1
|
Yuan Q, Luo M, Xie Y, Song W, Wang Y, Deng D, Chen S, Guo H. Chronic trans fatty acid consumption shortens lifespan in male Drosophila melanogaster on a high-sugar and high-fat diet. Biogerontology 2024; 25:1285-1297. [PMID: 38582786 DOI: 10.1007/s10522-024-10101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/21/2024] [Indexed: 04/08/2024]
Abstract
Aging entails the progressive decline in the body's self-regulation and functionality over time. Notably, obesity and aging exhibit parallel phenotypes, with obesity further accelerating the aging process across multiple dimensions and diminishing lifespan. In this study, we explored the impact of trans fatty acid (TFA) consumption on the overall health and lifespan of male Drosophila melanogaster under an isocaloric high-sugar and high-fat diet. Our results indicate that TFA intake results in a shortened lifespan, elevated body weight, and increased triglyceride levels in flies fed a high-sugar and high-fat diet with equivalent caloric intake. Additionally, TFA exposure induces oxidative stress, locomotor deficits, and damage to the intestinal barrier in flies. Collectively, chronic TFA consumption expedites the aging process and reduces the lifespan of male Drosophila melanogaster. These results contribute supplementary evidence regarding the adverse health effects associated with TFAs.
Collapse
Affiliation(s)
- Qianhua Yuan
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Mengliu Luo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yutong Xie
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Wanhan Song
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Ya Wang
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Dazhang Deng
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Shuyan Chen
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
- Dongguan Key Laboratory of Prevention and Treatment of Chronic Noncommunicable Diseases, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
2
|
Chattopadhyay D, Philip SM, Prabhakar G, Machamada Bheemaiah M. Influence of α-lipoic acid on longevity and stress resistance in Drosophila melanogaster fed with a high-fat diet. Biogerontology 2024; 25:1097-1114. [PMID: 39046586 DOI: 10.1007/s10522-024-10124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Consumption of a high-fat diet is accompanied by the risks of obesity and early onset of age-associated complications for which dietary interventions are imperative to combat. α-lipoic acid has been shown to hinder diet-induced obesity and induce lifespan-extending efficacy in model organisms. In this study, α-lipoic acid was investigated for its efficacy in improving lifespan and stress resistance in the Canton-S strain of Drosophila melanogaster fed with a high-fat diet. Furthermore, as mating status significantly impacts survival in fruit flies, flies were reared in two experimental groups-group one, in which males and females were bred together, and group two, in which males and females were bred separately. In group one, α-lipoic acid improved the mean lifespan, reduced the fecundity of females, and reduced the mean body weight of flies at a dose range of 2-2.5 mM, respectively. In group two, α-lipoic acid improved the mean lifespan, reduced the fecundity of females, and reduced the mean body weight of flies at a dose range of 1-2.5 mM, respectively. Improved climbing efficiency was observed with α-lipoic acid at the dose range of 1.5-2.5 mM in flies of group one and 1-2.5 mM in flies of group two, respectively. Administration of α-lipoic acid improved resistance to oxidative stress in only female flies of group one at 2.5 mM, whereas in group two, both male and female flies exhibited enhanced resistance to oxidative stress with α-lipoic acid at a dose range of 2-2.5 mM, respectively. Male and female flies of only group one showed improved resistance to heat shock stress with α-lipoic acid at a dose range of 2-2.5 mM. Only female flies of group two exhibited a slight improvement in recovery time following cold shock with α-lipoic acid only at 2.5 mM. No significant change in resistance to starvation stress was observed with any dose of α-lipoic acid in either group of flies. To summarize, data from this study suggested a probable dose and gender-dependent efficacy of α-lipoic acid in flies fed with a high-fat diet, which was significantly influenced by the mating status of flies due to varied rearing conditions.
Collapse
Affiliation(s)
- Debarati Chattopadhyay
- School of Life Sciences, Department of Biotechnology, St Joseph's University, 36 Lalbagh Road, Shantinagar, Bangalore, Karnataka, 560027, India.
| | - Susan Mary Philip
- School of Life Sciences, Department of Biotechnology, St Joseph's University, 36 Lalbagh Road, Shantinagar, Bangalore, Karnataka, 560027, India
| | - Grace Prabhakar
- School of Life Sciences, Department of Biotechnology, St Joseph's University, 36 Lalbagh Road, Shantinagar, Bangalore, Karnataka, 560027, India
| | - Madappa Machamada Bheemaiah
- School of Life Sciences, Department of Biotechnology, St Joseph's University, 36 Lalbagh Road, Shantinagar, Bangalore, Karnataka, 560027, India
| |
Collapse
|
3
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Park SH, Lee DH, Lee DH, Jung CH. Scientific evidence of foods that improve the lifespan and healthspan of different organisms. Nutr Res Rev 2024; 37:169-178. [PMID: 37469212 DOI: 10.1017/s0954422423000136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Age is a risk factor for numerous diseases. Although the development of modern medicine has greatly extended the human lifespan, the duration of relatively healthy old age, or 'healthspan', has not increased. Targeting the detrimental processes that can occur before the onset of age-related diseases can greatly improve health and lifespan. Healthspan is significantly affected by what, when and how much one eats. Dietary restriction, including calorie restriction, fasting or fasting-mimicking diets, to extend both lifespan and healthspan has recently attracted much attention. However, direct scientific evidence that consuming specific foods extends the lifespan and healthspan seems lacking. Here, we synthesized the results of recent studies on the lifespan and healthspan extension properties of foods and their phytochemicals in various organisms to confirm how far the scientific research on the effect of food on the lifespan has reached.
Collapse
Affiliation(s)
- So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, South Korea
| | - Da-Hye Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Dae-Hee Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon-do, South Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, South Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do, South Korea
| |
Collapse
|
5
|
Lopez-Ortiz C, Gracia-Rodriguez C, Belcher S, Flores-Iga G, Das A, Nimmakayala P, Balagurusamy N, Reddy UK. Drosophila melanogaster as a Translational Model System to Explore the Impact of Phytochemicals on Human Health. Int J Mol Sci 2023; 24:13365. [PMID: 37686177 PMCID: PMC10487418 DOI: 10.3390/ijms241713365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Fruits, vegetables, and spices are natural sources of bioactive phytochemicals, such as polyphenols, carotenoids, flavonoids, curcuminoids, terpenoids, and capsaicinoids, possessing multiple health benefits and relatively low toxicity. These compounds found in the diet play a central role in organism development and fitness. Given the complexity of the whole-body response to dietary changes, invertebrate model organisms can be valuable tools to examine the interplay between genes, signaling pathways, and metabolism. Drosophila melanogaster, an invertebrate model with its extensively studied genome, has more than 70% gene homology to humans and has been used as a model system in biological studies for a long time. The notable advantages of Drosophila as a model system, such as their low maintenance cost, high reproductive rate, short generation time and lifespan, and the high similarity of metabolic pathways between Drosophila and mammals, have encouraged the use of Drosophila in the context of screening and evaluating the impact of phytochemicals present in the diet. Here, we review the benefits of Drosophila as a model system for use in the study of phytochemical ingestion and describe the previously reported effects of phytochemical consumption in Drosophila.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico;
| | - Samantha Belcher
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Gerardo Flores-Iga
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico;
| | - Amartya Das
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico;
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (C.G.-R.); (S.B.); (G.F.-I.); (A.D.); (P.N.)
| |
Collapse
|
6
|
Gao L, Liu X, Luo X, Lou X, Li P, Li X, Liu X. Antiaging effects of dietary supplements and natural products. Front Pharmacol 2023; 14:1192714. [PMID: 37441528 PMCID: PMC10333707 DOI: 10.3389/fphar.2023.1192714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Aging is an inevitable process influenced by genetics, lifestyles, and environments. With the rapid social and economic development in recent decades, the proportion of the elderly has increased rapidly worldwide, and many aging-related diseases have shown an upward trend, including nervous system diseases, cardiovascular diseases, metabolic diseases, and cancer. The rising burden of aging-related diseases has become an urgent global health challenge and requires immediate attention and solutions. Natural products have been used for a long time to treat various human diseases. The primary cellular pathways that mediate the longevity-extending effects of natural products involve nutrient-sensing pathways. Among them, the sirtuin, AMP-activated protein kinase, mammalian target of rapamycin, p53, and insulin/insulin-like growth factor-1 signaling pathways are most widely studied. Several studies have reviewed the effects of individual natural compounds on aging and aging-related diseases along with the underlying mechanisms. Natural products from food sources, such as polyphenols, saponins, alkaloids, and polysaccharides, are classified as antiaging compounds that promote health and prolong life via various mechanisms. In this article, we have reviewed several recently identified natural products with potential antiaging properties and have highlighted their cellular and molecular mechanisms. The discovery and use of dietary supplements and natural products that can prevent and treat multiple aging-related diseases in humans will be beneficial. Thus, this review provides theoretical background for existing dietary supplements and natural products as potential antiaging agents.
Collapse
|
7
|
Liu J, Ding H, Yan C, He Z, Zhu H, Ma KY. Effect of tea catechins on gut microbiota in high fat diet-induced obese mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2436-2445. [PMID: 36715435 DOI: 10.1002/jsfa.12476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/06/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Tea catechins have been shown to have beneficial effects on the alleviation of obesity, the prevention of diabetes, and the amelioration of metabolic syndrome. The purpose of the present work is to explore the underlying mechanisms linking the intestinal microbiota and anti-obesity benefits of green tea, oolong tea, and black tea catechins in C57BL/6J mice fed with a high-fat diet (HFD). RESULTS The results indicated that, after the dietary intake of three tea catechins, obesity and low-grade inflammation were significantly alleviated. Hepatic steatosis was prevented, and this was accompanied by the upregulation of the mRNA and protein expressions of hepatic peroxisome proliferator-activated receptor α (PPARα). Metagenomic analysis of fecal samples suggested that the three tea catechins similarly changed the microbiota in terms of overall structure, composition, and protein functions by regulating the metabolites, facilitating the generation of short-chain fatty acids (SCFAs), and repressing lipopolysaccharides. CONCLUSION The anti-obese properties of three tea catechins were partially mediated by their positive effect on gut microbiota, hepatic steatosis alleviation, and anti-inflammatory activity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianhui Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Huafang Ding
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Chi Yan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Zouyan He
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Hanyue Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
- School of Food Science and Engineering / South China Food Safety Research Center, Foshan University, Foshan, China
| | - Ka Ying Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
8
|
Chen JC, Wang R, Wei CC. Anti-aging effects of dietary phytochemicals: From Caenorhabditis elegans, Drosophila melanogaster, rodents to clinical studies. Crit Rev Food Sci Nutr 2023; 64:5958-5983. [PMID: 36597655 DOI: 10.1080/10408398.2022.2160961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Anti-aging research has become critical since the elderly population is increasing dramatically in this era. With the establishment of frailty phenotype and frailty index, the importance of anti-frailty research is concurrently enlightened. The application of natural phytochemicals against aging or frailty is always intriguing, and abundant related studies have been published. Various models are designed for biological research, and each model has its strength and weakness in deciphering the complex aging mechanisms. In this article, we attempt to show the potential of Caenorhabditis elegans in the study of phytochemicals' effects on anti-aging by comparing it to other animal models. In this review, the lifespan extension and anti-aging effects are demonstrated by various physical, cellular, or molecular biomarkers of dietary phytochemicals, including resveratrol, curcumin, urolithin A, sesamin, fisetin, quercetin, epigallocatechin-3-gallate, epicatechin, spermidine, sulforaphane, along with extracts of broccoli, cocoa, and blueberry. Meanwhile, the frequency of phytochemicals and models studied or presented in publications since 2010 were analyzed, and the most commonly mentioned animal models were rats, mice, and the nematode C. elegans. This up-to-date summary of the anti-aging effect of certain phytochemicals has demonstrated powerful potential for anti-aging or anti-frailty in the human population.
Collapse
Affiliation(s)
- Ju-Chi Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Reuben Wang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Master of Public Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Wongchum N, Dechakhamphu A, Panya P, Pinlaor S, Pinmongkhonkul S, Tanomtong A.
Hydroethanolic Cyperus rotundus L. extract exhibits anti-obesity property and increases lifespan expectancy in Drosophila melanogaster fed a high-fat diet. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Cyperus rotundus L. is suspected of having anti-obesity properties. The purpose of this study was to determine the anti-obesity property of hydroethanolic C. rotundus extract (HECE) using Drosophila as a model organism. Methods: In vitro inhibition of lipase activity by C. rotundus extract was investigated. The effects of C. rotundus extract on obesity-related characteristics, including body weight, triglyceride content, and lifespan extension were evaluated in Drosophila fed a high-fat diet (HFD). The effect of the extract on the reduction of oxidative stress associated with obesity was assessed in vivo using antioxidant assays in Drosophila. Results: HECE inhibited lipase activity in vitro with an IC50 of 128.24 ± 3.65 μg/mL. In vivo lipase inhibition experiments demonstrated that feeding Drosophila 10 mg/mL HECE or 2 μM orlistat lowered lipase activity by 21.51 (P < 0.05) and 42.86% (P < 0.01) and triglyceride levels by 20.67 (P < 0.05) and 28.39% (P < 0.01), respectively, compared to those of the untreated group. After 10 mg/mL HECE or 2 μM orlistat supplementation, an increase in the mean survival rate (10.54 (P < 0.05) and 13.90% (P < 0.01), respectively) and climbing ability (25.03 (P < 0.01) and 28.44% (P < 0.01), respectively) was observed compared to those of flies fed a HFD. The paraquat and H2O2 challenge tests revealed that flies fed HECE in a mixed HFD showed increased survival on flies fed a HFD. Conclusion: This study demonstrates the beneficial effects of dietary HECE supplementation on suppressing pancreatic lipase activity and lowering triglyceride levels and oxidative stress, leading to increased lifespan in Drosophila fed a HFD.
Collapse
Affiliation(s)
- Nattapong Wongchum
- Biology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Biology Program, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand
| | - Ananya Dechakhamphu
- Thai Traditional Medicine Program, Faculty of Thai Traditional and Alternative Medicine, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand
- Aesthetic Sciences and Health Program, Faculty of Thai Traditional and Alternative Medicine, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand
| | - Panatda Panya
- Thai Traditional Medicine Program, Faculty of Thai Traditional and Alternative Medicine, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand
- Aesthetic Sciences and Health Program, Faculty of Thai Traditional and Alternative Medicine, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Alongklod Tanomtong
- Biology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
10
|
Xue F, Li X, Qin L, Liu X, Li C, Adhikari B. Anti-aging properties of phytoconstituents and phyto-nanoemulsions and their application in managing aging-related diseases. Adv Drug Deliv Rev 2021; 176:113886. [PMID: 34314783 DOI: 10.1016/j.addr.2021.113886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/13/2021] [Accepted: 07/18/2021] [Indexed: 12/22/2022]
Abstract
Aging is spontaneous and inevitable process in all living beings. It is a complex natural phenomenon that manifests as a gradual decline of physiological functions and homeostasis. Aging inevitably leads to age-associated injuries, diseases, and eventually death. The research on aging-associated diseases aimed at delaying, preventing or even reversing the aging process are of great significance for healthy aging and also for scientific progress. Numerous plant-derived compounds have anti-aging effects, but their therapeutic potential is limited due to their short shelf-life and low bioavailability. As the novel delivery system, nanoemulsion can effectively improve this defect. Nanoemulsions enhance the delivery of drugs to the target site, maintain the plasma concentration for a longer period, and minimize adverse reaction and side effects. This review describes the importance of nanoemulsions for the delivery of phyto-derived compounds and highlights the importance of nanoemulsions in the treatment of aging-related diseases. It also covers the methods of preparation, fate and safety of nanoemulsions, which will provide valuable information for the development of new strategies in treatment of aging-related diseases.
Collapse
|
11
|
Salehi B, Quispe C, Butnariu M, Sarac I, Marmouzi I, Kamle M, Tripathi V, Kumar P, Bouyahya A, Capanoglu E, Ceylan FD, Singh L, Bhatt ID, Sawicka B, Krochmal-Marczak B, Skiba D, El Jemli M, El Jemli Y, Coy-Barrera E, Sharifi-Rad J, Kamiloglu S, Cádiz-Gurrea MDLL, Segura-Carretero A, Kumar M, Martorell M. Phytotherapy and food applications from Brassica genus. Phytother Res 2021; 35:3590-3609. [PMID: 33666283 DOI: 10.1002/ptr.7048] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/28/2020] [Accepted: 01/25/2021] [Indexed: 01/26/2023]
Abstract
Plants of the genus Brassica occupy the top place among vegetables in the world. This genus, which contains a group of six related species of a global economic significance, three of which are diploid: Brassica nigra (L.) K. Koch, Brassica oleracea L., and Brassica rapa L. and three are amphidiploid species: Brassica carinata A. Braun, Brassica juncea (L.) Czern., and Brassica napus L. These varieties are divided into oily, fodder, spice, and vegetable based on their morphological structure, chemical composition, and usefulness of plant organs. The present review provides information about habitat, phytochemical composition, and the bioactive potential of Brassica plants, mainly antioxidant, antimicrobial, anticancer activities, and clinical studies in human. Brassica vegetables are of great economic importance around the world. At present, Brassica plants are grown together with cereals and form the basis of global food supplies. They are distinguished by high nutritional properties from other vegetable plants, such as low fat and protein content and high value of vitamins, fibers along with minerals. In addition, they possess several phenolic compounds and have a unique type of compounds namely glucosinolates that differentiate these crops from other vegetables. These compounds are also responsible for numerous biological activities to the genus Brassica as described in this review.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania", Timisoara, Romania
| | - Ioan Sarac
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania", Timisoara, Romania
| | - Ilias Marmouzi
- Laboratoire de Pharmacologie et Toxicologie, Faculté de Médecine et de Pharmacie, Mohammed V University in Rabat, Rabat, Morocco
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco
| | - Esra Capanoglu
- Faculty of Chemical & Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Fatma Duygu Ceylan
- Faculty of Chemical & Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Laxman Singh
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Almora, India
| | - Indra D Bhatt
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Almora, India
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Sciences, Lublin, Poland
| | - Barbara Krochmal-Marczak
- Department of Production and Food Safety, State Higher Vocational School named after Stanislaw Pigon, Krosno, Poland
| | - Dominika Skiba
- Department of Plant Production Technology and Commodities Science, University of Life Sciences, Lublin, Poland
| | - Meryem El Jemli
- Pharmacodynamy Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Yousra El Jemli
- Faculty of Science and Technology, University of Cadi Ayyad Marrakech, Marrakesh, Morocco
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, Cajicá, Colombia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Senem Kamiloglu
- Science and Technology Application and Research Center (BITAUM), Bursa Uludag University, Bursa, Turkey
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
- Research and Development Functional Food Centre (CIDAF), University of Granada, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
- Research and Development Functional Food Centre (CIDAF), University of Granada, Granada, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion, Chile
| |
Collapse
|
12
|
Wongchum N, Dechakhamphu A. Xanthohumol prolongs lifespan and decreases stress-induced mortality in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:108994. [PMID: 33549830 DOI: 10.1016/j.cbpc.2021.108994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/12/2021] [Accepted: 01/24/2021] [Indexed: 11/23/2022]
Abstract
Aging is a significant risk factor that links to the genesis of human diseases. The capacity to scavenge free radicals and adapt to various stresses is essential for expanding living organisms' lifespan. The evidences on the promotion of longevity by dietary supplementation are growing. Drosophila or fruit fly is one of the most effective models for the evaluation of anti-aging compounds. Xanthohumol (XN) is a potential bioactive substance for the prevention and treatment of many diseases. The previous studies have reported its potent activities as antioxidant, anticancer, anti-inflammatory, antiviral, antibacterial antiplasmodial, and antiobesity. In this study, the effect of XN supplementation on the lifespan extension was investigated in Drosophila melanogaster. The effects of XN on the improvement of the recovery from cold and heat shock, the resistance to starvation stress, and free radical-induced oxidative stress in XN-treated flies were also evaluated. Results showed that supplementation with XN at 0.5 mg/mL diet extended the mean lifespan by 14.89%. This was consistent with a significant improvement of locomotor activity of the Drosophila fed with an XN-mixed diet compared with those fed with a control diet. XN supplementation significantly increased the antioxidant enzyme activities at both 25 and 40 days. Drosophila treated with XN exhibited increased survival after exposure to hydrogen peroxide and paraquat. Finally, XN supplementation improved the recovery from cold and heat shock, the resistance to starvation stress, and acetic acid-induced stress. The present study shows that dietary supplementation with XN revealed the longevity effect and ameliorated stress-induced mortality in Drosophila.
Collapse
Affiliation(s)
- Nattapong Wongchum
- Biology Program, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand
| | - Ananya Dechakhamphu
- Thai Traditional Medicine Program, Faculty of Thai Traditional and Alternative Medicine, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand.
| |
Collapse
|
13
|
Chattopadhyay D, Thirumurugan K. Longevity-promoting efficacies of rutin in high fat diet fed Drosophila melanogaster. Biogerontology 2020; 21:653-668. [PMID: 32430858 DOI: 10.1007/s10522-020-09882-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Composition of diet significantly impacts lifespan in Drosophila melanogaster. Diet-composition becomes even more crucial while assessing a phytocompound for probable pro-longevity effects in flies. Rutin is a flavonol glycoside present in apple, buckwheat, black tea and green tea. Our previous study had reported hormetic efficacy of rutin to improve longevity and other physiological parameters in Drosophila melanogaster fed with standard diet. This study aimed to understand whether rutin could exhibit similar longevity promoting effects in flies fed with a high fat diet (HFD). In this study, wild type Canton-S males and females were reared on high fat diet (HFD) treated with or without rutin at different doses (100-800 µM) and assessed for survival, food intake, fecundity, locomotion, development, resistance to various forms of stresses and relative mRNA expression of specific genes associated with ageing, namely dFoxO, MnSod, Cat, dTsc1, dTsc2, Thor, dAtg1, dAtg5, dAtg7 and dTor. Rutin at only 400 µM significantly improved survival in males fed with HFD; while at 200 µM and 400 µM it significantly improved survival in females. Doses beyond 400 µM proved detrimental for both sexes. Rutin at 200 µM and 400 µM significantly reduced average food intake in both males and females fed with HFD. A significant reduction in number of eggs laid per female per day was observed in females treated with rutin at 400 µM. Rutin at 200 µM and 400 µM significantly improved climbing efficiency in males and females. A significant reduction in eclosion time was observed in larvae fed with HFD and treated with rutin at 400 µM. Rutin at 400 µM significantly improved resistance of males and females to different stresses namely heat shock, cold shock and starvation stresses. Interestingly, rutin at 400 µM significantly reduced survival of males and females exposed to oxidative stress. In males fed with HFD, rutin at 200 µM showed significantly increased relative expression of dFoxo, MnSod, Cat, dAtg1, dAtg5 and dAtg7; at 400 µM it significantly increased the relative expression of dFoxO, MnSod, Cat, dTsc1, dTsc2, Thor, dAtg1, dAtg5, dAtg7 while decreasing relative expression of dTor. Thus, data from this study collectively showed that rutin at 400 µM and to an extent 200 µM positively impacted lifespan and modulated other physiological parameters in males and females fed with HFD.
Collapse
Affiliation(s)
- Debarati Chattopadhyay
- Department of Biotechnology, St Joseph's College (Autonomous), Bangalore, Karnataka, India
| | - Kavitha Thirumurugan
- 206, Structural Biology Lab, Centre for Biomedical Research, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
14
|
Lee SH, Min KJ. Drosophila melanogaster as a model system in the study of pharmacological interventions in aging. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
15
|
Chen L, Tan GJT, Pang X, Yuan W, Lai S, Yang H. Energy Regulated Nutritive and Antioxidant Properties during the Germination and Sprouting of Broccoli Sprouts ( Brassica oleracea var. italica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6975-6985. [PMID: 29889516 DOI: 10.1021/acs.jafc.8b00466] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The role of energy status in germination and sprouting of broccoli seeds was investigated by exogenous ATP and DNP treatments. With the synthesis of adenylates from 38.82 to 142.69 mg·100 g-1 DW, the nutritive components (soluble sugar, proteins, pigments, and phenolics) and AAs were increased during germination and early sprouting (day 5). Elements of the BoSnRK2 pathway were down-regulated by more than 2 fold under the energy charge feedback inhibition. At the end of sprouting (day 7), energy depletion resulted in slowdown or reduced nutritional accumulation and antioxidant capacities. Exogenous ATP depressed the BoSnRK2 pathway by maintaining the energy status at high levels and further promoted the nutrition and antioxidant levels. It also prevented the energy depletion at day 7. On the contrary, DNP reduced the ATP contents (16.10-26.86%) and activated the BoSnRK2 pathway. It also notably suppressed the energy-consuming activities including germination, sprouts growth, and secondary metabolic synthesis.
Collapse
Affiliation(s)
- Lin Chen
- Food Science and Technology Programme, c/o Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
- National University of Singapore (Suzhou) Research Institute , 377 Lin Quan Street, Suzhou Industrial Park , Suzhou , Jiangsu 215123 , P. R. China
| | - Glenna Jue Tong Tan
- Food Science and Technology Programme, c/o Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Xinyi Pang
- Food Science and Technology Programme, c/o Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Wenqian Yuan
- Food Science and Technology Programme, c/o Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Shaojuan Lai
- Guangzhou Pulu Medical Technology Co., Ltd., Guangzhou , Guangdong 510800 , P. R. China
| | - Hongshun Yang
- Food Science and Technology Programme, c/o Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
- National University of Singapore (Suzhou) Research Institute , 377 Lin Quan Street, Suzhou Industrial Park , Suzhou , Jiangsu 215123 , P. R. China
| |
Collapse
|
16
|
Güneş E, Danacıoğlu DA. The effect of olive (Olea europaea L.) phenolics and sugar on Drosophila melanogaster’s development. ANIM BIOL 2018. [DOI: 10.1163/15707563-17000162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Olive leaves (Olea europaea L.) contain phenolics that are used for various aims and can also be utilized as free radical scavengers and as a powerful antioxidant source. In this study, our aim was to observe the effects of olive phenolics on the survival rate, development, sex ratio, and adult longevity of Drosophila melanogaster Meigen (Diptera: Drosophilidae) fed with sugar and with a sugar-free diet. The amount of malondialdehyde and the activity of glutathione S-transferase were examined with UV-VIS spectrophotometry in third-stage larvae, pupae and adults. For this purpose, dried olive fruit and leaf extracts were added at different concentrations to the insect’s sugary diets. The results reveal that 12 mg/L phenolic fruit extract and 4 M sucrose had a negative impact on the development and survival of these insects. It was also found that phenolic leaf extract and low sugar concentrations changed the sex ratio, leading to fewer females and more males. The use of phenolic fruit and phenolic leaf extracts with increased sugar-based diets raised the amount of oxidation as well as the detoxification activity in this model organism. These results demonstrate that low amounts of sugar and olive phenolics may be used as an adjunct to adult nutrients to improve the insect’s adult characteristics.
Collapse
Affiliation(s)
- Eda Güneş
- 1Konya Necmettin Erbakan University, Faculty of Tourism, Department of Gastronomy and Culinary Arts, 42300, Konya, Turkey
| | - Derya Arslan Danacıoğlu
- 2Konya Necmettin Erbakan University, Faculty of Engineering and Architecture, Department of Food Engineering, 42300, Konya, Turkey
| |
Collapse
|
17
|
Panchal K, Tiwari AK. Drosophila melanogaster "a potential model organism" for identification of pharmacological properties of plants/plant-derived components. Biomed Pharmacother 2017; 89:1331-1345. [PMID: 28320100 DOI: 10.1016/j.biopha.2017.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/18/2022] Open
Abstract
Plants/plant-derived components have been used from ancient times to treat/cure several human diseases. Plants and their parts possess several chemical components that play the vital role in the improvement of human health and their life expectancy. Allopathic medicines have been playing a key role in the treatment of several diseases. Though allopathic medicines provide fast relief, long time consumption cause serious health concerns such as hyperallergic reactions, liver damage, etc. So, the study of medicinal plants which rarely cause any side effect is very important to mankind. Plants contain many health benefit properties like antioxidant, anti-aging, neuroprotective, anti-genotoxic, anti-mutagenic and bioinsecticidal activity. Thus, identification of pharmacological properties of plants/plant-derived components are of utmost importance to be explored. Several model organisms have been used to identify the pharmacological properties of the different plants or active components therein and Drosophila is one of them. Drosophila melanogaster "fruit fly" is a well understood, high-throughput model organism being used more than 110 years to study the different biological aspects related to the development and diseases. Most of the developmental and cell signaling pathways and ∼75% human disease-related genes are conserved between human and Drosophila. Using Drosophila, one can easily analyze the pharmacological properties of plants/plant-derived components by performing several assays available with flies such as survivorship, locomotor, antioxidant, cell death, etc. The current review focuses on the potential of Drosophila melanogaster for the identification of medicinal/pharmacological properties associated with plants/plant-derived components.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar 382 007, Gujarat, India.
| | - Anand K Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar 382 007, Gujarat, India.
| |
Collapse
|
18
|
Yao YF, Liu X, Li WJ, Shi ZW, Yan YX, Wang LF, Chen M, Xie MY. (-)-Epigallocatechin-3-gallate alleviates doxorubicin-induced cardiotoxicity in sarcoma 180 tumor-bearing mice. Life Sci 2016; 180:151-159. [PMID: 27956351 DOI: 10.1016/j.lfs.2016.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/23/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022]
Abstract
AIMS (-)-Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol compound, plays an important role in the prevention of cardiovascular disease and cancer. The present study aimed to investigate the effects of EGCG on doxorubicin (DOX)-induced cardiotoxicity in Sarcoma 180 (S180) tumor-bearing mice. MAIN METHODS S180 tumor-bearing mice were established by subcutaneous inoculation of S180 cells attached to the axillary region. The extent of myocardial injury was accessed by the amount of lactate dehydrogenase (LDH) released in serum. Heart tissue was morphologically studied with transmission electron microscopy. Apoptosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔѰm) as well as calcium concentration were measured by flow cytometric analysis. Expression levels of manganese superoxide dismutase (MnSOD) were analyzed by Western blot. KEY FINDINGS Results showed that the combination with EGCG and DOX significantly inhibited tumor growth and enhanced induction of apoptosis compared with DOX alone. Moreover, administration of EGCG could suppress DOX-induced cardiotoxicity as evidenced by alleviating LDH release and apoptosis in cardiomyocyte. EGCG-evoked cardioprotection was in association with the increase of ΔѰm and MnSOD expression. EGCG was also found to attenuate ROS generation and myocardial calcium overload in Sarcoma 180 tumor-bearing mice subjected to DOX. SIGNIFICANCE EGCG alleviated DOX-induced cardiotoxicity possibly in part mediated by increasing of MnSOD and Ѱm, reducing myocardial calcium overload and subsequently attenuating the apoptosis and LDH release. Our findings suggest that co-administration of EGCG and DOX have potential as a feasible strategy to mitigate cardiotoxicity of DOX without compromising its chemotherapeutic value.
Collapse
Affiliation(s)
- Yu-Fei Yao
- Chinese Liberation Army No. 94 Hospital, No. 1028, Jinggangshan Avenue, Nanchang 330000, China; The Great Wall Affiliated Hospital, Nanchang University, No. 1028, Jinggangshan Avenue, Nanchang 330000, China
| | - Xiang Liu
- School of Basic Medical Sciences, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, China
| | - Wen-Juan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Zi-Wei Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yu-Xin Yan
- School of Basic Medical Sciences, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, China
| | - Le-Feng Wang
- School of Basic Medical Sciences, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, China
| | - Ming Chen
- School of Basic Medical Sciences, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
19
|
Abstract
Epidemiological data on consumption of flavonoid-containing food points to the notion that some of these secondary plant metabolites may favour healthy ageing. The aim of the present paper was to review the literature on lifespan extension by flavonoids in worms, flies and mice. In most studies, worms and flies experienced lifespan extension when supplemented with flavonoids either as extracts or single compounds. Studies with mutant worms and flies give hints as to which gene products may be regulated by flavonoids and consequently enhance longevity. We discuss the data considering putative mechanisms that may underlie flavonoid action such as energy-restriction-like effects, inhibition of insulin-like-growth-factor signalling, induction of antioxidant defence mechanisms, hormesis as well as antimicrobial properties. However, it remains uncertain whether human lifespan could be prolonged by increased flavonoid intake.
Collapse
|
20
|
Purple sweet potato anthocyanin attenuates fat-induced mortality in Drosophila melanogaster. Exp Gerontol 2016; 82:95-103. [DOI: 10.1016/j.exger.2016.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 11/21/2022]
|
21
|
Kayashima Y, Murata S, Sato M, Matsuura K, Asanuma T, Chimoto J, Ishii T, Mochizuki K, Kumazawa S, Nakayama T, Yamakawa-Kobayashi K. Tea polyphenols ameliorate fat storage induced by high-fat diet in Drosophila melanogaster. Biochem Biophys Rep 2015; 4:417-424. [PMID: 29124233 PMCID: PMC5669444 DOI: 10.1016/j.bbrep.2015.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/27/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022] Open
Abstract
Background Polyphenols in tea are considered beneficial to human health. However, many such claims of their bioactivity still require in vitro and in vivo evidence. Results Using Drosophila melanogaster as a model multicellular organism, we assess the fat accumulation-suppressing effects of theaflavin (TF), a tea polyphenol; epitheaflagallin (ETG), which has an unknown function; and epigallocatechin gallate (EGCg), a prominent component of green tea. Dietary TF reduced the malondialdehyde accumulation related to a high-fat diet in adult flies. Other physiological and genetic responses induced by the high-fat diet, such as lipid accumulation in the fat body and expression of lipid metabolism-related genes, were ameliorated by the addition of TF, ETG, and EGCg, in some cases approaching respective levels without high-fat diet exposure. Continuous ingestion of the three polyphenols resulted in a shortened lifespan. Conclusion We provide evidence in Drosophila that tea polyphenols have a fat accumulation-suppressing effect that has received recent attention. We also suggest that tea polyphenols can provide different desirable biological activities depending on their composition and the presence or absence of other chemical components. Tea polyphenols have a fat accumulation-suppressing effect in Drosophila. Dietary theaflavin ameliorates high-fat diet-induced hydroperoxidase accumulation. The novel tea polyphenol epitheaflagallin strongly suppresses lipid accumulation. The beneficial effects of tea polyphenols can be enhanced by altering composition.
Collapse
Affiliation(s)
- Yasunari Kayashima
- Department of Food and Nutrition, Yamanashi Gakuin Junior College, 2-4-5 Sakaori, Kofu-shi, Yamanashi 400-8575, Japan
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Corresponding author at: Department of Food and Nutrition, Yamanashi Gakuin Junior College, 2-4-5 Sakaori, Kofu-shi, Yamanashi 400-8575, Japan. Fax: +81 55 224 1396.Department of Food and Nutrition, Yamanashi Gakuin Junior College2-4-5 SakaoriKofu-shiYamanashi400-8575Japan
| | - Shinichi Murata
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Misaki Sato
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kanako Matsuura
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshimichi Asanuma
- Industrial Research Institute of Shizuoka Prefecture, 2078 Makigaya, Aoi-ku, Shizuoka 421-1298, Japan
| | - Junko Chimoto
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takeshi Ishii
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kazuo Mochizuki
- Industrial Research Institute of Shizuoka Prefecture, 2078 Makigaya, Aoi-ku, Shizuoka 421-1298, Japan
| | - Shigenori Kumazawa
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tsutomu Nakayama
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
22
|
Lashmanova E, Proshkina E, Zhikrivetskaya S, Shevchenko O, Marusich E, Leonov S, Melerzanov A, Zhavoronkov A, Moskalev A. Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans. Pharmacol Res 2015; 100:228-41. [DOI: 10.1016/j.phrs.2015.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 12/19/2022]
|
23
|
Chandrashekara KT, Popli S, Shakarad MN. Curcumin enhances parental reproductive lifespan and progeny viability in Drosophila melanogaster. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9702. [PMID: 25173182 PMCID: PMC4453933 DOI: 10.1007/s11357-014-9702-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 08/04/2014] [Indexed: 05/23/2023]
Abstract
Organismal lifespan is a complex trait that is governed by both its genetic makeup as well as the environmental conditions. The improved socioeconomic condition of humans has led to many lifestyle changes that in turn have altered the demography that includes postponement of procreation. Late age progeny is shown to suffer from many congenital diseases. Hence, there is a need to identify and evaluate natural molecules that could enhance reproductive health span. We have used the well-established model organism, Drosophila melanogaster, and ascertained the consequence of diet supplementation with curcumin. Flies reared on curcumin-supplemented diet had significantly higher lifespan. The progeny of flies reared on curcumin had a higher viability. The activity of a key mitochondrial enzyme-aconitase was significantly higher in flies reared on curcumin-supplemented diet. The results suggest that curcumin can not only correct a key step in the citric acid cycle and help in the release of additional energy but also permanently correct developmental and morphogenetic processes.
Collapse
Affiliation(s)
- K. T. Chandrashekara
- />Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007 India
- />Institution of Excellence, University of Mysore, Manasagangotri, Mysore, 570006 India
| | - Sonam Popli
- />Gut Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007 India
| | - M. N. Shakarad
- />Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007 India
| |
Collapse
|
24
|
Biology of ageing and role of dietary antioxidants. BIOMED RESEARCH INTERNATIONAL 2014; 2014:831841. [PMID: 24804252 PMCID: PMC3996317 DOI: 10.1155/2014/831841] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/12/2014] [Accepted: 02/24/2014] [Indexed: 01/29/2023]
Abstract
Interest in relationship between diet and ageing is growing. Research has shown that dietary calorie restriction and some antioxidants extend lifespan in various ageing models. On the one hand, oxygen is essential to aerobic organisms because it is a final electron acceptor in mitochondria. On the other hand, oxygen is harmful because it can continuously generate reactive oxygen species (ROS), which are believed to be the factors causing ageing of an organism. To remove these ROS in cells, aerobic organisms possess an antioxidant defense system which consists of a series of enzymes, namely, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). In addition, dietary antioxidants including ascorbic acid, vitamin A, vitamin C, α-tocopherol, and plant flavonoids are also able to scavenge ROS in cells and therefore theoretically can extend the lifespan of organisms. In this connection, various antioxidants including tea catechins, theaflavins, apple polyphenols, black rice anthocyanins, and blueberry polyphenols have been shown to be capable of extending the lifespan of fruit flies. The purpose of this review is to brief the literature on modern biological theories of ageing and role of dietary antioxidants in ageing as well as underlying mechanisms by which antioxidants can prolong the lifespan with focus on fruit flies as an model.
Collapse
|
25
|
Si H, Liu D. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J Nutr Biochem 2014; 25:581-91. [PMID: 24742470 DOI: 10.1016/j.jnutbio.2014.02.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/19/2014] [Indexed: 12/13/2022]
Abstract
Aging is well-known an inevitable process that is influenced by genetic, lifestyle and environmental factors. However, the exact mechanisms underlying the aging process are not well understood. Increasing evidence shows that aging is highly associated with chronic increase in reactive oxygen species (ROS), accumulation of a low-grade proinflammatory phenotype and reduction in age-related autophagy, suggesting that these factors may play important roles in promoting aging. Indeed, reduction of ROS and low-grade inflammation and promotion of autophagy by calorie restriction or other dietary manipulation can extend lifespan in a wide spectrum of model organisms. Interestingly, recent studies show that some food-derived small molecules, also called phytochemicals, can extend lifespan in various animal species. In this paper, we review several recently identified potential antiaging phytochemicals that have been studied in cells, animals and humans and further highlight the cellular and molecular mechanisms underlying the antiaging actions by these molecules.
Collapse
Affiliation(s)
- Hongwei Si
- Department of Family and Consumer Sciences, Tennessee State University, Nashville, TN 37209, USA.
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
26
|
The role of polyphenols in the modulation of sirtuins and other pathways involved in Alzheimer's disease. Ageing Res Rev 2013; 12:867-83. [PMID: 23831960 DOI: 10.1016/j.arr.2013.06.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is characterised by extracellular amyloid deposits, neurofibrillary tangles, synaptic loss, inflammation and extensive oxidative stress. Polyphenols, which include resveratrol, epigallocatechin gallate and curcumin, have gained considerable interest for their ability to reduce these hallmarks of disease and their potential to slow down cognitive decline. Although their antioxidant and free radical scavenging properties are well established, more recently polyphenols have been shown to produce other important effects including anti-amyloidogenic activity, cell signalling modulation, effects on telomere length and modulation of the sirtuin proteins. Brain accessible polyphenols with multiple effects on pathways involved in neurodegeneration and ageing may therefore prove efficacious in the treatment of age-related diseases such as AD, although the evidence for this so far is limited. This review aims to explore the known effects of polyphenols from various natural and synthetic sources on brain ageing and neurodegeneration, and to examine their multiple mechanisms of action, with an emphasis on the role that the sirtuin pathway may play and the implications this may have for the treatment of AD.
Collapse
|
27
|
Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. J Chromatogr A 2013; 1313:78-95. [PMID: 23899380 DOI: 10.1016/j.chroma.2013.07.051] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/25/2013] [Accepted: 07/11/2013] [Indexed: 12/11/2022]
Abstract
Broccoli (Brassica oleracea L. var. Italica) contains substantial amount of health-promoting compounds such as vitamins, glucosinolates, phenolic compounds, and dietary essential minerals; thus, it benefits health beyond providing just basic nutrition, and consumption of broccoli has been increasing over the years. This review gives an overview on the extraction and separation techniques, as well as the biological activity of some of the above mentioned compounds which have been published in the period January 2008 to January 2013. The work has been distributed according to the different families of health promoting compounds discussing the extraction procedures and the analytical techniques employed for their characterization. Finally, information about the different biological activities of these compounds has been also provided.
Collapse
|
28
|
Tasset-Cuevas I, Fernández-Bedmar Z, Lozano-Baena MD, Campos-Sánchez J, de Haro-Bailón A, Muñoz-Serrano A, Alonso-Moraga A. Protective effect of borage seed oil and gamma linolenic acid on DNA: in vivo and in vitro studies. PLoS One 2013; 8:e56986. [PMID: 23460824 PMCID: PMC3584109 DOI: 10.1371/journal.pone.0056986] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 01/20/2013] [Indexed: 11/18/2022] Open
Abstract
Borage (Borago officinalis L.) seed oil has been used as a treatment for various degenerative diseases. Many useful properties of this oil are attributed to its high gamma linolenic acid content (GLA, 18:3 ω-6). The purpose of this study was to demonstrate the safety and suitability of the use of borage seed oil, along with one of its active components, GLA, with respect to DNA integrity, and to establish possible in vivo toxic and in vitro cytotoxic effects. In order to measure these properties, five types of assays were carried out: toxicity, genotoxicity, antigenotoxicity, cytotoxicity (using the promyelocytic leukaemia HL60 cell line), and life span (in vivo analysis using the Drosophila model). Results showed that i) Borage seed oil is not toxic to D. melanogaster at physiological concentrations below 125 µl/ml and the studies on GLA indicated non-toxicity at the lowest concentration analyzed ii) Borage seed oil and GLA are DNA safe (non-genotoxic) and antimutagenic compared to hydrogen peroxide, thereby confirming its antioxidant capacity; iii) Borage seed oil and GLA exhibited cytotoxic activity in low doses (IC50 of 1 µl/ml and 0.087 mM, respectively) iv) Low doses of borage seed oil (0.19%) increased the health span of D. melanogaster; and v) GLA significantly decreased the life span of D. melanogaster. Based on the antimutagenic and cytotoxic effects along with the ability to increase the health span, we propose supplementation with borage seed oil rather than GLA, because it protects DNA by modulating oxidative genetic damage in D. melanogaster, increases the health span and exerts cytotoxic activity towards promyelocytic HL60 cells.
Collapse
Affiliation(s)
- Inmaculada Tasset-Cuevas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Maimónides de Investigaciones Biomédicas de Córdoba (IMIBIC/Universidad de Córdoba), Córdoba, España.
| | | | | | | | | | | | | |
Collapse
|
29
|
Nutraceutical interventions for promoting healthy aging in invertebrate models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:718491. [PMID: 22991584 PMCID: PMC3444043 DOI: 10.1155/2012/718491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 01/11/2023]
Abstract
Aging is a complex and inevitable biological process that is associated with numerous chronically debilitating health effects. Development of effective interventions for promoting healthy aging is an active but challenging area of research. Mechanistic studies in various model organisms, noticeably two invertebrates, Caenorhabditis elegans and Drosophila melanogaster, have identified many genes and pathways as well as dietary interventions that modulate lifespan and healthspan. These studies have shed light on some of the mechanisms involved in aging processes and provide valuable guidance for developing efficacious aging interventions. Nutraceuticals made from various plants contain a significant amount of phytochemicals with diverse biological activities. Phytochemicals can modulate many signaling pathways that exert numerous health benefits, such as reducing cancer incidence and inflammation, and promoting healthy aging. In this paper, we outline the current progress in aging intervention studies using nutraceuticals from an evolutionary perspective in invertebrate models.
Collapse
|
30
|
Villatoro-Pulido M, Font R, Saha S, Obregón-Cano S, Anter J, Muñoz-Serrano A, De Haro-Bailón A, Alonso-Moraga A, Del Río-Celestino M. In vivo biological activity of rocket extracts (Eruca vesicaria subsp. sativa (Miller) Thell) and sulforaphane. Food Chem Toxicol 2012; 50:1384-92. [PMID: 22369966 DOI: 10.1016/j.fct.2012.02.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/22/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
Eruca is thought to be an excellent source of antioxidants like phenolic compounds, carotenoids, glucosinolates and their degradation products, such as isothiocyanates. Sulforaphane is one of the most potent indirect antioxidants of Eruca isolated until the date. In this work we investigate: (i) the safety and DNA protective activity of Eruca extracts and sulforaphane (under and without oxidative stress) in Drosophila melanogaster; and (ii) the influence on D. melanogaster life span treated with Eruca extracts and sulforaphane. Our results showed that among the four concentrations of Eruca extracts tested (from 0.625 to 5mg/ml), intermediate concentrations of the Es2 accession (1.25 and 2.5mg/ml) exhibited no genotoxic activity, as well as antigenotoxic activity (inhibition rate of 0.2-0.6) and the lowest concentration of Es2 and Es4 accessions (0.625 mg/ml) also enhanced the health span portion of the live span curves. Sulforaphane presented a high antigenotoxic activity in the SMART test of D. melanogaster and intermediate concentrations of this compound (3.75 μM) enhanced average healthspan. The results of this study indicate the presence of potent antigenotoxic factors in rocket, which are being explored further for their mechanism of action.
Collapse
|
31
|
Mechanisms of chloride in cardiomyocyte anoxia-reoxygenation injury: the involvement of oxidative stress and NF-kappaB activation. Mol Cell Biochem 2011; 355:201-9. [DOI: 10.1007/s11010-011-0855-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
|
32
|
Fernández-Bedmar Z, Anter J, de La Cruz-Ares S, Muñoz-Serrano A, Alonso-Moraga A, Pérez-Guisado J. Role of citrus juices and distinctive components in the modulation of degenerative processes: genotoxicity, antigenotoxicity, cytotoxicity, and longevity in Drosophila. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:1052-1066. [PMID: 21707429 DOI: 10.1080/15287394.2011.582306] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
It is well established that breakfast beverages contain high quantities of Citrus juices. The purpose of the present study was to assess the nutraceutical value of orange and lemon juices as well as two of their active compounds: hesperidin and limonene. Indicator assays were performed at three levels to evaluate different biological health promoter activities: (i) determination of the safety and DNA-damage protecting ability against free radicals by using the somatic mutation and recombination test (SMART) in Drosophila melanogaster, (ii) study of the modulating role for life span in Drosophila melanogaster, and (iii) measurement of the cytotoxic activity against the human tumor cell line HL60. The highest concentrations assayed for lemon juice and limonene (50% v/v and 0.73 mM, respectively) showed genotoxic activity as evidenced from SMART. Orange and lemon juices as well as hesperidin and limonene exhibit antigenotoxic activity against hydrogen peroxide used as an oxidative genotoxin. Life-span experiments revealed that the lower concentrations of orange juice, hesperidin, and limonene exerted a positive influence on the life span of Drosophila. Finally all substances showed cytotoxic activity, with hesperidin being least active. Taking into account the safety, antigenotoxicity, longevity, and cytotoxicity data obtained in the different assays, orange juice may be a candidate as a nutraceutical food as it (1) is not genotoxic, (2) is able to protect DNA against free radicals, and (3) inhibits growth of tumor cells.
Collapse
|
33
|
Altun D, Ayar A, Uysal H, Kara AA, Unal EL. Extended longevity of Drosophila melanogaster by water and ethanol extracts of Stachys lavandulifolia. PHARMACEUTICAL BIOLOGY 2010; 48:1291-1296. [PMID: 20738162 DOI: 10.3109/13880201003789424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
CONTEXT Stachyss species have been used as a medicine for centuries throughout the world. Stachys lavandulifolia Vahl. var. lavandulifolia (Lamiaceae) is of interest to researchers because the constituents such as betulinic acid, oleanolic acid, rosmarinic acid, and ursolic acid are similar to other Stachys species commonly used as an alterative in medicinal preparations. OBJECTIVE The present study investigated the effects of water extract (SLE(w)) and ethanol extract (SLE(e)) obtained from S. lavandulifolia (SLE) on the longevity of Drosophila melanogaster Meigen. MATERIALS AND METHODS The effects of different concentrations of SLE (Control+DMSO; 4.0; 12.0 and 20.0 µL/100 mL medium) were administered separately to female and male populations of D. melanogaster for control and SLE groups. RESULTS In all application groups, each population's longevity increased, depending on the concentration of SLE. The mean life-span of the extract groups which are applied with SLE((w)) was determined to be shorter than the extract groups which are applied with SLE((e)). For example, the maximum mean life-span applied with SLE((w)) increased from 31.86 ± 0.92 days to 43.21 ± 1.33 days and the maximum mean life-span applied with SLE((e)) increased from 31.86 ± 0.92 days to 49.62 ± 1.62 days in females. CONCLUSION These findings demonstrate that the constituents of S. lavandulifolia have great potential as a source for natural health products for D. melanogaster management.
Collapse
Affiliation(s)
- Deniz Altun
- Department of Biology, Faculty of Art and Science, Erzincan University, Erzincan, Turkey
| | | | | | | | | |
Collapse
|
34
|
Black tea theaflavins extend the lifespan of fruit flies. Exp Gerontol 2009; 44:773-83. [DOI: 10.1016/j.exger.2009.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/18/2009] [Accepted: 09/15/2009] [Indexed: 11/19/2022]
|