1
|
Hofwimmer K, de Paula Souza J, Subramanian N, Vujičić M, Rachid L, Méreau H, Zhao C, Dror E, Barreby E, Björkström NK, Wernstedt Asterholm I, Böni-Schnetzler M, Meier DT, Donath MY, Laurencikiene J. IL-1β promotes adipogenesis by directly targeting adipocyte precursors. Nat Commun 2024; 15:7957. [PMID: 39261467 PMCID: PMC11390900 DOI: 10.1038/s41467-024-51938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Postprandial IL-1β surges are predominant in the white adipose tissue (WAT), but its consequences are unknown. Here, we investigate the role of IL-1β in WAT energy storage and show that adipocyte-specific deletion of IL-1 receptor 1 (IL1R1) has no metabolic consequences, whereas ubiquitous lack of IL1R1 reduces body weight, WAT mass, and adipocyte formation in mice. Among all major WAT-resident cell types, progenitors express the highest IL1R1 levels. In vitro, IL-1β potently promotes adipogenesis in murine and human adipose-derived stem cells. This effect is exclusive to early-differentiation-stage cells, in which the adipogenic transcription factors C/EBPδ and C/EBPβ are rapidly upregulated by IL-1β and enriched near important adipogenic genes. The pro-adipogenic, but not pro-inflammatory effect of IL-1β is potentiated by acute treatment and blocked by chronic exposure. Thus, we propose that transient postprandial IL-1β surges regulate WAT remodeling by promoting adipogenesis, whereas chronically elevated IL-1β levels in obesity blunts this physiological function.
Collapse
Affiliation(s)
- Kaisa Hofwimmer
- Lipid Laboratory, Unit of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, SE-141 52, Huddinge, Sweden
| | - Joyce de Paula Souza
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Narmadha Subramanian
- Lipid Laboratory, Unit of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, SE-141 52, Huddinge, Sweden
| | - Milica Vujičić
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Leila Rachid
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Hélène Méreau
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Cheng Zhao
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Erez Dror
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Emelie Barreby
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 52, Huddinge, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 52, Huddinge, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Marianne Böni-Schnetzler
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Daniel T Meier
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland.
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland.
| | - Marc Y Donath
- Department of Biomedicine, University of Basel and University Hospital Basel, 4031, Basel, Switzerland
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland
| | - Jurga Laurencikiene
- Lipid Laboratory, Unit of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, SE-141 52, Huddinge, Sweden.
| |
Collapse
|
2
|
Medak KD, McKie GL, Peppler WT, Shamshoum H, Dibe HA, Mutch DM, Josse AR, Wright DC. Liver triacylglycerol accumulation but not postprandial lipemia is reduced by a skim milk powder diet in male rats. Nutr Res 2023; 119:65-75. [PMID: 37757641 DOI: 10.1016/j.nutres.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Increases in postprandial lipids are linked to the development of cardiometabolic and fatty liver disease. Prior work has suggested that dairy possesses beneficial cardiometabolic effects and thus the aim of the current investigation was to test the hypotheses that the habitual consumption of dairy, in the form of skim milk powder (SMP), would protect against increases in circulating lipids and liver lipid accumulation following an oral fat challenge in rats. Male rats were fed either a semipurified low-fat control diet with casein or a diet with an equivalent amount of protein (∼13% kcal) provided through skim milk powder (SMP) for 6 weeks (n = 40/group). Rats were then given an oral gavage of palm oil (5 mL/kg body weight) or an equivalent volume of water, and serum and liver were harvested 90 minutes or 4 hours after. Rats fed the SMP diet gained less weight than controls but there were no differences in glucose tolerance between groups. The fat gavage increased serum lipids in both diet groups, whereas there was a main effect of the fat challenge to increase, and the SMP diet, to decrease liver triacylglycerol accumulation. The percentage of saturated and monounsaturated fatty acids and the protein content/activity of lipogenic enzymes were reduced in livers from SMP-fed rats, whereas the percentage of polyunsaturated fatty acids was increased. In summary, we provide evidence that SMP consumption, although not protecting against postprandial lipemia, markedly attenuates triacylglycerol accumulation and the relative amount of saturated and monounsaturated fatty acids in the liver.
Collapse
Affiliation(s)
- Kyle D Medak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph Ontario Canada.
| | - Greg L McKie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph Ontario Canada
| | - Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph Ontario Canada
| | - Hesham Shamshoum
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph Ontario Canada
| | - Hana A Dibe
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph Ontario Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph Ontario Canada
| | - Andrea R Josse
- Faculty of Health, School of Kinesiology and Health Science, York University, Toronto Ontario, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph Ontario Canada; School of Kinesiology, University of British Columbia, Vancouver British Columbia, Canada; Faculty of Land and Food Systems, University of British Columbia, Vancouver British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver British Columbia, Canada.
| |
Collapse
|
3
|
Yang L, Yang C, Song Z, Wan M, Xia H, Yang X, Xu D, Pan D, Liu H, Wang S, Sun G. Different n-6/n-3 polyunsaturated fatty acid ratios affect postprandial metabolism in normal and hypertriglyceridemic rats. FOOD SCIENCE AND HUMAN WELLNESS 2023; 12:1157-1166. [DOI: 10.1016/j.fshw.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Aguiar LM, Moura CSD, Ballard CR, Roquetto AR, Silva Maia JKD, Duarte GH, Costa LBED, Torsoni AS, Amaya-Farfan J, Maróstica Junior MR, Cazarin CBB. Metabolic dysfunctions promoted by AIN-93G standard diet compared with three obesity-inducing diets in C57BL/6J mice. Curr Res Physiol 2022; 5:436-444. [PMID: 36466151 PMCID: PMC9713253 DOI: 10.1016/j.crphys.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Researchers from different fields have studied the causes of obesity and associated comorbidities, proposing ways to prevent and treat this condition by using a common animal model of obesity to create a profound energy imbalance in young adult rodents. However, to confirm the harmful effects of consuming a high-fat and hypercaloric diet, it is common to include normolipidic and normocaloric control groups in the experimental protocols. This study compared the effect of three experimental diets described in the literature - namely, a high-fat diet, a high-fat and high-sucrose diet, and a high-fat and high-fructose diet - to induce obesity in C57BL/6 J mice with the standard AIN-93G diet as a control. We hypothesize that the AIN diet formulation is not a good control in this type of experiment because this diet promotes weight gain and metabolic dysfunctions similar to the hypercaloric diet. The metabolic data of animals fed the AIN-93G diet were similar to those of the high-calorie groups (development of steatosis and hyperlipidemia). However, it is important to emphasize that the group fed a high-fat diet had a higher percentage of total fat (p = 0.0002) and abdominal fat (p = 0.013) compared to the other groups. Also, the high-fat group responded poorly to glucose and insulin tolerance tests, showing a picture of insulin resistance. As expected, the intake of the AIN-93G diet promotes metabolic alterations in the animals like the high-fat formulations. Therefore, although this diet continues to be used as the gold standard for growth and maintenance, it warrants a reassessment of its composition to minimize the metabolic changes observed in this study, thus updating its fitness as a normocaloric model of a standard rodent diet.
Collapse
Affiliation(s)
- Lais Marinho Aguiar
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Carolina Soares de Moura
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Cintia Reis Ballard
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Aline Rissetti Roquetto
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Juliana Kelly da Silva Maia
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
- Federal University of Rio Grande Do Norte, Center for Health Sciences, Department of Nutrition, Av. Senador Salgado Filho 3000, Lagoa Nova, Natal, RN, Brazil
| | - Gustavo H.B. Duarte
- University of Campinas, Institute of Chemistry, Rua Josué de Castro, S/n - Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Larissa Bastos Eloy da Costa
- University of Campinas, School of Medical Science, Rua Tessália Vieira de Camargo, 126 - Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Adriana Souza Torsoni
- University of Campinas, School of Applied Sciences, Rua Pedro Zaccaria, 1300, Limeira, SP, Brazil
| | - Jaime Amaya-Farfan
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Mário R. Maróstica Junior
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Cinthia Baú Betim Cazarin
- University of Campinas, School of Food Engineering, Department of Food Science and Nutrition, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| |
Collapse
|
5
|
Ben Fradj S, Nédélec E, Salvi J, Fouesnard M, Huillet M, Pallot G, Cansell C, Sanchez C, Philippe C, Gigot V, Lemoine A, Trompier D, Henry T, Petrilli V, Py BF, Guillou H, Loiseau N, Ellero-Simatos S, Nahon JL, Rovère C, Grober J, Boudry G, Douard V, Benani A. Evidence for Constitutive Microbiota-Dependent Short-Term Control of Food Intake in Mice: Is There a Link with Inflammation, Oxidative Stress, Endotoxemia, and GLP-1? Antioxid Redox Signal 2022; 37:349-369. [PMID: 35166124 DOI: 10.1089/ars.2021.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Although prebiotics, probiotics, and fecal transplantation can alter the sensation of hunger and/or feeding behavior, the role of the constitutive gut microbiota in the short-term regulation of food intake during normal physiology is still unclear. Results: An antibiotic-induced microbiota depletion study was designed to compare feeding behavior in conventional and microbiota-depleted mice. Tissues were sampled to characterize the time profile of microbiota-derived signals in mice during consumption of either standard or high-fat food for 1 h. Pharmacological and genetic tools were used to evaluate the contribution of postprandial endotoxemia and inflammatory responses in the short-term regulation of food intake. We observed constitutive microbial and macronutrient-dependent control of food intake at the time scale of a meal; that is, within 1 h of food introduction. Specifically, microbiota depletion increased food intake, and the microbiota-derived anorectic effect became significant during the consumption of high-fat but not standard food. This anorectic effect correlated with a specific postprandial microbial metabolic signature, and did not require postprandial endotoxemia or an NOD-, LRR-, and Pyrin domain-containing protein 3-inflammasome-mediated inflammatory response. Innovation and Conclusion: These findings show that the gut microbiota controls host appetite at the time scale of a meal under normal physiology. Interestingly, a microbiota-derived anorectic effect develops specifically with a high-fat meal, indicating that gut microbiota activity is involved in the satietogenic properties of foods. Antioxid. Redox Signal. 37, 349-369.
Collapse
Affiliation(s)
- Selma Ben Fradj
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Emmanuelle Nédélec
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Juliette Salvi
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Mélanie Fouesnard
- Institut Micalis, INRAE (UMR1319), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Institut NuMeCan, INRAE (UMR1341), INSERM (UMR1241), Université de Rennes 1, St-Gilles, France
| | - Marine Huillet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Gaëtan Pallot
- Centre de Recherche Lipides, Nutrition, Cancer, INSERM (UMR1231), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Céline Cansell
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Clara Sanchez
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Catherine Philippe
- Institut Micalis, INRAE (UMR1319), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Gigot
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Aleth Lemoine
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Doriane Trompier
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm (U1111), CNRS (UMR5308), ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Virginie Petrilli
- Centre de Recherche en Cancérologie de Lyon, Inserm (U1052), CNRS (UMR5286), Université de Lyon 1, Lyon, France
| | - Benedicte F Py
- CIRI, Centre International de Recherche en Infectiologie, Inserm (U1111), CNRS (UMR5308), ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Jean-Louis Nahon
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Carole Rovère
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Jacques Grober
- Centre de Recherche Lipides, Nutrition, Cancer, INSERM (UMR1231), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Gaelle Boudry
- Institut NuMeCan, INRAE (UMR1341), INSERM (UMR1241), Université de Rennes 1, St-Gilles, France
| | - Véronique Douard
- Institut Micalis, INRAE (UMR1319), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alexandre Benani
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
6
|
Mascone SE, Chesney CA, Eagan LE, Ranadive SM. Similar inflammatory response and conduit artery vascular function between sexes following induced inflammation. Exp Physiol 2021; 106:2276-2285. [PMID: 34605100 DOI: 10.1113/ep089913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? Are there sex differences in vascular function following induced inflammation when oestrogen is typically similar between sexes? What is the main finding and its importance? The present study suggests no sex differences in conduit artery vascular responses to acutely induced inflammation during the low-oestrogen phase of the menstrual cycle in premenopausal women. However, women exhibit lower microvascular function than men. Overall, the results underpin the role of oestrogen in previously observed sex differences and the importance of reporting the phase in the hormonal cycle when women are studied. ABSTRACT Sex differences in cardiovascular disease incidence in premenopausal women and age-matched men have been attributed to the cardioprotective influence of oestrogen. However, limited knowledge exists regarding sex differences following acute inflammation when oestrogen concentrations are lower in women. We evaluated sex differences in vascular responses to induced inflammation when oestrogen concentrations are typically lower in women (early follicular phase or placebo phase of hormonal contraception). In 15 women and 14 men, interleukin-6 (IL-6) concentrations and vascular function [via brachial artery flow-mediated dilatation (FMD)] were assessed at baseline (BL) and 24 (24H) and 48 hours (48H) after administration of influenza vaccine. After induction of inflammation, both sexes exhibited an increase in IL-6 concentrations at 24H [mean (SD) BL vs. 24H: women, 0.563 (0.50) vs. 1.141 (0.65) pg/ml; men, 0.385 (0.17) vs. 1.113 (0.69) pg/ml; P < 0.05] that returned to near-baseline concentrations by 48H (BL vs. 48H, P > 0.05). There were no sex differences in FMD, allometrically scaled FMD or IL-6 concentrations at any time point (P > 0.05). Notably, women exhibited significantly lower microvascular function than men at every time point [P < 0.05; reactive hyperaemic area under the curve (in arbitrary units): women, BL 35,512 (14,916), 24H 34,428 (14,292) and 48H 39,467 (13,936); men, BL 61,748 (27,324), 24H 75,028 (29,051) and 48H 59,532 (13,960)]. When oestrogen concentrations are typically lower in women, women exhibit a similar inflammatory response and conduit artery function, but lower microvascular response to reactive hyperaemia, in comparison to age-matched men.
Collapse
Affiliation(s)
- Sara E Mascone
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Catalina A Chesney
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Lauren E Eagan
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Sushant M Ranadive
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
7
|
Illesca P, Valenzuela R, Espinosa A, Echeverría F, Soto-Alarcón S, Ortiz M, Campos C, Vargas R, Videla LA. The metabolic dysfunction of white adipose tissue induced in mice by a high-fat diet is abrogated by co-administration of docosahexaenoic acid and hydroxytyrosol. Food Funct 2021; 11:9086-9102. [PMID: 33026007 DOI: 10.1039/d0fo01790f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nutritional interventions are promising tools for the prevention of obesity. The n-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) docosahexaenoic acid (DHA) modulates immune and metabolic responses while the antioxidant hydroxytyrosol (HT) prevents oxidative stress (OS) in white adipose tissue (WAT). OBJECTIVE The DHA plus HT combined protocol prevents WAT alterations induced by a high-fat diet in mice. Main related mechanisms. METHODS Male C57BL/6J mice were fed a control diet (CD; 10% fat, 20% protein, and 70% carbohydrates) or a high fat diet (HFD) (60% fat, 20% protein, and 20% carbohydrates) for 12 weeks, without and with supplementation of DHA (50 mg kg-1 day-1), HT (5 mg kg-1 day-1) or both. Measurements of WAT metabolism include morphological parameters, DHA content in phospholipids (gas chromatography), lipogenesis, OS and inflammation markers, mitochondrial activity and gene expression of transcription factors SREBP-1c, PPAR-γ, NF-κB (p65) and Nrf2 (quantitative polymerase chain reaction and enzyme-linked immunosorbent assay). RESULTS The combined DHA and HT intervention attenuated obesity development, suppressing the HFD-induced inflammatory and lipogenic signals, increasing antioxidant defenses, and maintaining the phospholipid LCPUFA n-3 content and mitochondrial function in WAT. At the systemic level, the combined intervention also improved the regulation of glucose and adipokine homeostasis. CONCLUSION The combined DHA and HT protocol appears to be an important nutritional strategy for the treatment of metabolic diseases, with abrogation of obesity-driven metabolic inflammation and recovery of a small-healthy adipocyte phenotype.
Collapse
Affiliation(s)
- Paola Illesca
- Laboratory of Studies of Metabolic Diseases Related to Nutrition, Faculty of Biochemistry, University of Litoral, Santa Fe, Argentina
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Alejandra Espinosa
- Medical Technology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Francisca Echeverría
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Sandra Soto-Alarcón
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Macarena Ortiz
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Cristian Campos
- Medical Technology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Romina Vargas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
8
|
Gil-Cardoso K, Saldaña G, Luengo E, Pastor J, Virto R, Alcaide-Hidalgo JM, Del Bas JM, Arola L, Caimari A. Consumption of Sourdough Breads Improves Postprandial Glucose Response and Produces Sourdough-Specific Effects on Biochemical and Inflammatory Parameters and Mineral Absorption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3044-3059. [PMID: 33656322 DOI: 10.1021/acs.jafc.0c07200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To evaluate responses to different sourdough breads, six groups of rats were fed a conventional refined wheat bread with no sourdough content (C_WhB); a leavened spelt bread baked with Rebola sourdough (Re_SpB); a durum wheat bread with Rebola sourdough (Re_DuB); or a multigrain bread leavened with Rebola (Re_MGB), Carla (Ca_MGB), or San Francisco sourdough (SF_MGB). Compared to C_WhB-fed rats, Re_SpB-, Re_DuB-, and Re_MGB-fed animals showed lower postprandial blood glucose levels, whereas SF_MGB-fed rats displayed a decreased postprandial blood insulin response and glucose and insulin products. The 3 week intake of Ca_MGB decreased blood triacylglycerols and the relative apparent absorption (RAA) of Fe2+, Cu2+, and Zn2+, whereas Re_MGB-fed animals showed lower serum levels of the MCP-1 inflammatory marker and decreased the Fe RAA. The 3 week consumption of the multigrain bread produced sourdough-specific effects. Thus, Re_MGB-fed animals displayed higher insulin concentrations than Ca_MGB- and SF_MGB-fed rats and decreased blood MCP-1 levels compared to those of Ca_MGB-fed animals. In addition, Ca_MGB-fed rats showed lower serum triacylglycerol concentrations than those of Re_MGB- and SF_MGB-fed animals, whereas SF_MGB-fed rats displayed higher RAA values of Ca2+, Cu2+, Fe2+, Mg2+, and Zn2+ than their Re_MGB and Ca_MGB counterparts. These sourdough-specific effects could be related to changes in the contents of sugars and organic acids, acidity, microbial composition, and proteolytic activity among sourdoughs. Hence, the consumption of sourdough breads improved postprandial blood glucose and insulin responses and produced sourdough-specific effects on RAA and serum insulin and triacylglycerol and MCP-1 levels in rats, showing that SF_MGB has the most promising beneficial effects.
Collapse
Affiliation(s)
- Katherine Gil-Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain
| | - Guillermo Saldaña
- NOVAPAN S.L, Research & Development Department, Zaragoza 50014, Spain
| | - Elisa Luengo
- NOVAPAN S.L, Research & Development Department, Zaragoza 50014, Spain
| | - Jorge Pastor
- NOVAPAN S.L, Research & Development Department, Zaragoza 50014, Spain
| | - Raquel Virto
- CNTA, National Centre for Food Technology and Safety, San Adrián 31570, Navarra, Spain
| | | | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain
| | - Lluís Arola
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Nutrigenomics Research Group, Campus Sescelades, Tarragona 43001, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Avinguda Universitat, Reus 43204, Spain
| |
Collapse
|
9
|
Dewhurst-Trigg R, Hulston CJ, Markey O. The effect of quantity and quality of dietary fat intake on subcutaneous white adipose tissue inflammatory responses. Proc Nutr Soc 2020; 79:1-15. [PMID: 32063233 DOI: 10.1017/s0029665120000038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The global prevalence of obesity and obesity-associated cardiometabolic diseases is a significant public health burden. Chronic low-grade inflammation in metabolic tissues such as white adipose tissue (WAT) is linked to obesity and may play a role in disease progression. The overconsumption of dietary fat has been suggested to modulate the WAT inflammatory environment. It is also recognised that fats varying in degree of fatty acid saturation may elicit differential WAT inflammatory responses. This information has originated predominantly from animal or cell models and translation into human participants in vivo remains limited. This review will summarise human intervention studies investigating the effect of dietary fat quantity and quality on subcutaneous WAT inflammation, with a specific focus on the toll-like receptor 4 (TLR4)/NF-κB and nucleotide-binding and oligomerisation domain-like receptor, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome molecular signalling pathways. Overall, firm conclusions are hard to draw regarding the effect of dietary fat quantity and quality on WAT inflammatory responses due to the heterogeneity of study designs, diet composition and participant cohorts recruited. Previous studies have predominantly focused on measures of WAT gene expression. It is suggested that future work includes measures of WAT total content and phosphorylation of proteins involved in TLR4/NF-κB and NLRP3 signalling as this is more representative of alterations in WAT physiological function. Understanding pathways linking the intake of total fat and specific fatty acids with WAT metabolic-inflammatory responses may have important implications for public health by informing dietary guidelines aimed at cardiometabolic risk reduction.
Collapse
Affiliation(s)
- R Dewhurst-Trigg
- School of Sport, Exercise and Health Sciences, Loughborough University, LoughboroughLE11 3TU, UK
| | - C J Hulston
- School of Sport, Exercise and Health Sciences, Loughborough University, LoughboroughLE11 3TU, UK
| | - O Markey
- School of Sport, Exercise and Health Sciences, Loughborough University, LoughboroughLE11 3TU, UK
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, ReadingRG6 6AP, UK
| |
Collapse
|
10
|
Inhalation of welding fumes reduced sperm counts and high fat diet reduced testosterone levels; differential effects in Sprague Dawley and Brown Norway rats. Part Fibre Toxicol 2020; 17:2. [PMID: 31924220 PMCID: PMC6954601 DOI: 10.1186/s12989-019-0334-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/27/2019] [Indexed: 01/14/2023] Open
Abstract
Background Previous studies have shown that inhalation of welding fumes may induce pulmonary and systemic inflammation and organ accumulation of metal, to which spermatogenesis and endocrine function may be sensitive. Also obesity may induce low-grade systemic inflammation. This study aimed to investigate the effects on sperm production of inhaled metal nanoparticles from stainless steel welding, and the potential exacerbation by intake of a high fat diet. Both the inbred Brown Norway and the outbred Sprague Dawley rat strains were included to study the influence of strain on the detection of toxicity. Rats were fed regular or high fat (HF) diet for 24 weeks and were exposed to 20 mg/m3 of gas metal arc-stainless steel (GMA-SS) welding fumes or filtered air for 3 h/day, 4 days/week for 5 weeks, during weeks 7–12. Outcomes were assessed upon termination of exposure (week 12) and after recovery (week 24). Results At week 12, the GMA-SS exposure induced pulmonary inflammation in both strains, without consistent changes in markers of systemic inflammation (CRP, MCP-1, IL-6 and TNFα). GMA-SS exposure lowered daily sperm production compared to air controls in Sprague Dawley rats, but only in GMA-SS Brown Norway rats also fed the HF diet. Overall, HF diet rats had lower serum testosterone levels compared to rats on regular diet. Metal content in the testes was assessed in a limited number of samples in Brown Norway rats, but no increase was obsedrved. At week 24, bronchoalveolar lavage cell counts had returned to background levels for GMA-SS exposed Sprague Dawley rats but remained elevated in Brown Norway rats. GMA-SS did not affect daily sperm production statistically significantly at this time point, but testicular weights were lowered in GMA-SS Sprague Dawley rats. Serum testosterone remained lowered in Sprague Dawley rats fed the HF diet. Conclusion Exposure to GMA-SS welding fumes lowered sperm production in two strains of rats, whereas high fat diet lowered serum testosterone. The effect on sperm counts was likely not mediated by inflammation or lowered testosterone levels. The studied reproductive outcomes seemed more prone to disruption in the Sprague Dawley compared to the Brown Norway strain.
Collapse
|
11
|
The Omega-3 Fatty Acids EPA and DHA, as a Part of a Murine High-Fat Diet, Reduced Lipid Accumulation in Brown and White Adipose Tissues. Int J Mol Sci 2019; 20:ijms20235895. [PMID: 31771283 PMCID: PMC6928976 DOI: 10.3390/ijms20235895] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/23/2022] Open
Abstract
Excess energy intake can trigger an uncontrolled inflammatory response, leading to systemic low-grade inflammation and metabolic disturbances that are hypothesised to contribute to cardiovascular disease and type 2 diabetes. The long chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are suggested to mitigate this inflammatory response, but the mechanisms are unclear, especially at the tissue level. Adipose tissues, the first tissues to give an inflammatory response, may be an important target site of action for EPA and DHA. To evaluate the effects of EPA and DHA in white and brown adipose tissues, we fed male C57Bl/6J mice either a high fat diet (HFD) with 5% corn oil, an HFD with 40% of the corn oil substituted for purified EPA and DHA triglycerides (HFD-ED), or normal chow, for 8 weeks. Fatty acid profiling and transcriptomics were used to study how EPA and DHA affect retroperitoneal white and brown adipose tissues. HFD-ED fed mice showed reduced lipid accumulation and levels of the pro-inflammatory fatty acid arachidonic acid in both white and brown adipose tissues, compared with HFD-corn oil fed animals. The transcriptomic analysis showed changes in β-oxidation pathways, supporting the decreased lipid accumulation in the HFD-ED fed mice. Therefore, our data suggests that EPA and DHA supplementation of a high fat diet may be anti-inflammatory, as well as reduce lipid accumulation in adipose tissues.
Collapse
|
12
|
The Postprandial Appearance of Features of Cardiometabolic Risk: Acute Induction and Prevention by Nutrients and Other Dietary Substances. Nutrients 2019; 11:nu11091963. [PMID: 31438565 PMCID: PMC6770341 DOI: 10.3390/nu11091963] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
The purpose of this review is to provide an overview of diets, food, and food components that affect postprandial inflammation, endothelial function, and oxidative stress, which are related to cardiometabolic risk. A high-energy meal, rich in saturated fat and sugars, induces the transient appearance of a series of metabolic, signaling and physiological dysregulations or dysfunctions, including oxidative stress, low-grade inflammation, and endothelial dysfunction, which are directly related to the amplitude of postprandial plasma triglycerides and glucose. Low-grade inflammation and endothelial dysfunction are also known to cluster together with insulin resistance, a third risk factor for cardiovascular diseases (CVD) and type-II diabetes, thus making a considerable contribution to cardiometabolic risk. Because of the marked relevance of the postprandial model to nutritional pathophysiology, many studies have investigated whether adding various nutrients and other substances to such a challenge meal might mitigate the onset of these adverse effects. Some foods (e.g., nuts, berries, and citrus), nutrients (e.g., l-arginine), and other substances (various polyphenols) have been widely studied. Reports of favorable effects in the postprandial state have concerned plasma markers for systemic or vascular pro-inflammatory conditions, the activation of inflammatory pathways in plasma monocytes, vascular endothelial function (mostly assessed using physiological criteria), and postprandial oxidative stress. Although the literature is fragmented, this topic warrants further study using multiple endpoints and markers to investigate whether the interesting candidates identified might prevent or limit the postprandial appearance of critical features of cardiometabolic risk.
Collapse
|
13
|
Hermier D, Mathé V, Lan A, Santini C, Quignard-Boulangé A, Huneau JF, Mariotti F. Postprandial low-grade inflammation does not specifically require TLR4 activation in the rat. Nutr Metab (Lond) 2017; 14:65. [PMID: 29075306 PMCID: PMC5649083 DOI: 10.1186/s12986-017-0220-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022] Open
Abstract
Background Toll-like receptor 4 (TLR4), an innate immune receptor, is suspected to play a key role in the postprandial inflammation that is induced by a high-fat meal rich in saturated fatty acids (SFA). Our objective was to test this hypothesis by using a specific competitive inhibitor of TLR4 (INH) vs vehicle (VEH) administered immediately before a high-SFA meal in rats. Methods First, in a cross-over kinetic study of 12 rats receiving INH and VEH i.v. 10 min before the test meal, we measured plasma inflammatory and vascular markers for 6 h. Then, in 20 rats, 3 h after INH or VEH followed by the test meal (parallel study), we measured the mRNA level of a set of cytokines (Il1-β, Il-6, Tnfα, Mcp-1, Pai-1), and of Tlr4 and Tlr2 in the adipose tissue and the liver, and that of adhesion molecules (Icam-1 and Vcam-1) in the aorta. Results Plasma IL-6 and PAI-1 increased >4-fold at 3–4 h after test-meals, very similarly after INH as compared to VEH. The expression of TLR2 and of all measured cytokine genes in the adipose tissue was dramatically higher after INH (vs VEH). In the liver, gene expression of Il1-β, Tnfα, Mcp-1 and Tlr2, was also higher after INH, though more moderately, whereas that of Il-6 and Pai-1 was similar between groups. INH did not affect mRNA level of Icam-1 and Vcam-1 in the aorta. Conclusion TLR4 activation is not specifically required to mediate systemic postprandial inflammation and we propose that TLR2 and TLR4 exert a dual and interdependent mediation of the postprandial inflammatory response, at least in the adipose tissue.
Collapse
Affiliation(s)
- Dominique Hermier
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Véronique Mathé
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Annaïg Lan
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Clélia Santini
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Annie Quignard-Boulangé
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Jean-François Huneau
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - François Mariotti
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| |
Collapse
|
14
|
Saha SK, Lee SB, Won J, Choi HY, Kim K, Yang GM, Dayem AA, Cho SG. Correlation between Oxidative Stress, Nutrition, and Cancer Initiation. Int J Mol Sci 2017; 18:E1544. [PMID: 28714931 PMCID: PMC5536032 DOI: 10.3390/ijms18071544] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Inadequate or excessive nutrient consumption leads to oxidative stress, which may disrupt oxidative homeostasis, activate a cascade of molecular pathways, and alter the metabolic status of various tissues. Several foods and consumption patterns have been associated with various cancers and approximately 30-35% of the cancer cases are correlated with overnutrition or malnutrition. However, several contradictory studies are available regarding the association between diet and cancer risk, which remains to be elucidated. Concurrently, oxidative stress is a crucial factor for cancer progression and therapy. Nutritional oxidative stress may be induced by an imbalance between antioxidant defense and pro-oxidant load due to inadequate or excess nutrient supply. Oxidative stress is a physiological state where high levels of reactive oxygen species (ROS) and free radicals are generated. Several signaling pathways associated with carcinogenesis can additionally control ROS generation and regulate ROS downstream mechanisms, which could have potential implications in anticancer research. Cancer initiation may be modulated by the nutrition-mediated elevation in ROS levels, which can stimulate cancer initiation by triggering DNA mutations, damage, and pro-oncogenic signaling. Therefore, in this review, we have provided an overview of the relationship between nutrition, oxidative stress, and cancer initiation, and evaluated the impact of nutrient-mediated regulation of antioxidant capability against cancer therapy.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Jihye Won
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Kyeongseok Kim
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
15
|
Diamanti-Kandarakis E, Papalou O, Kandaraki EA, Kassi G. MECHANISMS IN ENDOCRINOLOGY: Nutrition as a mediator of oxidative stress in metabolic and reproductive disorders in women. Eur J Endocrinol 2017; 176:R79-R99. [PMID: 27678478 DOI: 10.1530/eje-16-0616] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
Nutrition can generate oxidative stress and trigger a cascade of molecular events that can disrupt oxidative and hormonal balance. Nutrient ingestion promotes a major inflammatory and oxidative response at the cellular level in the postprandial state, altering the metabolic state of tissues. A domino of unfavorable metabolic changes is orchestrated in the main metabolic organs, including adipose tissue, skeletal muscle, liver and pancreas, where subclinical inflammation, endothelial dysfunction, mitochondrial deregulation and impaired insulin response and secretion take place. Simultaneously, in reproductive tissues, nutrition-induced oxidative stress can potentially violate delicate oxidative balance that is mandatory to secure normal reproductive function. Taken all the above into account, nutrition and its accompanying postprandial oxidative stress, in the unique context of female hormonal background, can potentially compromise normal metabolic and reproductive functions in women and may act as an active mediator of various metabolic and reproductive disorders.
Collapse
Affiliation(s)
| | - Olga Papalou
- Department of Endocrinology and Diabetes Center of ExcellenceEUROCLINIC, Athens, Greece
| | - Eleni A Kandaraki
- Endocrine Unit3rd Department of Internal Medicine, University of Athens Medical School, Athens, Greece
| | - Georgia Kassi
- Endocrine Unit3rd Department of Internal Medicine, University of Athens Medical School, Athens, Greece
| |
Collapse
|
16
|
NO synthesis from arginine is favored by α-linolenic acid in mice fed a high-fat diet. Amino Acids 2016; 48:2157-68. [PMID: 27178023 DOI: 10.1007/s00726-016-2243-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
Alterations in NO availability and signaling play a pivotal role at early stages of the metabolic syndrome (MetSynd). We hypothesized that dietary α-linolenic acid (ALA, 18:3 n-3) favors NO availability by modulating amino acid metabolism, with a specific impact on the arginine-NO pathway. Mice were fed a hyperlipidic diet (285 g lipid/kg, 51.1 % energy), rich in either saturated fatty acids (SFA, provided by palm oil, PALM group) or ALA (provided by linseed oil, LIN group). We measured whole-body NO synthesis and systemic arginine hydrolysis with a tracer-based method, plasma concentration of related metabolites, and hepatic mRNA level of related enzymes, and the study was completed by a transcriptomic analysis in the liver. As expected with this model, hyperlipidic diets resulted in increased adiposity and glycemia after 5 weeks. As compared to PALM mice, LIN mice had a higher plasma nitrite and nitrate concentration, a higher whole-body conversion of arginine into NO vs urea, and a similar plasma concentration of asymmetric dimethylarginine (ADMA), despite a higher expression of the liver dimethylargininase-1. In LIN mice, there was a higher expression of genes involved in PPARα signaling, but a little impact on gene expression related to amino acids and arginine metabolism. This effect cannot be directly ascribed to changes in arginase activity in the liver or ADMA metabolism, nor to direct regulation of the related target genes. In conclusion, dietary ALA favors NO synthesis, which could contribute to rescue NO availability when jeopardized by the nutritional conditions in relation with the initiation of the MetSynd.
Collapse
|
17
|
Krauzová E, Kračmerová J, Rossmeislová L, Mališová L, Tencerová M, Koc M, Štich V, Šiklová M. Acute hyperlipidemia initiates proinflammatory and proatherogenic changes in circulation and adipose tissue in obese women. Atherosclerosis 2016; 250:151-7. [PMID: 27236705 DOI: 10.1016/j.atherosclerosis.2016.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 03/14/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Obesity represents a high risk factor for the development of atherosclerosis and is associated with a low-grade inflammation and activation of immune cells. AIMS The aim of our study was to investigate the effect of a short-term lipid infusion on immune cells in blood and subcutaneous abdominal adipose tissue (SAAT) in obese women. METHODS Seven-hour intravenous lipid/control infusions were performed in two groups of women (n = 15, n = 10, respectively). Before and at the end of the infusion, SAAT and blood samples were obtained and relative content and phenotype of immune cells were analyzed using flow cytometry. Analysis of immune cell markers, inflammation and angiogenesis markers was performed in SAAT by RT-PCR and in plasma by immunoassays. RESULTS Relative content of CD45+/14+ and CD45+/14+/16+ populations of monocytes was reduced in circulation by 21% (p = 0.004) and by 46% (p = 0.0002), respectively, in response to hyperlipidemia, which suggested the increased adhesion of these cells to endothelium. In line with this, the levels of sICAM and sVCAM in plasma were increased by 9.4% (p = 0.016), 11.8% (p = 0.008), respectively. In SAAT, the relative content of M2 monocyte/macrophages subpopulation CD45+/14+/206+/16+ decreased by 27% (p = 0.012) and subpopulations CD14+/CD206- and CD14/+TLR4+ cells increased (p = 0.026; p = 0.049, respectively). Intralipid infusion promoted an increase of mRNA levels in SAAT: RORC (marker of proinflammatory Th17 lymphocytes) by 43% (p = 0.048), MCP-1 (78%, p = 0.028) and VEGF (68.5%, p = 0.0001). CONCLUSIONS Acute hyperlipidemia induces a proinflammatory and proatherogenic response associated with altered relative content of immune cells in blood and SAAT in obese women.
Collapse
Affiliation(s)
- Eva Krauzová
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic; Second Department of Internal Medicine, University Hospital Královské Vinohrady, Prague, CZ-100 00, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III Paul Sabatier, UMR1048, Toulouse, France
| | - Jana Kračmerová
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III Paul Sabatier, UMR1048, Toulouse, France
| | - Lenka Rossmeislová
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III Paul Sabatier, UMR1048, Toulouse, France
| | - Lucia Mališová
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III Paul Sabatier, UMR1048, Toulouse, France
| | - Michaela Tencerová
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III Paul Sabatier, UMR1048, Toulouse, France
| | - Michal Koc
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III Paul Sabatier, UMR1048, Toulouse, France
| | - Vladimír Štich
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic; Second Department of Internal Medicine, University Hospital Královské Vinohrady, Prague, CZ-100 00, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III Paul Sabatier, UMR1048, Toulouse, France
| | - Michaela Šiklová
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic; Franco-Czech Laboratory for Clinical Research on Obesity, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III Paul Sabatier, UMR1048, Toulouse, France.
| |
Collapse
|
18
|
Adipose tissue metabolic and inflammatory responses to a mixed meal in lean, overweight and obese men. Eur J Nutr 2015; 56:375-385. [PMID: 26514561 PMCID: PMC5290042 DOI: 10.1007/s00394-015-1087-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/15/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE Most of what we know about adipose tissue is restricted to observations derived after an overnight fast. However, humans spend the majority of waking hours in a postprandial (fed) state, and it is unclear whether increasing adiposity impacts adipose tissue responses to feeding. The aim of this research was to investigate postprandial responses in adipose tissue across varying degrees of adiposity. METHODS Thirty males aged 35-55 years with waist circumference 81-118 cm were divided equally into groups categorized as either lean, overweight or obese. Participants consumed a meal and insulinaemic, glycaemic and lipidaemic responses were monitored over 6 h. Subcutaneous adipose tissue samples were obtained at baseline and after 6 h to examine changes in gene expression and adipose tissue secretion of various adipokines. RESULTS Following consumption of the meal, insulin and glucose responses were higher with increased adiposity (total AUC effects of group; p = 0.058 and p = 0.027, respectively). At 6 h, significant time effects reflected increases in IL-6 (F = 14.7, p = 0.001) and MCP-1 (F = 10.7, p = 0.003) and reduction in IRS2 adipose tissue gene expression (F = 24.6, p < 0.001), all independent of adiposity. Ex vivo adipokine secretion from adipose tissue explants remained largely unchanged after feeding. CONCLUSIONS Increased systemic measures of postprandial metabolism with greater adiposity do not translate into increased inflammatory responses within adipose tissue. Instead, postprandial adipose tissue changes may represent a normal response to feeding or a (relatively) normalized response with increased adiposity due to either similar net exposure (i.e. per g of adipose) or reduced adipose tissue responsiveness.
Collapse
|
19
|
Otlu HG, Kayhan B, Güldür T. Effects of interactions between various fats and active/passive phases on postprandial inflammation in rats. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1088185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Does moderate intensity exercise attenuate the postprandial lipemic and airway inflammatory response to a high-fat meal? BIOMED RESEARCH INTERNATIONAL 2015; 2015:647952. [PMID: 26000301 PMCID: PMC4427006 DOI: 10.1155/2015/647952] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 01/12/2015] [Accepted: 01/23/2015] [Indexed: 01/22/2023]
Abstract
We investigated whether an acute bout of moderate intensity exercise in the postprandial period attenuates the triglyceride and airway inflammatory response to a high-fat meal (HFM) compared to remaining inactive in the postprandial period. Seventeen (11 M/6 F) physically active (≥ 150 min/week of moderate-vigorous physical activity (MVPA)) subjects were randomly assigned to an exercise (EX; 60% VO 2peak) or sedentary (CON) condition after a HFM (10 kcal/kg, 63% fat). Blood analytes and airway inflammation via exhaled nitric oxide (eNO) were measured at baseline, and 2 and 4 hours after HFM. Airway inflammation was assessed with induced sputum and cell differentials at baseline and 4 hours after HFM. Triglycerides doubled in the postprandial period (~113 ± 18%, P < 0.05), but the increase did not differ between EX and CON. Percentage of neutrophils was increased 4 hours after HFM (~17%), but the increase did not differ between EX and CON. Exhaled nitric oxide changed nonlinearly from baseline to 2 and 4 hours after HFM (P < 0.05, η (2) = 0.36). Our findings suggest that, in active individuals, an acute bout of moderate intensity exercise does not attenuate the triglyceride or airway inflammatory response to a high-fat meal.
Collapse
|
21
|
Horvath P, Oliver SR, Zaldivar FP, Radom-Aizik S, Galassetti PR. Effects of intravenous glucose and lipids on innate immune cell activation in healthy, obese, and type 2 diabetic subjects. Physiol Rep 2015; 3:3/2/e12249. [PMID: 25677544 PMCID: PMC4393186 DOI: 10.14814/phy2.12249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis/cardiovascular disease are major causes of morbidity/mortality in obesity and type 2 diabetes (T2D), and have been associated with activation of innate immune cells, their diapedesis to the arterial intima and formation of the atherosclerotic plaque. While in obesity/T2D immune cell activation likely depends on dysregulated metabolism, the interaction between individual metabolic factors typical of these conditions (hyperglycemia, hyperlipidemia), innate immune cell activation, and the progression of atherosclerosis remains unclear. We, therefore, measured by flow cytometry cell surface expression of CD11b, CD14, CD16, CD62L, and CD66b, known markers of granulocyte (Gc) and monocyte (Mc) activation, in five healthy, five obese, and five T2D subjects, during 4-h i.v. infusions of 20% dextrose (raising blood sugar levels to ~220 mg/dL), 20% Intralipid (raising trygliceride levels to ~6 mmol/L), or a combination of the two. We hypothesized that both glucose and lipids would increase Gc/Mc surface marker expression, and simultaneous infusion would have an additive or synergistic effect. Surprisingly, though, infusion of glucose alone had little effect, while lipids, alone or combined with glucose, significantly increased expression of several markers (such as CD11b in Gc and Mc, and CD66 b in GC) within 60-90 min. Less pronounced increases in systemic inflammatory cytokines also occurred in obese and T2D subject, with no acute changes in gene expression of the the proinflammatory genes NFκB and CCR2. Our results suggest that lipids may be stronger acute contributors to innate cell activation than acute hyperglycemia per se, possibly helping shape more effective preventive dietary guidelines in T2D.
Collapse
Affiliation(s)
- Peter Horvath
- Institute for Clinical Translational Science, University of California, Irvine, California
| | - Stacy R Oliver
- Department of Pharmacology, School of Medicine, University of California, Irvine, California
| | - Frank P Zaldivar
- Institute for Clinical Translational Science, University of California, Irvine, California
| | - Shlomit Radom-Aizik
- Pediatric Exercise Research Center, University of California, Irvine, California
| | - Pietro R Galassetti
- Institute for Clinical Translational Science, University of California, Irvine, California Department of Pharmacology, School of Medicine, University of California, Irvine, California
| |
Collapse
|
22
|
Zhao Y, Tan YS, Aupperlee MD, Langohr IM, Kirk EL, Troester MA, Schwartz RC, Haslam SZ. Pubertal high fat diet: effects on mammary cancer development. Breast Cancer Res 2014; 15:R100. [PMID: 24156623 PMCID: PMC3978633 DOI: 10.1186/bcr3561] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 10/11/2013] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Epidemiological studies linking dietary fat intake and obesity to breast cancer risk have produced inconsistent results. This may be due to the difficulty of dissociating fat intake from obesity, and/or the lack of defined periods of exposure in these studies. The pubertal mammary gland is highly sensitive to cancer-causing agents. We assessed how high fat diet (HFD) affects inflammation, proliferative, and developmental events in the pubertal gland, since dysregulation of these can promote mammary tumorigenesis. To test the effect of HFD initiated during puberty on tumorigenesis, we utilized BALB/c mice, for which HFD neither induces obesity nor metabolic syndrome, allowing dissociation of HFD effects from other conditions associated with HFD. METHODS Pubertal BALB/c mice were fed a low fat diet (12% kcal fat) or a HFD (60% kcal fat), and subjected to carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)-induced tumorigenesis. RESULTS HFD elevated mammary gland expression of inflammatory and growth factor genes at 3 and 4 weeks of diet. Receptor activator of nuclear factor kappa-B ligand (RANKL), robustly induced at 4 weeks, has direct mitogenic activity in mammary epithelial cells and, as a potent inducer of NF-κB activity, may induce inflammatory genes. Three weeks of HFD induced a transient influx of eosinophils into the mammary gland, consistent with elevated inflammatory factors. At 10 weeks, prior to the appearance of palpable tumors, there were increased numbers of abnormal mammary epithelial lesions, enhanced cellular proliferation, increased growth factors, chemokines associated with immune-suppressive regulatory T cells, increased vascularization, and elevated M2 macrophages. HFD dramatically reduced tumor latency. Early developing tumors were more proliferative and were associated with increased levels of tumor-related growth factors, including increased plasma levels of HGF in tumor-bearing animals. Early HFD tumors also had increased vascularization, and more intra-tumor and stromal M2 macrophages. CONCLUSIONS Taken together in this non-obesogenic context, HFD promotion of inflammatory processes, as well as local and systemically increased growth factor expression, are likely responsible for the enhanced tumorigenesis. It is noteworthy that although DMBA mutagenesis is virtually random in its targeting of genes in tumorigenesis, the short latency tumors arising in animals on HFD showed a unique gene expression profile, highlighting the potent overarching influence of HFD.
Collapse
|
23
|
Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab 2014; 20:103-18. [PMID: 24930973 PMCID: PMC4079756 DOI: 10.1016/j.cmet.2014.05.005] [Citation(s) in RCA: 492] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/09/2014] [Accepted: 04/28/2014] [Indexed: 02/08/2023]
Abstract
Chronic inflammation constitutes an important link between obesity and its pathophysiological sequelae. In contrast to the belief that inflammatory signals exert a fundamentally negative impact on metabolism, we show that proinflammatory signaling in the adipocyte is in fact required for proper adipose tissue remodeling and expansion. Three mouse models with an adipose tissue-specific reduction in proinflammatory potential were generated that display a reduced capacity for adipogenesis in vivo, while the differentiation potential is unaltered in vitro. Upon high-fat-diet exposure, the expansion of visceral adipose tissue is prominently affected. This is associated with decreased intestinal barrier function, increased hepatic steatosis, and metabolic dysfunction. An impaired local proinflammatory response in the adipocyte leads to increased ectopic lipid accumulation, glucose intolerance, and systemic inflammation. Adipose tissue inflammation is therefore an adaptive response that enables safe storage of excess nutrients and contributes to a visceral depot barrier that effectively filters gut-derived endotoxin.
Collapse
|
24
|
Potential role of omega‐3‐derived resolution mediators in metabolic inflammation. Immunol Cell Biol 2014; 92:324-30. [DOI: 10.1038/icb.2013.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022]
|
25
|
Acute intake of a high-fructose diet alters the balance of adipokine concentrations and induces neutrophil influx in the liver. J Nutr Biochem 2013; 25:388-94. [PMID: 24485988 DOI: 10.1016/j.jnutbio.2013.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 12/28/2022]
Abstract
The postprandial state is a period of metabolic fluxes, biosynthesis and oxidative metabolism. A considerable amount is known about the inflammatory response to the chronic consumption of fructose, but little is known about its effects in the postprandial state. The aim of the present study was to investigate the inflammatory effects of a single meal containing fructose on healthy mice. Male BALB/c and LysM-eGFP mice at 12-14 weeks were divided into three groups: fasted, control (mice fed with a sucrose-containing diet) and fructose (mice fed with a fructose-containing diet). One, 2 or 4 h postprandial, the BALB/c mice were killed, and samples were collected. LysM-eGFP mice were submitted to intravital microscopy. The fed mice showed a low-grade inflammatory response apart from dietary composition, which was characterized by increased numbers of leukocytes and high serum concentrations of pentraxin 3, leptin and resistin. TNF-α and CCL2 concentrations rose in the liver after the meal. IL-6 concentration increased and IL-10 decreased in the adipose tissue of the fed mice. Mice fed with the fructose-containing diet showed an intensification of the inflammatory response. Furthermore, the adiponectin concentration dropped, and the liver influx of neutrophils increased after fructose intake. Overall, this study showed a rapid increase in the systemic and tissue-specific immune response after a balanced meal. The study also showed an increased neutrophil influx in liver associated with an imbalance of adipokine concentrations and an increase of cytokine in the liver and adipose tissue following a fructose-containing meal.
Collapse
|
26
|
O'Grada CM, Morine MJ, Morris C, Ryan M, Dillon ET, Walsh M, Gibney ER, Brennan L, Gibney MJ, Roche HM. PBMCs reflect the immune component of the WAT transcriptome--implications as biomarkers of metabolic health in the postprandial state. Mol Nutr Food Res 2013; 58:808-20. [PMID: 24170299 DOI: 10.1002/mnfr.201300182] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 12/23/2022]
Abstract
SCOPE Food and nutrition studies often require accessing metabolically active tissues, including adipose tissue. This can involve invasive biopsy procedures that can be a limiting factor in study design. In contrast, peripheral blood mononuclear cells (PBMCs) are a population of circulating immune cells that are easily accessible through venipuncture. As transcriptomics is of growing importance in food and metabolism research, understanding the transcriptomic relationship between these tissue types can provide insight into the utility of PBMCs in this field. METHODS AND RESULTS We examine this relationship within eight subjects, in two postprandial states (following oral lipid tolerance test and oral glucose tolerance test). Multivariate analysis techniques were used to examine variation between tissues, samples, and subjects in order to define which genes havecommon/disparate expression profiles associated with highly defined metabolic phenotypes. We demonstrate global similarities in gene expression between PBMCs and white adipose tissue, irrespective of the metabolic challenge type. Closer examination of individual genes revealed this similarity to be strongest in pathways related to immune response/inflammation. Notably, the expression of metabolism-related nuclear receptors, including PPARs, LXR, etc. was discordant between tissues CONCLUSION The PBMC transcriptome may therefore provide a unique insight into the inflammatory component of metabolic health, as opposed to directly reflecting the metabolic component of the adipose tissue transcriptome.
Collapse
Affiliation(s)
- Colm M O'Grada
- Nutrigenomics Research Group, UCD Conway Institute of Biomolecular and Biomedical Research, School of Public Health and Population Science, University College Dublin, Belfield, Dublin, Ireland; Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Evidence for metabolic endotoxemia in obese and diabetic Gambian women. Nutr Diabetes 2013; 3:e83. [PMID: 23978817 PMCID: PMC3759130 DOI: 10.1038/nutd.2013.24] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/11/2013] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Emerging evidence from animal models suggests that translocation of bacterial debris across a leaky gut may trigger low-grade inflammation, which in turn drives insulin resistance. The current study set out to investigate this phenomenon, termed 'metabolic endotoxemia', in Gambian women. METHODS In a cross-sectional study, we recruited 93 age-matched middle-aged urban Gambian women into three groups: lean (body mass index (BMI): 18.5-22.9 kg m(-2)), obese non-diabetic (BMI: 30.0 kg m(-2)) and obese diabetic (BMI: 30.0 kg m(-2) and attending a diabetic clinic). We measured serum bacterial lipopolysaccharide (LPS) and endotoxin-core IgM and IgG antibodies (EndoCAb) as measures of endotoxin exposure and interleukin-6 (IL-6) as a marker of inflammation. RESULTS Inflammation (IL-6) was independently and positively associated with both obesity and diabetes (F=12.7, P<0.001). LPS levels were highest in the obese-diabetic group compared with the other two groups (F=4.4, P<0.02). IgM EndoCAb (but not total IgM) was highly significantly reduced in the obese (55% of lean value) and obese diabetic women (30% of lean; F=21.7, P<0.0001 for trend) compared with lean women. CONCLUSION These data support the hypothesis that gut-derived inflammatory products are associated with obesity and diabetes. Confirmation of these findings and elucidation of the role of the microbiota, gut damage and the pathways for translocation of bacterial debris, could open new avenues for prevention and treatment of type 2 diabetes.
Collapse
|
28
|
Magrone T, Perez de Heredia F, Jirillo E, Morabito G, Marcos A, Serafini M. Functional foods and nutraceuticals as therapeutic tools for the treatment of diet-related diseases. Can J Physiol Pharmacol 2013; 91:387-96. [PMID: 23745830 DOI: 10.1139/cjpp-2012-0307] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In Western societies, the incidence of diet-related diseases is progressively increasing due to greater availability of hypercaloric food and a sedentary lifestyle. Obesity, diabetes, atherosclerosis, and neurodegeneration are major diet-related pathologies that share a common pathogenic denominator of low-grade inflammation. Functional foods and nutraceuticals may represent a novel therapeutic approach to prevent or attenuate diet-related disease in view of their ability to exert anti-inflammatory responses. In particular, activation of intestinal T regulatory cells and homeostatic regulation of the gut microbiota have the potential to reduce low-grade inflammation in diet-related diseases. In this review, clinical applications of polyphenol-rich functional foods and nutraceuticals in postprandial inflammation, obesity, and ageing will be discussed. We have placed special emphasis on polyphenols since they are broadly distributed in plants.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Policlinico, Piazza G. Cesare 11-70124 Bari, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Postprandial changes in the proteome are modulated by dietary fat in patients with metabolic syndrome. J Nutr Biochem 2013; 24:318-24. [DOI: 10.1016/j.jnutbio.2012.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 05/10/2012] [Accepted: 06/15/2012] [Indexed: 11/20/2022]
|
30
|
Meneses ME, Camargo A, Perez-Martinez P, Delgado-Lista J, Cruz-Teno C, Jimenez-Gomez Y, Paniagua JA, Gutierrez-Mariscal FM, Tinahones FJ, Vidal-Puig A, Roche HM, Perez-Jimenez F, Malagon MM, Lopez-Miranda J. Postprandial inflammatory response in adipose tissue of patients with metabolic syndrome after the intake of different dietary models. Mol Nutr Food Res 2011; 55:1759-70. [PMID: 22144044 DOI: 10.1002/mnfr.201100200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SCOPE Dysfunctional adipose tissue may be an important trigger of molecular inflammatory pathways that cause cardiovascular diseases. Our aim was to determine whether the specific quality and quantity of dietary fat produce differential postprandial inflammatory responses in adipose tissue from metabolic syndrome (MetS) patients. METHODS AND RESULTS A randomized, controlled trial conducted within the LIPGENE study assigned MetS patients to 1 of 4 diets: (i) high-saturated fatty acid (HSFA), (ii) high-monounsaturated fatty acid (HMUFA), (iii) low-fat, high-complex carbohydrate diet supplemented with n-3 polyunsaturated fatty acids (PUFA) (LFHCC n-3), and (iv) low-fat, high-complex carbohydrate diet supplemented with placebo (LFHCC), for 12 wk each. A fat challenge reflecting the fatty acid composition as the original diets was conducted post-intervention. We found that p65 gene expression is induced in adipose tissue (p=0.003) at the postprandial state. In addition, IκBα (p<0.001), MCP-1 (p<0.001) and IL-1β (p<0.001) gene expression was equally induced in the postprandial state, regardless of the quality and quantity of the dietary fat. Notably, IL-6 transcripts were only detected in the postprandial state. CONCLUSIONS Our results indicate that individuals with MetS typically exhibit exacerbated adipose tissue postprandial inflammatory responses, which seem to be independent of the quality and quantity of dietary fat.
Collapse
Affiliation(s)
- Maria E Meneses
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital, University of Cordoba and CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kalupahana NS, Moustaid-Moussa N, Claycombe KJ. Immunity as a link between obesity and insulin resistance. Mol Aspects Med 2011; 33:26-34. [PMID: 22040698 DOI: 10.1016/j.mam.2011.10.011] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 10/14/2011] [Indexed: 12/18/2022]
Abstract
Obesity is a major public health problem in the United States and worldwide. Further, obesity is causally linked to the pathogenesis of insulin resistance, metabolic syndrome and type-2 diabetes (T2D). A chronic low-grade inflammation occurring in adipose tissue is at least in part responsible for the obesity-induced insulin resistance. This adipose tissue inflammation is characterized by changes in immune cell populations giving rise to altered adipo/cytokine profiles, which in turn induces skeletal muscle and hepatic insulin resistance. Detailed molecular mechanisms of insulin resistance, adipose tissue inflammation and the implications of these findings on therapeutic strategies are discussed in this review.
Collapse
|
32
|
Kalupahana NS, Claycombe KJ, Moustaid-Moussa N. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistic insights. Adv Nutr 2011; 2:304-16. [PMID: 22332072 PMCID: PMC3125680 DOI: 10.3945/an.111.000505] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity is associated with the metabolic syndrome, a significant risk factor for developing type 2 diabetes and cardiovascular diseases. Chronic low-grade inflammation occurring in the adipose tissue of obese individuals is causally linked to the pathogenesis of insulin resistance and the metabolic syndrome. Although the exact trigger of this inflammatory process is unknown, adipose tissue hypoxia, endoplasmic reticular stress, and saturated fatty acid-mediated activation of innate immune processes have been identified as important processes in these disorders. Furthermore, macrophages and T lymphocytes have important roles in orchestrating this immune process. Although energy restriction leading to weight loss is the primary dietary intervention to reverse these obesity-associated metabolic disorders, other interventions targeted at alleviating adipose tissue inflammation have not been explored in detail. In this regard, (n-3) PUFA of marine origin both prevent and reverse high-fat-diet-induced adipose tissue inflammation and insulin resistance in rodents. We provide an update on the pathogenesis of adipose tissue inflammation and insulin resistance in obesity and discuss potential mechanisms by which (n-3) PUFA prevent and reverse these changes and the implications in human health.
Collapse
Affiliation(s)
- Nishan S. Kalupahana
- The University of Tennessee (UT) Obesity Research Center, Knoxville, TN 37996
- Department of Animal Science, Knoxville, TN 37996
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Kate J. Claycombe
- USDA Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58201
| | - Naima Moustaid-Moussa
- The University of Tennessee (UT) Obesity Research Center, Knoxville, TN 37996
- Department of Animal Science, Knoxville, TN 37996
- UT Extension Family and Consumer Sciences Department, Family and Consumer Sciences, Knoxville, TN 37996
| |
Collapse
|
33
|
Haslam SZ, Schwartz RC. Is there a link between a high-fat diet during puberty and breast cancer risk? ACTA ACUST UNITED AC 2011; 7:1-3. [PMID: 21175383 DOI: 10.2217/whe.10.83] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care 2010; 13:715-21. [PMID: 20823773 DOI: 10.1097/mco.0b013e32833eebe5] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW High-fiber diets have been shown to reduce plasma concentrations of inflammation markers. Increased production of fermentation-derived short-chain fatty acids (SCFAs) is one of the factors that could exert these positive effects. This review examines the effects of SCFAs on immune cells and discusses the relevance of their effects on systemic inflammation, as frequently seen in obesity. RECENT FINDINGS SCFAs have been shown to reduce chemotaxis and cell adhesion; this effect is dependent on type and concentration of SCFA. In spite of conflicting results, especially butyrate seems to have an anti-inflammatory effect, mediated by signaling pathways like nuclear factor-κB and inhibition of histone deacetylase. The discrepancies in the results could be explained by differences in cell types used and their proliferative and differentiation status. SUMMARY SCFAs show anti-inflammatory effects and seem to have the potency to prevent infiltration of immune cells from the bloodstream in, for example, the adipose tissue. In addition, their ability to inhibit the proliferation and activation of T cells and to prevent adhesion of antigen-presenting cells could be important as it recently has been shown that obesity-associated inflammation might be antigen-dependent. More studies with concentrations in micromolar range are needed to approach more physiological concentrations.
Collapse
Affiliation(s)
- Kees Meijer
- Center for Medical Biomics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|