifications into target proteins using advanced chemical and molecular biology techniques.
Collapse
Affiliation(s)
- Tim Baldensperger
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| | - Miriam Preissler
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Währinger Str. 42 1090 Vienna Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| |
Collapse
|
7
|
Yang W, Si SC, Li J, Ma YX, Zhao H, Liu J. NLRP3 inhibitor alleviates glycemic variability-induced cognitive impairment in aged rats with type 2 diabetes mellitus. Mol Cell Endocrinol 2025; 595:112406. [PMID: 39489213 DOI: 10.1016/j.mce.2024.112406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Glycemic variability (GV) markedly exacerbates cognitive impairment in elderly patients with type 2 diabetes mellitus (T2DM), in part through chronic inflammation. This study investigated the therapeutic efficacy of the NLRP3 inflammasome inhibitor MCC950 in mitigating GV-induced cognitive impairment in an aged rat model of T2DM. Aged Sprague-Dawley rats with induced T2DM were subjected to GV conditions, and the effects of MCC950 were evaluated through measurement of body weight, blood glucose, lipid profiles, insulin level, inflammatory markers, and cognitive function. Transcriptomic analysis was performed on the hippocampus and prefrontal cortex. Treatment with MCC950 significantly alleviated weight loss and hyperglycemia in the GV group compared with the control group. MCC950 also reduced the levels of cholesterol, triglycerides, and pro-inflammatory markers (interleukin-1β (IL-1β) and interleukin-18 (IL-18)). Most notably, MCC950 improved spatial learning and memory retention in the GV group. Immunohistochemical analysis indicated a reduction in inflammasome activation and an increase in the expression level of the neuronal marker NeuN in the hippocampus. Transcriptomic analysis revealed that MCC950 altered neuroactive ligand-receptor interaction pathways in the hippocampus and influenced receptor binding and cell adhesion processes in the prefrontal cortex. These findings validated the efficacy of NLRP3 inhibitor in mitigating GV-induced cognitive impairment in elderly rats with T2DM and provided the basis for subsequent clinical studies exploring the broader potential of NLRP3-targeted interventions in addressing diabetes-associated cognitive impairment.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- Cognitive Dysfunction/drug therapy
- Cognitive Dysfunction/etiology
- Cognitive Dysfunction/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Rats, Sprague-Dawley
- Male
- Indenes/pharmacology
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Blood Glucose/metabolism
- Hippocampus/metabolism
- Hippocampus/drug effects
- Hippocampus/pathology
- Inflammasomes/metabolism
- Furans/pharmacology
- Furans/therapeutic use
- Sulfones/pharmacology
- Sulfones/therapeutic use
- Aging
- Rats
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Heterocyclic Compounds, 4 or More Rings/therapeutic use
Collapse
Affiliation(s)
- Wei Yang
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Si-Cong Si
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jing Li
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yi-Xin Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Huan Zhao
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jia Liu
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
8
|
Raghavan CT. Advanced Glycation End Products in Neurodegenerative Diseases. J Mol Neurosci 2024; 74:114. [PMID: 39653979 DOI: 10.1007/s12031-024-02297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Advanced glycation end products (AGEs) have attracted interest as therapeutic targets for neurodegenerative diseases. AGEs facilitate the onset and progression of various neurogenerative disorders due to their ability to promote cross-linking and aggregation of proteins. Further, the interaction between AGEs and receptor for AGEs (RAGE) activates neuroinflammatory, oxidative stress and excitotoxicity processes that contribute to neuronal cell death. Various therapeutic efforts have targeted lowering the production of AGEs, inhibiting RAGE or inhibiting some of the processes of the AGE-RAGE axis as potential treatments for these disorders. Whereas effective treatments for many neurodegenerative disorders remain elusive, such efforts offer promise to slow the progression of diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD).
Collapse
Affiliation(s)
- Cibin T Raghavan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695 011, Kerala, India.
- Molecular Genetics Unit, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695 011, Kerala, India.
| |
Collapse
|
9
|
Li X, Wang W, Pan S, Cao X, Thomas ER, Xie M, Zhang C, Wu J. Exploring heat shock proteins as therapeutic targets for Parkinson's disease. Biochem Pharmacol 2024; 230:116633. [PMID: 39551273 DOI: 10.1016/j.bcp.2024.116633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Parkinson's disease (PD) is characterized by the accumulation of misfolded α-synuclein (α-syn). Promoting the degradation of misfolded proteins has been shown to be an effective approach to alleviate PD. This review highlights the roles of specific heat shock proteins (HSPs) in modulating α-syn aggregation and neuronal survival. HSP27 prevents glycosylation-induced α-syn aggregation, disrupts copper ion interactions, inhibits mitochondrial apoptosis, and prevents dopaminergic neuronal cell death. HSP70 alleviates dopaminergic neuronal damage by promoting mitophagy and preventing neuronal apoptosis. HSC70 plays a critical role in chaperone-mediated autophagy and facilitates lysosomal degradation. GRP78 mitigates abnormal protein aggregation. The HSP70-HSP40-HSP110 system is capable of degrading α-syn amyloid fibers. Inhibition of HSP90 expression protects neurons. Further research should prioritize developing regulators of HSPs as treatments for PD. While HSPs offer promise in PD management, their complex roles necessitate cautious therapeutic development to harness their potential. Understanding the specific roles of different HSPs will be essential to developing effective therapies for α-syn clearance.
Collapse
Affiliation(s)
- Xiang Li
- The Zigong Affiliated Hospital, Southwest Medical University, Zigong Mental Health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province 643020, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Wenjun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shi Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xueqin Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | | | - Mingyu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| | - Jianming Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
10
|
Belpomme D, Lacomme S, Poletti C, Bonesso L, Hinault-Boyer C, Barbier S, Irigaray P. Free Methylglyoxal as a Metabolic New Biomarker of Tumor Cell Proliferation in Cancers. Cancers (Basel) 2024; 16:3922. [PMID: 39682111 DOI: 10.3390/cancers16233922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND A fundamental property of cancer cells is their metabolic reprogramming, allowing them to increase glucose uptake and glycolysis. Using a rat colon adenocarcinoma model, we previously showed that blood levels of free methylglyoxal (MG), a side-product of glycolysis, remained normal in animals grafted with a non-growing tumor cell clone, while MG levels were significantly increased and positively correlated with tumor growth in animals grafted with a tumorigenic cell clone issued from the same tumor. METHODS We measured free MG in the blood of cancerous non-diabetic patients and compared the results to healthy subjects and non-cancerous diabetic patients. We also measured free MG in tumors and in the corresponding non-cancer tissues, and the peripheral blood. RESULTS We show that free MG levels in the peripheral blood of cancer patients are significantly increased in comparison with free MG levels in the peripheral blood of healthy controls (p < 0.0001), and similar to those in the peripheral blood of hyperglycemic diabetic patients (p = 0.965). In addition, we show that repeated free MG level measurement could be used for the therapeutic monitoring of cancer patients. Moreover, we confirmed that free MG is produced by tumor cells at significantly higher levels than cells from their corresponding tissues (p < 0.0001), and is subsequently released in the peripheral blood. CONCLUSIONS Free MG measured in the blood could be a new metabolic biomarker useful for the diagnostic, prognostic and follow-up of non-diabetic patients with cancers, such as bronchus carcinoma, pancreatic carcinoma and glioblastoma, for which there are presently no available useful biomarkers.
Collapse
Affiliation(s)
- Dominique Belpomme
- Department of Cancer Clinical Research, Paris V University Hospital, 75005 Paris, France
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium
| | - Stéphanie Lacomme
- Centre de Ressources Biologiques, BB-0033-00035, CHRU, 54500 Nancy, France
| | | | - Laurent Bonesso
- Clinical Chemistry Laboratory, Pasteur University Hospital, 06000 Nice, France
| | - Charlotte Hinault-Boyer
- Clinical Chemistry Laboratory, Pasteur University Hospital, 06000 Nice, France
- Université Côte d'Azur, INSERM U1065, C3M, 06000 Nice, France
| | | | - Philippe Irigaray
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium
- Association for Research on Treatment Against Cancer (ARTAC), 75015 Paris, France
| |
Collapse
|
11
|
Koike S, Tsurudome S, Okano S, Kishida A, Ogasawara Y. Dimethyl Fumarate Reduces Methylglyoxal-derived Carbonyl Stress Through Nrf2/GSH Activation in SH-SY5Y Cells. Neurochem Res 2024; 50:28. [PMID: 39576418 DOI: 10.1007/s11064-024-04255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/24/2024]
Abstract
Carbonyl stress refers to the excessive accumulation of advanced glycation end products (AGEs) in mammalian tissues. This phenomenon plays a significant role in the pathogenesis of various diseases, including diabetes, chronic renal failure, arteriosclerosis, and central nervous system (CNS) disorders. We have previously demonstrated that an increase in glutathione concentration, dependent on the nuclear factor erythroid 2-related factor 2 (Nrf2) system, provides a potent cytoprotective effect against Methylglyoxal (MGO)-induced carbonyl stress. Meanwhile, dimethyl fumarate (DMF), known for its Nrf2-activating effects, was recently approved as a treatment for multiple sclerosis (MS), a neurodegenerative disease. DMF is a first line therapy for relapsing-remitting MS and may also be effective for other neurodegenerative conditions. However, the detailed mechanisms by which DMF mitigates neurodegenerative pathologies remain unclear. This study investigates the impact of DMF on anticarbonyl activity and its underlying mechanism focusing on the accumulation of carbonyl protein in the cell. MGO, a glucose metabolite, was used to induce carbonylation in the neuronal cell line. MGO is a typical carbonyl compound that readily reacts with arginine and lysine residues to form AGE-modified proteins. Methylglyoxal-derived hydroimidazolone 1 (MG-H1) often forms uncharged, hydrophobic residues on the protein surface, which can affect protein distribution and lead to misfolding. Our findings indicate that DMF increases levels of glutathione (GSH), glutamate cysteine ligase modifier subunit (GCLM), and nuclear Nrf2 in SH-SY5Y cells. Importantly, DMF pretreatment significantly reduced the accumulation of MG-H1-modified proteins. Furthermore, this effect of DMF was diminished when Nrf2 expression was suppressed and when GCL, a rate-limiting enzyme in GSH synthesis, was inhibited. Thus, the increase in GSH levels, leading to the activation of the Nrf2 pathway, a key factor in DMF's ability to suppress the accumulation of MG-H1-modified proteins. This study is the first to demonstrate that DMF possesses strong anticarbonyl stress activity in neuronal cells. Therefore, future research may extend the application of DMF to other CNS diseases associated with carbonyl stress, such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Satori Tsurudome
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Saki Okano
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Atsushi Kishida
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| |
Collapse
|
12
|
Wang H, Boeren S, Bakker W, Rietjens IMCM, Saccenti E, Zheng L. An integrated proteomics and metabolomics analysis of methylglyoxal-induced neurotoxicity in a human neuroblastoma cell line. NPJ Sci Food 2024; 8:84. [PMID: 39448607 PMCID: PMC11502746 DOI: 10.1038/s41538-024-00328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
This study aimed to highlight the molecular and biochemical changes induced by methylglyoxal (MGO) exposure in SH-SY5Y human neuroblastoma cells, and to explore how these changes contribute to its neurotoxicity, utilizing an integrated proteomics and metabolomics approach. Using label-free quantitative nanoLC-MS/MS proteomics and targeted LC-TQ-MS/MS-based metabolomics, the results revealed that MGO exposure, particularly at cytotoxic levels, significantly altered the proteome and metabolome of SH-SY5Y cells. Analysis of proteomics data showed significant alterations in cellular functions including protein synthesis, cellular structural integrity, mitochondrial function, and oxidative stress responses. Analysis of metabolomics and integration of metabolomics and proteomics data highlighted significant changes in key metabolic pathways including arginine biosynthesis, glutathione metabolism, cysteine and methionine metabolism, and the tricarboxylic acid cycle. These results suggest that MGO exposure induced both toxic effects and adaptive responses in cells. MGO exposure led to increased endoplasmic reticulum stress, disruptions in cellular adhesion and extracellular matrix integrity, mitochondrial dysfunction, and amino acid metabolism disruption, contributing to cellular toxicity. Conversely, cells exhibited adaptive responses by upregulating protein synthesis, activating the Nrf2 pathway, and reprogramming metabolism to counteract dicarbonyl stress and maintain energy levels. Furthermore, a set of key proteins and metabolites associated with these changes were shown to exhibit a significant concentration-dependent decrease or increase in their expression levels with increasing MGO concentrations, suggesting their potential as biomarkers for MGO exposure. Taken together, these findings provide insight into the molecular mechanisms underlying MGO-induced neurotoxicity and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Haomiao Wang
- Division of Toxicology, Wageningen University & Research, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Wouter Bakker
- Division of Toxicology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University & Research, Wageningen, The Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Liang Zheng
- Division of Toxicology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Zheng L, Li X, Widjaja F, Liu C, Rietjens IMCM. Use of physiologically based kinetic modeling to predict neurotoxicity and genotoxicity of methylglyoxal in humans. NPJ Sci Food 2024; 8:79. [PMID: 39368970 PMCID: PMC11455947 DOI: 10.1038/s41538-024-00322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
This study aimed to evaluate human neurotoxicity and genotoxicity risks from dietary and endogenous methylglyoxal (MGO), utilizing physiologically based kinetic (PBK) modeling-facilitated reverse dosimetry as a new approach methodology (NAM) to extrapolate in vitro toxicity data to in vivo dose-response predictions. A human PBK model was defined based on a newly developed and evaluated mouse model enabling the translation of in vitro toxicity data for MGO from human stem cell-derived neurons and WM-266-4 melanoma cells into quantitative human in vivo toxicity data and subsequent risk assessment by the margin of exposure (MOE) approach. The results show that the MOEs resulting from daily dietary intake did not raise a concern for endpoints for neurotoxicity including mitochondrial function, cytotoxicity, and apoptosis, while those for DNA adduct formation could not exclude a concern over genotoxicity. Endogenous MGO formation, especially under diabetic conditions, resulted in MOEs that raised concern not only for genotoxicity but also for some of the neurotoxicity endpoints evaluated. Thus, the results also point to the importance of taking the endogenous levels into account in the risk assessment of MGO.
Collapse
Affiliation(s)
- Liang Zheng
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Xiyu Li
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Frances Widjaja
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Chen Liu
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
14
|
Prosad Banik S, Kumar P, Bagchi D, Paul S, Goel A, Bagchi M, Chakraborty S. Fenfuro®-mediated arrest in the formation of protein-methyl glyoxal adducts: a new dimension in the anti-hyperglycemic potential of a novel fenugreek seed extract. Toxicol Mech Methods 2024; 34:877-885. [PMID: 38832450 DOI: 10.1080/15376516.2024.2358520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024]
Abstract
The fenugreek plant (Trigonella foenum-graecum) is traditionally known for its anti-diabetic properties owing to its high content of furostanolic saponins, which can synergistically treat many human ailments. Non-enzymatic protein glycation leading to the formation of Advanced Glycation End products (AGE) is a common pathophysiology observed in diabetic or prediabetic individuals, which can initiate the development of neurodegenerative disorders. A potent cellular source of glycation is Methyl Glyoxal, a highly reactive dicarbonyl formed as a glycolytic byproduct. We demonstrate the in vitro glycation arresting potential of Fenfuro®, a novel patented formulation of Fenugreek seed extract with clinically proven anti-diabetic properties, in Methyl-Glyoxal (MGO) adducts of three abundant amyloidogenic cellular proteins, alpha-synuclein, Serum albumin, and Lysozyme. A 0.25% w/v Fenfuro® was able to effectively arrest glycation by more than 50% in all three proteins, as evidenced by AGE fluorescence. Glycation-induced amyloid formation was also arrested by more than 36%, 14% and 15% for BSA, Alpha-synuclein and Lysozyme respectively. An increase in MW by attachment of MGO was also partially prevented by Fenfuro® as confirmed by SDS-PAGE analysis. Glycation resulted in enhanced aggregation of the three proteins as revealed by Native PAGE and Dynamic Light Scattering. However, in the presence of Fenfuro®, aggregation was arrested substantially, and the normal size distribution was restored. The results cumulatively indicated the lesser explored potential of direct inhibition of glycation by fenugreek seed in addition to its proven role in alleviating insulin resistance. Fenfuro® boosts its therapeutic potential as an effective phytotherapeutic to arrest Type 2 diabetes.
Collapse
Affiliation(s)
| | - Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, India
| | - Debasis Bagchi
- Dept of Biology, College of Arts and Sciences, and Dept of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Souradip Paul
- Protein Folding & Dynamics Group, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | - Apurva Goel
- Regulatory Dept, Chemical Resources (CHERESO), Panchkula, India
| | | | - Sanjoy Chakraborty
- Dept of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| |
Collapse
|
15
|
Haase S, Kuhbandner K, Mühleck F, Gisevius B, Freudenstein D, Hirschberg S, Lee DH, Kuerten S, Gold R, Haghikia A, Linker RA. Dietary galactose exacerbates autoimmune neuroinflammation via advanced glycation end product-mediated neurodegeneration. Front Immunol 2024; 15:1367819. [PMID: 39185426 PMCID: PMC11341352 DOI: 10.3389/fimmu.2024.1367819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Background Recent studies provide increasing evidence for a relevant role of lifestyle factors including diet in the pathogenesis of neuroinflammatory diseases such as multiple sclerosis (MS). While the intake of saturated fatty acids and elevated salt worsen the disease outcome in the experimental model of MS by enhanced inflammatory but diminished regulatory immunological processes, sugars as additional prominent components in our daily diet have only scarcely been investigated so far. Apart from glucose and fructose, galactose is a common sugar in the so-called Western diet. Methods We investigated the effect of a galactose-rich diet during neuroinflammation using myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (MOG-EAE) as a model disease. We investigated peripheral immune reactions and inflammatory infiltration by ex vivo flow cytometry analysis and performed histological staining of the spinal cord to analyze effects of galactose in the central nervous system (CNS). We analyzed the formation of advanced glycation end products (AGEs) by fluorescence measurements and investigated galactose as well as galactose-induced AGEs in oligodendroglial cell cultures and induced pluripotent stem cell-derived primary neurons (iPNs). Results Young mice fed a galactose-rich diet displayed exacerbated disease symptoms in the acute phase of EAE as well as impaired recovery in the chronic phase. Galactose did not affect peripheral immune reactions or inflammatory infiltration into the CNS, but resulted in increased demyelination, oligodendrocyte loss and enhanced neuro-axonal damage. Ex vivo analysis revealed an increased apoptosis of oligodendrocytes isolated from mice adapted on a galactose-rich diet. In vitro, treatment of cells with galactose neither impaired the maturation nor survival of oligodendroglial cells or iPNs. However, incubation of proteins with galactose in vitro led to the formation AGEs, that were increased in the spinal cord of EAE-diseased mice fed a galactose-rich diet. In oligodendroglial and neuronal cultures, treatment with galactose-induced AGEs promoted enhanced cell death compared to control treatment. Conclusion These results imply that galactose-induced oligodendrocyte and myelin damage during neuroinflammation may be mediated by AGEs, thereby identifying galactose and its reactive products as potential dietary risk factors for neuroinflammatory diseases such as MS.
Collapse
MESH Headings
- Animals
- Galactose/administration & dosage
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Mice
- Glycation End Products, Advanced/metabolism
- Glycation End Products, Advanced/administration & dosage
- Neuroinflammatory Diseases/immunology
- Neuroinflammatory Diseases/pathology
- Neuroinflammatory Diseases/metabolism
- Neuroinflammatory Diseases/etiology
- Mice, Inbred C57BL
- Female
- Oligodendroglia/metabolism
- Oligodendroglia/pathology
- Oligodendroglia/immunology
- Disease Models, Animal
Collapse
Affiliation(s)
- Stefanie Haase
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Kristina Kuhbandner
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Florian Mühleck
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Barbara Gisevius
- Department of Neurology, St. Josef-Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | - David Freudenstein
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Sarah Hirschberg
- Department of Neurology, St. Josef-Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | - De-Hyung Lee
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Aiden Haghikia
- Department of Neurology, University Medicine Magdeburg, Magdeburg, Germany
| | - Ralf A. Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Mariño L, Belén Uceda A, Leal F, Adrover M. Insight into the Effect of Methylglyoxal on the Conformation, Function, and Aggregation Propensity of α-Synuclein. Chemistry 2024; 30:e202400890. [PMID: 38687053 DOI: 10.1002/chem.202400890] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
It is well-known that people suffering from hyperglycemia have a higher propensity to develop Parkinson's disease (PD). One of the most plausible mechanisms linking these two pathologies is the glycation of neuronal proteins and the pathological consequences of it. α-Synuclein, a key component in PD, can be glycated at its fifteen lysine. In fact, the end products of this process have been detected on aggregated α-synuclein isolated from in vivo. However, the consequences of glycation are not entirely clear, which are of crucial importance to understand the mechanism underlying the connection between diabetes and PD. To better clarify this, we have here examined how methylglyoxal (the most important carbonyl compound found in the cytoplasm) affects the conformation and aggregation propensity of α-synuclein, as well as its ability to cluster and fuse synaptic-like vesicles. The obtained data prove that methylglyoxal induces the Lys-Lys crosslinking through the formation of MOLD. However, this does not have a remarkable effect on the averaged conformational ensemble of α-synuclein, although it completely depletes its native propensity to form soluble oligomers and insoluble amyloid fibrils. Moreover, methylglyoxal has a disrupting effect on the ability of α-synuclein to bind, cluster and fusion synaptic-like vesicles.
Collapse
Affiliation(s)
- Laura Mariño
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Ana Belén Uceda
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Francisco Leal
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| |
Collapse
|
17
|
Coccini T, Caloni F, Russo LA, Villani L, Lonati D, De Simone U. 3D human stem-cell-derived neuronal spheroids for in vitro neurotoxicity testing of methylglyoxal, highly reactive glycolysis byproduct and potent glycating agent. Curr Res Toxicol 2024; 7:100176. [PMID: 38975063 PMCID: PMC11225170 DOI: 10.1016/j.crtox.2024.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/27/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Human-derived three-dimensional (3D) in vitro models are advanced human cell-based model for their complexity, relevance and application in toxicity testing. Intracellular accumulation of methylglyoxal (MGO), the most potent glycating agent in humans, mainly generated as a by-product of glycolysis, is associated with age-related diseases including neurodegenerative disorders. In our study, 3D human stem-cell-derived neuronal spheroids were set up and applied to evaluate cytotoxic effects after short-term (5 to 48 h) treatments with different MGO concentrations, including low levels, taking into consideration several biochemical endpoints. In MGO-treated neurospheroids, reduced cell growth proliferation and decreased cell viability occurred early from 5-10 μM, and their compactness diminished starting from 100 μM, apparently without affecting spheroid size. MGO markedly caused loss of the neuronal markers MAP-2 and NSE from 10-50 μM, decreased the detoxifying Glo1 enzyme from 50 μM, and activated NF-kB by nuclear translocation. The cytochemical evaluation of the 3D sections showed the presence of necrotic cells with loss of nuclei. Apoptotic cells were observed from 50 μM MGO after 48 h, and from 100 μM after 24 h. MGO (50-10 µM) also induced modifications of the cell-cell and cell-ECM interactions. These effects worsened at the higher concentrations (300-500 µM). In 3D neuronal spheroids, MGO tested concentrations comparable to human samples levels measured in MGO-associated diseases, altered neuronal key signalling endpoints relevant for the pathogenesis of neurodegenerative diseases and aging. The findings also demonstrated that the use of 3D neuronal spheroids of human origin can be useful in a strategy in vitro for testing MGO and other dicarbonyls evaluation.
Collapse
Affiliation(s)
- Teresa Coccini
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Pavia, Italy
| | - Francesca Caloni
- Dipartimento di Scienze e Politiche Ambientali (ESP), Università degli Studi di Milano, Milan, Italy
| | | | - Laura Villani
- Istituti Clinici Scientifici Maugeri IRCCS, Pathology Unit, Pavia, Italy
| | - Davide Lonati
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Pavia, Italy
| | - Uliana De Simone
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Pavia, Italy
| |
Collapse
|
18
|
Khalid M, Adem A. The dynamic roles of advanced glycation end products. VITAMINS AND HORMONES 2024; 125:1-29. [PMID: 38997161 DOI: 10.1016/bs.vh.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are a heterogeneous group of potentially harmful molecules that can form as a result of a non-enzymatic reaction between reducing sugars and proteins, lipids, or nucleic acids. The total body pool of AGEs reflects endogenously produced AGEs as well as exogeneous AGEs that come from sources such as diet and the environment. Engagement of AGEs with their cellular receptor, the receptor for advanced glycation end products (RAGE), which is expressed on the surface of various cell types, converts a brief pulse of cellular activation to sustained cellular dysfunction and tissue destruction. The AGEs/RAGE interaction triggers a cascade of intracellular signaling pathways such as mitogen-activated protein kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinases, transforming growth factor beta, c-Jun N-terminal kinases (JNK), and nuclear factor kappa B, which leads to the production of pro-inflammatory cytokines, chemokines, adhesion molecules, and oxidative stress. All these events contribute to the progression of several chronic diseases. This chapter will provide a comprehensive understanding of the dynamic roles of AGEs in health and disease which is crucial to develop interventions that prevent and mitigate the deleterious effects of AGEs accumulation.
Collapse
Affiliation(s)
- Mariyam Khalid
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
19
|
Demirer B, Samur G. Intake of dietary advanced glycation end products may be associated with depression and sleep quality in young adults. J Affect Disord 2024; 352:26-31. [PMID: 38360358 DOI: 10.1016/j.jad.2024.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND This study examined the relationship between dietary intake of advanced glycation end products (dAGEs) and depression and sleep quality in young adults. METHODS This study, which included 420 university students (F = 80.2 %; M = 19.8 %), is observational and cross-sectional. Dietary AGEs intakes of individuals were taken with a 24-h food consumption record system. Measuring the depression status of the participants was evaluated with the Beck Depression Inventory (BDI), and the assessment of their sleep quality was evaluated with the Pittsburg Sleep Quality Index (PSQI). Individuals' dAGEs intakes were divided into three equal groups (low, medium, and high). The energy was adjusted in all analyzes of dAGEs intake. Study data were analyzed with the SPSS (27.0 version) and GraphPad program (8.0 version). RESULTS The BDI and PSQI total score averages of individuals in the high dAGEs intake group were higher than the other groups, and this difference was statistically significant (p < 0.001). There is no significant difference between individuals' dAGEs intakes and energy and macronutrient intakes. Students' dAGEs intake was affected by BDI (β = 0.722, 95 % Cl = 0.639;0.811) and PSQI (β = 0.286, 95 % Cl = 0.179;0.431) scores (p < 0.001). This effect persisted even when various confounding factors were included (age, gender, smoking, body mass index, chronic disease) (p < 0.001). LIMITATIONS These data are cross-sectional, which limits the generalizability of results and establishing cause-effect relationships. CONCLUSION There may be an association between dAGEs intake and the development of depression and sleep quality in young adults. Clinical intervention studies using objective measurement methods should be conducted on this issue in the future.
Collapse
Affiliation(s)
- Büşra Demirer
- Nutrition and Dietetics, Karabuk University, Karabuk, Turkey.
| | - Gülhan Samur
- Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
20
|
Knoblich C, Dunckelmann K, Krüger A, Küper T, Blatt T, Weise JM. N-acetyl-L-hydroxyproline - A potent skin anti-ageing active preventing advanced glycation end-product formation in vitro and ex vivo. Int J Cosmet Sci 2024; 46:297-306. [PMID: 38013225 DOI: 10.1111/ics.12930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/04/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE Advanced glycation end-products (AGEs) represent a large group of compounds generated by a non-enzymatic reaction between reducing sugars and amino groups. The formation and accumulation of AGEs in the skin lead to protein crosslinking, dermal stiffening and yellowing, which ultimately contribute to cutaneous ageing. Amino acids have been described to exhibit anti-glycation effects. The objective of this study was to understand the inhibitory role of the amino acid derivative N-acetyl-L-hydroxyproline (NAHP) as an anti-glycation active for human skin. METHODS A cell-free assay investigating the inhibition of glycation of serum albumin by NAHP was used to determine the capability of NAHP to decrease AGE formation. Also, by assessing the amount of the AGE N-(carboxymethyl)lysine (CML) the anti-glycation abilities of NAHP were investigated utilizing dot blot analysis. The improvement of cell-matrix interaction by NAHP was determined in vitro using a glycated fibroblast-populated collagen lattice (FPCL) dermis model. In skin biopsies, AGE autofluorescence was determined after treatment with NAHP and/or glucose ex vivo. RESULTS NAHP significantly and dose-dependently inhibited levels of AGEs, which were induced by the glycation of a protein solution. This decrease could be visualized by showing that the brownish appearance as well as the AGE-specific fluorescence of glucose-treated samples were reduced after the application of increasing amounts of NAHP. Also, CML formation was dose-dependently inhibited by NAHP. In FPCLs, the contractile capacity of fibroblasts was significantly disturbed after glycation. This could be prevented by the addition of NAHP. Compared to glyoxal-treated samples, the co-application of NAHP significantly decreased the diameter as well as the weight of glycated FPCLs. Ex vivo application of glucose to skin explants showed a higher AGE fluorescence signal compared to control explants. Co-treatment with NAHP and glucose decreased the level of AGE fluorescence in comparison to glucose-treated explants. CONCLUSION These data provide clear evidence that under glycation stress conditions treatment with NAHP inhibited AGE formation in vitro and ex vivo and prevented the loss of cellular contractile forces in a glycated dermis model. Thus, NAHP obviously provides a beneficial treatment option to counteract AGE-related changes in human skin such as dermal stiffening and yellowish skin appearance.
Collapse
Affiliation(s)
| | | | - Andrea Krüger
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Thomas Küper
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Thomas Blatt
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Julia M Weise
- Research and Development, Beiersdorf AG, Hamburg, Germany
| |
Collapse
|
21
|
Bosbach C, Gatzemeier LM, Bloch von Blottnitz KI, König A, Diederichsen U, Steinem C, Outeiro TF. Chemical synthesis of site-selective advanced glycation end products in α-synuclein and its fragments. Org Biomol Chem 2024; 22:2670-2676. [PMID: 38483440 DOI: 10.1039/d4ob00225c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Advanced glycation end products (AGEs) arise from the Maillard reaction between dicarbonyls and proteins, nucleic acids, or specific lipids. Notably, AGEs are linked to aging and implicated in various disorders, spanning from cancer to neurodegenerative diseases. While dicarbonyls like methylglyoxal preferentially target arginine residues, lysine-derived AGEs, such as N(6)-(1-carboxymethyl)lysine (CML) and N(6)-(1-carboxyethyl)lysine (CEL), are also abundant. Predicting protein glycation in vivo proves challenging due to the intricate nature of glycation reactions. In vitro, glycation is difficult to control, especially in proteins that harbor multiple glycation-prone amino acids. α-Synuclein (aSyn), pivotal in Parkinson's disease and synucleinopathies, has 15 lysine residues and is known to become glycated at multiple lysine sites. To understand the influence of glycation in specific regions of aSyn on its behavior, a strategy for site-specific glycated protein production is imperative. To fulfill this demand, we devised a synthetic route integrating solid-phase peptide synthesis, orthogonal protection of amino acid side-chain functionalities, and reductive amination strategies. This methodology yielded two disease-related N-terminal peptide fragments, each featuring five and six CML and CEL modifications, alongside a full-length aSyn protein containing a site-selective E46CEL modification. Our synthetic approach facilitates the broad introduction of glycation motifs at specific sites, providing a foundation for generating glycated forms of synucleinopathy-related and other disease-relevant proteins.
Collapse
Affiliation(s)
- Clara Bosbach
- Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany.
| | - Luisa Maria Gatzemeier
- Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany.
| | - Katja Ilme Bloch von Blottnitz
- Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany.
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| |
Collapse
|
22
|
Carrión-Barberà I, Triginer L, Tío L, Pérez-García C, Ribes A, Abad V, Pros A, Monfort J, Salman-Monte TC. Serum Advanced Glycation End Products and Their Soluble Receptor as New Biomarkers in Systemic Lupus Erythematosus. Biomedicines 2024; 12:610. [PMID: 38540223 PMCID: PMC10968350 DOI: 10.3390/biomedicines12030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 11/11/2024] Open
Abstract
It has been postulated that advanced glycation end products (AGEs) and their soluble receptor (sRAGE) may play a relevant role as inducers in the chronic inflammatory pathway in various conditions, among them, in immune-mediated diseases such as systemic lupus erythematosus (SLE). However, previous studies show conflicting results about their association with SLE characteristics and their usefulness as disease biomarkers. We aimed to study the association of specific serum AGEs (pentosidine, Nξ-(carboxymethyl)lysine (CML), Nξ-(carboxyethyl)lysine (CEL)), sRAGE levels and AGEs (specific serum AGEs and skin AGEs) to sRAGE ratios with various disease parameters, in order to clarify their potential as new biomarkers in SLE and to study their relationship with cardiovascular disease (CVD). To this aim, serum pentosidine, CML, CEL and sRAGE were measured via ELISA, and skin AGEs levels were measured by skin autofluorescence. Correlations of pentosidine levels with demographic and clinical data, indexes of activity, accrual damage and patient-reported outcomes were analyzed through multiple linear regression models, while correlations of the rest of the AGEs, sRAGE and AGE to sRAGE ratios (non-normal) were analyzed using both an OLS regression model and a GML. All of the analyses were adjusted for confounders. A total of 119 SLE patients were recruited. Serum AGEs and sRAGEs were significantly associated with SLE activity indexes and/or demographic or disease characteristics: pentosidine with pulmonary manifestations; CML with anti-dsDNA antibodies, IL-6, disease duration and non-Caucasian ethnicities; CEL with anti-dsDNA antibodies, IL-6 and accumulated number of manifestations; and sRAGE with male gender, photosensitivity and being on specific immunosuppressants. These results suggest that the AGE-sRAGE axis may serve as a novel biomarker for managing and prognosticating this disease. Its correlation with certain antibodies, demographics and disease presentations may indicate a distinct clinical phenotype associated with varying levels of AGEs and/or sRAGE. The significance of specific AGE/sRAGE ratios, introduced in this study for the first time, warrants additional investigation in forthcoming research. Our study did not confirm the link between serum AGEs and CVD, which merits further exploration through studies designed for this specific purpose.
Collapse
Affiliation(s)
- Irene Carrión-Barberà
- Rheumatology Department, Hospital del Mar, 08003 Barcelona, Spain; (I.C.-B.)
- Medicine Department, Medicine Faculty, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Clinical Expertise Unit (UEC) in Systemic Autoimmune Diseases and Vasculitis, 08003 Barcelona, Spain
| | - Laura Triginer
- Hospital del Mar Research Institute, 08003 Barcelona, Spain
| | - Laura Tío
- Hospital del Mar Research Institute, 08003 Barcelona, Spain
| | - Carolina Pérez-García
- Rheumatology Department, Hospital del Mar, 08003 Barcelona, Spain; (I.C.-B.)
- Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Clinical Expertise Unit (UEC) in Systemic Autoimmune Diseases and Vasculitis, 08003 Barcelona, Spain
| | - Anna Ribes
- Hospital del Mar Research Institute, 08003 Barcelona, Spain
| | - Victoria Abad
- Rheumatology Department, Hospital del Mar, 08003 Barcelona, Spain; (I.C.-B.)
- Clinical Expertise Unit (UEC) in Systemic Autoimmune Diseases and Vasculitis, 08003 Barcelona, Spain
| | - Ana Pros
- Rheumatology Department, Hospital del Mar, 08003 Barcelona, Spain; (I.C.-B.)
- Clinical Expertise Unit (UEC) in Systemic Autoimmune Diseases and Vasculitis, 08003 Barcelona, Spain
| | - Jordi Monfort
- Rheumatology Department, Hospital del Mar, 08003 Barcelona, Spain; (I.C.-B.)
- Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Clinical Expertise Unit (UEC) in Systemic Autoimmune Diseases and Vasculitis, 08003 Barcelona, Spain
| | - Tarek Carlos Salman-Monte
- Rheumatology Department, Hospital del Mar, 08003 Barcelona, Spain; (I.C.-B.)
- Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Clinical Expertise Unit (UEC) in Systemic Autoimmune Diseases and Vasculitis, 08003 Barcelona, Spain
| |
Collapse
|
23
|
Nunes MJ, Carvalho AN, Rosa AI, Videira PA, Gama MJ, Rodrigues E, Castro-Caldas M. Altered expression of Sialyl Lewis X in experimental models of Parkinson's disease. J Mol Med (Berl) 2024; 102:365-377. [PMID: 38197965 PMCID: PMC10879467 DOI: 10.1007/s00109-023-02415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
The mechanisms underlying neurodegeneration in Parkinson's disease (PD) are still not fully understood. Glycosylation is an important post-translational modification that affects protein function, cell-cell contacts and inflammation and can be modified in pathologic conditions. Although the involvement of aberrant glycosylation has been proposed for PD, the knowledge of the diversity of glycans and their role in PD is still minimal. Sialyl Lewis X (sLeX) is a sialylated and fucosylated tetrasaccharide with essential roles in cell-to-cell recognition processes. Pathological conditions and pro-inflammatory mediators can up-regulate sLeX expression on cell surfaces, which has important consequences in intracellular signalling and immune function. Here, we investigated the expression of this glycan using in vivo and in vitro models of PD. We show the activation of deleterious glycation-related pathways in mouse striatum upon treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin-based model of PD. Importantly, our results show that MPTP triggers the presentation of more proteins decorated with sLeX in mouse cortex and striatum in a time-dependent manner, as well as increased mRNA expression of its rate-limiting enzyme fucosyltransferase 7. sLeX is expressed in neurons, including dopaminergic neurons, and microglia. Although the underlying mechanism that drives increased sLeX epitopes, the nature of the protein scaffolds and their functional importance in PD remain unknown, our data suggest for the first time that sLeX in the brain may have a role in neuronal signalling and immunomodulation in pathological conditions. KEY MESSAGES: MPTP triggers the presentation of proteins decorated with sLeX in mouse brain. MPTP triggers the expression of sLeX rate-limiting enzyme FUT 7 in striatum. sLeX is expressed in neurons, including dopaminergic neurons, and microglia. sLeX in the brain may have a role in neuronal signalling and immunomodulation.
Collapse
Affiliation(s)
- Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Alexandra I Rosa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Paula A Videira
- Department of Life Sciences, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Maria João Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Margarida Castro-Caldas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
- Department of Life Sciences, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
24
|
Bronowicka-Szydełko A, Gostomska-Pampuch K, Kuzan A, Pietkiewicz J, Krzystek-Korpacka M, Gamian A. Effect of advanced glycation end-products in a wide range of medical problems including COVID-19. Adv Med Sci 2024; 69:36-50. [PMID: 38335908 DOI: 10.1016/j.advms.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Glycation is a physiological process that determines the aging of the organism, while in states of metabolic disorders it is significantly intensified. High concentrations of compounds such as reducing sugars or reactive aldehydes derived from lipid oxidation, occurring for example in diabetes, atherosclerosis, dyslipidemia, obesity or metabolic syndrome, lead to increased glycation of proteins, lipids and nucleic acids. The level of advanced glycation end-products (AGEs) in the body depends on rapidity of their production and the rate of their removal by the urinary system. AGEs, accumulated in the extracellular matrix of the blood vessels and other organs, cause irreversible changes in the biochemical and biomechanical properties of tissues. As a consequence, micro- and macroangiopathies appear in the system, and may contribute to the organ failure, like kidneys and heart. Elevated levels of AGEs also increase the risk of Alzheimer's disease and various cancers. In this paper, we propose a new classification due to modified amino acid residues: arginyl-AGEs, monolysyl-AGEs and lysyl-arginyl-AGEs and dilysyl-AGEs. Furthermore, we describe in detail the effect of AGEs on the pathogenesis of metabolic and old age diseases, such as diabetic complications, atherosclerosis and neurodegenerative diseases. We summarize the currently available data on the diagnostic value of AGEs and present the AGEs as a therapeutic goal in a wide range of medical problems, including SARS-CoV-2 infection and so-called long COVID.
Collapse
Affiliation(s)
| | | | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Jadwiga Pietkiewicz
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
25
|
Rani N, Sahu M, Ambasta RK, Kumar P. Triaging between post-translational modification of cell cycle regulators and their therapeutics in neurodegenerative diseases. Ageing Res Rev 2024; 94:102174. [PMID: 38135008 DOI: 10.1016/j.arr.2023.102174] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, present challenges in healthcare because of their complicated etiologies and absence of healing remedies. Lately, the emerging role of post-translational modifications (PTMs), in the context of cell cycle regulators, has garnered big interest as a potential avenue for therapeutic intervention. The review explores the problematic panorama of PTMs on cell cycle regulators and their implications in neurodegenerative diseases. We delve into the dynamic phosphorylation, acetylation, ubiquitination, SUMOylation, Glycation, and Neddylation that modulate the key cell cycle regulators, consisting of cyclins, cyclin-dependent kinases (CDKs), and their inhibitors. The dysregulation of these PTMs is related to aberrant cell cycle in neurons, which is one of the factors involved in neurodegenerative pathologies. Moreover, the effect of exogenous activation of CDKs and CDK inhibitors through PTMs on the signaling cascade was studied in postmitotic conditions of NDDs. Furthermore, the therapeutic implications of CDK inhibitors and associated alteration in PTMs were discussed. Lastly, we explored the putative mechanism of PTMs to restore normal neuronal function that might reverse NDDs.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042.
| |
Collapse
|
26
|
Almeida JKAD, Brech GC, Luna NMS, Iborra RT, Soares-Junior JM, Baracat EC, Greve JMD, Alonso AC, Machado-Lima A. Advanced glycation end products consumption and the decline of functional capacity in patients with Parkinson's disease: Cross-sectional study. Clinics (Sao Paulo) 2024; 79:100320. [PMID: 38301537 PMCID: PMC10844933 DOI: 10.1016/j.clinsp.2023.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024] Open
Abstract
INTRODUCTION Advanced Glycation End-Products (AGEs) are a diverse group of highly reactive molecules that play a vital role in the development of neurodegenerative disorders, such as Parkinson's Disease (PD), leading to a decline in functional and cognitive capacity. The objective of this study was to assess the intake and quantification of AGEs in individuals with PD and to correlate them with their functional and cognitive abilities. METHODS This was a cross-sectional study involving 20 PD patients and 20 non-PD individuals as the Control group (C). The autofluorescence reader was used to evaluate skin AGEs, while food recall was used to quantify AGEs consumed for three different days. The Montreal Cognitive Assessment, Short Physical Performance Battery, and handgrip tests were used. PD patients demonstrated greater impairment in functional capacity compared to the control group. RESULTS Dominant Handgrip (p = 0.02) and motor performance, in the sit and stand test (p = 0.01) and Short Physical Performance Battery (SPPB) (p = 0.01) were inferior in PD patients than the control group. Although PD patients tended to consume less AGEs than the control group, AGE intake was negatively correlated with handgrip strength in individuals with PD (r = -0.59; p < 0.05). CONCLUSION PD patients had lower strength and functional capacity, suggesting that the effects of AGEs might be exacerbated during chronic diseases like Parkinson's.
Collapse
Affiliation(s)
| | - Guilherme Carlos Brech
- Graduate Program in Aging Sciences, Universidade São Judas Tadeu (USJT), São Paulo, SP, Brazil; Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.
| | - Natália Mariana Silva Luna
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Rodrigo Tallada Iborra
- Graduate Program in Aging Sciences, Universidade São Judas Tadeu (USJT), São Paulo, SP, Brazil
| | - Jose Maria Soares-Junior
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Edmund Chada Baracat
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Júlia Maria D'Andrea Greve
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Angélica Castilho Alonso
- Graduate Program in Aging Sciences, Universidade São Judas Tadeu (USJT), São Paulo, SP, Brazil; Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Adriana Machado-Lima
- Graduate Program in Aging Sciences, Universidade São Judas Tadeu (USJT), São Paulo, SP, Brazil; Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| |
Collapse
|
27
|
Kuzan A, Kozak-Sykała A, Fiedorowicz A, Kałas W, Strządała L, Gamian A. Advanced Glycation End-Products in Blood Serum-Novel Ischemic Stroke Risk Factors? Implication for Diabetic Patients. J Clin Med 2024; 13:443. [PMID: 38256577 PMCID: PMC10816329 DOI: 10.3390/jcm13020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
New predictors of ischemic incidents are constantly sought since they raise the awareness of patients and their doctors of stroke occurrence. The goal was to verify whether Advanced Glycation End Products (AGEs), in particular AGE10, could be one of them. The AGE10 measurement was conducted using a non-commercial ELISA assay in the blood serum of neurological patients without cerebrovascular event (n = 24), those with transient brain attack (TIA) (n = 17), and severe ischemic stroke (n = 35). Twice as many of the people with TIA or severe stroke presented high AGE10 serum concentrations compared to the patients with other neurological conditions (χ2 = 8.2, p = 0.004; χ2 = 8.0, p = 0.005, respectively). The risk of ischemic incident was significantly risen in people with higher levels of AGE10 (OR = 6.5, CI95%: 1.7-24.8; OR = 4.7, CI95%: 1.5-14.5 for TIA and stroke subjects, respectively). We observed a positive correlation (r = 0.40) between high AGE10 levels and diabetes. Moreover, all the diabetic patients that had a high AGE10 content experienced either a severe ischemic stroke or TIA. The patients with high levels of AGE10 exhibited higher grades of disability assessed by the NIHSS scale (r = 0.35). AGE10 can be considered a new biomarker of ischemic stroke risk. Patients with diabetes presenting high AGE10 levels are particularly prone to the occurrence of cerebrovascular incidents.
Collapse
Affiliation(s)
- Aleksandra Kuzan
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Kozak-Sykała
- Neurology and Stroke Department, Independent Public Healthcare Centre, Jankowski Regional Hospital in Przeworsk, Szpitalna 16, 37-200 Przeworsk, Poland;
| | - Anna Fiedorowicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland (W.K.); (L.S.); (A.G.)
| | - Wojciech Kałas
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland (W.K.); (L.S.); (A.G.)
| | - Leon Strządała
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland (W.K.); (L.S.); (A.G.)
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland (W.K.); (L.S.); (A.G.)
| |
Collapse
|
28
|
Li R, Zheng F, Xu P, Lv L, Mu Y, Zhuang X, Chen S. Correlation of mild cognitive impairment with the thickness of retinal nerve fiber layer and serum indicators in type 2 diabetic patients. Front Endocrinol (Lausanne) 2024; 14:1299206. [PMID: 38260156 PMCID: PMC10801021 DOI: 10.3389/fendo.2023.1299206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Background Cognitive Impairment arising from type 2 diabetes mellitus (T2DM) has garnered significant attention in recent times. However, there are few studies on the identification and diagnosis of markers of cognitive impairment. Notably, alterations in the Retinal Nerve Fiber Layer's (RNFL) thickness can potentially serve as an indicative measure of central nervous system changes. Further investigations have indicated that the decline in cognitive function within T2DM patients is intricately linked to persistent systemic inflammation and the accumulation of advanced glycosylation end products. Comprehensive studies are warranted to unveil these complex associations. Objective This study aims to explore the potential of utilizing the RNFL thickness and serological concentrations of IL-18, irisin, CML, and RAGE as diagnostic indicators for Mild Cognitive Impairment (MCI) among individuals with T2DM. Methods The thickness of RNFL were determined in all patients and controls using optical coherence tomography (OCT). The serum levels of IL-18, irisin, CML and RAGE were detected by ELISA kit. In addition, Cognitive assessment was performed by the Mini-Mental State Examination (MMSE) and the Montreal Cognitive assessment (MoCA). Results The average RNFL thickness in the right eye were decreased in T2DM and T2DM combined with MCI (T2DM-MCI) patients and were positively correlated with MoCA and MMSE scores. The serum levels of IL-18, CML and RAGE in T2DM and T2DM-MCI increased significantly (p<0.05) and were negative correlated with MoCA and MMSE scores. The level of irisin in T2DM and T2DM-MCI decreased significantly (p<0.05) and were positively correlated with MoCA and MMSE scores. The area under the ROC curve of T2DM-MCI predicted by the average RNFL thickness in the right eye, CML and RAGE were 0.853, 0.874 and 0.815. The diagnostic efficacy of the combination of average RNFL thickness in the right eye, CML, and RAGE for the diagnosis of T2DM-MCI was 0.969. Conclusion The average RNFL thickness in the right eye, CML and RAGE have possible diagnostic value in T2DM-MCI patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianghua Zhuang
- Department of Endocrinology and Metabolism, Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, The Second Hospital of Shandong University, Ji’nan, Shandong, China
| | - Shihong Chen
- Department of Endocrinology and Metabolism, Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, The Second Hospital of Shandong University, Ji’nan, Shandong, China
| |
Collapse
|
29
|
Portha B, Liu J. Les AGE (produits terminaux de glycation) : attention danger. Origine, effets toxiques et stratégies thérapeutiques. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2023; 58:376-388. [DOI: 10.1016/j.cnd.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Coccini T, Schicchi A, Locatelli CA, Caloni F, Negri S, Grignani E, De Simone U. Methylglyoxal-induced neurotoxic effects in primary neuronal-like cells transdifferentiated from human mesenchymal stem cells: Impact of low concentrations. J Appl Toxicol 2023; 43:1819-1839. [PMID: 37431083 DOI: 10.1002/jat.4515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
In the last decades, advanced glycation end-products (AGEs) have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes including various neurological disorders and cognitive decline age related. Methylglyoxal (MG) is one of the reactive dicarbonyl precursors of AGEs, mainly generated as a by-product of glycolysis, whose accumulation induces neurotoxicity. In our study, MG cytotoxicity was evaluated employing a human stem cell-derived model, namely, neuron-like cells (hNLCs) transdifferentiated from mesenchymal stem/stromal cells, which served as a source of human based species-specific "healthy" cells. MG increased ROS production and induced the first characteristic apoptotic hallmarks already at low concentrations (≥10 μM), decreased the cell growth (≥5-10 μM) and viability (≥25 μM), altered Glo-1 and Glo-2 enzymes (≥25 μM), and markedly affected the neuronal markers MAP-2 and NSE causing their loss at low MG concentrations (≥10 μM). Morphological alterations started at 100 μM, followed by even more marked effects and cell death after few hours (5 h) from 200 μM MG addition. Substantially, most effects occurred as low as 10 μM, concentration much lower than that reported from previous observations using different in vitro cell-based models (e.g., human neuroblastoma cell lines, primary animal cells, and human iPSCs). Remarkably, this low effective concentration approaches the level range measured in biological samples of pathological subjects. The use of a suitable cellular model, that is, human primary neurons, can provide an additional valuable tool, mimicking better the physiological and biochemical properties of brain cells, in order to evaluate the mechanistic basis of molecular and cellular alterations in CNS.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Azzurra Schicchi
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Francesca Caloni
- Dipartimento di Scienze e Politiche Ambientali (ESP), Università degli Studi di Milano, Milan, Italy
| | - Sara Negri
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Elena Grignani
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
31
|
Piccirillo S, Preziuso A, Cerqueni G, Serfilippi T, Terenzi V, Vinciguerra A, Amoroso S, Lariccia V, Magi S. A strategic tool to improve the study of molecular determinants of Alzheimer's disease: The role of glyceraldehyde. Biochem Pharmacol 2023; 218:115869. [PMID: 37871878 DOI: 10.1016/j.bcp.2023.115869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and is characterized by progressive neurodegeneration leading to severe cognitive, memory, and behavioral impairments. The onset of AD involves a complex interplay among various factors, including age, genetics, chronic inflammation, and impaired energy metabolism. Despite significant efforts, there are currently no effective therapies capable of modifying the course of AD, likely owing to an excessive focus on the amyloid hypothesis and a limited consideration of other intracellular pathways. In the present review, we emphasize the emerging concept of AD as a metabolic disease, where alterations in energy metabolism play a critical role in its development and progression. Notably, glucose metabolism impairment is associated with mitochondrial dysfunction, oxidative stress, Ca2+ dyshomeostasis, and protein misfolding, forming interconnected processes that perpetuate a detrimental self-feeding loop sustaining AD progression. Advanced glycation end products (AGEs), neurotoxic compounds that accumulate in AD, are considered an important consequence of glucose metabolism disruption, and glyceraldehyde (GA), a glycolytic intermediate, is a key contributor to AGEs formation in both neurons and astrocytes. Exploring the impact of GA-induced glucose metabolism impairment opens up exciting possibilities for creating an easy-to-handle in vitro model that recapitulates the early stage of the disease. This model holds great potential for advancing the development of novel therapeutics targeting various intracellular pathways implicated in AD pathogenesis. In conclusion, looking beyond the conventional amyloid hypothesis could lead researchers to discover promising targets for intervention, offering the possibility of addressing the existing medical gaps in AD treatment.
Collapse
Affiliation(s)
- Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Giorgia Cerqueni
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Valentina Terenzi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Antonio Vinciguerra
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| |
Collapse
|
32
|
Lin X, Zhang B, Zeng M. The Generation and Control of Harmful Products in Food Processing. Foods 2023; 12:3679. [PMID: 37835332 PMCID: PMC10572146 DOI: 10.3390/foods12193679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Food processing is an integral part of the modern food industry aimed at improving the quality, taste, and preservation of food products [...].
Collapse
Affiliation(s)
- Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai 519000, China;
| | - Biao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
33
|
Alselami A, Drummond RA. How metals fuel fungal virulence, yet promote anti-fungal immunity. Dis Model Mech 2023; 16:dmm050393. [PMID: 37905492 PMCID: PMC10629672 DOI: 10.1242/dmm.050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Invasive fungal infections represent a significant global health problem, and present several clinical challenges, including limited treatment options, increasing rates of antifungal drug resistance and compounding comorbidities in affected patients. Metals, such as copper, iron and zinc, are critical for various biological and cellular processes across phyla. In mammals, these metals are important determinants of immune responses, but pathogenic microbes, including fungi, also require access to these metals to fuel their own growth and drive expression of major virulence traits. Therefore, host immune cells have developed strategies to either restrict access to metals to induce starvation of invading pathogens or deploy toxic concentrations within phagosomes to cause metal poisoning. In this Review, we describe the mechanisms regulating fungal scavenging and detoxification of copper, iron and zinc and the importance of these mechanisms for virulence and infection. We also outline how these metals are involved in host immune responses and the consequences of metal deficiencies or overloads on how the host controls invasive fungal infections.
Collapse
Affiliation(s)
- Alanoud Alselami
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rebecca A. Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
34
|
Feng N, Feng Y, Tan J, Zhou C, Xu J, Chen Y, Xiao J, He Y, Wang C, Zhou M, Wu Q. Inhibition of advance glycation end products formation, gastrointestinal digestion, absorption and toxicity: A comprehensive review. Int J Biol Macromol 2023; 249:125814. [PMID: 37451379 DOI: 10.1016/j.ijbiomac.2023.125814] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/18/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Advanced glycation end-products (AGEs) are the final products of the non-enzymatic interaction between reducing sugars and amino groups in proteins, lipids and nucleic acids. In numerous diseases, such as diabetes, neuropathy, atherosclerosis, aging, nephropathy, retinopathy, and chronic renal illness, accumulation of AGEs has been proposed as a pathogenic mechanism of inflammation, oxidative stress, and structural tissue damage leading to chronic vascular issues. Current studies on the inhibition of AGEs mainly focused on food processing. However, there are few studies on the inhibition of AGEs during digestion, absorption and metabolism although there are still plenty of AGEs in our body with our daily diet. This review comprehensively expounded AGEs inhibition mechanism based on the whole process of digestion, absorption and metabolism by polyphenols, amino acids, hydrophilic colloid, carnosine and other new anti-glycation agents. Our study will provide a ground-breaking perspective on mediation or inhibition AGEs.
Collapse
Affiliation(s)
- Nianjie Feng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Yingna Feng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Jiangying Tan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Chen Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., LTD., Suizhou, Hubei 441300, China
| | - Yashu Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Juan Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Ministry of Education, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Mengzhou Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Qian Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
35
|
Saeki C, Saito M, Tsubota A. Plasma pentosidine as a useful biomarker of sarcopenia, low gait speed, and mortality in patients with cirrhosis. Front Med (Lausanne) 2023; 10:1212899. [PMID: 37780552 PMCID: PMC10541311 DOI: 10.3389/fmed.2023.1212899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Purpose The accumulation of advanced glycation end products (AGEs) is associated with various diseases and age-related impairments, including loss of muscle mass and function. We investigated the association between plasma pentosidine, which is one of the AGEs, and sarcopenia, low gait speed, and mortality in patients with cirrhosis. Methods This retrospective study divided 128 patients with cirrhosis into three groups by 25th and 75th quartiles of baseline plasma pentosidine levels: low (L)-, intermediate (I)-, and high (H)-pentosidine (Pen) groups. Sarcopenia was diagnosed following the Japan Society of Hepatology criteria. Low gait speed was defined as <0.8 m/s. The cumulative survival rates were compared between the three groups. Cox proportional hazards regression analysis was performed to identify independent factors associated with mortality. Results Of the 128 patients, 40 (31.3%) and 34 (26.6%) had sarcopenia and low gait speed, respectively. The prevalence of sarcopenia and low gait speed significantly increased stepwise with increasing plasma pentosidine levels, with the highest in the H-Pen group (59.4% [19/32] and 56.3% [18/32], respectively) and lowest in the L-Pen group (18.8% [6/32] and 6.3% [2/32], respectively). Multivariate analysis identified plasma pentosidine levels as a significant and independent factor associated with sarcopenia (odds ratio [OR], 1.07; p = 0.036) and low gait speed (OR, 1.06; p = 0.036), with the cutoff levels of 0.0792 μg/mL (sensitivity/specificity, 0.600/0.773) and 0.0745 μg/mL (sensitivity/specificity, 0.735/0.691), respectively. The cumulative survival rates were significantly lower in the H-Pen group than in the L-Pen (hazard ratio [HR], 11.7; p = 0.001) and I-Pen (HR, 4.03; p < 0.001) groups. Plasma pentosidine levels were identified as a significant and independent prognostic factor (HR, 1.07; p < 0.001). Conclusion Plasma pentosidine levels are associated with sarcopenia, low gait speed, and mortality and may serve as a useful surrogate biomarker for these clinical events in patients with cirrhosis.
Collapse
Affiliation(s)
- Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gastroenterology, Department of Internal Medicine, Fuji City General Hospital, Fuji, Shizuoka, Japan
- Liver Disease Control Science, Graduate School of Organic Pathology and Therapeutics, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuru Saito
- Department of Orthopedic Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Akihito Tsubota
- Liver Disease Control Science, Graduate School of Organic Pathology and Therapeutics, The Jikei University School of Medicine, Tokyo, Japan
- Project Research Units, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Bednarska K, Fecka I, Scheijen JLJM, Ahles S, Vangrieken P, Schalkwijk CG. A Citrus and Pomegranate Complex Reduces Methylglyoxal in Healthy Elderly Subjects: Secondary Analysis of a Double-Blind Randomized Cross-Over Clinical Trial. Int J Mol Sci 2023; 24:13168. [PMID: 37685975 PMCID: PMC10488144 DOI: 10.3390/ijms241713168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Reactive α-dicarbonyls (α-DCs), such as methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), are potent precursors in the formation of advanced glycation end products (AGEs). In particular, MGO and MGO-derived AGEs are thought to be involved in the development of vascular complications in diabetes. Experimental studies showed that citrus and pomegranate polyphenols can scavenge α-DCs. Therefore, the aim of this study was to evaluate the effect of a citrus and pomegranate complex (CPC) on the α-DCs plasma levels in a double-blind, placebo-controlled cross-over trial, where thirty-six elderly subjects were enrolled. They received either 500 mg of Citrus sinensis peel extract and 200 mg of Punica granatum concentrate in CPC capsules or placebo capsules for 4 weeks, with a 4-week washout period in between. For the determination of α-DCs concentrations, liquid chromatography tandem mass spectrometry was used. Following four weeks of CPC supplementation, plasma levels of MGO decreased by 9.8% (-18.7 nmol/L; 95% CI: -36.7, -0.7 nmol/L; p = 0.042). Our findings suggest that CPC supplementation may represent a promising strategy for mitigating the conditions associated with MGO involvement. This study was registered on clinicaltrials.gov as NCT03781999.
Collapse
Affiliation(s)
- Katarzyna Bednarska
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Izabela Fecka
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- The Committee on Therapeutics and Pharmaceutical Sciences, The Polish Academy of Sciences, Pl. Defilad 1, 00-901 Warsaw, Poland
| | - Jean L. J. M. Scheijen
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Sanne Ahles
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
- BioActor BV, 6229 GS Maastricht, The Netherlands
| | - Philippe Vangrieken
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
37
|
Golovinskaia O, Wang CK. The hypoglycemic potential of phenolics from functional foods and their mechanisms. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Alrouji M, Al‐kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Jabir MS, Saad HM, Batiha GE. NF-κB/NLRP3 inflammasome axis and risk of Parkinson's disease in Type 2 diabetes mellitus: A narrative review and new perspective. J Cell Mol Med 2023; 27:1775-1789. [PMID: 37210624 PMCID: PMC10315781 DOI: 10.1111/jcmm.17784] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). Genetic predisposition and immune dysfunction are involved in the pathogenesis of PD. Notably, peripheral inflammatory disorders and neuroinflammation are associated with PD neuropathology. Type 2 diabetes mellitus (T2DM) is associated with inflammatory disorders due to hyperglycaemia-induced oxidative stress and the release of pro-inflammatory cytokines. Particularly, insulin resistance (IR) in T2DM promotes the degeneration of dopaminergic neurons in the substantia nigra (SN). Thus, T2DM-induced inflammatory disorders predispose to the development and progression of PD, and their targeting may reduce PD risk in T2DM. Therefore, this narrative review aims to find the potential link between T2DM and PD by investigating the role of inflammatory signalling pathways, mainly the nuclear factor kappa B (NF-κB) and the nod-like receptor pyrin 3 (NLRP3) inflammasome. NF-κB is implicated in the pathogenesis of T2DM, and activation of NF-κB with induction of neuronal apoptosis was also confirmed in PD patients. Systemic activation of NLRP3 inflammasome promotes the accumulation of α-synuclein and degeneration of dopaminergic neurons in the SN. Increasing α-synuclein in PD patients enhances NLRP3 inflammasome activation and the release of interleukin (IL)-1β followed by the development of systemic inflammation and neuroinflammation. In conclusion, activation of the NF-κB/NLRP3 inflammasome axis in T2DM patients could be the causal pathway in the development of PD. The inflammatory mechanisms triggered by activated NLRP3 inflammasome lead to pancreatic β-cell dysfunction and the development of T2DM. Therefore, attenuation of inflammatory changes by inhibiting the NF-κB/NLRP3 inflammasome axis in the early T2DM may reduce future PD risk.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Majid S. Jabir
- Applied Science DepartmentUniversity of TechnologyBaghdadIraq
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
39
|
Anwar L, Ali SA, Khan S, Uzairullah MM, Mustafa N, Ali UA, Siddiqui F, Bhatti HA, Rehmani SJ, Abbas G. Fenugreek seed ethanolic extract inhibited formation of advanced glycation end products via scavenging reactive carbonyl intermediates. Heliyon 2023; 9:e16866. [PMID: 37484294 PMCID: PMC10360956 DOI: 10.1016/j.heliyon.2023.e16866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Senescence is a natural phenomenon of growing old. It accelerates under certain conditions like diabetes mellitus resulting in early decline of bodily functions, which can be avoided by many claimed functional foods. The present study aims to investigate the anti-aging ability of Fenugreek seeds (Trigonellafoenum-graecum); a common ingredient of Indo-Pak cuisines. Briefly, the Fenugreek seeds extract (FgSE) in concentrationsof0.1, 0.5 and 1 mg/ml inhibited the formation of Advanced Glycation End products (AGEs) and fructosamine adducts in Bovine serum albumin (BSA)/fructose model in vitro. The BSA conformational analysis via Circular Dichorism and Congo red assays showed that it preserves secondary structure of BSA in aforementioned model. Although mechanistic studies revealed insignificant lysine blocking ability of Fenugreek by OPA assay, however carbonyl entrapping was found to be 24%, 34% and 42% at 0.1, 0.5 and 1 mg/ml, respectively. In vivo model of High Fructose diet (HFD) induced glycation, FgSE treatment in doses of 10, 25 & 50 mg/kg markedly improved Escape latency (p < 0.01) and preserved cognition in Morris Water Maze. Our data further exhibits significant decrease of CML (Nε-carboxymethyl lysine) levels in serum and hippocampus byFgSE treatment in comparison with HFD group. Therefore, we deduced that FgSE prevents glycation-induced memory decline via entrapping the reactive carbonyl intermediates, formed during production of AGEs. Hence, as a promising functional food it slows down the harmful process of glycation and aging associated morbidities.
Collapse
Affiliation(s)
- Laila Anwar
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, Pakistan
- Faculty of Pharmacy, Hamdard University, Karachi, Pakistan
| | - Syed Abid Ali
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, Pakistan
| | - Sana Khan
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, Pakistan
| | | | - Nazish Mustafa
- Dr. Panjwani Center for Molecular Medicine & Drug Research, ICCBS, University of Karachi, Karachi, Pakistan
| | | | | | - Huma Aslam Bhatti
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, Pakistan
| | | | - Ghulam Abbas
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| |
Collapse
|
40
|
Shen CY, Li KJ, Wu CH, Lu CH, Kuo YM, Hsieh SC, Yu CL. Unveiling the molecular basis of inflamm-aging induced by advanced glycation end products (AGEs)-modified human serum albumin (AGE-HSA) in patients with different immune-mediated diseases. Clin Immunol 2023:109655. [PMID: 37257547 DOI: 10.1016/j.clim.2023.109655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/22/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Increased serum advanced glycation end products (AGEs) are commonly found in the patients with Diabetes mellitus (DM), aging-related diseases, and immune-mediated diseases. These diseases are notorious for vasculopathy, immune dysfunctions, and low-grade inflammation mimicking inflamm-aging. However, the molecular basis of inflamm-aging related to AGEs remains elucidation. In this study, we incubated human serum albumin (HSA) and glucose at 37 °C in 5% CO2 incubator for 0-180 days to generate AGE-HSA. We found the mixture gradually changing the color from transparancy to brown color and increased molecular weight during incubation. The pH value also gradually decreased from 7.2 to 5.4 irrelevant to ionic charge or [Ca2+] concentration, but dependent on gradual glycation of the alkaline amino acids, lysine and arginine. Functionally, 40 μg/mL of AGE-HSA decreased IL-2 production from human Jurkat T cell line via suppressing p-STAT3, p-STAT4, and p-STAT6 with an increased tendency of senescence-associated β-galactosidase (SA-βgal) expression but irrelevant to change of Th1/Th2/Treg subpopulations. In contrast, AGE-HSA enhanced CC motif chemokine ligand 5 (CCL-5), IL-8, macrophage migration inhibitor factor (MIF), and interleukin 1 receptor antagonist (IL-1Ra) but suppressed SA-βgal expression by human macrophage-like THP-1 cells. Interestingly, AGE-HSA abrogated the HSA-induced soluble intercellular adhesion molecules 1 (sICAM-1), sE-selectin and endothelin release from human coronary artery endothelial cells (HCAEC) and enhanced SA-βgal expression. The accelerated and increased HSA glycations by individual inflammation-related cytokine such as IL-2, IL-6, IL-17, TGF-β, or TNF-α in the in vitro study reflect increased serum AGE levels in patients with immune-mediated diseases . In conclusion, AGE-HSA can exert immunosuppresive, inflammatory and vasculopathic effects mimicking inflamm-aging in these patients.
Collapse
Affiliation(s)
- Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; Department of Internal Medicine, National Taiwan University Hospital--Chu-Pei Branch, Chu-Pei 302, Taiwan.
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| |
Collapse
|
41
|
Al-Sayyar A, Hammad MM, Williams MR, Al-Onaizi M, Abubaker J, Alzaid F. Neurotransmitters in Type 2 Diabetes and the Control of Systemic and Central Energy Balance. Metabolites 2023; 13:384. [PMID: 36984824 PMCID: PMC10058084 DOI: 10.3390/metabo13030384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Efficient signal transduction is important in maintaining the function of the nervous system across tissues. An intact neurotransmission process can regulate energy balance through proper communication between neurons and peripheral organs. This ensures that the right neural circuits are activated in the brain to modulate cellular energy homeostasis and systemic metabolic function. Alterations in neurotransmitters secretion can lead to imbalances in appetite, glucose metabolism, sleep, and thermogenesis. Dysregulation in dietary intake is also associated with disruption in neurotransmission and can trigger the onset of type 2 diabetes (T2D) and obesity. In this review, we highlight the various roles of neurotransmitters in regulating energy balance at the systemic level and in the central nervous system. We also address the link between neurotransmission imbalance and the development of T2D as well as perspectives across the fields of neuroscience and metabolism research.
Collapse
Affiliation(s)
| | | | | | - Mohammed Al-Onaizi
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Institut Necker Enfants Malades-INEM, Université Paris Cité, CNRS, INSERM, F-75015 Paris, France
| |
Collapse
|
42
|
Abstract
Diabetes mellitus is the ninth leading cause of mortality worldwide. It is a complex disease that manifests as chronic hyperglycemia. Glucose exposure causes biochemical changes at the proteome level as reflected in accumulation of glycated proteins. A prominent example is hemoglobin A1c (HbA1c), a glycated protein widely accepted as a diabetic indicator. Another emerging biomarker is glycated albumin which has demonstrated utility in situations where HbA1c cannot be used. Other proteins undergo glycation as well thus impacting cellular function, transport and immune response. Accordingly, these glycated counterparts may serve as predictors for diabetic complications and thus warrant further inquiry. Fortunately, modern proteomics has provided unique analytic capability to enable improved and more comprehensive exploration of glycating agents and glycated proteins. This review broadly covers topics from epidemiology of diabetes to modern analytical tools such as mass spectrometry to facilitate a better understanding of diabetes pathophysiology. This serves as an attempt to connect clinically relevant questions with findings of recent proteomic studies to suggest future avenues of diabetes research.
Collapse
Affiliation(s)
- Aleks Shin
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shawn Connolly
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kuanysh Kabytaev
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
43
|
Parwani K, Mandal P. Role of advanced glycation end products and insulin resistance in diabetic nephropathy. Arch Physiol Biochem 2023; 129:95-107. [PMID: 32730131 DOI: 10.1080/13813455.2020.1797106] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MetS), i.e. a cluster of physiological and biochemical abnormalities can lead to diabetic nephropathy (DN). Insulin resistance, impaired fasting glucose are the main signs and symptoms of MetS. Excess sugar can induce various substantial structural changes like formation of advanced glycation end products (AGEs). AGEs are formed due to reaction of reducing sugars with amino groups of proteins, lipids and nucleic acids. AGEs when bound to the receptor for advanced glycation end products (RAGE) activate increased production of pro-inflammatory markers like interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α) along with induction of endoplasmic reticulum (ER) stress. Accumulation of AGEs, enhanced reactive oxygen species (ROS) generation and activation of protein kinase C (PKC), are considered to induce glomerular hypertrophy, podocyte apoptosis, therefore contributing to the development and progression of DN. In this review, we decipher different biochemical and physiological factors that link AGEs and DN.
Collapse
Affiliation(s)
- Kirti Parwani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| |
Collapse
|
44
|
Stone A, Cujic O, Rowlett A, Aderhold S, Savage E, Graham B, Steinert JR. Triose-phosphate isomerase deficiency is associated with a dysregulation of synaptic vesicle recycling in Drosophila melanogaster. Front Synaptic Neurosci 2023; 15:1124061. [PMID: 36926383 PMCID: PMC10011161 DOI: 10.3389/fnsyn.2023.1124061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Numerous neurodegenerative diseases are associated with neuronal dysfunction caused by increased redox stress, often linked to aberrant production of redox-active molecules such as nitric oxide (NO) or oxygen free radicals. One such protein affected by redox-mediated changes is the glycolytic enzyme triose-phosphate isomerase (TPI), which has been shown to undergo 3-nitrotyrosination (a NO-mediated post-translational modification) rendering it inactive. The resulting neuronal changes caused by this modification are not well understood. However, associated glycation-induced cytotoxicity has been reported, thus potentially causing neuronal and synaptic dysfunction via compromising synaptic vesicle recycling. Methods This work uses Drosophila melanogaster to identify the impacts of altered TPI activity on neuronal physiology, linking aberrant TPI function and redox stress to neuronal defects. We used Drosophila mutants expressing a missense allele of the TPI protein, M81T, identified in a previous screen and resulting in an inactive mutant of the TPI protein (TPIM81T , wstd1). We assessed synaptic physiology at the glutamatergic Drosophila neuromuscular junction (NMJ), synapse morphology and behavioural phenotypes, as well as impacts on longevity. Results Electrophysiological recordings of evoked and spontaneous excitatory junctional currents, alongside high frequency train stimulations and recovery protocols, were applied to investigate synaptic depletion and subsequent recovery. Single synaptic currents were unaltered in the presence of the wstd1 mutation, but frequencies of spontaneous events were reduced. Wstd1 larvae also showed enhanced vesicle depletion rates at higher frequency stimulation, and subsequent recovery times for evoked synaptic responses were prolonged. A computational model showed that TPI mutant larvae exhibited a significant decline in activity-dependent vesicle recycling, which manifests itself as increased recovery times for the readily-releasable vesicle pool. Confocal images of NMJs showed no morphological or developmental differences between wild-type and wstd1 but TPI mutants exhibited learning impairments as assessed by olfactory associative learning assays. Discussion Our data suggests that the wstd1 phenotype is partially due to altered vesicle dynamics, involving a reduced vesicle pool replenishment, and altered endo/exocytosis processes. This may result in learning and memory impairments and neuronal dysfunction potentially also presenting a contributing factor to other reported neuronal phenotypes.
Collapse
Affiliation(s)
- Aelfwin Stone
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Oliver Cujic
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Angel Rowlett
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Sophia Aderhold
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Emma Savage
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Bruce Graham
- Division of Computing Science and Mathematics, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Joern R Steinert
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
45
|
McDonald TS, Lerskiatiphanich T, Woodruff TM, McCombe PA, Lee JD. Potential mechanisms to modify impaired glucose metabolism in neurodegenerative disorders. J Cereb Blood Flow Metab 2023; 43:26-43. [PMID: 36281012 PMCID: PMC9875350 DOI: 10.1177/0271678x221135061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023]
Abstract
Neurodegeneration refers to the selective and progressive loss-of-function and atrophy of neurons, and is present in disorders such as Alzheimer's, Huntington's, and Parkinson's disease. Although each disease presents with a unique pattern of neurodegeneration, and subsequent disease phenotype, increasing evidence implicates alterations in energy usage as a shared and core feature in the onset and progression of these disorders. Indeed, disturbances in energy metabolism may contribute to the vulnerability of neurons to apoptosis. In this review we will outline these disturbances in glucose metabolism, and how fatty acids are able to compensate for this impairment in energy production in neurodegenerative disorders. We will also highlight underlying mechanisms that could contribute to these alterations in energy metabolism. A greater understanding of these metabolism-neurodegeneration processes could lead to improved treatment options for neurodegenerative disease patients.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Titaya Lerskiatiphanich
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Queensland Brain Institute, The University of Queensland, St.
Lucia, Australia
| | - Pamela A McCombe
- Centre for Clinical Research, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Department of Neurology, Royal Brisbane & Women’s Hospital,
Herston, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| |
Collapse
|
46
|
Almikhlafi MA, Karami MM, Jana A, Alqurashi TM, Majrashi M, Alghamdi BS, Ashraf GM. Mitochondrial Medicine: A Promising Therapeutic Option Against Various Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:1165-1183. [PMID: 36043795 PMCID: PMC10286591 DOI: 10.2174/1570159x20666220830112408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal mitochondrial morphology and metabolic dysfunction have been observed in many neurodegenerative disorders (NDDs). Mitochondrial dysfunction can be caused by aberrant mitochondrial DNA, mutant nuclear proteins that interact with mitochondria directly or indirectly, or for unknown reasons. Since mitochondria play a significant role in neurodegeneration, mitochondriatargeted therapies represent a prosperous direction for the development of novel drug compounds that can be used to treat NDDs. This review gives a brief description of how mitochondrial abnormalities lead to various NDDs such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We further explore the promising therapeutic effectiveness of mitochondria- directed antioxidants, MitoQ, MitoVitE, MitoPBN, and dimebon. We have also discussed the possibility of mitochondrial gene therapy as a therapeutic option for these NDDs.
Collapse
Affiliation(s)
- Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Mohammed M. Karami
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Thamer M. Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
47
|
Development of p-Tau Differentiated Cell Model of Alzheimer's Disease to Screen Novel Acetylcholinesterase Inhibitors. Int J Mol Sci 2022; 23:ijms232314794. [PMID: 36499118 PMCID: PMC9741399 DOI: 10.3390/ijms232314794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by an initial accumulation of amyloid plaques and neurofibrillary tangles, along with the depletion of cholinergic markers. The currently available therapies for AD do not present any disease-modifying effects, with the available in vitro platforms to study either AD drug candidates or basic biology not fully recapitulating the main features of the disease or being extremely costly, such as iPSC-derived neurons. In the present work, we developed and validated a novel cell-based AD model featuring Tau hyperphosphorylation and degenerative neuronal morphology. Using the model, we evaluated the efficacy of three different groups of newly synthesized acetylcholinesterase (AChE) inhibitors, along with a new dual acetylcholinesterase/glycogen synthase kinase 3 inhibitor, as potential AD treatment on differentiated SH-SY5Y cells treated with glyceraldehyde to induce Tau hyperphosphorylation, and subsequently neurite degeneration and cell death. Testing of such compounds on the newly developed model revealed an overall improvement of the induced defects by inhibition of AChE alone, showing a reduction of S396 aberrant phosphorylation along with a moderate amelioration of the neuron-like morphology. Finally, simultaneous AChE/GSK3 inhibition further enhanced the limited effects observed by AChE inhibition alone, resulting in an improvement of all the key parameters, such as cell viability, morphology, and Tau abnormal phosphorylation.
Collapse
|
48
|
Lee BC, Choe YM, Suh GH, Choi IG, Lee JH, Kim HS, Hwang J, Yi D, Kim JW. A combination of midlife diabetes mellitus and the apolipoprotein E ε4 allele increase risk for cognitive decline. Front Aging Neurosci 2022; 14:1065117. [PMID: 36466611 PMCID: PMC9715424 DOI: 10.3389/fnagi.2022.1065117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND It has been suggested that diabetes mellitus (DM) and the apolipoprotein E (APOE) ε4 allele (APOE4) increase the risk for Alzheimer's disease (AD) and cognitive decline. However, the evidence is sparse. We explored whether APOE4 status modulated the effects of midlife and late-life DM on global cognition of non-demented older adults. METHODS In all, 176 non-demented adults (age 65-90 years) were enrolled. All the participants underwent comprehensive clinical assessments including midlife and late-life DM evaluation and APOE genotyping. The global cognitive performance index was assessed by the total score (TS) of the Consortium to Establish a Registry for Alzheimer's Disease neuropsychological battery. RESULTS We found a significant midlife DM × APOE4 interaction effect on the global cognitive performance. Subgroup analyses indicated that an association between midlife DM and decreased global cognitive performance was apparent only in older adults who were APOE4-positive, and not in those with APOE4-negative. CONCLUSION Our findings from non-demented older adults suggest that midlife DM increases the risk for AD and cognitive decline, and this risk is modulated by APOE4 status. To prevent AD and cognitive decline, physicians should check for the possible coexistence of midlife DM and APOE4-positive status.
Collapse
Affiliation(s)
- Boung Chul Lee
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- Department of Neuropsychiatry, Hallym University Hangang Sacred Heart Hospital, Seoul, South Korea
| | - Young Min Choe
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| | - Guk-Hee Suh
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| | - Ihn-Geun Choi
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- Department of Psychiatry, Seoul W Psychiatric Office, Seoul, South Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University Seoul Hospital, Seoul, South Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Jee Wook Kim
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| |
Collapse
|
49
|
Fernandes ACF, Melo JB, Genova VM, Santana ÁL, Macedo G. Phytochemicals as Potential Inhibitors of Advanced Glycation End Products: Health Aspects and Patent Survey. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2022; 13:3-16. [PMID: 34053432 DOI: 10.2174/2212798412666210528130001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/17/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND The glycation of proteins and lipids synthesizes the advanced glycation end products (AGEs), i.e., substances that irreversibly damage macromolecules present in tissues and organs, which contribute to the impairment of biological functions. For instance, the accumulation of AGEs induces oxidative stress, the inflammatory responses, and consequently the on set/worsening of diseases, including obesity, asthma, cognitive impairment, and cancer. There is a current demand on natural and low-cost sources of anti-AGE agents. As a result, food phytochemicals presented promising results to inhibit glycation and consequently, the formation of AGEs. OBJECTIVE Here we describe how the AGEs are present in food via Maillard reaction and in organs via natural aging, as well as the effects of AGEs on the worsening of diseases. Also we described the methods used to detect AGEs in samples, and the current findings on the use of phytochemicals (phenolic compounds, phytosterols, carotenoids, terpenes and vitamins) as natural therapeuticals to inhibit health damages via inhibition of AGEs in vitro and in vivo. METHODS This manuscript reviewed publications available in the PubMed and Science Direct databases dated from the last 20 years on the uses of phytochemicals for the inhibition of AGEs. Recent patents on the use of anti-AGEs drugs were reviewed with the use of Google Advanced Patents database. RESULTS AND DISCUSSION There is no consensus about which concentration of AGEs in blood serum should not be hazardous to the health of individuals. Food phytochemicals derived from agroindustry wastes, including peanut skins, and the bagasses derived from citrus and grapes are promising anti-AGEs agents via scavenging of free radicals, metal ions, the suppression of metabolic pathways that induces inflammation, the activation of pathways that promote antioxidant defense, and the blocking of AGE connection with the receptor for advanced glycation endproducts (RAGE). CONCLUSION Phytochemicals derived from agroindustry are promising anti-AGEs, which can be included to replace synthetic drugs to inhibit AGE formation, and consequently to act as therapeutical strategy to prevent and treat diseases caused by AGEs, including diabetes, ovarian cancer, osteoporosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- Annayara C F Fernandes
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Jeane B Melo
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Vanize M Genova
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Ádina L Santana
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil.,264 Food Innovation Center, Nebraska Innovation Campus, University of Nebraska-Lincoln, 1901 N 21st street, Lincoln, NE, USA
| | - Gabriela Macedo
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| |
Collapse
|
50
|
Deng Y, Liu Y, Zhang C, Xie P, Huang L. Characterization of Enzymatic Modified Soluble Dietary Fiber from Rhodomyrtus tomentosa fruits: A Potential Ingredient in Reducing AGEs Accumulation. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|