1
|
Gao S, Zhang H, Li N, Zhang L, Zhu Z, Xu C. Pterostilbene: A natural neuroprotective stilbene with anti-Alzheimer's disease properties. J Pharm Anal 2025; 15:101043. [PMID: 40291020 PMCID: PMC12032911 DOI: 10.1016/j.jpha.2024.101043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 04/30/2025] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, and no effective treatment has been developed for it thus far. Recently, the use of natural compounds in the treatment of neurodegenerative diseases has garnered significant attention owing to their minimal adverse reactions. Accordingly, the potential therapeutic effect of pterostilbene (PTS) on AD has been demonstrated in multiple in vivo and in vitro experiments. In this study, we systematically reviewed and summarized the results of these studies investigating the use of PTS for treating AD. Analysis of the literature revealed that PTS may play a role in AD treatment through various mechanisms, including anti-oxidative damage, anti-neuroinflammation, anti-apoptosis, cholinesterase activity inhibition, attenuation of β-amyloid deposition, and tau protein hyperphosphorylation. Moreover, PTS interferes with the progression of AD by regulating the activities of peroxisome proliferator-activated receptor alpha (PPAR-α), monoamine oxidase B (MAO-B), silent information regulator sirtuin 1 (SIRT1), and phosphodiesterase 4A (PDE4A). Furthermore, to further elucidate the potential therapeutic mechanisms of PTS in AD, we employed network pharmacology and molecular docking technology to perform molecular docking of related proteins, and the obtained binding energies ranged from -2.83 to -5.14 kJ/mol, indicating that these proteins exhibit good binding ability with PTS. Network pharmacology analysis revealed multiple potential mechanisms of action for PTS in AD. In summary, by systematically collating and summarizing the relevant studies on the role of PTS in treatment of AD, it is anticipated that this will serve as a reference for the precise targeted prevention and treatment of AD, either using PTS or other developed drug interventions.
Collapse
Affiliation(s)
- Songlan Gao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Honglei Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Na Li
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Zhe Zhu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Changlu Xu
- Departments of Cardiology, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| |
Collapse
|
2
|
Patel R, Cheng R, Cardona CL, Angeles E, Singh G, Miller S, Ashok A, Teich AF, Piriz A, Maldonado A, Jimenez-Velazquez IZ, Mayeux R, Lee JH, Sproul AA. Reduced SH3RF3 may protect against Alzheimer's disease by lowering microglial pro-inflammatory responses via modulation of JNK and NFkB signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.23.600281. [PMID: 38979369 PMCID: PMC11230201 DOI: 10.1101/2024.06.23.600281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Understanding how high-risk individuals are protected from Alzheimer's disease (AD) may illuminate potential therapeutic targets. We identified protective genetic variants in SH3RF3/POSH2 that delayed the onset of AD among individuals carrying the PSEN1 G206A mutation. SH3RF3 acts as a JNK pathway scaffold and activates NFκB signaling. While effects of SH3RF3 knockdown in human neurons were subtle, including decreased ptau S422, knockdown in human microglia significantly reduced inflammatory cytokines in response to either a viral mimic or oAβ42. This was associated with reduced activation of JNK and NFκB pathways in response to these stimuli. Pharmacological inhibition of JNK or NFκB signaling phenocopied SH3RF3 knockdown. We also found PSEN1 G206A microglia had reduced inflammatory response to oAβ42. Thus, further reduction of microglial inflammatory responses in PSEN1 G206A mutant carriers by protective variants in SH3RF3 might reduce the link between amyloid and neuroinflammation to subsequently delay the onset of AD.
Collapse
|
3
|
la Torre A, Lo Vecchio F, Angelillis VS, Gravina C, D’Onofrio G, Greco A. Reinforcing Nrf2 Signaling: Help in the Alzheimer's Disease Context. Int J Mol Sci 2025; 26:1130. [PMID: 39940900 PMCID: PMC11818887 DOI: 10.3390/ijms26031130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Oxidative stress plays a role in various pathophysiological diseases, including neurogenerative diseases, such as Alzheimer's disease (AD), which is the most prevalent neuro-pathology in the aging population. Oxidative stress has been reported to be one of the earliest pathological alterations in AD. Additionally, it was demonstrated that in older adults, there is a loss of free radical scavenging ability. The Nrf2 transcription factor is a key regulator in antioxidant defense systems, but, with aging, both the amount and the transcriptional activity of Nrf2 decrease. With the available treatments for AD being poorly effective, reinforcing the antioxidant defense systems via the Nrf2 pathway may be a way to prevent and treat AD. To highlight the predominant role of Nrf2 signaling in defending against oxidative stress and, therefore, against neurotoxicity, we present an overview of the natural compounds that exert their own neuroprotective roles through the activation of the Nrf2 pathway. This review is an opportunity to promote a holistic approach in the treatment of AD and to highlight the need to further refine the development of new potential Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Annamaria la Torre
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.L.V.); (C.G.)
| | - Filomena Lo Vecchio
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.L.V.); (C.G.)
| | - Valentina Soccorsa Angelillis
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (V.S.A.); (A.G.)
| | - Carolina Gravina
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (F.L.V.); (C.G.)
| | - Grazia D’Onofrio
- Clinical Psychology Service, Health Department, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Antonio Greco
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (V.S.A.); (A.G.)
| |
Collapse
|
4
|
Liu YL, Xu S, Xu X, Tang Y, Shao J, Chen J, Li YG. Integrating network pharmacology and multi-omics to explore the mechanism of Callicarpa kwangtungensis Chun in ameliorating Alzheimer's disease pathology in APP/PS1 mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119148. [PMID: 39586557 DOI: 10.1016/j.jep.2024.119148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Callicarpa kwangtungensis Chun (CK) is a traditional herb for the treatment of blood stasis, hemostasis, anti-inflammation, and antidepressant. Previous studies have showen that CK extract has significant anti-neuroinflammatory activity. However, the mechanism by which it treats AD is still unclear. AIM OF STUDY This study aimed to investigate the effects and mechanisms of CK in ameliorating AD pathology using in vivo and in vitro models, supported by a multi-omics analysis approach. MATERIALS AND METHODS The chemical composition of CK was characterized using UPLC-QE Plus-MS/MS. The effects and mechanisms of CK on AD pathology were then investigated using APP/PS1 mice and BV2 and HT22 cell models, with comprehensive insights provided by network pharmacology, transcriptomics, and metabolomics analyses. RESULTS This study is the first to report the identification of 146 compounds from CK. CK administration led to significant improvements in cognitive function, reduced amyloid-beta and neurofibrillary tangle formation, and inhibited the activation of microglia and astrocytes in APP/PS1 mice. Comprehensive analyses suggest that CK may modulate the TCA cycle through the PI3K-AKT signaling pathways and inflammation-related MAPK and NF-κB signaling pathways. In vitro studies revealed that CK significantly inhibited LPS-induced inflammation and oxidative stress in BV2 cells, as well as reduced oxidative stress and neuronal apoptosis in HT22 cells. CONCLUSION These findings underscore the potential of CK as a therapeutic agent in alleviating AD pathology. This study offers new insights into CK's mechanisms, suggesting that its therapeutic effects may be achieved through the coordinated reduction of neuroinflammation, oxidative stress, and neuronal apoptosis across multiple pathways, collectively working to counteract AD pathology.
Collapse
Affiliation(s)
- Yong-Lin Liu
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, Jiangxi, 330096, PR China; Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi, 330103, PR China; School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Sha Xu
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, Jiangxi, 330096, PR China; Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi, 330103, PR China.
| | - Xi Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Yuan Tang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Jian Shao
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, Jiangxi, 330096, PR China; Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi, 330103, PR China.
| | - Jie Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Yi-Guang Li
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, Jiangxi, 330096, PR China; Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi, 330103, PR China; School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| |
Collapse
|
5
|
Fatima J, Siddique YH. The Neuroprotective Role of Tangeritin. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:144-157. [PMID: 39297465 DOI: 10.2174/0118715273325789240904065214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 02/25/2025]
Abstract
The prevalence of neurodegenerative diseases has increased with longer life expectancies, necessitating the exploration of novel neuroprotective agents. Tangeretin, a polymethoxylated flavone derived from citrus fruits, has gathered attention for its potential therapeutic effects. This review highlights the neuroprotective properties of tangeretin via its antioxidant and anti-inflammatory mechanisms. Tangeretin demonstrates efficacy in mitigating oxidative stress, neuroinflammation, and neuronal damage across various neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, cerebral ischemia, and epilepsy. It shows promise in ameliorating cognitive deficits and memory impairments associated with these diseases. Moreover, tangeretin modulates multiple signalling pathways and protects against neuronal apoptosis, underscoring its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Javeria Fatima
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
6
|
Zhang S, Gao Z, Feng L, Li M. Prevention and Treatment Strategies for Alzheimer's Disease: Focusing on Microglia and Astrocytes in Neuroinflammation. J Inflamm Res 2024; 17:7235-7259. [PMID: 39421566 PMCID: PMC11484773 DOI: 10.2147/jir.s483412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease characterized by its insidious onset and progressive development, making it the most common form of dementia. Despite its prevalence, the exact causes and mechanisms responsible for AD remain unclear. Recent studies have highlighted that inflammation in the central nervous system (CNS) plays a crucial role in both the initiation and progression of AD. Neuroinflammation, an immune response within the CNS triggered by glial cells in response to various stimuli, such as nerve injury, infection, toxins, or autoimmune reactions, has emerged as a significant factor alongside amyloid deposition and neurofibrillary tangles (NFTs) commonly associated with AD. This article aims to provide an overview of the most recent research regarding the involvement of neuroinflammation in AD, with a particular focus on elucidating the specific mechanisms involving microglia and astrocytes. By exploring these intricate processes, a new theoretical framework can be established to further probe the impact of neuroinflammation on the development and progression of AD. Through a deeper understanding of these underlying mechanisms, potential targets for therapeutic interventions and novel treatment strategies can be identified in the ongoing battle against AD.
Collapse
Affiliation(s)
- Shenghao Zhang
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
| | - Zhejianyi Gao
- Department of Orthopaedics, Fushun Hospital of Chinese Medicine, Fushun, Liaoning Province, 113008, People’s Republic of China
| | - Lina Feng
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
- Shandong Key Laboratory of TCM Multi-Targets Intervention and Disease Control, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, 271000, People’s Republic of China
| | - Mingquan Li
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
| |
Collapse
|
7
|
Noureldeen ME, Shahin NN, Amin HAA, El-Sawalhi MM, Ghaiad HR. Parthenolide ameliorates 3-nitropropionic acid-induced Huntington's disease-like aberrations via modulating NLRP3 inflammasome, reducing microglial activation and inducing astrocyte shifting. Mol Med 2024; 30:158. [PMID: 39327568 PMCID: PMC11425901 DOI: 10.1186/s10020-024-00917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is a progressive neurodegenerative disease that causes motor, cognitive, and psychiatric abnormalities, with no satisfying disease-modifying therapy so far. 3-nitropropionic acid (3NP) induces behavioural deficits, together with biochemical and histological alterations in animals' striata that mimic HD. The role of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome in HD pathogenesis remains largely uncharacterized. Parthenolide (PTL), a naturally occurring nuclear factor kappa B (NF-κB) inhibitor, is also known to inhibit NLRP3 inflammasome. Whether PTL is beneficial in HD has not been established yet. AIM This study evaluated the possible neuroprotective effects of PTL against 3NP-induced behavioural abnormalities, striatal biochemical derangements, and histological aberrations. METHODS Male Wistar rats received PTL (0.5 mg/kg/day, i.p) for 3 weeks and 3NP (10 mg/kg/day, i.p) was administered alongside for the latter 2 weeks to induce HD. Finally, animals were subjected to open-field, Morris water maze and rotarod tests. Rat striata were examined histologically, striatal protein expression levels of glial fibrillary acidic protein (GFAP), cluster of differentiation 45 (CD45) and neuron-specific enolase (NSE) were evaluated immunohistochemically, while those of interleukin (IL)-1β, IL-18, ionized calcium-binding adapter molecule-1 (Iba1) and glutamate were determined by ELISA. Striatal nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein (Keap1), NF-κB, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, S100 calcium-binding protein A10 (S100A10) and complement-3 (C3) were assessed by gene expression analysis. RESULTS PTL improved motor, locomotor, cognitive and anxiety-like behaviours, restored neuronal integrity, upregulated Nrf2, and inhibited NLRP3 inflammasome, NF-κB and microglial activation. Additionally, PTL induced astrocyte shifting towards the neuroprotective A2 phenotype. CONCLUSION PTL exhibits neuroprotection against 3NP-induced HD, that might be ascribed, at least in part, to its modulatory effects on Keap1/Nrf2 and NF-κB/NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Mona E Noureldeen
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Nancy N Shahin
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Hebat Allah A Amin
- Pathology Department, Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Maha M El-Sawalhi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Heba R Ghaiad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt.
| |
Collapse
|
8
|
Zhao C, Sun L, Zhang Y, Shu X, Hu Y, Chen D, Zhang Z, Xia S, Yang H, Bao X, Li J, Xu Y. Thymol improves ischemic brain injury by inhibiting microglia-mediated neuroinflammation. Brain Res Bull 2024; 215:111029. [PMID: 39009094 DOI: 10.1016/j.brainresbull.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Microglia-mediated inflammation is a critical factor in the progression of ischemic stroke. Consequently, mitigating excessive microglial activation represents a potential therapeutic strategy for ischemic injury. Thymol, a monophenol derived from plant essential oils, exhibits diverse beneficial biological activities, including anti-inflammatory and antioxidant properties, with demonstrated protective effects in various disease models. However, its specific effects on ischemic stroke and microglial inflammation remain unexplored. METHODS Rodent transient middle cerebral artery occlusion (tMCAO) model was established to simulate ischemic stroke. TTC staining, modified neurological function score (mNSS), and behavioral tests were used to assess the severity of neurological damage. Then immunofluorescence staining and cytoskeleton analysis were used to determine activation of microglia. Lipopolysaccharide (LPS) was utilized to induce the inflammatory response of primary microglia in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and enzyme-linked immunosorbent assay (ELISA) were performed to exam the expression of inflammatory cytokines. And western blot was used to investigate the mechanism of the anti-inflammatory effect of thymol. RESULTS In this study, we found that thymol treatment could ameliorate post-stroke neurological impairment and reduce infarct volume by mitigating microglial activation and pro-inflammatory response (IL-1β, IL-6, and TNF-α). Mechanically, thymol could inhibit the phosphorylation of phosphatidylinositol-3-kinase (PI3K), sink serine/threonine kinase (Akt), and mammalian target of rapamycin (mTOR), thereby suppressing the activation of nuclear factor-κB (NF-κB). CONCLUSIONS Our study demonstrated that thymol could reduce the microglial inflammation by targeting PI3K/Akt/mTOR/NF-κB signaling pathway, ultimately alleviating ischemic brain injury. These findings suggest that thymol is a promising candidate as a neuroprotective agent against ischemic stroke.
Collapse
Affiliation(s)
- Chenchen Zhao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Liang Sun
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yuxin Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yujie Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Duo Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Haiyan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Jingwei Li
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
9
|
Zhang D, Zhou Q, Zhang Z, Yang X, Man J, Wang D, Li X. Based on Network Pharmacology and Molecular Docking, the Active Components, Targets, and Mechanisms of Flemingia philippinensis in Improving Inflammation Were Excavated. Nutrients 2024; 16:1850. [PMID: 38931205 PMCID: PMC11206888 DOI: 10.3390/nu16121850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Flemingia philippinensis, a polyphenol-rich plant, holds potential for improving inflammation, but its mechanisms are not well understood. Therefore, this study employed network pharmacology and molecular docking to explore the mechanism by which Flemingia philippinensis ameliorates inflammation. In this study, 29 kinds of active ingredients were obtained via data mining. Five main active components were screened out for improving inflammation, which were flemichin D, naringenin, chrysophanol, genistein and orobol. In total, 52 core targets were identified, including AKT serine/threonine kinase 1 (AKT1), tumor necrosis factor (TNF), B-cell lymphoma-2 (BCL2), serum albumin (ALB), and estrogen receptor 1 (ESR1). Gene ontology (GO) enrichment analysis identified 2331 entries related to biological processes, 98 entries associated with cellular components, and 203 entries linked to molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis yielded 149 pathways, including those involved in EGFR tyrosine kinase inhibitor resistance, endocrine resistance, and the PI3K-Akt signaling pathway. Molecular docking results showed strong binding effects between the main active components and the core targets, with binding energies less than -5 kcal/mol. In summary, this study preliminarily elucidated the underlying mechanisms by which Flemingia philippinensis, through a multi-component, multi-target, and multi-pathway approach, ameliorates inflammation. This provides a theoretical foundation for the subsequent application of Flemingia philippinensis in inflammation amelioration.
Collapse
Affiliation(s)
- Dongying Zhang
- College of Science, Yunnan Agricultural University, Kunming 650201, China;
| | - Qixing Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (Z.Z.); (X.Y.); (D.W.)
| | - Zhen Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (Z.Z.); (X.Y.); (D.W.)
| | - Xiangxuan Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (Z.Z.); (X.Y.); (D.W.)
| | - Jiaxu Man
- Institute of Agricultural Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 650201, China;
| | - Dongxue Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (Z.Z.); (X.Y.); (D.W.)
| | - Xiaoyong Li
- College of Food and Biological Engineering, Hezhou University, Hezhou 542899, China
| |
Collapse
|
10
|
Wani I, Koppula S, Balda A, Thekkekkara D, Jamadagni A, Walse P, Manjula SN, Kopalli SR. An Update on the Potential of Tangeretin in the Management of Neuroinflammation-Mediated Neurodegenerative Disorders. Life (Basel) 2024; 14:504. [PMID: 38672774 PMCID: PMC11051149 DOI: 10.3390/life14040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroinflammation is the major cause of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Currently available drugs present relatively low efficacy and are not capable of modifying the course of the disease or delaying its progression. Identifying well-tolerated and brain-penetrant agents of plant origin could fulfil the pressing need for novel treatment techniques for neuroinflammation. Attention has been drawn to a large family of flavonoids in citrus fruits, which may function as strong nutraceuticals in slowing down the development and progression of neuroinflammation. This review is aimed at elucidating and summarizing the effects of the flavonoid tangeretin (TAN) in the management of neuroinflammation-mediated neurodegenerative disorders. A literature survey was performed using various resources, including ScienceDirect, PubMed, Google Scholar, Springer, and Web of Science. The data revealed that TAN exhibited immense neuroprotective effects in addition to its anti-oxidant, anti-diabetic, and peroxisome proliferator-activated receptor-γ agonistic effects. The effects of TAN are mainly mediated through the inhibition of oxidative and inflammatory pathways via regulating multiple signaling pathways, including c-Jun N-terminal kinase, phosphoinositide 3-kinase, mitogen-activated protein kinase, nuclear factor erythroid-2-related factor 2, extracellular-signal-regulated kinase, and CRE-dependent transcription. In conclusion, the citrus flavonoid TAN has the potential to prevent neuronal death mediated by neuroinflammatory pathways and can be developed as an auxiliary therapeutic agent in the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Irshad Wani
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Sushruta Koppula
- College of Biomedical and Health Science, Konkuk University, Chungju-si 380-701, Republic of Korea;
| | - Aayushi Balda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Ankush Jamadagni
- Fortem Biosciences Private Limited (Ayurvibes), No. 24, Attur, 4th Cross, Tirumala Nagar, A Block, Bangalore 560064, India
| | - Prathamesh Walse
- Fortem Biosciences Private Limited (Ayurvibes), No. 24, Attur, 4th Cross, Tirumala Nagar, A Block, Bangalore 560064, India
| | | | - Spandana Rajendra Kopalli
- Department of Integrated Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|
11
|
Edison P. Astroglial activation: Current concepts and future directions. Alzheimers Dement 2024; 20:3034-3053. [PMID: 38305570 PMCID: PMC11032537 DOI: 10.1002/alz.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
Astrocytes are abundantly and ubiquitously expressed cell types with diverse functions throughout the central nervous system. Astrocytes show remarkable plasticity and exhibit morphological, molecular, and functional remodeling in response to injury, disease, or infection of the central nervous system, as evident in neurodegenerative diseases. Astroglial mediated inflammation plays a prominent role in the pathogenesis of neurodegenerative diseases. This review focus on the role of astrocytes as essential players in neuroinflammation and discuss their morphological and functional heterogeneity in the normal central nervous system and explore the spatial and temporal variations in astroglial phenotypes observed under different disease conditions. This review discusses the intimate relationship of astrocytes to pathological hallmarks of neurodegenerative diseases. Finally, this review considers the putative therapeutic strategies that can be deployed to modulate the astroglial functions in neurodegenerative diseases. HIGHLIGHTS: Astroglia mediated neuroinflammation plays a key role in the pathogenesis of neurodegenerative diseases. Activated astrocytes exhibit diverse phenotypes in a region-specific manner in brain and interact with β-amyloid, tau, and α-synuclein species as well as with microglia and neuronal circuits. Activated astrocytes are likely to influence the trajectory of disease progression of neurodegenerative diseases, as determined by the stage of disease, individual susceptibility, and state of astroglial priming. Modulation of astroglial activation may be a therapeutic strategy at various stages in the trajectory of neurodegenerative diseases to modify the disease course.
Collapse
Affiliation(s)
- Paul Edison
- Division of NeurologyDepartment of Brain SciencesFaculty of Medicine, Imperial College LondonLondonUK
- Division of Psychological medicine and clinical neurosciencesSchool of Medicine, Cardiff UniversityWalesUK
| |
Collapse
|
12
|
Xiao N, Xie Z, He Z, Xu Y, Zhen S, Wei Y, Zhang X, Shen J, Wang J, Tian Y, Zuo J, Peng J, Li Z. Pathogenesis of gout: Exploring more therapeutic target. Int J Rheum Dis 2024; 27:e15147. [PMID: 38644732 DOI: 10.1111/1756-185x.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/23/2024]
Abstract
Gout is a chronic metabolic and immune disease, and its specific pathogenesis is still unclear. When the serum uric acid exceeds its saturation in the blood or tissue fluid, it is converted to monosodium urate crystals, which lead to acute arthritis of varying degrees, urinary stones, or irreversible peripheral joint damage, and in severe cases, impairment of vital organ function. Gout flare is a clinically significant state of acute inflammation in gout. The current treatment is mostly anti-inflammatory analgesics, which have numerous side effects with limited treatment methods. Gout pathogenesis involves many aspects. Therefore, exploring gout pathogenesis from multiple perspectives is conducive to identifying more therapeutic targets and providing safer and more effective alternative treatment options for patients with gout flare. Thus, this article is of great significance for further exploring the pathogenesis of gout. The author summarizes the pathogenesis of gout from four aspects: signaling pathways, inflammatory factors, intestinal flora, and programmed cell death, focusing on exploring more new therapeutic targets.
Collapse
Affiliation(s)
- Niqin Xiao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhiyan He
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yundong Xu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Shuyu Zhen
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyu Zhang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jian Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yadan Tian
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinlian Zuo
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiangyun Peng
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
13
|
Nguyen-Thi PT, Vo TK, Pham THT, Nguyen TT, Van Vo G. Natural flavonoids as potential therapeutics in the management of Alzheimer's disease: a review. 3 Biotech 2024; 14:68. [PMID: 38357675 PMCID: PMC10861420 DOI: 10.1007/s13205-024-03925-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder which is associated with the accumulation of proteotoxic Aβ peptides, and pathologically characterized by the deposition of Aβ-enriched plaques and neurofibrillary tangles. Given the social and economic burden caused by the rising frequency of AD, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compound's therapeutic effects for AD have been recently investigated in numerous in vitro and in vivo studies, only few have developed to clinical trials. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of the preclinical and clinical trials of flavonoids for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, Faculty of Medicine, VNU University of Medicine and Pharmacy, Vietnam National University, Hanoi, 100000 Vietnam
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000 Vietnam
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420 Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000 Vietnam
- Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
14
|
Iemmolo M, Bivona G, Piccoli T, Nicosia A, Schiera G, Di Liegro CM, Di Pietra F, Ghersi G. Effects of Cerebrospinal Fluids from Alzheimer and Non-Alzheimer Patients on Neurons-Astrocytes-Microglia Co-Culture. Int J Mol Sci 2024; 25:2510. [PMID: 38473758 DOI: 10.3390/ijms25052510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by the accumulation of β-amyloid plaques, tau tangles, neuroinflammation, and synaptic/neuronal loss, the latter being the strongest correlating factor with memory and cognitive impairment. Through an in vitro study on a neurons-astrocytes-microglia (NAM) co-culture system, we analyzed the effects of cerebrospinal fluid (CSF) samples from AD and non-AD patients (other neurodegenerative pathologies). Treatment with CSF from AD patients showed a loss of neurofilaments and spheroids, suggesting the presence of elements including CX3CL1 (soluble form), destabilizing the neurofilaments, cellular adhesion processes, and intercellular contacts. The NAM co-cultures were analyzed in immunofluorescence assays for several markers related to AD, such as through zymography, where the expression of proteolytic enzymes was quantified both in cell extracts and the co-cultures' conditioned medium (CM). Through qRT-PCR assays, several genes involved in the formation of β-amyloid plaque, in phosphorylation of tau, and in inflammation pathways and MMP expression were investigated.
Collapse
Affiliation(s)
- Matilda Iemmolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, 90123 Palermo, Italy
| | - Giulia Bivona
- Department of Biomedicine Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Tommaso Piccoli
- Department of Laboratory Medicine, University Hospital "P. Giaccone", 90127 Palermo, Italy
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), 90146 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, 90123 Palermo, Italy
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, 90123 Palermo, Italy
| | - Fabrizio Di Pietra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, 90123 Palermo, Italy
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, 90123 Palermo, Italy
| |
Collapse
|
15
|
Balit T, Thonabulsombat C, Dharmasaroja P. Moringa oleifera leaf extract suppresses TIMM23 and NDUFS3 expression and alleviates oxidative stress induced by Aβ1-42 in neuronal cells via activation of Akt. Res Pharm Sci 2024; 19:105-120. [PMID: 39006971 PMCID: PMC11244708 DOI: 10.4103/1735-5362.394825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/16/2023] [Accepted: 12/04/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Oxidative stress plays an important role in Alzheimer's disease (AD) pathogenesis. Moringa oleifera leaf (MOL) extract has been shown to have antioxidant activities. Here, we studied the antioxidative and anti-apoptotic effects of water-soluble MOL extract in an amyloid beta (Aβ)-induced oxidative stress model of AD. Experimental approach The effect of amyloid beta (Aβ)1-42 and MOL extract on differentiated SH-SY5Y cell viability was assessed by MTT assay. Cells were treated with Aβ1-42, MOL extract, or MOL extract followed by Aβ1-42. The mitochondrial membrane potential (ΔΨm) and the reactive oxygen species (ROS) were evaluated by flow cytometry and dihydroethidium (DHE) assay, respectively. Western blotting was used to assess the expression of mitochondrial proteins TIMM23 and NDUFS3, apoptosis-related proteins Bax, Bcl-2, and cleaved caspase-3 along with fluorescence analysis of caspase-3/7, and Akt phosphorylation. Findings/Results MOL extract pretreatment at 25, 50, and 100 μg/mL prevented ΔΨm reduction. At 100-μg/mL, MOL extract decreased TIMM23 and NDUFS3 proteins and DHE signals in Aβ1-42-treated cells. MOL extract pretreatment (25, 50, and 100 μg/mL) also alleviated the apoptosis indicators, including Bax, caspase-3/7 intensity, and cleaved caspase-3, and increased Bcl-2 levels in Aβ1-42-treated cells, consistent with a reduction in the number of apoptotic cells. The protective effects of MOL extract were possibly mediated through Akt activation, evidenced by increased Akt phosphorylation. Conclusion and implications The neuroprotective effect of MOL extract could be mediated via the activation of Akt, leading to the suppression of oxidative stress and apoptosis in an Aβ1-42 model of AD.
Collapse
Affiliation(s)
- Tatcha Balit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Permphan Dharmasaroja
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| |
Collapse
|
16
|
Singh NK, Singh A, Mayank. Nuclear Factor Kappa B: A Nobel Therapeutic Target of FlavonoidsAgainst Parkinson's Disease. Comb Chem High Throughput Screen 2024; 27:2062-2077. [PMID: 38243959 DOI: 10.2174/0113862073295568240105025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024]
Abstract
Parkinson's disease (PD), the most common brain-related neurodegenerative disorder, is comprised of several pathophysiological mechanisms, such as mitochondrial dysfunction, neuroinflammation, aggregation of misfolded alpha-synuclein, and synaptic loss in the substantia nigra pars compacta region of the midbrain. Misfolded alpha-synuclein, originating from damaged neurons, triggers a series of signaling pathways in both glial and neuronal cells. Activation of such events results in the production and expression of several proinflammatory cytokines via the activation of the nuclear factor κB (NF-κB) signaling pathway. Consequently, this cascade of events worsens the neurodegenerative processes, particularly in conditions, such as PD and synucleinopathies. Microglia, astrocytes, and neurons are just a few of the many cells and tissues that express the NF-κB family of inducible types of transcription factors. The dual role of NF-κB activation can be crucial for neuronal survival, although the classical NF-κB pathway is important for controlling the generation of inflammatory mediators during neuroinflammation. Modulating NF-κB-associated pathways through the selective action of several agents holds promise for mitigating dopaminergic neuronal degeneration and PD. Several naturally occurring compounds in medicinal plants can be an effective treatment option in attenuating PD-associated dopaminergic neuronal loss via selectively modifying the NF-κB-mediated signaling pathways. Recently, flavonoids have gained notable attention from researchers because of their remarkable anti-neuroinflammatory activity and significant antioxidant properties in numerous neurodegenerative disorders, including PD. Several subclasses of flavonoids, including flavones, flavonols, isoflavones, and anthocyanins, have been evaluated for neuroprotective effects against in vitro and in vivo models of PD. In this aspect, the present review highlights the pathological role of NF-κB in the progression of PD and investigates the therapeutic potential of natural flavonoids targeting the NF-κB signaling pathway for the prevention and management of PD-like manifestations with a comprehensive list for further reference. Available facts strongly support that bioactive flavonoids could be considered in food and/or as lead pharmacophores for the treatment of neuroinflammation-mediated PD. Furthermore, natural flavonoids having potent pharmacological properties could be helpful in enhancing the economy of countries that cultivate medicinal plants yielding bioactive flavonoids on a large scale.
Collapse
Affiliation(s)
- Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Mayank
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| |
Collapse
|
17
|
Wang X, Fu X, Luo X, Lai Y, Cai C, Liao Y, Dai Z, Fang S, Fang J. Network Proximity Analysis Deciphers the Pharmacological Mechanism of Osthole against D-Galactose Induced Cognitive Disorder in Rats. Molecules 2023; 29:21. [PMID: 38202603 PMCID: PMC10779601 DOI: 10.3390/molecules29010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Osthole, a natural coumarin found in various medicinal plants, has been previously reported to have neuroprotective effects. However, the specific mechanism by which Osthole alleviates dysmnesia associated with Alzheimer's disease (AD) remains unclear. This study aimed to investigate the neuroprotective properties of Osthole against cognitive impairment in rats induced by D-galactose and elucidate its pharmacological mechanism. The rat model was established by subcutaneously injecting D-galactose at a dose of 150 mg/kg/day for 56 days. The effect of Osthole on cognitive impairment was evaluated by behavior and biochemical analysis. Subsequently, a combination of in silico prediction and experimental validation was performed to verify the network-based predictions, using western blot, Nissl staining, and immunofluorescence. The results demonstrate that Osthole could improve memory dysfunction induced by D-galactose in Sprague Dawley male rats. A network proximity-based approach and integrated pathways analysis highlight two key AD-related pathological processes that may be regulated by Osthole, including neuronal apoptosis, i.e., neuroinflammation. Among them, the pro-apoptotic markers (Bax), anti-apoptotic protein (Bcl-2), the microgliosis (Iba-1), Astro-cytosis (GFAP), and inflammatory cytokines (TNF-R1) were evaluated in both hippocampus and cortex. The results indicated that Osthole significantly ameliorated neuronal apoptosis and neuroinflammation in D-galactose-induced cognitive impairment rats. In conclusion, this study sheds light on the pharmacological mechanism of Osthole in mitigating D-galactose-induced memory impairment and identifies Osthole as a potential drug candidate for AD treatment, targeting multiple signaling pathways through network proximity and integrated pathways analysis.
Collapse
Affiliation(s)
- Xue Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| | - Xiaomei Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| | - Xiurong Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| | - Yiyi Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, College of Engineering, Shantou University, Shantou 515063, China;
| | - Yanfang Liao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| | - Zhao Dai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.W.); (X.F.); (X.L.); (Y.L.); (Y.L.); (Z.D.)
| |
Collapse
|
18
|
Wang Y, Zou J, Wang Y, Wang J, Ji X, Zhang T, Chu Y, Cui R, Zhang G, Shi G, Wu Y, Kang Y. Hydralazine inhibits neuroinflammation and oxidative stress in APP/PS1 mice via TLR4/NF-κB and Nrf2 pathways. Neuropharmacology 2023; 240:109706. [PMID: 37661037 DOI: 10.1016/j.neuropharm.2023.109706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Alzheimer's disease (AD) is a common chronic progressive neurodegenerative disorder, and curative treatment has not been developed. The objective of this study was to investigate the potential effects of hydralazine (Hyd, a hypertension treatment drug) on the development process of AD and its mechanisms. We treated 6-month-old male APP/PS1 mice with Hyd for 5 weeks, measured changes in behavior and pathological status, and analyzed differences in gene expression by RNA sequencing. The results demonstrated that Hyd improved cognitive deficits and decreased amyloid beta protein deposition in the cortex and hippocampus, while RNA sequencing analysis suggested that the regulation of neuroinflammation and energy metabolism might play pivotal roles for Hyd's beneficial effects. Therefore, we further investigated inflammatory response, redox state, and mitochondrial function, as well as the expression of toll-like receptor 4 (TLR4)/nuclear factor Kappa B (NF-κB)-dependent neuroinflammation gene and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant gene in AD mice. The results showed that Hyd reduced the damage of neuroinflammation and oxidative stress, improved mitochondrial dysfunction, downregulated pro-inflammation gene expression, and upregulated antioxidant gene expression. The results in lipopolysaccharide (LPS)-induced BV2 cell model demonstrated that Hyd suppressed pro-inflammatory response via TLR4/NF-κB signaling pathway. In addition, by silencing the Nrf2 gene expression, it was found that Hyd can reduce LPS-induced reactive oxygen species production by activating the Nrf2 signaling pathway. Therefore, administration of Hyd in the early stage of AD might be beneficial in delaying the pathological development of AD via inhibiting neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiayang Zou
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yue Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinyang Wang
- The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yun Chu
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guoliang Zhang
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Geming Shi
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, China.
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
19
|
Zhou JC, Li HL, Zhou Y, Li XT, Yang ZY, Tohda C, Komatsu K, Piao XH, Ge YW. The roles of natural triterpenoid saponins against Alzheimer's disease. Phytother Res 2023; 37:5017-5040. [PMID: 37491018 DOI: 10.1002/ptr.7967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
The aging of the world population and increasing stress levels in life are the major cause of the increased incidence of neurological disorders. Alzheimer's disease (AD) creates a huge burden on the lives and health of individuals and has become a big concern for society. Triterpenoid saponins (TS), representative natural product components, have a wide range of pharmacological bioactivities such as anti-inflammation, antioxidation, antiapoptosis, hormone-like, and gut microbiota regulation. Notably, some natural TS exhibited promising neuroprotective activity that can intervene in AD progress, especially in the early stage. Recently, studies have indicated that TS play a pronounced positive role in the prevention and treatment of AD. This review discusses the recent research on the neuroprotection of TS and proceeds to detail the action mechanisms of TS against AD, hoping to provide a reference for drug development for anti-AD.
Collapse
Affiliation(s)
- Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui-Lin Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xi-Tao Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Chihiro Tohda
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Katsuko Komatsu
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Xiu-Hong Piao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
20
|
Meng WS, Sun J, Lu Y, Cao TT, Chi MY, Gong ZP, Li YT, Zheng L, Liu T, Huang Y. Biancaea decapetala (Roth) O.Deg. extract exerts an anti-inflammatory effect by regulating the TNF/Akt/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154983. [PMID: 37586161 DOI: 10.1016/j.phymed.2023.154983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/13/2023] [Accepted: 07/15/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Biancaea decapetala (Roth) O.Deg. (Fabaceae) is used to treat colds, fever, and rheumatic pain caused by inflammation. However, the mechanism underlying its anti-inflammatory properties remains unclear. PURPOSE This study aimed to evaluate the anti-inflammatory activity of Biancaea decapetala extract (BDE) in vitro and in vivo and explore the possible underlying mechanism and potential targets. METHODS The release of nitric oxide (NO) and inflammatory cytokines in LPS-stimulated RAW264.7 cells and rats were measured using Griess reagent and enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (H&E) staining was employed to examine the pathology of animal tissues. Transcriptome analysis was performed to screen the pathways related to BDE-mediated inhibition of inflammation, and the expression of related proteins was measured using real-time quantitative polymerase chain reaction (RT-qPCR), western blotting, ELISA, and immunofluorescence methods. Surface Plasmon Resonance (SPR) and the Drug Affinity Reaction Target Stability (DARTS) method were used to verify whether BDE binds to TNF-α target protein, while a L929 cell model and NF-κB gene reporter systematic method were used to investigate the inhibitory effect of BDE on the activity of TNF-α protein. RESULTS BDE inhibited the expression of TNF-α, IL-1β, IL-6, and NO in RAW264.7 cells and rats, and improved the pathological changes in lung tissue. RNA-seq showed that BDE may regulate the TNF/Akt/NF-κB pathway to inhibit inflammation onset. BDE significantly downregulated the mRNA expression of TNF-α, IL-6, IL-1β, and that of relevant proteins, including TNF-α, p-p65, p-Akt, p-IκBα. Furthermore, BDE inhibited the nuclear translocation of NF-κB (p65) and the activation of the Akt pathway by SC79. The L929 cell model, luciferase reporter gene analysis, DARTS, and SPR experiments showed that BDE may bind to TNF-α and inhibit the TNF-α-NF-κB pathway. CONCLUSION BDE may target TNF-α to inhibit the TNF/Akt/NF-κB pathway, thereby attenuating inflammation. These findings reveal the anti-inflammatory effects and mechanisms of BDE and provide a theoretical basis for the further development and utilization of BDE.
Collapse
Affiliation(s)
- Wen-Sha Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, PR China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China
| | - Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China
| | - Tao-Tao Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, PR China
| | - Ming-Yan Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China
| | - Zi-Peng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China
| | - Yue-Ting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China.
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China.
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China.
| |
Collapse
|
21
|
Tan TYC, Lim XY, Norahmad NA, Chanthira Kumar H, Teh BP, Lai NM, Syed Mohamed AF. Neurological Applications of Celery ( Apium graveolens): A Scoping Review. Molecules 2023; 28:5824. [PMID: 37570794 PMCID: PMC10420906 DOI: 10.3390/molecules28155824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Apium graveolens is an indigenous plant in the family Apiaceae, or Umbelliferae, that contains many active compounds. It has been used traditionally to treat arthritic conditions, gout, and urinary infections. The authors conducted a scoping review to assess the quality of available evidence on the overall effects of celery when treating neurological disorders. A systematic search was performed using predetermined keywords in selected electronic databases. The 26 articles included upon screening consisted of 19 in vivo studies, 1 published clinical trial, 4 in vitro studies and 2 studies comprising both in vivo and in vitro methods. A. graveolens and its bioactive phytoconstituent, 3-n-butylphthalide (NBP), have demonstrated their effect on neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke-related neurological complications, depression, diabetes-related neurological complications, and epilepsy. The safety findings were minimal, showing that NBP is safe for up to 18 weeks at 15 mg/kg in animal studies, while there were adverse effects (7%) reported when consuming NBP for 24 weeks at 600 mg daily in human trials. In conclusion, the safety of A. graveolens extract and NBP can be further investigated clinically on different neurological disorders based on their potential role in different targeted pathways.
Collapse
Affiliation(s)
- Terence Yew Chin Tan
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health, Shah Alam 40170, Malaysia
| | - Xin Yi Lim
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health, Shah Alam 40170, Malaysia
| | - Nor Azrina Norahmad
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health, Shah Alam 40170, Malaysia
| | - Hemahwathy Chanthira Kumar
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health, Shah Alam 40170, Malaysia
| | - Bee Ping Teh
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health, Shah Alam 40170, Malaysia
| | - Nai Ming Lai
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
- School of Medicine, Taylor’s University, Subang Jaya 47100, Malaysia
| | - Ami Fazlin Syed Mohamed
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health, Shah Alam 40170, Malaysia
| |
Collapse
|
22
|
Jiang H, Qiu J, Deng X, Li D, Tao T. Potential active compounds and common mechanisms of Evodia rutaecarpa for Alzheimer's disease comorbid pain by network pharmacology analysis. Heliyon 2023; 9:e18455. [PMID: 37529338 PMCID: PMC10388172 DOI: 10.1016/j.heliyon.2023.e18455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
Evodia rutaecarpa (Evodia) is a Chinese herbal medicine with analgesic and anti-neurodegenerative properties. However, whether Evodia compounds can be applied for the comorbid pain of Alzheimer's disease (AD) and the underlying mechanisms remain unclear. Herein, 137 common targets of Evodia between AD and pain were predicted from drug and disease target databases. Subsequently, protein-protein interaction (PPI) network, protein function module construction, and bioinformatics analyses were used to analyze the potential relationship among targets, pathways, and diseases. Evodia could simultaneously treat AD comorbid pain through multi-target, multi-component, and multi-pathway mechanisms, and inflammation was an important common phenotype of AD and pain. The relationship between important transcription factors such as RELA, NF-κB1, SP1, STAT3, and JUN on IL-17, TNF, and MAPK signaling pathways might be potential mechanisms of Evodia. Additionally, 10 candidate compounds were predicted, and evodiamine might be the effective active ingredient of Evodia in treating AD or pain. In summary, this study provided a reference for subsequent research and a novel understanding and direction for the clinical use of evodiamine to treat AD patients with comorbid pain.
Collapse
Affiliation(s)
- Huiyi Jiang
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Jiamin Qiu
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Xin Deng
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Danping Li
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Tao Tao
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Department of Anesthesiology, Zhujiang hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
23
|
Rahman SO, Khan T, Iqubal A, Agarwal S, Akhtar M, Parvez S, Shah ZA, Najmi AK. Association between insulin and Nrf2 signalling pathway in Alzheimer's disease: A molecular landscape. Life Sci 2023:121899. [PMID: 37394097 DOI: 10.1016/j.lfs.2023.121899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Insulin, a well-known hormone, has been implicated as a regulator of blood glucose levels for almost a century now. Over the past few decades, the non-glycemic actions of insulin i.e. neuronal growth and proliferation have been extensively studied. In 2005, Dr. Suzanne de La Monte and her team reported that insulin might be involved in the pathogenesis of Alzheimer's Disease (AD) and thus coined a term "Type-3 diabetes" This hypothesis was supported by several subsequent studies. The nuclear factor erythroid 2- related factor 2 (Nrf2) triggers a cascade of events under the regulation of distinct mechanisms including protein stability, phosphorylation and nuclear cytoplasmic shuttling, finally leading to the protection against oxidative damage. The Nrf2 pathway has been investigated extensively in relevance to neurodegenerative disorders, particularly AD. Many studies have indicated a strong correlation between insulin and Nrf2 signalling pathways both in the periphery and the brainbut merely few of them have focused on elucidating their inter-connective role in AD. The present review emphasizes key molecular pathways that correlate the role of insulin with Nrf2 during AD. The review has also identified key unexplored areas that could be investigated in future to further establish the insulin and Nrf2 influence in AD.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tahira Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shivani Agarwal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Neurobehavioral Pharmacology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Zahoor Ahmad Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
24
|
Barmpagiannos K, Theotokis P, Petratos S, Pagnin M, Einstein O, Kesidou E, Boziki M, Artemiadis A, Bakirtzis C, Grigoriadis N. The Diversity of Astrocyte Activation during Multiple Sclerosis: Potential Cellular Targets for Novel Disease Modifying Therapeutics. Healthcare (Basel) 2023; 11:healthcare11111585. [PMID: 37297725 DOI: 10.3390/healthcare11111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Neuroglial cells, and especially astrocytes, constitute the most varied group of central nervous system (CNS) cells, displaying substantial diversity and plasticity during development and in disease states. The morphological changes exhibited by astrocytes during the acute and chronic stages following CNS injury can be characterized more precisely as a dynamic continuum of astrocytic reactivity. Different subpopulations of reactive astrocytes may be ascribed to stages of degenerative progression through their direct pathogenic influence upon neurons, neuroglia, the blood-brain barrier, and infiltrating immune cells. Multiple sclerosis (MS) constitutes an autoimmune demyelinating disease of the CNS. Despite the previously held notion that reactive astrocytes purely form the structured glial scar in MS plaques, their continued multifaceted participation in neuroinflammatory outcomes and oligodendrocyte and neuronal function during chronicity, suggest that they may be an integral cell type that can govern the pathophysiology of MS. From a therapeutic-oriented perspective, astrocytes could serve as key players to limit MS progression, once the integral astrocyte-MS relationship is accurately identified. This review aims toward delineating the current knowledge, which is mainly focused on immunomodulatory therapies of the relapsing-remitting form, while shedding light on uncharted approaches of astrocyte-specific therapies that could constitute novel, innovative applications once the role of specific subgroups in disease pathogenesis is clarified.
Collapse
Affiliation(s)
- Konstantinos Barmpagiannos
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | | | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| |
Collapse
|
25
|
Fan M, Wang C, Zhao X, Jiang Y, Wang C. Parthenolide alleviates microglia-mediated neuroinflammation via MAPK/TRIM31/NLRP3 signaling to ameliorate cognitive disorder. Int Immunopharmacol 2023; 120:110287. [PMID: 37182449 DOI: 10.1016/j.intimp.2023.110287] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND PURPOSE Neuroinflammation, mainly mediated by microglia, is involved in the evolution of Alzheimer's disease (AD). Parthenolide (PTL) has diverse pharmacological effects such as anti-inflammatory and antioxidative stress. However, whether PTL can modulate microglia-mediated neuroinflammation to improve cognitive impairment in amyloid precursor protein/presenilin 1 (APP/PS1) mice is unclear. METHODS LPS/IFN-γ-induced BV2 and HMC3 microglia were used for in vitro experiments; the roles of PTL on anti-inflammatory, anti-oxidative, phagocytic activity, and neuroprotection were assessed by inflammatory cytokines assays, dichlorodihydrofluorescein diacetate, phagocytosis, and cell counting kit-8 assays. Western blot and immunofluorescence(IF) were used to examine related molecular mechanisms. In vivo, IF and western blot were applied in LPS-treated wild-type (WT) mice and APP/PS1 mice models. The Morris water maze test was performed to evaluate the effects of PTL on cognitive disorders. RESULTS In vitro, PTL dramatically suppressed proinflammatory cytokines IL-6, IL-1β, and TNF-α release and increased IL-10 levels. Moreover, PTL decreased reactive oxygen species and restored microglial phagocytic activities via the AKT/MAPK/ NF-κB signaling pathway. Importantly, we discovered that PTL obviously enhanced TRIM31 expression and siTRIM31 elevated proinflammatory cytokine levels. Furthermore, we determined that the anti-inflammatory role of PTL was mostly TRIM31/NLRP3 signaling-dependent. In vivo, PTL alleviated microgliosis and astrogliosis in LPS-treated WT and APP/PS1 mice. Additionally, PTL significantly ameliorated memory and learning deficits in cognitive behaviors. CONCLUSIONS PTL improved cognitive and behavioral dysfunction, inhibited neuroinflammation, and showed potent anti-neuroinflammatory activity and neuroprotective effects by improving the MAPK/TRIM31/NLRP3 axis. Our study emphasized the therapeutic potential of PTL for improving cognitive disorders during AD progression.
Collapse
Affiliation(s)
- Mingde Fan
- Department of Neurosurgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Wang
- Department of Neurosurgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xueying Zhao
- Department of Transfusion, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Jiang
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chengwei Wang
- Department of Neurosurgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
26
|
Prasansuklab A, Sukjamnong S, Theerasri A, Hu VW, Sarachana T, Tencomnao T. Transcriptomic analysis of glutamate-induced HT22 neurotoxicity as a model for screening anti-Alzheimer's drugs. Sci Rep 2023; 13:7225. [PMID: 37142620 PMCID: PMC10160028 DOI: 10.1038/s41598-023-34183-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Glutamate-induced neurotoxicity in the HT22 mouse hippocampal neuronal cell line has been recognized as a valuable cell model for the study of neurotoxicity associated with neurodegenerative diseases including Alzheimer's disease (AD). However, the relevance of this cell model for AD pathogenesis and preclinical drug screening remains to be more elucidated. While there is increasing use of this cell model in a number of studies, relatively little is known about its underlying molecular signatures in relation to AD. Here, our RNA sequencing study provides the first transcriptomic and network analyses of HT22 cells following glutamate exposure. Several differentially expressed genes (DEGs) and their relationships specific to AD were identified. Additionally, the usefulness of this cell model as a drug screening system was assessed by determining the expression of those AD-associated DEGs in response to two medicinal plant extracts, Acanthus ebracteatus and Streblus asper, that have been previously shown to be protective in this cell model. In summary, the present study reports newly identified AD-specific molecular signatures in glutamate-injured HT22 cells, suggesting that this cell can be a valuable model system for the screening and evaluation of new anti-AD agents, particularly from natural products.
Collapse
Affiliation(s)
- Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suporn Sukjamnong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Atsadang Theerasri
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Tewarit Sarachana
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
27
|
Iemmolo M, Ghersi G, Bivona G. The Cytokine CX3CL1 and ADAMs/MMPs in Concerted Cross-Talk Influencing Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24098026. [PMID: 37175729 PMCID: PMC10179166 DOI: 10.3390/ijms24098026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Neuroinflammation plays a fundamental role in the development and progression of neurodegenerative diseases. It could therefore be said that neuroinflammation in neurodegenerative pathologies is not a consequence but a cause of them and could represent a therapeutic target of neuronal degeneration. CX3CL1 and several proteases (ADAMs/MMPs) are strongly involved in the inflammatory pathways of these neurodegenerative pathologies with multiple effects. On the one hand, ADAMs have neuroprotective and anti-apoptotic effects; on the other hand, they target cytokines and chemokines, thus causing inflammatory processes and, consequently, neurodegeneration. CX3CL1 itself is a cytokine substrate for the ADAM, ADAM17, which cleaves and releases it in a soluble isoform (sCX3CL1). CX3CL1, as an adhesion molecule, on the one hand, plays an inhibiting role in the pro-inflammatory response in the central nervous system (CNS) and shows neuroprotective effects by binding its membrane receptor (CX3CR1) present into microglia cells and maintaining them in a quiescent state; on the other hand, the sCX3CL1 isoform seems to promote neurodegeneration. In this review, the dual roles of CX3CL1 and ADAMs/MMPs in different neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (MH), and multiple sclerosis (MS), are investigated.
Collapse
Affiliation(s)
- Matilda Iemmolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
28
|
Liu Y, Zhang Q, Zou M, Cui J, Shi X, Li L, Wu F, Xu X. Cell entry of Bovine herpesvirus-1 through clathrin- and caveolin-mediated endocytosis requires activation of PI3K-Akt-NF-κB and Ras-p38 MAPK pathways as well as the interaction of BoHV-1 gD with cellular receptor nectin-1. Vet Microbiol 2023; 279:109672. [PMID: 36774841 DOI: 10.1016/j.vetmic.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Bovine herpesvirus-1 (BoHV-1) can infect all breeds of cattle and cause severe respiratory organs and genital tract diseases. However, the mechanism of BoHV-1 entering the cells remains unclear. In this study, we explored the mechanism of BoHV-1 entering MDBK cells. We found that the entry of BoHV-1 was blocked by NH4Cl and bafilomycin A1, indicating that BoHV-1 entry is dependent on the acidic environment of endosome. Specific inhibitor dynasore and small interfering RNA (siRNA) knockdown of dynamin-2 inhibited BoHV-1 entry, showing that dynamin is required in BoHV-1 entry. The results of specific inhibitor, siRNA knockdown and co-localization indicating clathrin- and caveolin- mediated endocytosis play a role in BoHV-1 entry. BoHV-1 infection was not affected by EIPA which is a specific inhibitor of macropinocytosis. In addition, we found that BoHV-1 triggered PI3K-Akt-NF-κB and Ras-p38 MAPK signaling pathways to induce clathrin-mediated and caveolin-mediated endocytosis at the early stage of BoHV-1 infection. BoHV-1 binding was sufficient to activate the endocytic signaling pathways and promote viral entry. These two signaling pathways were activated by transfection of viral gD protein, and were inhibited by deletion of viral gD protein and the siRNA knockdown of cellular receptor nectin-1. The results of co-localization indicating the entered BoHV-1 is traced to late endosomes via early endosomes. Our results suggested the interaction of viral gD protein and cellular receptor nectin-1 triggered the PI3K-Akt-NF-κB and Ras-p38 MAPK signaling pathways and induced clathrin-mediated and caveolin-mediated endocytosis to promote BoHV-1 entry into MDBK cells at the early stage of BoHV-1 infection.
Collapse
Affiliation(s)
- Yang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biosafety Risk Warning and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health And Epidemiology Center, Qingdao, Shandong 266032, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Zou
- State Key Laboratory of Animal Genetical Engineered Vaccine of Ministry of Science and Technology, Qingdao YeBio Biological Engineering Company Limited, Qingdao, Shandong 266110, China
| | - Jin Cui
- Key Laboratory of Animal Biosafety Risk Warning and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health And Epidemiology Center, Qingdao, Shandong 266032, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linjie Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Warning and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health And Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
29
|
Al-Kuraishy HM, Al-Gareeb AI, Alsayegh AA, Hakami ZH, Khamjan NA, Saad HM, Batiha GES, De Waard M. A Potential Link Between Visceral Obesity and Risk of Alzheimer's Disease. Neurochem Res 2023; 48:745-766. [PMID: 36409447 DOI: 10.1007/s11064-022-03817-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia characterized by the deposition of amyloid beta (Aβ) plaques and tau-neurofibrillary tangles in the brain. Visceral obesity (VO) is usually associated with low-grade inflammation due to higher expression of pro-inflammatory cytokines by adipose tissue. The objective of the present review was to evaluate the potential link between VO and the development of AD. Tissue hypoxia in obesity promotes tissue injury, production of adipocytokines, and release of pro-inflammatory cytokines leading to an oxidative-inflammatory loop with induction of insulin resistance. Importantly, brain insulin signaling is involved in the pathogenesis of AD and lower cognitive function. Obesity and enlargement of visceral adipose tissue are associated with the deposition of Aβ. All of this is consonant with VO increasing the risk of AD through the dysregulation of adipocytokines which affect the development of AD. The activated nuclear factor kappa B (NF-κB) pathway in VO might be a potential link in the development of AD. Likewise, the higher concentration of advanced glycation end-products in VO could be implicated in the pathogenesis of AD. Taken together, different inflammatory signaling pathways are activated in VO that all have a negative impact on the cognitive function and progression of AD except hypoxia-inducible factor 1 which has beneficial and neuroprotective effects in mitigating the progression of AD. In addition, VO-mediated hypoadiponectinemia and leptin resistance may promote the progression of Aβ formation and tau phosphorylation with the development of AD. In conclusion, VO-induced AD is mainly mediated through the induction of oxidative stress, inflammatory changes, leptin resistance, and hypoadiponectinemia that collectively trigger Aβ formation and neuroinflammation. Thus, early recognition of VO by visceral adiposity index with appropriate management could be a preventive measure against the development of AD in patients with VO.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Zaki H Hakami
- Medical Laboratory Technology Department Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120, Saint-Egrève, France.,L'institut du thorax, INSERM, CNRS, UNIV NANTES, 44007, Nantes, France.,LabEx «Ion Channels, Science & Therapeutics», Université de Nice Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
30
|
Yang SY, Lin ZX, Xian YF, Zhang HM, Xu HX. Traditional uses, chemical compounds, pharmacological activities and clinical studies on the traditional Chinese prescription Yi-Gan San. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115859. [PMID: 36280017 DOI: 10.1016/j.jep.2022.115859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A widely used traditional prescription, Yi-Gan San (YGS) is a remedy for neurodegenerative disorders. The formulation consists of seven Chinese medicinal materials in specific proportions, namely Uncariae Ramulus cum Uncis (Uncaria rhynchophylla (Miq.) Miq. ex Havil.), Bupleuri Radix (Bupleurum chinense DC.), Angelicae Sinensis Radix (Angelica sinensis (Oliv.) Diels), Chuanxiong Rhizoma (Ligusticum wallichii Franch.), Poria (Poria cocos (Schw.) Wolf), Atractylodis Macrocephalae Rhizoma (Atractylodes macrocephala Koidz.) and Glycyrrhizae Radix et Rhizoma (Glycyrrhiza uralensis Fisch.). Using YGS has been shown to alleviate various behavioural and psychological symptoms of dementia (BPSD). AIM OF THIS REVIEW The goal of this review is to give up-to-date information about the traditional uses, chemistry, pharmacology and clinical efficacy of YGS based on the scientific literature and to learn the current focus and provide references in the next step. MATERIALS AND METHODS The database search room was accessed using the search terms "Yi-Gan San" and "Yokukansan" to obtain results from resources such as Web of Science, PubMed, Google Scholar and Sci Finder Scholar. We not only consulted the literature of fellow authors for this review but also explored classical medical books. RESULTS YGS has been used to cure neurosis, sleeplessness, night weeping and restlessness in infants. Its chemical components primarily consist of triterpenes, flavonoids, phenolics, lactones, alkaloids and other types of compounds. These active ingredients displayed diverse pharmacological activities to ameliorate BPSD by regulating serotonergic, glutamatergic, cholinergic, dopaminergic, adrenergic, and GABAergic neurotransmission. In addition, YGS showed neuroprotective, antistress, and anti-inflammatory effects. The majority of cases of neurodegenerative disorders are treated with YGS, including Alzheimer's disease and dementia with Lewy bodies. CONCLUSIONS Based on previous studies, YGS has been used as a traditional prescription in East Asia, such as Japan, Korea and China, and it has diverse chemical compounds and multiple pharmacological activities. Nevertheless, few experimental studies have focused on chemical and quantitative YGS studies, suggesting that further comprehensive research on its chemicals and quality assessments is critical for future evaluations of drug efficacy.
Collapse
Affiliation(s)
- Si-Yu Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Hong-Mei Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
31
|
Gudkov SV, Burmistrov DE, Kondakova EV, Sarimov RM, Yarkov RS, Franceschi C, Vedunova MV. An emerging role of astrocytes in aging/neuroinflammation and gut-brain axis with consequences on sleep and sleep disorders. Ageing Res Rev 2023; 83:101775. [PMID: 36334910 DOI: 10.1016/j.arr.2022.101775] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022]
Abstract
Understanding the role of astrocytes in the central nervous system has changed dramatically over the last decade. The accumulating findings indicate that glial cells are involved not only in the maintenance of metabolic and ionic homeostasis and in the implementation of trophic functions but also in cognitive functions and information processing in the brain. Currently, there are some controversies regarding the role of astrocytes in complex processes such as aging of the nervous system and the pathogenesis of age-related neurodegenerative diseases. Many findings confirm the important functional role of astrocytes in age-related brain changes, including sleep disturbance and the development of neurodegenerative diseases and particularly Alzheimer's disease. Until recent years, neurobiological research has focused mainly on neuron-glial interactions, in which individual astrocytes locally modulate neuronal activity and communication between neurons. The review considers the role of astrocytes in the physiology of sleep and as an important "player" in the development of neurodegenerative diseases. In addition, the features of the astrocytic network reorganization during aging are discussed.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Dmitriy E Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| | - Elena V Kondakova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Ruslan M Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| | - Roman S Yarkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Maria V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| |
Collapse
|
32
|
Kim SH, Lim KH, Yang S, Joo JY. Boosting of tau protein aggregation by CD40 and CD48 gene expression in Alzheimer's disease. FASEB J 2023; 37:e22702. [PMID: 36520044 DOI: 10.1096/fj.202201197r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/09/2022] [Accepted: 11/28/2022] [Indexed: 12/16/2022]
Abstract
Neurodegenerative diseases result from the interplay of abnormal gene expression and various pathological factors. Therefore, a disease-specific integrative genetic approach is required to understand the complexities and causes of target diseases. Recent studies have identified the correlation between genes encoding several transmembrane proteins, such as the cluster of differentiation (CD) and Alzheimer's disease (AD) pathogenesis. In this study, CD48 and CD40 gene expression in AD, a neurodegenerative disease, was analyzed to infer this link. Total RNA sequencing was performed using an Alzheimer's disease mouse model brain and blood, and gene expression was determined using a genome-wide association study (GWAS). We observed a marked elevation of CD48 and CD40 genes in Alzheimer's disease. Indeed, the upregulation of both CD48 and CD40 genes was significantly increased in the severe Alzheimer's disease group. With the elevation of CD48 and CD40 genes in Alzheimer's disease, associations of protein levels were also markedly increased in tissues. In addition, overexpression of CD48 and CD40 genes triggered tau aggregation, and co-expression of these genes accelerated aggregation. The nuclear factor kappa B (NF-ĸB) signaling pathway was enriched by CD48 and CD40 gene expression: it was also associated with tau pathology. Our data suggested that the CD48 and CD40 genes are novel AD-related genes, and this approach may be useful as a diagnostic or therapeutic target for the disease.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Key-Hwan Lim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.,Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
33
|
Rodríguez-Giraldo M, González-Reyes RE, Ramírez-Guerrero S, Bonilla-Trilleras CE, Guardo-Maya S, Nava-Mesa MO. Astrocytes as a Therapeutic Target in Alzheimer's Disease-Comprehensive Review and Recent Developments. Int J Mol Sci 2022; 23:13630. [PMID: 36362415 PMCID: PMC9654484 DOI: 10.3390/ijms232113630] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/20/2023] Open
Abstract
Alzheimer's disease (AD) is a frequent and disabling neurodegenerative disorder, in which astrocytes participate in several pathophysiological processes including neuroinflammation, excitotoxicity, oxidative stress and lipid metabolism (along with a critical role in apolipoprotein E function). Current evidence shows that astrocytes have both neuroprotective and neurotoxic effects depending on the disease stage and microenvironmental factors. Furthermore, astrocytes appear to be affected by the presence of amyloid-beta (Aβ), with alterations in calcium levels, gliotransmission and proinflammatory activity via RAGE-NF-κB pathway. In addition, astrocytes play an important role in the metabolism of tau and clearance of Aβ through the glymphatic system. In this review, we will discuss novel pharmacological and non-pharmacological treatments focused on astrocytes as therapeutic targets for AD. These interventions include effects on anti-inflammatory/antioxidant systems, glutamate activity, lipid metabolism, neurovascular coupling and glymphatic system, calcium dysregulation, and in the release of peptides which affects glial and neuronal function. According to the AD stage, these therapies may be of benefit in either preventing or delaying the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia
| |
Collapse
|
34
|
Wang S, Yang XX, Li TJ, Zhao L, Bao YR, Meng XS. Analysis of the absorbed constituents and mechanism of liquidambaris fructus extract on hepatocellular carcinoma. Front Pharmacol 2022; 13:999935. [PMID: 36110518 PMCID: PMC9468745 DOI: 10.3389/fphar.2022.999935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) refers to one of the top 10 cancers in terms of morbidity and mortality globally, seriously influencing people’s lives. First recorded in Compendium of Materia Medica, liquidambaris fructus (LF) generates definite anti-liver tumor effect. However, its effective substances and mechanism remain to be elucidated.Methods: Serum pharmacochemistry and UPLC-QTOF-MS technologies were employed to explore the plasma of rats after intragastric administration of liquidambaris fructus extract (LFE) in order to find the active ingredients. Subsequently, DEN-induced rat liver cancer model was established with the purpose of investigating the anti-tumor activity of LFE from physiological, pathological and biochemical aspects. Finally, non-target metabonomics combined with q-PCR and Western blot methods were adopted for revealing the mechanism.Results: Totally 11 prototype blood transfused ingredients, including imperatorin and phellopterin were detected. LFE presents excellent impact on enhancing the quality of life, prolonging the life cycle, reducing inflammatory reaction, protecting hepatocytes, improving body immunity and killing liver tumor cells. Altogether 82 endogenous differential metabolites were found in metabonomics, suggesting that LFE can treat HCC by acting on key targets of PTEN/PI3K/Akt pathway and fatty acid metabolism. Further research also verified that LFE can upregulate the relative expression levels of PTEN, PDCD4, Caspase 9, Caspase 3, Bax and Bad as well as lower the relative expression levels of PI3K, AKT, VEGFA and Bcl-2.Conclusion: This study revealed the pharmacodynamic material basis of LFE in the treatment of HCC, and from the perspective of metabolomics proved that the effects of inhibiting the growth of tumor cells, promoting tumor cell apoptosis, reducing inflammatory reaction, protecting hepatocytes, improving the survival state of tumor rats, and prolonging the life cycle are related to its impact on PTEN/PI3K/Akt, fatty acid metabolism and other key signal pathways.
Collapse
Affiliation(s)
- Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-Dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
| | - Xin-Xin Yang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-Dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
| | - Tian-Jiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-Dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
| | - Lin Zhao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-Dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
| | - Yong-Rui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-Dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
- *Correspondence: Yong-Rui Bao, ; Xian-Sheng Meng,
| | - Xian-Sheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-Dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
- *Correspondence: Yong-Rui Bao, ; Xian-Sheng Meng,
| |
Collapse
|
35
|
Goel P, Chakrabarti S, Goel K, Bhutani K, Chopra T, Bali S. Neuronal cell death mechanisms in Alzheimer's disease: An insight. Front Mol Neurosci 2022; 15:937133. [PMID: 36090249 PMCID: PMC9454331 DOI: 10.3389/fnmol.2022.937133] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Regulated cell death (RCD) is an ordered and tightly orchestrated set of changes/signaling events in both gene expression and protein activity and is responsible for normal development as well as maintenance of tissue homeostasis. Aberrant activation of this pathway results in cell death by various mechanisms including apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death. Such pathological changes in neurons alone or in combination have been observed in the pathogenesis of various neurodegenerative diseases including Alzheimer's disease (AD). Pathological hallmarks of AD focus primarily on the accumulation of two main protein markers: amyloid β peptides and abnormally phosphorylated tau proteins. These protein aggregates result in the formation of A-β plaques and neuro-fibrillary tangles (NFTs) and induce neuroinflammation and neurodegeneration over years to decades leading to a multitude of cognitive and behavioral deficits. Autopsy findings of AD reveal massive neuronal death manifested in the form of cortical volume shrinkage, reduction in sizes of gyri to up to 50% and an increase in the sizes of sulci. Multiple forms of cell death have been recorded in neurons from different studies conducted so far. However, understanding the mechanism/s of neuronal cell death in AD patients remains a mystery as the trigger that results in aberrant activation of RCD is unknown and because of the limited availability of dying neurons. This review attempts to elucidate the process of Regulated cell death, how it gets unregulated in response to different intra and extracellular stressors, various forms of unregulated cell death, their interplay and their role in pathogenesis of Alzheimer's Disease in both human and experimental models of AD. Further we plan to explore the correlation of both amyloid-beta and Tau with neuronal loss as seen in AD.
Collapse
Affiliation(s)
- Parul Goel
- Department of Biochemistry, Shri Atal Bihari Vajpayee Government Medical College Chhainsa, Faridabad, India
| | - Sasanka Chakrabarti
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Kapil Goel
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Karanpreet Bhutani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Tanya Chopra
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Sharadendu Bali
- Department of Surgery, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| |
Collapse
|
36
|
Wang G, Wang X, Zheng X, Sun S, Zhao J, Long Y, Mao Y. Acidic oligosaccharide sugar chain combined with hyperbaric oxygen delays D-galactose-induced brain senescence in mice via attenuating oxidative stress and neuroinflammation. Neurosci Res 2022; 185:40-48. [PMID: 35970311 DOI: 10.1016/j.neures.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Aging is fundamental to neurodegeneration and dementia. Preventing oxidative stress and neuroinflammation are potential methods of delaying the onset of aging-associated neurodegenerative diseases. The acidic oligosaccharide sugar chain (AOSC) and hyperbaric oxygen (HBO) can increase the expression of antioxidants and have a neuroprotective function. In this study, we investigate the ability of AOSC, HBO, and AOSC + HBO to prevent D-gal-induced brain senescence. The Morris water maze and Y-maze test results showed that all three therapies significantly attenuated D-gal-induced memory disorders. A potential mechanism of this action was decreasing elevated levels of oxidative stress and neuroinflammation. The western blot and morphological results showed that all three therapies decreased D-gal-induced neuroinflammation and downregulated inflammatory mediators including the nuclear factor κ-light-chain-enhancer of activated B cells, cyclooxygenase-2, interleukin-1β, and tumor necrosis factor alpha. Taken together, our results indicated that AOSC, HBO, and AOSC + HBO therapies attenuated D-gal-induced brain aging in mice by repressing RAGE/NF-KB-induced inflammation, the activation of astrocytes and microglia, and a decrease in neuronal degeneration. These could be useful therapies for treating age-related neurodegenerative diseases such as Alzheimer's disease. Furthermore, HBO combined with AOSC had a better effect than HBO or AOSC alone.
Collapse
Affiliation(s)
- Guimei Wang
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaolin Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaoyue Zheng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shuqin Sun
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jing Zhao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ying Long
- Department of Hyperbaric Oxygen, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yongjun Mao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
37
|
Needham H, Torpey G, Flores CC, Davis CJ, Vanderheyden WM, Gerstner JR. A Dichotomous Role for FABP7 in Sleep and Alzheimer's Disease Pathogenesis: A Hypothesis. Front Neurosci 2022; 16:798994. [PMID: 35844236 PMCID: PMC9280343 DOI: 10.3389/fnins.2022.798994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty acid binding proteins (FABPs) are a family of intracellular lipid chaperone proteins known to play critical roles in the regulation of fatty acid uptake and transport as well as gene expression. Brain-type fatty acid binding protein (FABP7) is enriched in astrocytes and has been implicated in sleep/wake regulation and neurodegenerative diseases; however, the precise mechanisms underlying the role of FABP7 in these biological processes remain unclear. FABP7 binds to both arachidonic acid (AA) and docosahexaenoic acid (DHA), resulting in discrete physiological responses. Here, we propose a dichotomous role for FABP7 in which ligand type determines the subcellular translocation of fatty acids, either promoting wakefulness aligned with Alzheimer's pathogenesis or promoting sleep with concomitant activation of anti-inflammatory pathways and neuroprotection. We hypothesize that FABP7-mediated translocation of AA to the endoplasmic reticulum of astrocytes increases astrogliosis, impedes glutamatergic uptake, and enhances wakefulness and inflammatory pathways via COX-2 dependent generation of pro-inflammatory prostaglandins. Conversely, we propose that FABP7-mediated translocation of DHA to the nucleus stabilizes astrocyte-neuron lactate shuttle dynamics, preserves glutamatergic uptake, and promotes sleep by activating anti-inflammatory pathways through the peroxisome proliferator-activated receptor-γ transcriptional cascade. Importantly, this model generates several testable hypotheses applicable to other neurodegenerative diseases, including amyotrophic lateral sclerosis and Parkinson's disease.
Collapse
Affiliation(s)
- Hope Needham
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Grace Torpey
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - William M. Vanderheyden
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
38
|
Zhao ZH, Xu M, Fu C, Huang Y, Wang TH, Zuo ZF, Liu XZ. A Mechanistic Exploratory Study on the Therapeutic Efficacy of Astragaloside IV Against Diabetic Retinopathy Revealed by Network Pharmacology. Front Pharmacol 2022; 13:903485. [PMID: 35814228 PMCID: PMC9257082 DOI: 10.3389/fphar.2022.903485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose: Diabetic retinopathy (DR) is a serious complication of diabetes mellitus, which nearly happens to all the diabetic sufferers. This study aims to identify the preliminary molecular regulation involved in the therapeutic efficacy of astragaloside IV (AS- IV) for DR. Methods: Diabetic rat models were established and treated with AS-IV. Optical coherence tomography (OCT) and Hematoxylin-eosin (HE) staining was employed to demonstrate the histopathological changes. The main targets of AS-IV were identified by searching from public databases of traditional Chinese medicine (GeneCards, PharmMapper and Swiss Target Prediction). Besides, disease targets of DR were also obtained by integrated data from GEO datasets and predicted from public databases. Protein-protein interaction (PPI) network was constructed by Cytoscape with overlapping genes and 10 core targets were selected, on which Gene Ontology (GO) along with Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted. The interaction between AS-IV and these crucial genes were analyzed using molecular docking. RT-qPCR and western blot were used to verify the expression variation of core targets. Results: OCT imaging and HE staining demonstrated that AS-IV administration significantly increased retinal thickness in diabetic rats, obviously alleviating DR induced histopathological changes as well as elevated blood glucose levels. 107 common targets of AS-IV and DR were determined after intersection. PPI network analysis filtered 10 hub genes potentially targeted by AS-IV, including VEGFA, CASP3, HIF1α, STAT3, CTNNB1, SRC, AKT1, EGFR, IL1β and IL6. Enrichment analysis indicated that these genes were mainly enriched in biological processes like T cell activation, epithelial cell proliferation and protein kinase B signaling, and involved in oxidative stress, apoptosis and inflammation-related pathways. The molecular docking prediction suggested that AS-IV exhibited stable binding to these core targets. In addition, mRNA levels of core targets in diabetic rats were differentially expressed before and after AS-IV treatment. Western blot further revealed that AS-IV treatment elevated DR-depressed protein levels of PI3K and AKT. Conclusion: Our study elucidated the effect of AS-IV in attenuating retinopathy induced by diabetes in rats and preliminarily unveiled the therapeutic efficacy of AS-IV in the treatment of DR might be attributed to activation of PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Zhi-Hao Zhao
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Min Xu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Cong Fu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Ying Huang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Ting-Hua Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Institute of Neuroscience, Laboratory Animal Department, Kunming Medical University, Kunming, China
- *Correspondence: Ting-Hua Wang, ; Zhong-Fu Zuo, ; Xue-Zheng Liu,
| | - Zhong-Fu Zuo
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- *Correspondence: Ting-Hua Wang, ; Zhong-Fu Zuo, ; Xue-Zheng Liu,
| | - Xue-Zheng Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- *Correspondence: Ting-Hua Wang, ; Zhong-Fu Zuo, ; Xue-Zheng Liu,
| |
Collapse
|
39
|
Uddin MS, Lim LW. Glial cells in Alzheimer's disease: From neuropathological changes to therapeutic implications. Ageing Res Rev 2022; 78:101622. [PMID: 35427810 DOI: 10.1016/j.arr.2022.101622] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that usually develops slowly and progressively worsens over time. Although there has been increasing research interest in AD, its pathogenesis is still not well understood. Although most studies primarily focus on neurons, recent research findings suggest that glial cells (especially microglia and astrocytes) are associated with AD pathogenesis and might provide various possible therapeutic targets. Growing evidence suggests that microglia can provide protection against AD pathogenesis, as microglia with weakened functions and impaired responses to Aβ proteins are linked with elevated AD risk. Interestingly, numerous findings also suggest that microglial activation can be detrimental to neurons. Indeed, microglia can induce synapse loss via the engulfment of synapses, possibly through a complement-dependent process. Furthermore, they can worsen tau pathology and release inflammatory factors that cause neuronal damage directly or through the activation of neurotoxic astrocytes. Astrocytes play a significant role in various cerebral activities. Their impairment can mediate neurodegeneration and ultimately the retraction of synapses, resulting in AD-related cognitive deficits. Deposition of Aβ can result in astrocyte reactivity, which can further lead to neurotoxic effects and elevated secretion of inflammatory mediators and cytokines. Moreover, glial-induced inflammation in AD can exert both beneficial and harmful effects. Understanding the activities of astrocytes and microglia in the regulation of AD pathogenesis would facilitate the development of novel therapies. In this article, we address the implications of microglia and astrocytes in AD pathogenesis. We also discuss the mechanisms of therapeutic agents that exhibit anti-inflammatory effects against AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
40
|
The Neuroprotection of Verbascoside in Alzheimer’s Disease Mediated through Mitigation of Neuroinflammation via Blocking NF-κB-p65 Signaling. Nutrients 2022; 14:nu14071417. [PMID: 35406030 PMCID: PMC9003273 DOI: 10.3390/nu14071417] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/30/2023] Open
Abstract
Verbascoside (VB) is a phenylethanoid glycoside extracted from the herbaceous plant Verbascum sinuatum and plays a neuroprotective role in Alzheimer’s disease (AD). The goal of this study was to explore the neuroprotective mechanism of VB. Based on the proteomics analysis, immunohistochemistry, immunofluorescence, Western blot, and ELISA were utilized to explore the neuroprotective mechanism of VB in context of neuroinflammation in APP/PS1 mice, LPS-induced BV2 cells, and/or Aβ1-42-stimulated N2a cells. Proteomic analysis demonstrated that the neuroprotection of VB correlated closely to its anti-inflammatory effect. VB significantly blocked microglia and astrocyte against activation in brains of APP/PS1 mice, suppressed the generation of IL-1β as well as IL-6, and boosted that of IL-4, IL-10 and TGF-β in vivo, which were analogous to results acquired in vitro. Furthermore, VB effectively restrained the phosphorylation of IKKα+β, IκBα, and NF-κB-p65 in APP/PS1 mice; LPS-induced BV2 cells, and Aβ1-42-stimulated N2a cells and lowered the tendency of NF-κB-p65 translocation towards nucleus in vitro. These results demonstrate that the neuroprotective effect of VB correlates to the modulation of neuroinflammation via NF-κB-p65 pathway, making VB as a hopeful candidate drug for the prevention and treatment of AD.
Collapse
|
41
|
Khan-Mohammadi-Khorrami MK, Asle-Rousta M, Rahnema M, Amini R. Neuroprotective effect of alpha-pinene is mediated by suppression of the TNF-α/NF-κB pathway in Alzheimer's disease rat model. J Biochem Mol Toxicol 2022; 36:e23006. [PMID: 35174932 DOI: 10.1002/jbt.23006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/19/2021] [Accepted: 01/19/2022] [Indexed: 01/04/2023]
Abstract
Monoterpene alpha-pinene possesses antioxidant, cardioprotective, and neuroprotective properties. We evaluated the effect of alpha-pinene on oxidative/nitrosative stress, neuroinflammation, and molecular and behavioral changes induced by beta-amyloid (Aβ)1-42 in rats and investigated the possible mechanisms of these outcomes. Male Wistar rats received alpha-pinene (50 mg/kg intraperitoneally) for 14 consecutive days after intrahippocampal injection of Aβ1-42 . Alpha-pinene decreased malondialdehyde and nitric oxide levels, increased glutathione content, and enhanced catalase activity in Aβ-injected rats. Also, messenger RNA expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, nuclear factor κB, and N-methyl- d-aspartate receptor subunits 2A and 2B reduced in the hippocampus of these animals. Besides this, alpha-pinene repressed the Aβ1-42 -induced reduction of nicotinic acetylcholine receptor α7 subunit and brain-derived neurotrophic factor expression. Treatment with alpha-pinene caused Aβ-receiving rats to spend more time in the target quadrant in the Morris water maze test and led to an increase in percentages of open arm entrance and time spent in the open arm in the elevated plus-maze test. We concluded that alpha-pinene strengthens the antioxidant system and prevents neuroinflammation in the hippocampus of rats receiving Aβ. It improves spatial learning and memory and reduces anxiety-like behavior in these animals. Consequently, alpha-pinene alleviates Aβ-induced oxidative/nitrosative stress, neuroinflammation, and behavioral deficits. It is probably a suitable candidate for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Mehdi Rahnema
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Rahim Amini
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
42
|
Sharma A, Swetha R, Bajad NG, Ganeshpurkar A, Singh R, Kumar A, Singh SK. Cathepsin B - A Neuronal Death Mediator in Alzheimer’s Disease Leads to Neurodegeneration. Mini Rev Med Chem 2022; 22:2012-2023. [DOI: 10.2174/1389557522666220214095859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
The lysosomal cysteine protease enzyme, named Cathepsin B, mainly degrades the protein and manages its average turnover in our body. The Cathepsin B active form is mostly present inside the lysosomal part at a cellular level, providing the slightly acidic medium for its activation. Multiple findings on Cathepsin B reveal its involvement in neurons' degeneration and a possible role as a neuronal death mediator in several neurodegenerative diseases. In this review article, we highlight the participation of Cathepsin B in the etiology/progress of AD, along with various other factors. The enzyme is involved in producing neurotoxic Aβ amyloid in the AD brain by acting as the β-secretase enzyme in the regulated secretory pathways responsible for APP processing. Aβ amyloid accumulation and amyloid plaque formation lead to neuronal degeneration, one of the prominent pathological hallmarks of AD. Cathepsin B is also involved in the production of PGlu-Aβ, which is a truncated and highly neurotoxic form of Aβ. Some of the findings also revealed that Cathepsin B specific gene deletion decreases the level of PGlu-Aβ inside the brain of experimental mice. Therefore, neurotoxicity might be considered a new pathological indication of AD due to the involvement of Cathepsin B. It also damages neurons present in the CNS region by producing inflammatory responses and generating mitochondrial ROS. However, Cathepsin B inhibitors, i.e., CA-074, can prevent neuronal death in AD patients. The other natural inhibitors are also equally effective against neuronal damage with higher selectivity. Its synthetic inhibitors are specific for their target; however, they lose their selectivity in the presence of quite a few reducing agents. Therefore, a humanized monoclonal antibody is used as a selective Cathepsin B inhibitor to overcome the problem experienced. The use of Cathepsin B for the treatment of AD and other neurodegenerative diseases could be considered a rational therapeutic target.
Collapse
Affiliation(s)
- Anjali Sharma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Rayala Swetha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Nilesh Gajanan Bajad
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ankit Ganeshpurkar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ravi Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
43
|
Chavda V, Singh K, Patel V, Mishra M, Mishra AK. Neuronal Glial Crosstalk: Specific and Shared Mechanisms in Alzheimer’s Disease. Brain Sci 2022; 12:brainsci12010075. [PMID: 35053818 PMCID: PMC8773743 DOI: 10.3390/brainsci12010075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The human brain maintains billions of neurons functional across the lifespan of the individual. The glial, supportive cells of the brain are indispensable to neuron elasticity. They undergo various states (active, reactive, macrophage, primed, resting) and carefully impose either quick repair or the cleaning of injured neurons to avoid damage extension. Identifying the failure of these interactions involving the relation of the input of glial cells to the inception and/or progression of chronic neurodegenerative diseases (ND) is crucial in identifying therapeutic options, given the well-built neuro-immune module of these diseases. In the present review, we scrutinize different interactions and important factors including direct cell–cell contact, intervention by the CD200 system, various receptors present on their surfaces, CXC3RI and TREM2, and chemokines and cytokines with special reference to Alzheimer’s disease (AD). The present review of the available literature will elucidate the contribution of microglia and astrocytes to the pathophysiology of AD, thus evidencing glial cells as obligatory transducers of pathology and superlative targets for interference.
Collapse
Affiliation(s)
- Vishal Chavda
- Division of Anesthesia, Dreamzz IVF Center and Women’s Care Hospital, Ahmedabad 382350, Gujarat, India;
| | - Kavita Singh
- Centre for Translational Research, Jiwaji University, Gwalior 474011, Madhya Pradesh, India;
| | - Vimal Patel
- Department of Pharmaceutics, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Meerambika Mishra
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (M.M.); (A.K.M.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
- Correspondence: (M.M.); (A.K.M.)
| |
Collapse
|
44
|
Kang H, Zhou H, Ye Y, Yang J, Liu Z, He P, Li B, Wu Y, Wang Y, Tu Y. Tieguanyin Oolong Tea Extracts Alleviate Behavioral Abnormalities by Modulating Neuroinflammation in APP/PS1 Mouse Model of Alzheimer's Disease. Foods 2021; 11:81. [PMID: 35010207 PMCID: PMC8750439 DOI: 10.3390/foods11010081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease; tea components have important neuroprotective effects. This article explores the effects and mechanisms of Qingxiang Tiguanyin (Tgy-Q), Nongxiang Tieguanyin (Tgy-N), and Chenxiang Tieguanyin (Tgy-C) extracts on APP/PS1 AD model mice. Morris water maze and new object recognition experiments show that Tieguanyin extracts can effectively enhance the cognitive ability of APP/PS1 mice. H&E staining, Nissl staining, and immunohistochemical staining show that Tieguanyin extracts make nerve cell boundaries and nucleoli become clearer, relieve nucleus pyknosis, and effectively reduce Aβ1-40 and Aβ1-42 in the hippocampus and cortex. They also restore the morphology of microglia and astrocytes. In addition, Tieguanyin extracts can balance the oxidative stress level in the brain of APP/PS1 mice by improving the antioxidant capacity. Western blot results show that Tieguanyin extracts can reduce the expression of NF-κB p65, TNF-α, IL-1β, IL-6, COX-2, and iNOS in mouse brain, which demonstrates that Tieguanyin extracts improves cognitive ability by alleviating inflammation. This article demonstrates for the first time that Tieguanyin extracts can inhibit the excessive activation of the NF-κB p65 signaling pathway and improve the antioxidant capacity in the cerebral cortex and hippocampus, to improve the cognitive ability of APP/PS1 mice. Our results shed light into the beneficial of Tieguanyin tea extracts on preventing and alleviating AD diseases.
Collapse
Affiliation(s)
- Hyunuk Kang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.K.); (H.Z.); (Y.Y.); (Z.L.); (P.H.); (B.L.); (Y.W.)
| | - Hui Zhou
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.K.); (H.Z.); (Y.Y.); (Z.L.); (P.H.); (B.L.); (Y.W.)
| | - Yushan Ye
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.K.); (H.Z.); (Y.Y.); (Z.L.); (P.H.); (B.L.); (Y.W.)
| | - Jiangfan Yang
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhonghua Liu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.K.); (H.Z.); (Y.Y.); (Z.L.); (P.H.); (B.L.); (Y.W.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Puming He
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.K.); (H.Z.); (Y.Y.); (Z.L.); (P.H.); (B.L.); (Y.W.)
| | - Bo Li
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.K.); (H.Z.); (Y.Y.); (Z.L.); (P.H.); (B.L.); (Y.W.)
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.K.); (H.Z.); (Y.Y.); (Z.L.); (P.H.); (B.L.); (Y.W.)
| | - Yaomin Wang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Youying Tu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.K.); (H.Z.); (Y.Y.); (Z.L.); (P.H.); (B.L.); (Y.W.)
| |
Collapse
|
45
|
Simultaneous administration of bromodomain and histone deacetylase I inhibitors alleviates cognition deficit in Alzheimer's model of rats. Brain Res Bull 2021; 179:49-56. [PMID: 34915044 DOI: 10.1016/j.brainresbull.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Histone deacetylases (HDACs) target various genes responsible for cognitive functions. However, chromatin readers, particularly bromodomain-containing protein 4 (BRD4), are capable to change the final products of genes. The objective of this study was to evaluate the simultaneous effects of inhibition of HDACs and BRD4 on spatial and aversive memories impaired by amyloid β (Aβ) in a rat model of Alzheimer's disease (AD) considering CREB and TNF-α signaling. METHODS Forty male Wistar rats aged 3 months were randomly divided into five groups: saline +DMSO, Aβ+saline+DMSO, Aβ+JQ1, Aβ+MS-275, Aβ+JQ1+MS-275, and received the related treatments. MS-275, is the second generation of HDACs inhibitor, and JQ1 is a potent inhibitor of the BET family of bromodomain proteins in mammals. After the treatments, cognitive function was assessed by Morris water maze (MWM) and passive avoidance learning (PAL). The hippocampal level of mRNA for CREB and TNF-α, and also phosphorylated CREB were measured using real-time PCR and western blotting respectively. RESULTS Administration of JQ1 and MS-275, either separately or simultaneously, improved acquisition and retrieval of spatial and aversive memories as it was evident by decreased escape latency and increased time spent in the target quadrant (TTS) in Morris water maze (MWM), together with increase in step-through latency, but reduced time spent in the dark zone time in passive avoidance learning (PAL) compared with Aβ+saline+DMSO. Furthermore, there was a significant rise in the hippocampal level of CREB mRNA and phosphorylated CREB, but a reduction in TNF-α expression in comparison with Aβ + Saline. CONCLUSION Simultaneous administration of JQ1 and MS-275 improves acquisition and retrieval of both spatial and aversive memories partly via CREB and TNF-α signaling with no superiority to monotherapy.
Collapse
|
46
|
Jin S, Wang X, Xiang X, Wu Y, Hu J, Li Y, Lin Dong Y, Tan Y, Wu X. Inhibition of GPR17 with cangrelor improves cognitive impairment and synaptic deficits induced by Aβ 1-42 through Nrf2/HO-1 and NF-κB signaling pathway in mice. Int Immunopharmacol 2021; 101:108335. [PMID: 34781121 DOI: 10.1016/j.intimp.2021.108335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
The accumulation of amyloid beta (Aβ) in the brain is thought to be associated with cognitive deficits in Alzheimer's disease (AD). However, current methods to combat Aβ neurotoxicity are still lacking. G protein-coupled receptor 17 (GPR17) has become a target for treating inflammation in brain diseases, but it is unclear whether it has a role in AD. Here, we investigated the effects of cangrelor, a GPR17 antagonist, on neurotoxicity and memory impairment induced by intracerebroventricular (i.c.v.) injection of Aβ1-42 in mice. The behavior results showed that cangrelor (2.0 or 4.0 μg/mouse, i.c.v.) treatment reversed the deficits in memory and learning ability induced by Aβ1-42 in mice. Importantly, we demonstrated for the first time that GPR17 expression in the hippocampus and frontal cortex is increased in response to Aβ1-42 exposures. We also found that cangrelor treatment reduced the activity of β-secretase 1 (BACE1) and the levels of soluble Aβ1-42 in the hippocampus and frontal cortex. Meanwhile, cangrelor treatment suppressed oxidative stress induced by Aβ1-42, as proved by reduced production of malondialdehyde (MDA), and increased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and promoted the expression of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Furthermore, cangrelor also suppressed Aβ1-42-induced neuroinflammation, characterized by suppressed activation of microglia, decreased the levels of pro-inflammatory cytokines, and nuclear translocation of NF-κB p65, as well as ameliorated synaptic deficits by promoting the upregulation of synaptic proteins, and increasing the number of Golgi-Cox stained dendritic spines. These results suggest that cangrelor may reverse Aβ1-42-induced cognition deficits via inhibiting oxidative stress, neuroinflammation, and synaptic dysfunction mediated by Nrf2/HO-1 and NF-κB signaling.
Collapse
Affiliation(s)
- ShiYu Jin
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xin Wang
- West Anhui Health Vocational College, Luan 237000, China
| | - XiaoTong Xiang
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - YuMei Wu
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Jie Hu
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - YueYue Li
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yue Lin Dong
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - YueQiang Tan
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xian Wu
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
47
|
Mohammadi N, Asle-Rousta M, Rahnema M, Amini R. Morin attenuates memory deficits in a rat model of Alzheimer's disease by ameliorating oxidative stress and neuroinflammation. Eur J Pharmacol 2021; 910:174506. [PMID: 34534533 DOI: 10.1016/j.ejphar.2021.174506] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/25/2021] [Accepted: 09/13/2021] [Indexed: 01/21/2023]
Abstract
This study aimed to investigate the effect of flavonoid morin on oxidative/nitrosative stress, neuroinflammation, and histological, molecular, and behavioral changes caused by amyloid-beta (Aβ)1-42 in male Wistar rats (Alzheimer's disease model). Rats received morin (20 mg/kg, oral gavage) for 14 consecutive days after intrahippocampal injection of Aβ1-42. Morin decreased the levels of malondialdehyde and nitric oxide, increased glutathione content, and enhanced catalase activity in the hippocampus of animals receiving Aβ1-42. It also reduced the expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, nuclear factor-kappa B, and N-methyl-D-aspartate receptor subunits 2A and 2B and increased the expression of brain-derived neurotrophic factor and α7 nicotinic acetylcholine receptor in the hippocampus of Aβ1-42-injected rats. Besides, morin modified neuronal loss and histological changes in the CA1 region of the hippocampus. Morin allowed Aβ1-42-infused rats to swim more time in the target quadrant in the Morris water maze test. It is concluded that morin may be suitable for the prevention and treatment of Alzheimer's disease by strengthening the antioxidant system, inhibiting neuroinflammation, preventing neuronal death, and enhancing memory function.
Collapse
Affiliation(s)
- Negin Mohammadi
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Mehdi Rahnema
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Rahim Amini
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
48
|
Network Pharmacology-Based Identification of Potential Targets of Lonicerae japonicae Flos Acting on Anti-Inflammatory Effects. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5507003. [PMID: 34595237 PMCID: PMC8478540 DOI: 10.1155/2021/5507003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/31/2022]
Abstract
Lonicerae japonicae flos (LJF) is widely used for the treatment of inflammation-related diseases in traditional Chinese medicine (TCM). To clarify the anti-inflammatory mechanism of LJF, 29 compounds with high content in LJF were selected for network pharmacology. Then, a comprehensive network pharmacology strategy was implemented, which involved compound-inflammation-target construction, protein-protein interaction (PPI) network analysis, and enrichment analysis. Finally, molecular docking and in vitro experiments were performed to verify the anti-inflammatory activity and targets of the key compound. As a result, 279 inflammation-associated proteins were identified, which are mainly involved in the AGE/RAGE signaling pathway in diabetic complications, the HIF-1 signaling pathway, the PI3K-AKT signaling pathway, and EGFR tyrosine kinase inhibitor resistance. A total of 12 compounds were linked to more than 35 targets, including apigenin, kaempferol, quercetin, luteolin, and ferulic acid. The results of molecular docking showed that AKT has the most binding activity, exhibiting certain binding activity with 10 compounds, including vanillic acid, protocatechuic acid, secologanic acid, quercetin, and luteolin; the results of qRT-PCR and WB confirmed that two key compounds, secologanic acid and luteolin, could significantly decrease the secretion of TNF-α and the AKT expression of RAW264.7 murine macrophages stimulated by LPS (lipopolysaccharide). These results demonstrate that the comprehensive strategy can serve as a universal method to illustrate the anti-inflammatory mechanisms of traditional Chinese medicine by identifying the pathways or targets.
Collapse
|
49
|
Song JG, Liu L. Naringenin alleviates bone cancer pain in rats via down-regulating spinal P2X7R /PI3K/AKT signaling: involving suppression in spinal inflammation. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00156-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
50
|
Yamaguchi K, Yamazaki S, Kumakura S, Someya A, Iseki M, Inada E, Nagaoka I. Yokukansan, a Japanese Herbal Medicine, Suppresses Substance PInduced Production of Interleukin-6 and Interleukin-8 by Human U373 MG Glioblastoma Astrocytoma Cells. Endocr Metab Immune Disord Drug Targets 2021; 20:1073-1080. [PMID: 32003704 DOI: 10.2174/1871530320666200131103733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Yokukansan is a traditional Japanese herbal medicine that has an antiallodynic effect in patients with chronic pain. However, the mechanisms by which yokukansan inhibits neuropathic pain are unclear. OBJECTIVE This study aimed to investigate the molecular effects of yokukansan on neuroinflammation in U373 MG glioblastoma astrocytoma cells, which express a functional high-affinity neurokinin 1 receptor (substance P receptor), and produce interleukin (IL)-6 and IL-8 in response to stimulation by substance P (SP). METHODS We assessed the effect of yokukansan on the expression of ERK1/2, P38 MAPK, nuclear factor (NF)-κB, and cyclooxygenase-2 (COX-2) in U373 cells by western blot assay. Levels of IL-6 and IL-8 in conditioned medium obtained after stimulation of cells with SP for 24 h were measured by enzyme-linked immunosorbent assay. All experiments were conducted in triplicate. Results were analyzed by one-way ANOVA, and significance was accepted at p < 0.05. RESULTS Yokukansan suppressed SP-induced production of IL-6 and IL-8 by U373 MG cells, and downregulated SP-induced COX-2 expression. Yokukansan also inhibited phosphorylation of ERK1/2 and p38 MAPK, as well as nuclear translocation of NF-κB, induced by SP stimulation of U373 MG cells. CONCLUSION Yokukansan exhibits anti-inflammatory activity by suppressing SP-induced production of IL-6 and IL-8 and downregulating COX-2 expression in U373 MG cells, possibly via inhibition of the activation of signaling molecules, such as ERK1/2, p38 MAPK, and NF-κB.
Collapse
Affiliation(s)
- Keisuke Yamaguchi
- Department of Anesthesiology and Pain Medicine, Juntendo Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Sho Yamazaki
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Seiichiro Kumakura
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akimasa Someya
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masako Iseki
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Eiichi Inada
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|