1
|
Wang Y, Wang C, Chen H, Zhang Y, Gao N, Yu Y, Xing Y, Xie L, Wang Z, Cai Y. Protective effects of ZIP8 on Toxoplasma gondii-induced acute hepatocyte injury in mice. Acta Trop 2022; 234:106629. [DOI: 10.1016/j.actatropica.2022.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
|
2
|
Kumar N, Krishnani KK, Singh NP. Effect of zinc on growth performance and cellular metabolic stress of fish exposed to multiple stresses. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:315-329. [PMID: 31732893 DOI: 10.1007/s10695-019-00719-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Global warming due to increasing temperature and contamination in aquatic environment has been found to be inducing cellular metabolic stress in fish. The present study focused on temperature and contamination in aquatic ecosystems and its alleviation/mitigation. Hence, this study was conducted to evaluate the role of zinc to improve growth performance, cellular metabolic stress, and digestive enzymes of the Pangasianodon hypophthalmus reared under lead (Pb) and high temperature. Two hundred and seventy-three fishes were distributed randomly into seven treatments, each with three replicates. Three isocaloric and isonitrogenous diets with graded levels of zinc at 0 mg/kg, 10 mg/kg, and 20 mg/kg were prepared. The Pb in treated water was maintained at the level of 1/21th of LC50 (4 ppm) and maintained at a temperature of 34 °C in exposure groups. The growth performance in terms of weight gain (%), protein efficiency ratio (PER), and specific growth rate (SGR) was found to be inhibited, and the feed conversion ratio (FCR) was enhanced in the Pb and high temperature-exposed group, whereas zinc supplementation has improved weight gain (%), FCR, PER, and SGR. The liver, gill, muscle, and kidney tissues of carbohydrate metabolic enzymes (LDH and MDH), protein metabolic enzymes (ALT and AST), and liver, gill, and muscle G6PDH and ATPase as well as intestinal digestives enzymes (proteases, amylase, and lipase) and intestinal ALP were significantly affected (p < 0.01) by Pb and high temperature exposure to P. hypophthalmus. We herein report the role of zinc in mitigating cellular metabolic stress in fish exposed to Pb and high temperature.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India.
| | - Kishore Kumar Krishnani
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Narendra Pratap Singh
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| |
Collapse
|
3
|
Çelik Ö, Akdaş EY. Tissue-specific transcriptional regulation of seven heavy metal stress-responsive miRNAs and their putative targets in nickel indicator castor bean (R. communis L.) plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:682-690. [PMID: 30580162 DOI: 10.1016/j.ecoenv.2018.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
R.communis L. has high capability to accumulate nickel which is a trace nutrient for higher plants and also an environmental contaminant causes toxicity related symptoms at higher concentrations. MicroRNAs (miRNAs) are known to be important modulators of responses against heavy metal stress for detoxification of the metal. In this study, we experimentally measured and validated the transcript levels of the seven heavy metal stress response-related miRNAs and the expression levels of target genes in both leaf and root tissues of R. communis L. subjected to three different concentrations of nickel stress via qRT-PCR quantification. The results demonstrated differential regulations of heavy metal stress-responsive miRNAs and their putative targets in both tissues in same stress treatments. This dynamic regulation suggest that regulatory processes differ between the tissues under nickel stress. Our data suggest that, miR838 was the most responsive to the Ni2+ stress. miR398 target gene Cu-Zn/SOD was found to be up-regulated in both root and leaf tissues. The relations between TCP and expression levels of miR159 and miR319 were also found statistically significant exclusive to leaf tissues. In leaf tissue, changes in miR395 level and its putative target genes, sulphate transporter and sulphate adenyltransferase gene were found in relation whereas, only expression level of sulphate transporter represented a statistically significant relation in root tissue. The sharp decrease in transcript levels of 2r3 myb gene at lower nickel dose suggest to investigate the role of r2r3 myb and the all MYB family members in primary and secondary metabolisms against nickel stress.
Collapse
Affiliation(s)
- Özge Çelik
- Istanbul Kultur University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, Ataköy, 34156 Istanbul, Turkey.
| | - Enes Yağız Akdaş
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Turkey
| |
Collapse
|
4
|
Çelik Ö, Çakır BC, Atak Ç. Identification of the antioxidant defense genes which may provide enhanced salt tolerance in Oryza sativa L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:85-99. [PMID: 30804632 PMCID: PMC6352531 DOI: 10.1007/s12298-018-0618-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 05/10/2023]
Abstract
Antioxidative mechanisms are important to protect cells from the hazardous effects of reactive oxygen species (ROS). Salt stress is one of the environmental stress factors that leads to accumulation of ROS at toxic levels. In this study, we analyzed the responses of two rice (Oryza sativa L.) cultivars against NaCl stress at enzymatic and transcriptional levels. In 14 day-old-seedlings, different antioxidant enzyme activities were observed. These findings were also supported by transcriptional analyses of the responsible genes. According to the results, Cyt-APX, CAT A, Cyt-GR1 and proline metabolism-related genes were differentially expressed between two rice varieties under different salt concentrations. Their regulational differences cause different salt sensitivities of the varieties. By this study, we provided an insight into understanding of the correlation between antioxidant defence genes and ROS enzymes under salt stress.
Collapse
Affiliation(s)
- Özge Çelik
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, İstanbul Kültür University, Ataköy, 34156 Istanbul, Turkey
| | - Bilgin Candar Çakır
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Çimen Atak
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, İstanbul Kültür University, Ataköy, 34156 Istanbul, Turkey
| |
Collapse
|
5
|
Shalaby SM, Sabbah NA, Saber T, Abdel Hamid RA. Adipose-derived mesenchymal stem cells modulate the immune response in chronic experimental autoimmune encephalomyelitis model. IUBMB Life 2016; 68:106-15. [DOI: 10.1002/iub.1469] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/16/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Sally M. Shalaby
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Norhan A. Sabbah
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Taisir Saber
- Medical Microbiology & Immunology; Faculty of Medicine, Zagazig University; Zagazig Egypt
- Medical Laboratories Department; Faculty of Applied Medical Sciences, Taif University; Taif Saudi Arabia
| | - Reda A. Abdel Hamid
- Anatomy & Embryology Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| |
Collapse
|
6
|
Brugger D, Buffler M, Windisch W. Development of an experimental model to assess the bioavailability of zinc in practical piglet diets. Arch Anim Nutr 2014; 68:73-92. [PMID: 24646148 DOI: 10.1080/1745039x.2014.898392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Sufficient zinc (Zn) supply is a key element of successful animal husbandry. Proper use of dietary Zn sources, however, demands knowledge of Zn requirement and bioavailability, reflecting practical feeding systems. In this study, an experimental model is presented where 48 fully weaned and individually housed piglets received a fine differentiated alimentary Zn supply. The basal diet consisted mainly of corn and soybean meal (native Zn: 28.1 mg/kg feed) and was fortified with Zn from Zn sulphate at eight levels (0, 5, 10, 15, 20, 30, 40 and 60 mg Zn/kg). All animals were pretreated uniformly with the highest Zn supply (88 mg total Zn/kg feed) for two weeks (feeding ad libitum). Subsequently, animals were switched to the eight experimental diets (six animals per group, restricted feeding at 450 g/d). This period was limited to 8 d in order to avoid clinical Zn-deficiency symptoms. Measurements included amounts of apparently digested Zn, final levels of plasma Zn, plasma Zn-binding capacity, plasma alkaline phosphatase activity, femur Zn, liver Zn as well as hepatic metallothionein (Mt) 1a and Mt2b gene expression and hepatic Mt protein abundance. Clinical signs of Zn deficiency were completely absent through the entire study. All the analysed parameters except for Mt protein abundance responded sensitively to graduations in dietary Zn contents and indicated the presence of Zn deficiency at lower dietary Zn additions. Amounts of apparently digested Zn, liver Zn as well as hepatic Mt1a and Mt2b gene expression indicated transition from deficient to sufficient Zn supply between 47.5 and 58.2 mg of total Zn per kg of diet as assessed by broken-line response techniques. Analysed blood and bone parameters responded linearly to graduations in dietary Zn supply even within sufficient Zn supply levels. Taken together, the results indicate the suitability of our experimental model to determine Zn requirement in piglets and hence to also assess bioavailability of dietary Zn sources. The latter may be done by comparing the slope of the amounts of apparently digested Zn as well as by determining the response of blood and bone parameters to graduations in dietary Zn at insufficient Zn supply.
Collapse
Affiliation(s)
- Daniel Brugger
- a Chair of Animal Nutrition, Center of Life and Food Sciences Weihenstephan , Technische Universität München , Freising , Germany
| | | | | |
Collapse
|
7
|
Tang S, Cai Q, Chibli H, Allagadda V, Nadeau JL, Mayer GD. Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells. Toxicol Appl Pharmacol 2013; 272:443-52. [PMID: 23770381 DOI: 10.1016/j.taap.2013.06.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
Abstract
Increasing use of quantum dots (QDs) makes it necessary to evaluate their toxicological impacts on aquatic organisms, since their contamination of surface water is inevitable. This study compares the genotoxic effects of ionic Cd versus CdTe nanocrystals in zebrafish hepatocytes. After 24h of CdSO4 or CdTe QD exposure, zebrafish liver (ZFL) cells showed a decreased number of viable cells, an accumulation of Cd, an increased formation of reactive oxygen species (ROS), and an induction of DNA strand breaks. Measured levels of stress defense and DNA repair genes were elevated in both cases. However, removal of bulky DNA adducts by nucleotide excision repair (NER) was inhibited with CdSO4 but not with CdTe QDs. The adverse effects caused by acute exposure of CdTe QDs might be mediated through differing mechanisms than those resulting from ionic cadmium toxicity, and studying the effects of metallic components may be not enough to explain QD toxicities in aquatic organisms.
Collapse
Affiliation(s)
- Song Tang
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416, USA
| | | | | | | | | | | |
Collapse
|
8
|
Tang S, Allagadda V, Chibli H, Nadeau JL, Mayer GD. Comparison of cytotoxicity and expression of metal regulatory genes in zebrafish (Danio rerio) liver cells exposed to cadmium sulfate, zinc sulfate and quantum dots. Metallomics 2013; 5:1411-22. [DOI: 10.1039/c3mt20234h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Effects of Se deficiency on serum histamine concentration and the expression of histamine H2 receptor in the jejunum of chickens. Pol J Vet Sci 2012; 15:547-52. [PMID: 23214377 DOI: 10.2478/v10181-012-0084-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED The present study was designed to investigate the influence of Se deficiency on serum histamine concentration and the expression of histamine receptor in the jejunum of chickens. Forty neonatal chickens were randomly divided into two groups. Experimental chickens were fed a low-Se diet (0.034 mg/kg), whereas chickens in the control group were fed a diet with a Se level of 0.229 mg/kg. Ten chickens were sacrificed on days 30, 45, 60 and 75. Blood and jejunum samples were collected. Histamine concentration in the jejunum was measured by ELISA, the jejunal mast cell (MC) ultrastructure was studied by transmission electron microscopy, and the expression level of histamine H2 receptor (H2R) mRNA in the jejunum was examined using real-time PCR. RESULTS The jejunal histamine concentration in chickens fed the low-Se diet was significantly higher than that in the control group (P < 0.01). Se deficiency induced degranulation of MC in the jejunum of chickens in the low-Se diet group; their cytoplasm was filled with fused granules and vacuoles. The expression level of jejunal H2R mRNA in chickens fed the low-Se diet was also significantly higher than that in the control group (P < 0.01). The results obtained suggest that Se deficiency stimulates MC degranulation and release of histamine, binding H2R promotes both regulation of digestion and cell proliferation while protects the jejunum from injury induced by Se deficiency.
Collapse
|
10
|
Dynamic distribution and tissue tropism of infectious laryngotracheitis virus in experimentally infected chickens. Arch Virol 2012; 158:659-66. [DOI: 10.1007/s00705-012-1414-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 06/10/2012] [Indexed: 11/27/2022]
|
11
|
Miranda-Sayago JM, Fernandez-Arcas N, Reyes-Engel A, Benito C, Narbona I, Alonso A. Changes in CDKN2D , TP53, and miR125a expression: potential role in the evaluation of human amniotic fluid-derived mesenchymal stromal cell fitness. Genes Cells 2012; 17:673-87. [PMID: 22747700 DOI: 10.1111/j.1365-2443.2012.01623.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/22/2012] [Indexed: 11/27/2022]
Abstract
Human amniotic fluid-derived mesenchymal stromal cells (hAMSC) have become one of the main cell populations used in regenerative medicine and for the study of various clinical disorders. These cells have a great capacity for proliferation and differentiation and do not form teratomas when transplanted into animal models, and their stemness seems to be between embryonic cells and adult mesenchymal cells. Before their use in cell therapy, they must be cultured and expanded in vitro, but the effect this process has on their fitness, a determining factor for the success or failure of cell therapy, is unknown. We undertook a follow-up of gene and microRNAs (miRNAs) expression using microarray of hAMSC for the first 15 passages. Significant changes were noted in the expression of various mRNAs and miRNAs, particularly down-regulation of TP53, increased expression of hsa-miR-125a and up-regulation of CDKN2D . The variations in TP53 and hsa-miR-125a may act as an indicator of the stemness of the hAMSC, whereas CDKN2D may indicate the begging of early senescence process in a p53-independent mechanism. The genes described in this study will help evaluate the fitness of hAMSC, thus guaranteeing their biological quality for use in regenerative medicine.
Collapse
Affiliation(s)
- Jose M Miranda-Sayago
- Department of Immunology, Carlos Haya Regional University Hospital, Malaga 29010, Spain.
| | | | | | | | | | | |
Collapse
|
12
|
Klevenhusen F, Meile L, Kreuzer M, Soliva CR. Effects of monolaurin on ruminal methanogens and selected bacterial species from cattle, as determined with the rumen simulation technique. Anaerobe 2011; 17:232-8. [PMID: 21787874 DOI: 10.1016/j.anaerobe.2011.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 06/02/2011] [Accepted: 07/05/2011] [Indexed: 11/30/2022]
Abstract
Before being able to implement effective ruminal methane mitigation strategies via feed supplementation, the assessment of side effects on ruminal fermentation and rumen microbial populations is indispensable. In this respect we investigated the effects of monolaurin, a methane-mitigating lipid, on methanogens and important carbohydrate-degrading bacteria present in ruminal fluid of dairy cattle in continuous culture employing the rumen simulation technique. In six experimental runs, each lasting for 10 days, four diets with different carbohydrate composition, based on hay, maize, wheat and a maize-wheat mixture, either remained non-supplemented or were supplemented with monolaurin and incubated in a ruminal-fluid buffer mixture. Incubation liquid samples from days 6 to 10 of incubation were analyzed with relative quantitative polymerase chain reaction (qPCR) of 16S rRNA genes to assess monolaurin-induced shifts in specific rumen microbial populations in relation to the corresponding non-supplemented diets. Monolaurin completely inhibited Fibrobacter succinogenes in all diets while the response of the other cellulolytic bacteria varied in dependence of the diet. Megasphaera elsdenii remained unaffected by monolaurin in the two diets containing maize, but was slightly stimulated by monolaurin with the wheat and largely with the hay diet. The supply of monolaurin suppressed Methanomicrobiales below the detection limit with all diets, whereas relative 16S rRNA gene copy numbers of Methanobacteriales increased by 7-fold with monolaurin in case of the hay diet. Total Archaea were decreased by up to over 90%, but this was significant only for the wheat containing diets. Thus, monolaurin exerted variable effects mediated by unknown mechanisms on important ruminal microbes involved in carbohydrate degradation, along with its suppression of methane formation. The applicability of monolaurin for methane mitigation in ruminants thus depends on the extent to which adverse effects on carbohydrate-degrading bacteria actually impair the supply of digested carbohydrates to the animal.
Collapse
|
13
|
Moghe A, Joshi-Barve S, Ghare S, Gobejishvili L, Kirpich I, McClain CJ, Barve S. Histone modifications and alcohol-induced liver disease: Are altered nutrients the missing link? World J Gastroenterol 2011; 17:2465-72. [PMID: 21633651 PMCID: PMC3103804 DOI: 10.3748/wjg.v17.i20.2465] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/12/2011] [Accepted: 02/19/2011] [Indexed: 02/06/2023] Open
Abstract
Alcoholism is a major health problem in the United States and worldwide, and alcohol remains the single most significant cause of liver-related diseases and deaths. Alcohol is known to influence nutritional status at many levels including nutrient intake, absorption, utilization, and excretion, and can lead to many nutritional disturbances and deficiencies. Nutrients can dramatically affect gene expression and alcohol-induced nutrient imbalance may be a major contributor to pathogenic gene expression in alcohol-induced liver disease (ALD). There is growing interest regarding epigenetic changes, including histone modifications that regulate gene expression during disease pathogenesis. Notably, modifications of core histones in the nucleosome regulate chromatin structure and DNA methylation, and control gene transcription. This review highlights the role of nutrient disturbances brought about during alcohol metabolism and their impact on epigenetic histone modifications that may contribute to ALD. The review is focused on four critical metabolites, namely, acetate, S-adenosylmethionine, nicotinamide adenine dinucleotide and zinc that are particularly relevant to alcohol metabolism and ALD.
Collapse
|
14
|
Russo AJ. Analysis of plasma zinc and copper concentration, and perceived symptoms, in individuals with depression, post zinc and anti-oxidant therapy. Nutr Metab Insights 2011; 4:19-27. [PMID: 23946658 PMCID: PMC3738484 DOI: 10.4137/nmi.s6760] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIM To assess plasma Zn and Cu levels in individuals with depression. SUBJECTS AND METHODS Plasma from 73 clinically depressed individuals, 38 individuals with anxiety and 16 controls were tested for plasma Zn and Cu concentration using inductively-coupled plasma-mass spectrometry. RESULTS Depressed individuals, with and without secondary anxiety, had decreased plasma Zn and elevated plasma Cu compared to controls. Zn normalized (increased to the level of normal controls) but Cu increased in individuals with depression (with and without secondary anxiety), after Zn therapy, whereas both plasma Zn increased and Cu levels decreased in anxiety, with and without secondary depression, after Zn therapy. Individuals with depression,with and without secondary anxiety, had significantly higher symptom severity when compared to neurotypical controls. Symptom severity in individuals with anxiety (both with and without secondary depression) significantly decreased after Zn therapy, whereas symptoms remained the same in individuals with primary depression. DISCUSSION These data show an association between Zn and Cu plasma levels and clinically depressed individuals, and suggest that high Cu levels are associated with high symptom severity.
Collapse
Affiliation(s)
- A J Russo
- Health Research Institute/Pfeiffer Treatment Center, 4575 Weaver Parkway, Warrenville, Illinois 60555, USA
| |
Collapse
|
15
|
Balancing zinc deficiency leads to an improved healing of colon anastomosis in rats. Int J Colorectal Dis 2011; 26:295-301. [PMID: 20953789 DOI: 10.1007/s00384-010-1070-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND In colorectal surgery, anastomotic leakage is a relevant complication. The aim of this study was to investigate whether intraperitoneally (i.p.) administered zinc improves the healing of colon anastomosis in rats. MATERIALS AND METHODS Male Wistar rats (66) received zinc-deficient diet for 21 days. To determine the effective dose of zinc which is necessary to compensate this deficiency, preliminary analysis in 30 rats were performed. In these rats, analysis by atom-absorption spectrophotometry revealed a dose of 1.0 mg zinc aspartate/kg body weight to be the compensatory dosage. In the remaining zinc-deficient rats (n= 36), a transverse colonic anastomosis was performed. Eighteen rats received either a zinc supplementation i.p. or 0.9% NaCl i.p. (n = 18; control group). On postoperative days 3, 5, and 14, the surface of the mucosal villi, expression of MMP 2, MMP 8, MMP 13, TIMP 1, as well as the collagen types I/III ratio were analyzed. RESULTS Protein expression of MMP 2 and MMP 8 was significantly higher in the anastomosis of the zinc group on day 3 and on day 5. The collagen types I/III ratio was significantly increased in the zinc group on days 5 and 14. CONCLUSION Balancing zinc deficiency benefits wound healing of colonic anastomosis qualitatively due to an increased collagen type I/III ratio. Surprisingly, these zinc supplements, however, increased the expression of MMP 2 and MMP 8 that are supposed to impair wound healing in case of an over-expression. Thus, further investigations are needed to elucidate the influence of zinc supplementation on regulation of MMPs.
Collapse
|
16
|
Abstract
Aim: To assess plasma zinc and copper levels in individuals with anxiety and to test the hypothesis that there is a relationship between copper and zinc concentration and improved symptoms. Subjects and methods: Serum from 38 individuals with anxiety and 16 neurotypical age, gender and size similar controls were tested for plasma zinc and copper concentration using inductively-coupled plasma-mass spectrometry. Zinc and copper levels, pre and post therapy, were compared and assessed for perceived anxiety symptoms. Results: In this preliminary study, individuals with anxiety had significantly higher plasma levels of Cu (P = 0.0348), Cu/Zn (P = 0.0493) and lower Zn (P = 0.0294) compared to controls. Zn levels normalized (increased to the normal range) and Cu/Zn significantly decreased after zinc therapy (P = 0.0004, P = 0.0033, respectively), but Cu did not significantly decrease (0.3577). These same patients improved significantly with respect to perceived overall symptoms after zinc and anti-oxidant therapy (P = 0.013). Discussion: These results suggest an association between Zn plasma levels and individuals with anxiety, demonstrate that zinc therapy is effective in increasing zinc plasma levels, and show that zinc supplementation may play a role in improved symptoms.
Collapse
Affiliation(s)
- A J Russo
- Research Director, Health Research Institute, Pfeiffer Treatment Center, Warrenville, Illinois 60555, USA
| |
Collapse
|
17
|
Russo A, deVito R. Decreased Serum Hepatocyte Growth Factor (HGF) in Individuals with Schizophrenia Normalizes after Zinc and B-6 Therapy. PROTEOMICS INSIGHTS 2010. [DOI: 10.4137/pri.s6145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aim To assess serum HGF concentration in individuals with schizophrenia and investigate the efficacy of zinc and B-6 therapy on these levels. Subjects and methods Serum from 18 individuals diagnosed with schizophrenia and 19 age and gender similar controls ( P = 0.18) were tested for HGF concentration using ELISAs, and tested for copper and zinc plasma levels using inductively-coupled plasma-mass spectrometry. Results HGF serum levels of individuals with schizophrenia, before zinc and B-6 therapy, were significantly lower than age and gender similar controls ( P = 0.016), and significantly lower in schizophrenia patients pre-therapy compared to post therapy ( P = 0.028). HGF levels normalized (reached levels similar to controls) post-therapy. Zinc levels in these same individuals also normalized, and perceived symptoms, particularly anxiety ( P = 0.03), improved significantly after therapy. Discussion These results suggest an association between low HGF levels and schizophrenia and demonstrate that zinc and B-6 therapy may be associated with the normalization of HGF levels and perceived improvement in symptoms.
Collapse
Affiliation(s)
- A.J. Russo
- Health Research Institute/Pfeiffer Treatment Center, Warrenville, Illinois 60555, USA
| | - Robert deVito
- Health Research Institute/Pfeiffer Treatment Center, Warrenville, Illinois 60555, USA
| |
Collapse
|
18
|
Agarwal R, Goel SK, Behari JR. Detoxification and antioxidant effects of curcumin in rats experimentally exposed to mercury. J Appl Toxicol 2010; 30:457-68. [PMID: 20229497 DOI: 10.1002/jat.1517] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Curcumin, a safe nutritional component and a highly promising natural antioxidant with a wide spectrum of biological functions, has been examined in several metal toxicity studies, but its role in protection against mercury toxicity has not been investigated. Therefore, the detoxification and antioxidant effects of curcumin were examined to determine its prophylactic/therapeutic role in rats experimentally exposed to mercury (in the from of mercuric chloride-HgCl(2), 12 micromol kg(-1) b.w. single intraperitoneal injection). Curcumin treatment (80 mg kg(-1) b.w. daily for 3 days, orally) was found to have a protective effect on mercury-induced oxidative stress parameters, namely, lipid peroxidation and glutathione levels and superoxide dismutase, glutathione peroxidase and catalase activities in the liver, kidney and brain. Curcumin treatment was also effective for reversing mercury-induced serum biochemical changes, which are the markers of liver and kidney injury. Mercury concentration in the tissues was also decreased by the pre/post-treatment with curcumin. However, histopathological alterations in the liver and kidney were not reversed by curcumin treatment. Mercury exposure resulted in the induction of metallothionein (MT) mRNA expressions in the liver and kidney. Metallothionein mRNA expression levels were found to decrease after the pre-treatment with curcumin, whereas post-treatment with curcumin further increased MT mRNA expression levels. Our findings suggest that curcumin pretreatment has a protective effect and that curcumin can be used as a therapeutic agent in mercury intoxication. The study indicates that curcumin, an effective antioxidant, may have a protective effect through its routine dietary intake against mercury exposure.
Collapse
Affiliation(s)
- Rakhi Agarwal
- Toxicokinetics Section, Indian Institute of Toxicology Research (formerly: Industrial Toxicology Research Centre), Council of Scientific and Industrial Research, India, Mahatma Gandhi Marg, Lucknow 226001, India
| | | | | |
Collapse
|
19
|
Davoli R, Braglia S, Russo V, Varona L, te Pas MFW. Expression profiling of functional genes in prenatal skeletal muscle tissue in Duroc and Pietrain pigs. J Anim Breed Genet 2010; 128:15-27. [PMID: 21214640 DOI: 10.1111/j.1439-0388.2010.00867.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In livestock, skeletal muscle is a tissue of major economic importance for meat production and muscle mass is largely determined during the prenatal period by the number and the size of muscle fibres. The understanding of gene expression changes during prenatal pig muscle development is still limited. In this study, genes identified as differentially expressed in a previous microarray research and chosen for the function of the coded protein as putative candidate involved in myogenesis were considered to analyse their expression profile during foetal growth of Duroc and Pietrain pigs. The eleven genes were considered by real-time PCR for a time-course evaluation of the transcription level at six stages of prenatal longissimus dorsi development. The results suggest that the most relevant variations in mRNA levels of the analysed genes seem to follow temporal waves of gene expression. Significant changes of transcription were observed at 21-35 and 63-91 days, the two main phases of skeletal muscle development. During the early phases of Pietrain embryos' development, 10 of the 11 genes showed an induction. In Duroc embryos, a second phase of gene up-regulation can be identified in the phase 63-77 days. These results provide new data on developmental changes of expression profile of 11 genes involved in different functional pathways related to prenatal myogenic processes in Duroc and Pietrain pigs.
Collapse
Affiliation(s)
- R Davoli
- DIPROVAL, Sezione di Allevamenti Zootecnici, Faculty of Agriculture, University of Bologna, Villa Levi-Coviolo, Reggio Emilia, Italy.
| | | | | | | | | |
Collapse
|
20
|
Russo AJ. Decreased Serum Hepatocyte Growth Factor (HGF) in Individuals with Bipolar Disorder Normalizes after Zinc and Anti-oxidant Therapy. Nutr Metab Insights 2010; 3:49-55. [PMID: 23946654 PMCID: PMC3736888 DOI: 10.4137/nmi.s5528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aim: To assess serum HGF concentration in individuals with bipolar disorder and investigate the efficacy of zinc therapy on these levels. Subjects and methods: Serum from 35 individuals diagnosed with bipolar disorder and 19 age and gender similar controls were tested for HGF concentration using ELISAs, and copper and zinc plasma levels using inductively-coupled plasma-mass spectrometry. Results: HGF serum levels of individuals with bipolar disorder were significantly lower than age and gender similar controls (P = 0.0021). HGF serum concentration was significantly lower in Bipolar patients pre-therapy (P = 0.0009) and HGF levels normalized post-therapy. Zinc levels in these same individuals also normalized (P = 0.0046) and patient’s perceived severity of Bipolar symptoms significantly decreased after therapy (P = 0.0003). We also found a significant direct correlation between Zinc and HGF serum concentration in the bipolar patients (P = 0.04). Discussion: These results suggest an association between low HGF levels and bipolar disorder and also demonstrate that zinc therapy may be associated with the normalization of HGF levels and decrease in severity of disease.
Collapse
Affiliation(s)
- A J Russo
- Research Director, Health Research Institute/Pfeiffer Treatment Center, Warrenville, Illinois 60555, USA
| |
Collapse
|
21
|
Zheng D, Kille P, Feeney GP, Cunningham P, Handy RD, Hogstrand C. Dynamic transcriptomic profiles of zebrafish gills in response to zinc depletion. BMC Genomics 2010; 11:548. [PMID: 20932299 PMCID: PMC3091697 DOI: 10.1186/1471-2164-11-548] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 10/08/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Zinc deficiency is detrimental to organisms, highlighting its role as an essential micronutrient contributing to numerous biological processes. To investigate the underlying molecular events invoked by zinc depletion we performed a temporal analysis of transcriptome changes observed within the zebrafish gill. This tissue represents a model system for studying ion absorption across polarised epithelial cells as it provides a major pathway for fish to acquire zinc directly from water whilst sharing a conserved zinc transporting system with mammals. RESULTS Zebrafish were treated with either zinc-depleted (water = 2.61 μg L-1; diet = 26 mg kg-1) or zinc-adequate (water = 16.3 μg L-1; diet = 233 mg kg-1) conditions for two weeks. Gill samples were collected at five time points and transcriptome changes analysed in quintuplicate using a 16K oligonucleotide array. Of the genes represented the expression of a total of 333 transcripts showed differential regulation by zinc depletion (having a fold-change greater than 1.8 and an adjusted P-value less than 0.1, controlling for a 10% False Discovery Rate). Down-regulation was dominant at most time points and distinct sets of genes were regulated at different stages. Annotation enrichment analysis revealed that 'Developmental Process' was the most significantly overrepresented Biological Process GO term (P = 0.0006), involving 26% of all regulated genes. There was also significant bias for annotations relating to development, cell cycle, cell differentiation, gene regulation, butanoate metabolism, lysine degradation, protein tyrosin phosphatases, nucleobase, nucleoside and nucleotide metabolism, and cellular metabolic processes. Within these groupings genes associated with diabetes, bone/cartilage development, and ionocyte proliferation were especially notable. Network analysis of the temporal expression profile indicated that transcription factors foxl1, wt1, nr5a1, nr6a1, and especially, hnf4a may be key coordinators of the homeostatic response to zinc depletion. CONCLUSIONS The study revealed the complex regulatory pathways that allow the organism to subtly respond to the low-zinc condition. Many of the processes affected reflected a fundamental restructuring of the gill epithelium through reactivation of developmental programs leading to stem cell differentiation. The specific regulation of genes known to be involved in development of diabetes provides new molecular links between zinc deficiency and this disease. The present study demonstrates the importance of including the time-dimension in microarray studies.
Collapse
Affiliation(s)
- Dongling Zheng
- Mineral Metabolism Group, Nutritional Sciences Division, King's College London, London SE1 9NH, UK
| | | | | | | | | | | |
Collapse
|
22
|
Banni M, Messaoudi I, Said L, El Heni J, Kerkeni A, Said K. Metallothionein gene expression in liver of rats exposed to cadmium and supplemented with zinc and selenium. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 59:513-519. [PMID: 20238111 DOI: 10.1007/s00244-010-9494-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/01/2010] [Indexed: 05/28/2023]
Abstract
Cadmium (Cd), one of the most widely distributed heavy metals, is highly toxic to humans and animals. It is well known that zinc (Zn) and selenium (Se) administration reduce the Cd-induced toxicity and that metallothioneins can have a protective effect to mitigate Cd toxicity in biological systems. In this study we report the expression analysis of the two metallothioneines gene classes MT-1 and MT-2 as well as the total metalloprotein content in the liver of rats exposed to Cd (200 ppm), Cd + Zn (200 ppm + 500 ppm), Cd + Se (200 ppm + 0.1 ppm) or Cd + Zn + Se (200 ppm + 500 ppm + 0.1 ppm) in their drinking water for 35 days. Metals accumulation was quantified in rat liver. Cd decreased significantly the hepatic concentrations of Se and increased those of Zn. The treatment of Cd-exposed rats with Se alone or combined with Zn reversed the Cd-induced depletion of Se concentrations in the liver. However, Zn or Zn + Se administration significantly increased the liver Cd uptake and had no effect on the Cd-induced increase in hepatic concentrations of Zn. The molecular assay showed a decreasing trend of MT-1 relative gene expression levels in animals supplemented with Zn (6.87-fold), Se (3.58-fold), and their combination (1.69-fold) when compared to Cd-treated animals (16.22-fold). Upregulation of the MT-2 expression were recorded in all conditions, although fold induction levels were less pronounced than MT-1 expressions. Our data suggest that the well-established protective effect of Zn and Se against Cd-induced toxicity passes through non-MT gene expression mechanisms, being more dependent on the oxidative stress status of the cell.
Collapse
Affiliation(s)
- Mohamed Banni
- Laboratoire de Biochimie et Toxicologie de l'Environnement, ISA, Chott-Mariem, Sousse, Tunisie.
| | | | | | | | | | | |
Collapse
|
23
|
Agarwal R, Raisuddin S, Tewari S, Goel SK, Raizada RB, Behari JR. Evaluation of comparative effect of pre- and posttreatment of selenium on mercury-induced oxidative stress, histological alterations, and metallothionein mRNA expression in rats. J Biochem Mol Toxicol 2010; 24:123-35. [PMID: 20143455 DOI: 10.1002/jbt.20320] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To evaluate the effect of pre- or posttreatment of selenium (6 micromol/kg b.w., single intraperitoneal injection) in mercury intoxication, rats were exposed to mercury (12 micromol/kg b.w., single intraperitoneal injection). Exposure to mercury resulted in induced oxidative stress in liver, kidney, and brain tissues. Marked changes in serum biochemical parameters together with alterations in histopathology and an induction in metallothionein-I and metallothionein-II mRNA expression in the liver and kidney were observed. Pretreatment with selenium to mercury-exposed animals had protective effect on the liver, whereas posttreatment had partial protection on restoration of altered oxidative stress parameters. In the kidney, pretreatment with selenium showed partial protection on restoration of altered biochemical parameters, whereas no protection was observed in posttreatment. The pretreatment with selenium resulted in restoration of mercury-induced metallothionein-I and metallothionein-II mRNA expression, which was completely restored in the liver whereas partial restoration was observed in the kidney. Posttreatment with selenium resulted in further induction in metallothionein-I and metallothionein-II mRNA expression in the liver and kidney. In the brain, selenium showed partial protection on alerted biochemical parameters. Results indicate that pretreatment with selenium is beneficial in comparison to posttreatment in mercury intoxication. Thus, dietary intake of selenium within safe limit may, therefore, enable us in combating any foreseen effects due to mercury exposure.
Collapse
Affiliation(s)
- Rakhi Agarwal
- Indian Institute of Toxicology Research (Formerly: Industrial Toxicology Research Centre), Council of Scientific and Industrial Research, India, Mahatma Gandhi Marg, Lucknow 226 001, India
| | | | | | | | | | | |
Collapse
|
24
|
Russo AJ. Decreased Serum Hepatocyte Growth Factor (HGF) in Individuals with Anxiety Increases After Zinc Therapy. Nutr Metab Insights 2010; 3:43-8. [PMID: 23966791 PMCID: PMC3736887 DOI: 10.4137/nmi.s5495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To assess serum Hepatocyte Growth Factor (HGF) levels in individuals with anxiety and to test the hypothesis that there is a relationship between HGF levels and zinc therapy. Subjects and methods: Serum from 19 individuals with anxiety and 19 controls were tested for serum HGF using ELISAs. HGF serum concentration in individuals with anxiety before zinc and anti-oxidant therapy was compared to levels after therapy. Zinc and copper levels in anxiety patients, pre and post therapy, were also measured and compared. Results: Individuals with anxiety had significantly lower serum levels of HGF compared to controls (P = 0.0005). HGF concentration rose significantly (normalized) after zinc therapy (P = 0.04) and zinc levels increased significantly in these same patients (P = 0.0002). Discussion: These results suggest an association between HGF serum levels and individuals with anxiety and demonstrate that zinc therapy is associated with increasing HGF levels.
Collapse
Affiliation(s)
- A J Russo
- Research Director, Health Research Institute/Pfeiffer Treatment Center, 4575 Weaver Parkway, Warrenville, Illinois 60555, USA
| |
Collapse
|
25
|
Genini S, Zangerl B, Slavik J, Acland GM, Beltran WA, Aguirre GD. Transcriptional profile analysis of RPGRORF15 frameshift mutation identifies novel genes associated with retinal degeneration. Invest Ophthalmol Vis Sci 2010; 51:6038-50. [PMID: 20574030 DOI: 10.1167/iovs.10-5443] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To identify genes and molecular mechanisms associated with photoreceptor degeneration in a canine model of XLRP caused by an RPGR exon ORF15 microdeletion. Methods. Expression profiles of mutant and normal retinas were compared by using canine retinal custom cDNA microarrays. qRT-PCR, Western blot analysis, and immunohistochemistry (IHC) were applied to selected genes, to confirm and expand the microarray results. RESULTS At 7 and 16 weeks, respectively, 56 and 18 transcripts were downregulated in the mutant retinas, but none were differentially expressed (DE) at both ages, suggesting the involvement of temporally distinct pathways. Downregulated genes included the known retina-relevant genes PAX6, CHML, and RDH11 at 7 weeks and CRX and SAG at 16 weeks. Genes directly or indirectly active in apoptotic processes were altered at 7 weeks (CAMK2G, NTRK2, PRKCB, RALA, RBBP6, RNF41, SMYD3, SPP1, and TUBB2C) and 16 weeks (SLC25A5 and NKAP). Furthermore, the DE genes at 7 weeks (ELOVL6, GLOD4, NDUFS4, and REEP1) and 16 weeks (SLC25A5 and TARS2) are related to mitochondrial functions. qRT-PCR of 18 genes confirmed the microarray results and showed DE of additional genes not on the array. Only GFAP was DE at 3 weeks of age. Western blot and IHC analyses also confirmed the high reliability of the transcriptomic data. CONCLUSIONS Several DE genes were identified in mutant retinas. At 7 weeks, a combination of nonclassic anti- and proapoptosis genes appear to be involved in photoreceptor degeneration, whereas at both 7 and 16 weeks, the expression of mitochondria-related genes indicates that they may play a relevant role in the disease process.
Collapse
Affiliation(s)
- Sem Genini
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
26
|
Binnebösel M, Grommes J, Koenen B, Junge K, Klink CD, Stumpf M, Ottinger AP, Schumpelick V, Klinge U, Krones CJ. Zinc deficiency impairs wound healing of colon anastomosis in rats. Int J Colorectal Dis 2010; 25:251-7. [PMID: 19859719 DOI: 10.1007/s00384-009-0831-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND Anastomotic leakage is a relevant surgical complication. The aim of the study was to investigate the influence of a controlled preoperative zinc deficiency on the extracellular matrix composition of colon anastomosis. MATERIALS AND METHODS Forty male Wistar rats were randomized to either a zinc deficiency group (n = 20) or a control group (n = 20). In each animal, a transverse colonic end-to-end anastomosis was performed. On postoperative day 7, the surface of the mucosal villi, expression of matrix metalloproteinases (MMP) 2, 8, 9, and 13, and both the number of proliferating cells (Ki67) and apoptotic cells, as well as the collagen types I/III ratio were analyzed. Within the anastomotic area the mesenterial region and the antimesenterial region were analyzed separately. RESULTS In each group, one anastomotic leakage was detected. Expression of both MMP 2, 9, and 13 was significantly higher, and expression of Ki67 was significantly reduced in the zinc deficient group both mesenterial and antimesenterial. The collagen types I/III ratio was reduced in the zinc deficiency group by trend, without statistical significance neither mesenterial nor antimesenterial. Likewise, zinc deficiency affected neither the expression of MMP 8 nor the rate of apoptotic cells, respectively. Analyses of the surface of the mucosal villi revealed no significant differences comparing the groups with neither mesenterial nor antimesenterial. CONCLUSIONS Our study constitutes the known negative effect of zinc deficiency on wound healing. Zinc deficiency significantly increased the activity of MMPs (2, 9, and 13), caused a reduced collagen type I/III ratio, and delayed cell proliferation and quality of intestinal wound healing.
Collapse
Affiliation(s)
- Marcel Binnebösel
- Department of Surgery, RWTH Aachen University Hospital, Pauwelsstr 30, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Agarwal R, Goel SK, Chandra R, Behari JR. Role of vitamin E in preventing acute mercury toxicity in rat. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:70-78. [PMID: 21787585 DOI: 10.1016/j.etap.2009.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 10/21/2009] [Accepted: 10/29/2009] [Indexed: 05/31/2023]
Abstract
We have examined the effect of both pre- and post-treatment of vitamin E on mercury induced acute toxicity in rats. Mercury (12μmol/kg b.w., single intraperitoneal injection) resulted in oxidative injury and metallothionein mRNA expression together with alterations in tissue histology and accumulation of mercury in the body organs. The ameliorating potential of vitamin E (24μmol/kg b.w., single intraperitoneal injection) was observed in mercury administered rats. Our findings indicate that vitamin E provides complete protection from mercury toxicity in the liver with both pre- and post-treatments. As mercury is nephrotoxic and neurotoxic, it is interesting to note that post-treatment of vitamin E showed more protection in the kidney compared to pre-treatment. In brain tissue, partial protection was observed on oxidative stress parameters. Our results thus suggest that post-treatment with vitamin E could be more beneficial than pre- treatment in mercury intoxication.
Collapse
Affiliation(s)
- Rakhi Agarwal
- Toxicokinetics Section and Petroleum Toxicology Division, Indian Institute of Toxicology Research (Formerly: Industrial Toxicology Research Centre) [Council of Scientific and Industrial Research, India], Post Box 80, Mahatma Gandhi Marg, Lucknow 226001, India
| | | | | | | |
Collapse
|
28
|
Krizkova S, Blahova P, Nakielna J, Fabrik I, Adam V, Eckschlager T, Beklova M, Svobodova Z, Horak V, Kizek R. Comparison of Metallothionein Detection by Using Brdicka Reaction and Enzyme-Linked Immunosorbent Assay Employing Chicken Yolk Antibodies. ELECTROANAL 2009. [DOI: 10.1002/elan.200900243] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Krizkova S, Adam V, Eckschlager T, Kizek R. Using of chicken antibodies for metallothionein detection in human blood serum and cadmium-treated tumour cell lines after dot- and electroblotting. Electrophoresis 2009; 30:3726-35. [DOI: 10.1002/elps.200900201] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Liu J, Zhou ZX, Zhang W, Bell MW, Waalkes MP. Changes in hepatic gene expression in response to hepatoprotective levels of zinc. Liver Int 2009; 29:1222-9. [PMID: 19490425 PMCID: PMC3500762 DOI: 10.1111/j.1478-3231.2009.02007.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Zinc (Zn) administration at non-toxic doses protects against the hepatotoxicity produced by many agents, but the underlying mechanisms remain elusive. AIM To examine the basis of Zn-induced generalised hepatoprotective effects. METHODS Rats and mice were given Zn at known hepatoprotective levels (100 mumol ZnCl2/kg/day, s.c., for 4 days) and molecular responses were assessed. RESULTS Zn treatment produced changes in 5% of the genes on custom-designed mouse liver array and Rat Toxicology-II array. Changes in gene expression were further confirmed and extended by real-time reverse transcriptase-polymerase chain reaction. Zn treatment dramatically increased the expression of the metallothionein (Mt), and modestly increased the expression of acute-phase protein genes (ceruloplasmin, Stat3, egr1, Cxc chemokines and heat-shock proteins). For genes encoding for antioxidant enzymes, some were increased (Nrf2 and Nqo1), while others remained unaltered (Cu, Zn SOD and glutathione S-transferases). Expressions of cytokine and pro-inflammatory genes were not affected, while genes related to cell proliferation (cyclin D1) were modestly upregulated. Some metabolic enzyme genes, including cytochrome P450s and UDP-glucuronosyltransferase, were modestly suppressed, perhaps to switch cellular metabolic energy to acute-phase responses. Liver Zn content was increased between 1.6- and 2.1-fold, while hepatic MT protein was increased between 50 and 200-fold. Mice typically showed greater responses than rats. CONCLUSION Such gene expression changes, particularly the dramatic induction of MT and Nrf2 antioxidant pathway, occur in the absence of overt liver injury, and are probably important in the hepatoprotective effects of Zn against toxic insults.
Collapse
Affiliation(s)
- Jie Liu
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at NIEHS, Research Triangle Park, NC
| | - Zhan-Xiang Zhou
- Department of Medicine, University of Louisville, Louisville, KY
| | - Wei Zhang
- Laboratory of Pharmacology, NIEHS, Research Triangle Park, NC
| | - Matthew W. Bell
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at NIEHS, Research Triangle Park, NC
| | - Michael P. Waalkes
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at NIEHS, Research Triangle Park, NC
| |
Collapse
|
31
|
Abstract
Mechanisms through which gene expression is regulated by zinc are central to cellular zinc homoeostasis. In this context, evidence for the involvement of zinc dyshomoeostasis in the aetiology of diseases, including Type 2 diabetes, Alzheimer's disease and cancer, highlights the importance of zinc-regulated gene expression. Mechanisms elucidated in bacteria and yeast provide examples of different possible modes of zinc-sensitive gene regulation, involving the zinc-regulated binding of transcriptional activators and repressors to gene promoter regions. A mammalian transcriptional regulatory mechanism that mediates zinc-induced transcriptional up-regulation, involving the transcription factor MTF1 (metal-response element-binding transcription factor 1), has been studied extensively. Gene responses in the opposite direction (reduced mRNA levels in response to increased zinc availability) have been observed in mammalian cells, but a specific transcriptional regulatory process responsible for such a response has yet to be identified. Examples of single zinc-sensitive transcription factors regulating gene expression in opposite directions are emerging. Although zinc-induced transcriptional repression by MTF1 is a possible explanation in some specific instances, such a mechanism cannot account for repression by zinc of all mammalian genes that show this mode of regulation, indicating the existence of as yet uncharacterized mechanisms of zinc-regulated transcription in mammalian cells. In addition, recent findings reveal a role for effects of zinc on mRNA stability in the regulation of specific zinc transporters. Our studies on the regulation of the human gene SLC30A5 (solute carrier 30A5), which codes for the zinc transporter ZnT5, have revealed that this gene provides a model system by which to study both zinc-induced transcriptional down-regulation and zinc-regulated mRNA stabilization.
Collapse
|
32
|
Analysis of differential gene-regulatory responses to zinc in human intestinal and placental cell lines. Br J Nutr 2008; 101:1474-83. [DOI: 10.1017/s0007114508094634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Kojima I, Tanaka T, Inagi R, Nishi H, Aburatani H, Kato H, Miyata T, Fujita T, Nangaku M. Metallothionein is upregulated by hypoxia and stabilizes hypoxia-inducible factor in the kidney. Kidney Int 2008; 75:268-77. [PMID: 19148152 DOI: 10.1038/ki.2008.488] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies underscore that chronic hypoxia in the tubulointerstitium is a final common pathway to progression to end-stage renal failure regardless of etiology. We used microarray analysis of rat kidneys made hypoxic by unilateral renal artery stenosis to measure transcriptomic events and clarify pathophysiological mechanisms of renal injury induced by chronic hypoxia. Many genes were upregulated in the kidney by chronic hypoxia, but we focused on metallothionein due to its antioxidative properties. Using tubular epithelial cells transfected with a reporter construct of luciferase, driven by the hypoxia-responsive elements (HRE), we found that addition of metallothionein to the culture media increased luciferase activity. This was associated with upregulation of the target genes of hypoxia-inducible factor (HIF), such as vascular endothelial growth factor and glucose transporter-1. Stimulation of the HIF-HRE pathway by metallothionein was confirmed by metallothionein overexpression. Hypoxia and exogenous metallothionein increased HIF-1alpha protein without changes in its mRNA levels, suggesting protein stabilization. Upregulation of the HIF-HRE system by metallothionein was associated with phosphorylation of ERK but not Akt. MEK inhibition and rapamycin decreased metallothionein-induced HIF activity. Our study shows that upregulation of metallothionein expression by hypoxia activates the HIF-HRE system through the ERK/mTOR pathway and may be a novel defense against hypoxia.
Collapse
Affiliation(s)
- Ichiro Kojima
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kang X, Song Z, McClain CJ, Kang YJ, Zhou Z. Zinc supplementation enhances hepatic regeneration by preserving hepatocyte nuclear factor-4alpha in mice subjected to long-term ethanol administration. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:916-25. [PMID: 18349129 DOI: 10.2353/ajpath.2008.070631] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alcoholic liver disease is associated with sustained liver damage and impaired regeneration, as well as significant zinc deficiency. This study was undertaken to examine whether dietary zinc supplementation could improve liver regeneration by increasing the expression of genes involved in hepatic cellular proliferation in a mouse model of alcoholic liver disease. Adult 129S6 mice fed an ethanol-containing liquid diet for 6 months developed alcoholic liver disease as measured by serum alanine transferase activity and histopathological changes. Zinc supplementation to ethanol-exposed mice enhanced liver regeneration as indicated by increased numbers of proliferation cell nuclear antigen (PCNA)-positive and bromodeoxyuridine (BrdU)-labeled hepatocytes. Zinc-enhanced liver regeneration was associated with an increase in hepatocyte nuclear factor-4alpha (HNF-4alpha), a liver-enriched, zinc-finger transcription factor. Studies using cultured HepG2 cells showed that zinc deficiency suppressed cell proliferation and cell proliferation-related proteins, including hepatocyte growth factor (HGF), insulin-like growth factor I (IGF-I), insulin-like growth factor binding protein 1 (IGFBP1), metallothionein (MT), and cyclin D1, as well as HNF-4alpha. HNF-4alpha gene silencing inhibited cell proliferation in association with decreased protein levels of IGF-I, IGFBP1, MT, and cyclin D1. The present study provides evidence that zinc supplementation enhances liver regeneration at least in part by HNF-4alpha through the up-regulation of cell proliferation-related proteins, suggesting that dietary zinc supplementation may have beneficial effects in alcoholic liver disease.
Collapse
Affiliation(s)
- Xinqin Kang
- Department of Medicine, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
35
|
Herring TA, Cuppett SL, Zempleni J. Genomic implications of H(2)O (2) for cell proliferation and growth of Caco-2 cells. Dig Dis Sci 2007; 52:3005-15. [PMID: 17597414 PMCID: PMC2136437 DOI: 10.1007/s10620-006-9663-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 10/24/2006] [Indexed: 12/09/2022]
Abstract
Evidence indicates that oxidative stress inhibits cell proliferation in several cell systems. To determine whether the proliferation of Caco-2 cells is inhibited by oxidative stress and to identify any novel key regulatory factors involved in protecting or damaging the intestine from oxidative stress, Caco-2 cells were treated with an oxidizing agent and analyzed by transcriptomic oligonucleotide microarrays. Results indicated that expression of genes involved in cell proliferation and growth, including genes involved in lipid synthesis, cell cycle progression and cell division, angiogenesis, RNA processing and translation, cAMP metabolism, cytoskeleton and cell to cell adhesion, receptor tyrosine kinases, and intracellular and extracellular signaling, were repressed. If an oxidant-induced inhibition in cell proliferation is involved in the pathogenesis of intestinal disease, information gained could help explain the mechanisms contributing to the causes and consequences of intestinal disease and could aid in the elucidation of mechanisms by which intestinal cells protect against oxidative stress.
Collapse
Affiliation(s)
- Theresa A Herring
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA.
| | | | | |
Collapse
|
36
|
De Nardi B, Dreos R, Del Terra L, Martellossi C, Asquini E, Tornincasa P, Gasperini D, Pacchioni B, Rathinavelu R, Pallavicini A, Graziosi G. Differential responses of Coffea arabica L. leaves and roots to chemically induced systemic acquired resistance. Genome 2007; 49:1594-605. [PMID: 17426774 DOI: 10.1139/g06-125] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coffea arabica is susceptible to several pests and diseases, some of which affect the leaves and roots. Systemic acquired resistance (SAR) is the main defence mechanism activated in plants in response to pathogen attack. Here, we report the effects of benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester (BTH), a SAR chemical inducer, on the expression profile of C. arabica. Two cDNA libraries were constructed from the mRNA isolated from leaves and embryonic roots to create 1587 nonredundant expressed sequence tags (ESTs). We developed a cDNA microarray containing 1506 ESTs from the leaves and embryonic roots, and 48 NBS-LRR (nucleotide-binding site leucine-rich repeat) gene fragments derived from 2 specific genomic libraries. Competitive hybridization between untreated and BTH-treated leaves resulted in 55 genes that were significantly overexpressed and 16 genes that were significantly underexpressed. In the roots, 37 and 42 genes were over and underexpressed, respectively. A general shift in metabolism from housekeeping to defence occurred in the leaves and roots after BTH treatment. We observed a systemic increase in pathogenesis-related protein synthesis, in the oxidative burst, and in the cell wall strengthening processes. Moreover, responses in the roots and leaves varied significantly.
Collapse
|
37
|
Kumar A, Chatopadhyay T, Raziuddin M, Ralhan R. Discovery of deregulation of zinc homeostasis and its associated genes in esophageal squamous cell carcinoma using cDNA microarray. Int J Cancer 2007; 120:230-42. [PMID: 17068819 DOI: 10.1002/ijc.22246] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) in the Indian population is associated with poor nutritional status, low socioeconomic conditions, bidi smoking and consumption of smokeless tobacco products, besides alcohol drinking and cigarette smoking. To determine the impact of these risk factors on molecular pathogenesis of ESCC, we determined global gene expression profiles of 7 paired samples of ESCC and histologically confirmed nonmalignant esophageal tissues using 19.1K cDNA microarrays. The most salient finding was identification of 19 differentially expressed genes encoding zinc binding or modulating proteins associated with transcriptional regulation, ubiquitin-protein degradation and maintenance of zinc homeostasis. Validation of differential expression of a subset of genes by real-time quantitative RT-PCR (real-time QRT-PCR) in clinical specimens of ESCC, esophageal dysplasia and histologically nonmalignant esophageal tissues and immunohistochemical analysis using tissue microarrays confirmed the microarray data and demonstrated upregulation of zinc finger proteins, cellular modulator of immune recognition (c-MIR), snail homolog 2 (SLUG), zinc transporter, ZnT7 and downregulation of zinc metabolizing protein, metallothionein MT1G. We also observed upregulation of mitogen activated protein kinase kinase kinase 3 (MAP3K3/MEKK3), a kinase anchor protein 13 (AKAP13) and transglutaminase2 (TG2). Interestingly, we found upregulation of ZnT7 transcripts in ESCC cells (TE13) grown in zinc deficient condition. In conclusion, our data suggest deregulation of genes associated with zinc homeostasis in ESCC.
Collapse
Affiliation(s)
- Anupam Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | | | | | | |
Collapse
|
38
|
Gomez NN, Biaggio VS, Rozzen EJ, Alvarez SM, Gimenez MS. Zn-limited diet modifies the expression of the rate-regulatory enzymes involved in phosphatidylcholine and cholesterol synthesis. Br J Nutr 2007; 96:1038-46. [PMID: 17181878 DOI: 10.1017/bjn20061951] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Suboptimal intake of Zn is one of the most common nutritional worldwide problems. Previously, we showed that Zn deficiency produces alterations in lung lipid metabolism in rats. We studied the effect of a Zn-limited (ZL) diet on the expression of the enzymes involved in phosphatidylcholine and cholesterol synthesis. After 2 months of treatment with a ZL diet we found important variations in the lipid content of Wistar male rats: triacylglycerol (TG) decreased 60% (P<0.001) while esterified cholesterol (EC), free cholesterol and phospholipids (PL) increased 66%, 24 % and 25% respectively. We also observed a decrease of 40 % in the amount of (3)H incorporated into TG and an increase of 47% and 28% in the (3)H incorporated to PL and EC respectively. Fatty acid synthase and glucose-6-phosphate dehydrogenase activity was increased (P<0.01 and P<0.05 respectively). Glycerol-3-phosphate acyltransferase, lipoprotein lipase, diacyl glycerol acyl transferase and 3-hydroxy-3-methylglutaryl CoA reductase expression decreased (P<0.01 in all cases), while acetyl CoA carboxylase and cholinephosphate cytidylyltransferase increased (P<0.01 and P<0.005 respectively). These results suggest that ZL alters the expression of enzymes involved in phosphatidylcholine and cholesterol synthesis, which could lead to increased PL and cholesterol and decreased TG. This study suggests that major changes in the lipid composition of lung are induced by a ZL condition. Therefore, Zn deficiency must be taken into account in order to design therapies and public health interventions, such as Zn supplementation for high-risk subjects or certain diseases, such as asthma.
Collapse
Affiliation(s)
- Nidia Noemí Gomez
- Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | | | | | | | | |
Collapse
|
39
|
Sun JY, Wang JF, Zi NT, Jing MY, Weng XY. Gene expression profiles analysis of the growing rat liver in response to different zinc status by cDNA microarray analysis. Biol Trace Elem Res 2007; 115:169-85. [PMID: 17435260 DOI: 10.1007/bf02686028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 06/01/2006] [Accepted: 06/16/2006] [Indexed: 10/22/2022]
Abstract
The effects of zinc on growing rats were characterized using the dietary zinc-deficient (ZD) and Zinc-overdose (ZO) models. Zinc deficiency had negative effects on the host final body weight and liver zinc content, whereas zinc overdose had positive effects. In order to identify the molecular changes in the liver responding to dietary zinc status, cDNA microarrays were used to analyze the expression pattern of 9753 genes in the livers of rats fed ZD and ZO diet for 6 wk, compared with zinc-adequate ZA. The mRNA levels for 62 genes were affected significantly by the ZD diet, whereas 66 gene transcriptions were markedly changed in the ZO diet. Those predominant gene products involved in nitrogen metabolism (glutaminase), carbohydrate metabolism (aldolase), lipid metabolism (stearoyl-CoA desaturase), growth (insulin-like growth factor-binding protein), transcription and translation (zinc-finger protein), immune (natural-killer cell), signal transduction (mitogen- activated protein kinase), and ion transportation (ATPase Na+/K+ transporting peptide) were clustered. In conclusion, a number of mammalian genes related to zinc in the liver were identified. The characterization of the genes and their products will allow a more comprehensive analysis of the role of zinc in metabolism. Furthermore, the mRNA identified could be useful in establishing the mechanisms of zinc in the pleiotropic metabolisms in vivo.
Collapse
Affiliation(s)
- J Y Sun
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal, Zhejiang University, Hangzhou, PR China
| | | | | | | | | |
Collapse
|
40
|
Bhattacharya SK, Ahokas RA, Carbone LD, Newman KP, Gerling IC, Sun Y, Weber KT. Macro- and micronutrients in African-Americans with heart failure. Heart Fail Rev 2006; 11:45-55. [PMID: 16819577 DOI: 10.1007/s10741-006-9192-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An emerging body of evidence suggests secondary hyperparathyroidism (SHPT) may be an important covariant of congestive heart failure (CHF), especially in African-Americans (AA) where hypovitaminosis D is prevalent given that melanin, a natural sunscreen, mandates prolonged exposure of skin to sunlight and where a housebound lifestyle imposed by symptomatic CHF limits outdoor activities and hence sunlight exposure. In addition to the role of hypovitaminosis D in contributing to SHPT is the increased urinary and fecal losses of macronutrients Ca(2+) and Mg(2+) associated with the aldosteronism of CHF and their heightened urinary losses with furosemide treatment of CHF. Thus, a precarious Ca(2+) balance seen with reduced serum 25(OH)D is further compromised when AA develop CHF with circulating RAAS activation and are then treated with a loop diuretic. SHPT accounts for a paradoxical Ca(2+) overloading of diverse tissues and the induction of oxidative stress at these sites which spills over to the systemic circulation. In addition to SHPT, hypozincemia and hyposelenemia have been found in AA with compensated and decompensated heart failure and where an insufficiency of these micronutrients may have its origins in inadequate dietary intake, altered rates of absorption or excretion and/or tissue redistribution, and treatment with an ACE inhibitor or AT(1) receptor antagonist. Zn and Se deficiencies, which compromise the activity of several endogenous antioxidant defenses, could prove contributory to the severity of heart failure and its progressive nature. These findings call into question the need for nutriceutical treatment of heart failure and which is complementary to today's pharmaceuticals, especially in AA.
Collapse
|
41
|
Kim BC, Gu MB. Expression analysis of stress-specific responsive genes in two-stage continuous cultures of Escherichia coli using cDNA microarray and real-time RT-PCR analysis. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Chen XY, Tong GD, Xia F. Antiviral effect of Chinese medicine jiaweisinisan in hepatitis B virus transgenic mice. World J Gastroenterol 2006; 12:2280-2283. [PMID: 16610037 PMCID: PMC4087662 DOI: 10.3748/wjg.v12.i14.2280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 10/10/2005] [Accepted: 10/26/2005] [Indexed: 02/06/2023] Open
Abstract
AIM To study the antiviral effect of Chinese medicine jiaweisinisan (JWSNS) on hepatitis B virus (HBV) infection in transgenic mice (TGM). METHODS Twenty two 6-8 wk old HBV TGM in the third generation were divided into TGM control group and TGM treated group randomly. The normal control group included ten normal BC 57L/6 mice at the same age. The mice in treated group were administrated with JWSNS at the concentration of 4 g/mL and the dosage of 50 g/kg per d for 30 d, while the mice in TGM control group and normal control group were administrated with normal saline at the same dosage and the same time. Polymerase chain reaction (PCR) was used to assess the contents of HBV DNA in serum of HBV TGM before and after treatments, whereas blot hybridization was utilized to measure the contents of HBV DNA in the liver of both HBV TGM and normal BC 57L/6 mice. RESULTS The levels of serum HBV DNA in TGM treated group were remarkably decreased after the treatment of JWSNS (7.662+/-0.78 vs 5.22+/-3.14, P < 0.05), while there was no obvious change after administration of normal saline in TGM control group (7.125+/-4.26 vs 8.932+/-5.12, P > 0.05). The OD values of HBV DNA in the livers of the mice in TGM treated group were significantly lower than those of TGM control group (0.274+/-0.096 vs 0.432+/-0.119, P < 0.01). CONCLUSION JWSNS exerts suppressive effects on HBV DNA in the serum and liver of TGM.
Collapse
Affiliation(s)
- Xiao-Yin Chen
- Department of Traditional Chinese Medicine, Medical College, Jinan University, 601 Huangpu Road, Guangzhou 510632, Guangdong Province, China.
| | | | | |
Collapse
|
43
|
Judice CC, Carazzole MF, Festa F, Sogayar MC, Hartfelder K, Pereira GAG. Gene expression profiles underlying alternative caste phenotypes in a highly eusocial bee, Melipona quadrifasciata. INSECT MOLECULAR BIOLOGY 2006; 15:33-44. [PMID: 16469066 DOI: 10.1111/j.1365-2583.2005.00605.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
To evaluate caste-biased gene expression in Melipona quadrifasciata, a stingless bee, we generated 1278 ESTs using Representational Difference Analysis. Most annotated sequences were similar to honey bee genes of unknown function. Only few queen-biased sequences had their putative function assigned by sequence comparison, contrasting with the worker-biased ESTs. The expression of six annotated genes connected to caste specificity was validated by real time PCR. Interestingly, queens that were developmentally induced by treatment with a juvenile hormone analogue displayed an expression profile clearly different from natural queens for this set of genes. In summary, this study represents an important first step in applying a comparative genomic approach to queen/worker polyphenism in the bee.
Collapse
Affiliation(s)
- C C Judice
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas-Campinas, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Derory J, Léger P, Garcia V, Schaeffer J, Hauser MT, Salin F, Luschnig C, Plomion C, Glössl J, Kremer A. Transcriptome analysis of bud burst in sessile oak (Quercus petraea). THE NEW PHYTOLOGIST 2006; 170:723-38. [PMID: 16684234 DOI: 10.1111/j.1469-8137.2006.01721.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Expression patterns of hundreds of transcripts in apical buds were monitored during bud flushing in sessile oak (Quercus petraea), in order to identify genes differentially expressed between the quiescent and active stage of bud development. Different transcriptomic techniques combining the construction of suppression subtractive hybridization (SSH) libraries and the monitoring of gene expression using macroarray and real-time reverse transcriptase polymerase chain reaction (RT-PCR) were performed to dissect bud burst, with a special emphasis on the onset of the process. We generated 801 expressed sequence tags (ESTs) derived from six developmental stages of bud burst. Macroarray experiment revealed a total of 233 unique transcripts exhibiting differential expression during the process, and a putative function was assigned to 65% of them. Cell rescue/defense-, metabolism-, protein synthesis-, cell cycle- and transcription-related transcripts were among the most regulated genes. Macroarray and real-time RT-PCR showed that several genes exhibited contrasted expressions between quiescent and swelling buds, such as a putative homologue of the transcription factor DAG2 (Dof Affecting Germination 2), previously reported to be involved in the control of seed germination in Arabidopsis thaliana. These differentially expressed genes constitute relevant candidates for signaling pathway of bud burst in trees.
Collapse
Affiliation(s)
- Jérémy Derory
- UMR Biodiversité Gènes et Ecosystèmes, INRA, F-33612 Cestas cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Liu CG, Zhang L, Jiang Y, Chatterjee D, Croce CM, Huebner K, Fong LYY. Modulation of gene expression in precancerous rat esophagus by dietary zinc deficit and replenishment. Cancer Res 2005; 65:7790-9. [PMID: 16140947 DOI: 10.1158/0008-5472.can-05-1345] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zinc deficiency in rats enhances esophageal cell proliferation, causes alteration in gene expression, and promotes esophageal carcinogenesis. Zinc replenishment rapidly induces apoptosis in the esophageal epithelium thereby reversing cell proliferation and carcinogenesis. To identify zinc-responsive genes responsible for these divergent effects, we did oligonucleotide array-based gene expression profiling analyses in the precancerous zinc-deficient esophagus and in zinc-replenished esophagi after treatment with intragastric zinc compared with zinc-sufficient esophagi. Thirty-three genes (21 up-regulated and 12 down-regulated) showed a > or = 2-fold change in expression in the hyperplastic zinc-deficient versus zinc-sufficient esophageal epithelia. Expression of genes involved in cell division, survival, adhesion, and tumorigenesis were markedly changed. The zinc-sensitive gene metallothionein-1 (MT-1 was up-regulated 7-fold, the opposite of results for small intestine and liver under zinc-deficient conditions. Keratin 14 (KRT14, a biomarker in esophageal tumorigenesis), carbonic anhydrase II (CAII, a regulator of acid-base homeostasis), and cyclin B were up-regulated >4-fold. Immunohistochemistry showed that metallothionein and keratin 14 proteins were overexpressed in zinc-deficient esophagus, as well as in lingual and esophageal squamous cell carcinoma from carcinogen-treated rats, emphasizing their roles in carcinogenesis. Calponin 1 (CNN1, an actin cross-linking regulator) was down-regulated 0.2-fold. Within hours after oral zinc treatment, the abnormal expression of 29 of 33 genes returned to near zinc-sufficient levels, accompanied by reversal of the precancerous phenotype. Thus, we have identified new molecular markers in precancerous esophagus and showed their restoration by zinc replenishment, providing insights into the interaction between zinc and gene expression in esophageal cancer development and prevention.
Collapse
Affiliation(s)
- Chang-Gong Liu
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Diegmann J, Junker K, Gerstmayer B, Bosio A, Hindermann W, Rosenhahn J, von Eggeling F. Identification of CD70 as a diagnostic biomarker for clear cell renal cell carcinoma by gene expression profiling, real-time RT-PCR and immunohistochemistry. Eur J Cancer 2005; 41:1794-801. [PMID: 16043348 DOI: 10.1016/j.ejca.2005.05.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Revised: 05/03/2005] [Accepted: 05/10/2005] [Indexed: 11/23/2022]
Abstract
The underlying molecular mechanisms of renal cell carcinoma (RCC) are poorly understood and more reliable markers for early diagnosis are needed. Hence, alternative strategies for biomarker discovery with appropriate validation technologies have to be performed. To elucidate genesis and progression of RCC we used high parallel chip based gene expression profiling comparing normal and tumour tissues. We compared corresponding control and tumour tissue samples from 10 patients with clear cell RCC. We isolated RNA from histologically well characterised tissue sections and performed reverse transcription, labelling and linear RNA amplification. Samples were hybridised on microarrays containing 642 human cDNAs. Of the 352 differentially expressed genes found, CD70 and FRA2 were selected for further evaluation by real-time RT-PCR. The analysis all showed a high potential to discriminate between normal and tumour tissue. Moreover, increased CD70 mRNA expression in tumour cells could be correlated to its expression at the protein level. Immunohistochemistry (IHC) showed very strong expression of CD70 in all tumour samples but no expression in adjacent normal kidney tissue. With our combined approach we were able to identify CD70 as a new marker for RCC, which may be useful in the future for improved immunohistochemical diagnosis.
Collapse
Affiliation(s)
- Julia Diegmann
- Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, 07740 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Ringseis R, Eder K. Effects of dietary fat and oxidized cholesterol on gene expression in rat liver as assessed by cDNA expression array analysis. Eur J Nutr 2004; 44:231-41. [PMID: 15309417 DOI: 10.1007/s00394-004-0515-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 04/27/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Specific oxysterols acting as ligands for nuclear transcription factors were shown to affect expression of genes involved in lipid metabolism. However, the various biological effects of oxysterols such as cytotoxicity, atherogenicity or mutagenicity suggest that other genes may be also affected by oxysterols than lipid metabolism. AIM OF THE STUDY The present study was conducted to investigate the effects of dietary oxidized cholesterol containing significant amounts of oxysterols and its interactions with different dietary fats on gene expression profiles as assessed by DNA array technology in rats. METHODS 54 male Sprague-Dawley rats were assigned to six groups and were fed six semisynthetic diets, which varied in the type of dietary fat (coconut oil vs. salmon oil) and dietary cholesterol (none cholesterol vs. 5 g unoxidized cholesterol/kg vs. 5 g oxidized cholesterol/kg). RESULTS Changes in gene expression as observed in response to dietary oxidized cholesterol were strongly dependent on the type of fat. In the rats fed coconut oil, the expression of 7 genes (5 up- and 2 down-regulated) was altered by dietary oxidized cholesterol, while in the rats fed salmon oil, the expression of 50 genes (16 up- and 34 down-regulated) was altered. 29 genes (22 up- and 7 down-regulated) were identified as possible targets for an altered gene expression by dietary salmon oil as compared to dietary coconut oil. CONCLUSION The present study showed that dietary oxidized cholesterol transcriptionally affects many genes involved in xenobiotic metabolism and stress response--an effect that was amplified by the administration of fish oil as dietary fat.
Collapse
Affiliation(s)
- Robert Ringseis
- Institut für Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Emil-Abderhalden-Strasse 26, 06108, Halle/Saale, Germany,
| | | |
Collapse
|
49
|
Andree KB, Kim J, Kirschke CP, Gregg JP, Paik H, Joung H, Woodhouse L, King JC, Huang L. Investigation of lymphocyte gene expression for use as biomarkers for zinc status in humans. J Nutr 2004; 134:1716-23. [PMID: 15226459 DOI: 10.1093/jn/134.7.1716] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A bioassay for zinc status in humans has been sought due to the importance of zinc, an essential trace metal, for many divergent functions in the human body; however, a sensitive bioassay for zinc status in humans is lacking. To address this issue, we established gene expression profiles of human lymphoblastoid cells treated with 0 or 30 micro mol/L ZnSO(4) using microarray technology. A limited number of genes were responsive to 30 micro mol/L zinc based on the analysis of Affymetrix human genome U133A GeneChips. We also examined the gene expression patterns of zinc transporters in human lymphoblastoid cells using quantitative RT-PCR analysis. ZNT1 was upregulated in lymphoblastoid cells, whereas ZIP1 was downregulated in response to the increased zinc concentrations in the culture media. To evaluate the potential applications of using both zinc transporter genes as biomarkers of zinc status, we measured the expression levels of ZIP1 and ZNT1 in the peripheral leukocytes collected from 2 different age groups of Korean women. After administration of a zinc supplement (22 mg zinc gluconate/d for 27 d), ZIP1 expression decreased by 17% (P < 0.01) and 21% (P < 0.05) in the peripheral leukocytes collected from 15 young (20-25 y) and 10 elderly (64-75 y) subjects, respectively. ZNT1 expression was not affected by taking the zinc supplement. These data suggest a potential application of ZIP1 as a biomarker of zinc status in humans.
Collapse
Affiliation(s)
- Karl B Andree
- Western Human Nutrition Research Center, Agriculture Research Service, U.S. Department of Agriculture, USA
| | | | | | | | | | | | | | | | | |
Collapse
|