1
|
Du M, Wang C, Jiang Z, Cong R, Li A, Wang W, Zhang G, Li L. Genotype-by-Environment Effects of Cis-Variations in the Atgl Promoter Mediate the Divergent Pattern of Phenotypic Plasticity for Temperature Adaptation in Two Congeneric Oyster Species. Mol Ecol 2025; 34:e17623. [PMID: 39718158 DOI: 10.1111/mec.17623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024]
Abstract
Phenotypic plasticity plays an essential role in adaptive evolution. However, the molecular mechanisms of how genotype-by-environment interaction (G × E) effects shape phenotypic plasticity in marine organisms remain poorly understood. The crucial temperature-responsive trait triacylglycerol (TAG) content and its major gene adipose triglyceride lipase (Atgl) expression have divergent plastic patterns in two congeneric oyster species (Crassostrea gigas and Crassostrea angulata) to adapt to relative-cold/northern and relative-warm/southern habitats, respectively. In this study, eight putative loci were identified in the Atgl promoter region (cis-variations) between wild C. gigas and C. angulata that exhibited differential environmental responsiveness (G × E). The G and G × E effects of each locus were further dissected by measuring the Atgl gene expression of different genotypes in response to temperature changes at the cellular and organismal levels. Two transcription factors, non-environmentally responsive non-POU domain-containing octamer-binding protein (Nono) and environmentally responsive heterogeneous nuclear ribonucleoprotein K (Hnrnpk), were screened for binding to g.-1804 (G locus) and g.-1919 (G + G × E locus), respectively. The specificity of Nono binding to the C. angulata allele mediated the G effects of g.-1804, and the lower environmental sensitivity of Hnrnpk in C. angulata mediated the G × E effects of g.-1919, jointly regulating the trade-offs between higher constitutive and lower plastic expression of Atgl gene expression in C. angulata. This study served as an experimental case to reveal how the genetic variations with G and (or) G × E effects propagate into the divergent pattern of plasticity in environmental adaptive traits, which provides new insights into predicting the adaptability of marine organisms to future climate changes.
Collapse
Affiliation(s)
- Mingyang Du
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaogang Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Zhuxiang Jiang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Ao Li
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao, China
| | - Wei Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
2
|
Navarro-Masip È, Manocchio F, Colom-Pellicer M, Escoté X, Iglesias-Carres L, Calvo E, Bravo FI, Muguerza B, Desjardins Y, Aragonès G. Vitis vinifera L. Bioactive Components Modulate Adipose Tissue Metabolic Markers of Healthy Rats in a Photoperiod-Dependent Manner. Mol Nutr Food Res 2023; 67:e2300074. [PMID: 37421210 DOI: 10.1002/mnfr.202300074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/15/2023] [Indexed: 07/10/2023]
Abstract
SCOPE The beneficial health effects of (poly)phenol-rich foods such as red grapes mainly depend on both the type and concentration of (poly)phenols. Since fruit (poly)phenol content is influenced by growing conditions, the study examines the seasonal effects of red grapes (Vitis vinifera L.), grown under various cultivation conditions, on metabolic markers of adipose tissue in healthy rats. METHODS AND RESULTS For this purpose, Fischer 344 rats are exposed into three different light-dark cycles and daily supplemented with 100 mg kg-1 of either conventionally or organically grown red grapes for 10 weeks (n = 6). Seasonal consumption of organic grapes (OGs), which are richer in anthocyanins, increases energy expenditure (EE) of animals exposed to long photoperiod and enhances uncoupling protein 1 (UCP1) protein expression in brown adipose tissue of animals under standard photoperiod. Additionally, red grape consumption affects the gene expression profile of white adipose tissue (WAT), upregulating browning markers of subcutaneous WAT in 12 h light (L12) and 18 h light (L18) photoperiods, and downregulating adipogenic and lipolytic markers of visceral WAT in 6 h light (L6) and L12 photoperiods. CONCLUSIONS These results clearly show that bioactive compounds of grapes can modulate the metabolic markers of white and brown adipose tissues in a photoperiod and depot-dependent manner, partly affecting EE when consumed out of season.
Collapse
Affiliation(s)
- Èlia Navarro-Masip
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Francesca Manocchio
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Marina Colom-Pellicer
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Xavier Escoté
- Unitat de Nutrició i Salut, Centre Tecnològic de Catalunya, Eurecat, 43204, Reus, Spain
| | - Lisard Iglesias-Carres
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Enrique Calvo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Francisca I Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Yves Desjardins
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, G1V 0A6, Canada
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| |
Collapse
|
3
|
Castillo P, Pomar CA, Palou A, Palou M, Picó C. Influence of Maternal Metabolic Status and Diet during the Perinatal Period on the Metabolic Programming by Leptin Ingested during the Suckling Period in Rats. Nutrients 2023; 15:nu15030570. [PMID: 36771278 PMCID: PMC9921535 DOI: 10.3390/nu15030570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
We aimed to analyze the long-term metabolic effects of leptin supplementation at physiological doses during suckling in the offspring of diet-induced obese rats, together with the potential benefits of improving maternal diet during lactation. Thus, the offspring of: dams fed standard-diet (SD) (CON-dams), dams fed western-diet (WD) before and during gestation and lactation (WD-dams), and dams fed as WD-dams but moved to SD during lactation (REV-dams) were supplemented throughout suckling with leptin or vehicle, and fed SD or WD from weaning to four months. Under SD, leptin treatment significantly improved metabolic profile and body fat accumulation, with stronger effects in the male offspring of CON-dams and REV-dams. Under WD, the offspring of WD-dams presented metabolic alterations that were not evident in the offspring of REV-dams. Moreover, leptin supplementation improved glucose homeostasis in the male offspring of REV-dams. Conversely, leptin supplementation in females born to WD-dams and fed WD from weaning resulted in impaired insulin sensitivity and increased hepatic lipid content. These results highlight the importance of a balanced maternal diet during the perinatal period, especially lactation, for the subsequent metabolic health of the offspring and for the beneficial effects of leptin supplementation during suckling, more evident in the male offspring.
Collapse
Affiliation(s)
- Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands IdISBa, 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands IdISBa, 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands IdISBa, 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands IdISBa, 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-971172373
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands IdISBa, 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| |
Collapse
|
4
|
Mariné-Casadó R, Domenech-Coca C, Crescenti A, Rodríguez Gómez MÁ, Del Bas JM, Arola L, Boqué N, Caimari A. Maternal Supplementation with a Cocoa Extract during Lactation Deeply Modulates Dams' Metabolism, Increases Adiponectin Circulating Levels and Improves the Inflammatory Profile in Obese Rat Offspring. Nutrients 2022; 14:nu14235134. [PMID: 36501173 PMCID: PMC9738144 DOI: 10.3390/nu14235134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
High-flavonoid cocoa consumption has been associated with beneficial properties. However, there are scarce data concerning the effects of maternal cocoa intake on dams and in their progeny. Here, we evaluated in rats whether maternal supplementation with a high-flavan-3-ol cocoa extract (CCX) during lactation (200 mg.kg-1.day-1) produced beneficial effects on dams and in their normoweight (STD-CCX group) and cafeteria-fed obese (CAF-CCX group) adult male offspring. Maternal intake of CCX significantly increased the circulating levels of adiponectin and decreased the mammary gland lipid content of dams. These effects were accompanied by increased energy expenditure and circulating free fatty acids, as well as by a higher expression of lipogenic and adiponectin-related genes in their mammary glands, which could be related to a compensatory mechanism to ensure enough lipid supply to the pups. CCX consumption programmed both offspring groups towards increased plasma total adiponectin levels, and decreased liver weight and lean/fat ratio. Furthermore, CAF-CCX progeny showed an improvement of the inflammatory profile, evidenced by the significant decrease of the monocyte chemoattractant protein-1 (MCP-1) circulating levels and the mRNA levels of the gene encoding the major histocompatibility complex, class II invariant chain (Cd74), a marker of M1 macrophage phenotype, in the epididymal white adipose tissue. Although further studies are needed, these findings can pave the way for using CCX as a nutraceutical supplement during lactation.
Collapse
Affiliation(s)
- Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Cristina Domenech-Coca
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Anna Crescenti
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Miguel Ángel Rodríguez Gómez
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain
| | - Josep Maria Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Noemí Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
- Correspondence: (N.B.); (A.C.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
- Correspondence: (N.B.); (A.C.)
| |
Collapse
|
5
|
Reynés B, Cifre M, Palou A, Oliver P. Perinatal Treatment with Leptin, but Not Celastrol, Protects from Metabolically Obese, Normal-Weight Phenotype in Rats. Nutrients 2022; 14:nu14112277. [PMID: 35684076 PMCID: PMC9183119 DOI: 10.3390/nu14112277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Perinatal nutrition has a well-known influence on obesity susceptibility. We previously demonstrated the protective anti-obesity effects of perinatal leptin administration. Celastrol is a natural compound acting as a leptin sensitizer with anti-obesity effects when administered in adult animals. Here, we aimed to determine if perinatal treatment with leptin, celastrol, or their combination was able to improve metabolic health in animals fed an isocaloric high-fat (HF) diet. Leptin and/or celastrol or their vehicle were administered orally to rats during the suckling period. After weaning, animals were chronically pair-fed with an HF diet provided isocaloric to the intake of a normal-fat diet by control animals to avoid obesity. Isocaloric HF feeding in vehicle-treated animals resulted in metabolic features characteristic of the metabolically obese, normal-weight (MONW) phenotype, i.e., obesity-related disturbances without increased body weight. Leptin treatment prevented liver fat deposition and insulin resistance, induced greater insulin and leptin signaling capacity, decreased gene expression of orexigenic signals at the hypothalamic level, and induced browning in retroperitoneal adipose tissue. However, celastrol treatment did not provide any protective effect and resulted in greater size of the retroperitoneal adipose depot, higher circulating glucose and insulin levels, and decreased leptin sensitivity capacity in adipose tissue. The co-administration of leptin ameliorated the negative effects of celastrol on the retroperitoneal depot, inducing browning and decreasing its size. In conclusion, the perinatal administration of leptin, but not celastrol, provided protection against the consequences of dietary unbalances leading to an MONW phenotype in adulthood.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Nutrigenomics, Biomarkers and Risk Evaluation Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.); (M.C.); (P.O.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
| | - Margalida Cifre
- Nutrigenomics, Biomarkers and Risk Evaluation Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.); (M.C.); (P.O.)
- CIBER of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andreu Palou
- Nutrigenomics, Biomarkers and Risk Evaluation Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.); (M.C.); (P.O.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-971-173-170
| | - Paula Oliver
- Nutrigenomics, Biomarkers and Risk Evaluation Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.); (M.C.); (P.O.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Nicotinamide Riboside Supplementation to Suckling Male Mice Improves Lipid and Energy Metabolism in Skeletal Muscle and Liver in Adulthood. Nutrients 2022; 14:nu14112259. [PMID: 35684059 PMCID: PMC9182637 DOI: 10.3390/nu14112259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Nicotinamide riboside, an NAD+ precursor, has been attracting a lot of attention in recent years due to its potential benefits against multiple metabolic complications and age-related disorders related to NAD+ decline in tissues. The metabolic programming activity of NR supplementation in early-life stages is much less known. Here, we studied the long-term programming effects of mild NR supplementation during the suckling period on lipid and oxidative metabolism in skeletal muscle and liver tissues using an animal model. Suckling male mice received a daily oral dose of NR or vehicle (water) from day 2 to 20 of age, were weaned at day 21 onto a chow diet, and at day 90 were distributed to either a high-fat diet (HFD) or a normal-fat diet for 10 weeks. Compared to controls, NR-treated mice were protected against HFD-induced triacylglycerol accumulation in skeletal muscle and displayed lower triacylglycerol levels and steatosis degree in the liver and distinct capacities for fat oxidation and decreased lipogenesis in both tissues, paralleling signs of enhanced sirtuin 1 and AMP-dependent protein kinase signaling. These pre-clinical findings suggest that mild NR supplementation in early postnatal life beneficially impacts lipid and energy metabolism in skeletal muscle and liver in adulthood, serving as a potential preventive strategy against obesity-related disorders characterized by ectopic lipid accumulation.
Collapse
|
7
|
Yang H, Mayneris-Perxachs J, Boqué N, del Bas JM, Arola L, Yuan M, Türkez H, Uhlén M, Borén J, Zhang C, Mardinoglu A, Caimari A. Combined Metabolic Activators Decrease Liver Steatosis by Activating Mitochondrial Metabolism in Hamsters Fed with a High-Fat Diet. Biomedicines 2021; 9:1440. [PMID: 34680557 PMCID: PMC8533474 DOI: 10.3390/biomedicines9101440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/13/2023] Open
Abstract
Although the prevalence of non-alcoholic fatty liver disease (NAFLD) continues to increase, there is no effective treatment approved for this condition. We previously showed, in high-fat diet (HFD)-fed mice, that the supplementation of combined metabolic activators (CMA), including nicotinamide riboside (NAD+ precursor) and the potent glutathione precursors serine and N-acetyl-l-cysteine (NAC), significantly decreased fatty liver by promoting fat oxidation in mitochondria. Afterwards, in a one-day proof-of-concept human supplementation study, we observed that this CMA, including also L-carnitine tartrate (LCT), resulted in increased fatty acid oxidation and de novo glutathione synthesis. However, the underlying molecular mechanisms associated with supplementation of CMA have not been fully elucidated. Here, we demonstrated in hamsters that the chronic supplementation of this CMA (changing serine for betaine) at two doses significantly decreased hepatic steatosis. We further generated liver transcriptomics data and integrated these data using a liver-specific genome-scale metabolic model of liver tissue. We systemically determined the molecular changes after the supplementation of CMA and found that it activates mitochondria in the liver tissue by modulating global lipid, amino acid, antioxidant and folate metabolism. Our findings provide extra evidence about the beneficial effects of a treatment based on this CMA against NAFLD.
Collapse
Affiliation(s)
- Hong Yang
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Doctor Josep Trueta, 17190 Girona, Spain;
- Center for Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Noemí Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
| | - Josep M. del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
| | - Lluís Arola
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Meng Yuan
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25030, Turkey;
| | - Mathias Uhlén
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, SE-40233 Gothenburg, Sweden;
| | - Cheng Zhang
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
| |
Collapse
|
8
|
Serrano A, Ribot J, Palou A, Bonet ML. Long-term programming of skeletal muscle and liver lipid and energy metabolism by resveratrol supplementation to suckling mice. J Nutr Biochem 2021; 95:108770. [PMID: 34000411 DOI: 10.1016/j.jnutbio.2021.108770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/04/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Metabolic programming by dietary chemicals consumed in early life stages is receiving increasing attention. We here studied long-term effects of mild resveratrol (RSV) supplementation during lactation on muscular and hepatic lipid metabolism in adulthood. Newborn male mice received RSV or vehicle from day 2-20 of age, were weaned onto a chow diet on day 21, and were assigned to either a high-fat diet (HFD) or a normal-fat diet on day 90 of age for 10 weeks. RSV-treated mice showed in adulthood protection against HFD-induced triacylglycerol accumulation in skeletal muscle, enhanced muscular capacities for fat oxidation and mitochondria activity, signs of enhanced sirtuin 1 and AMP-dependent protein kinase signaling in muscle, and increased fat oxidation capacities and a decreased capacity for lipogenesis in liver compared with controls. Thus, RSV supplementation in early postnatal life may help preventing later diet-related disorders linked to ectopic lipid accumulation in muscle and liver tissues.
Collapse
Affiliation(s)
- Alba Serrano
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Joan Ribot
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain.
| | - Andreu Palou
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - M Luisa Bonet
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| |
Collapse
|
9
|
Lou HX, Fu WC, Chen JX, Li TT, Jiang YY, Liu CH, Zhang W. Alisol A 24-acetate stimulates lipolysis in 3 T3-L1 adipocytes. BMC Complement Med Ther 2021; 21:128. [PMID: 33888116 PMCID: PMC8063434 DOI: 10.1186/s12906-021-03296-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/02/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Alisol A 24-acetate (AA-24-a), one of the main active triterpenes isolated from the well-known medicinal plant Alisma orientale (Sam.) Juz., exhibits multiple biological activities including hypolipidemic activity. However, its effect on lipid metabolism in adipocytes remains unclear. The present study aimed to clarify the effect of AA-24-a on adipocyte lipolysis and to determine its potential mechanism of action using 3 T3-L1 cells. METHODS We assayed the release of glycerol into culture medium of 3 T3-L1 cells under treatment with AA-24-a. Protein and mRNA expression and phosphorylation levels of the main lipases and kinases involved in lipolysis regulation were determined by quantitative polymerase chain reaction and western blotting. Specific inhibitors of protein kinase A (PKA; H89) and extracellular signal-regulated kinase (ERK; PD98059), which are key enzymes in relevant signaling pathways, were used to examine their roles in AA-24-a-stimulated lipolysis. RESULTS AA-24-a significantly stimulated neutral lipolysis in fully differentiated adipocytes. To determine the underlying mechanism, we assessed the changes in mRNA and protein levels of key lipolysis-related genes in the presence or absence of H89 and PD98059. Both inhibitors reduced AA-24-a-induced lipolysis. Moreover, pretreatment with H89 attenuated AA-24-a-induced phosphorylation of hormone-sensitive lipase at Ser660, while pretreatment with PD98059 attenuated AA-24-a-induced downregulation of peroxisome proliferator-activated receptor-γ and perilipin A. CONCLUSIONS Our results indicate that AA-24-a promoted neutral lipolysis in 3 T3-L1 adipocytes by activating PKA-mediated phosphorylation of hormone-sensitive lipase and ERK- mediated downregulation of expression of perilipin A.
Collapse
Affiliation(s)
- Hai-Xia Lou
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Wen-Cheng Fu
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jia-Xiang Chen
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Tian-Tian Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Ying-Ying Jiang
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chun-Hui Liu
- China National Institute of Standardization, 4 Zhichun Road, Beijing, 100191, China.
| | - Wen Zhang
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
10
|
A Mix of Natural Bioactive Compounds Reduces Fat Accumulation and Modulates Gene Expression in the Adipose Tissue of Obese Rats Fed a Cafeteria Diet. Nutrients 2020; 12:nu12113251. [PMID: 33114190 PMCID: PMC7690777 DOI: 10.3390/nu12113251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 12/02/2022] Open
Abstract
Scientists are focusing on bioactive ingredients to counteract obesity. We evaluated whether a mix containing grape seed proanthocyanidin extract (GSPE), anthocyanins, conjugated linoleic acid (CLA), and chicken feet hydrolysate (CFH) could reduce body fat mass and also determined which mechanisms in the white adipose tissue (WAT) and the brown adipose tissue (BAT) were affected by the treatment. The mix or vehicle (VH) were administered for three weeks to obese rats fed a cafeteria (CAF) diet. Biometric measures, indirect calorimetry, and gene expression in WAT and BAT were analyzed as was the histology of the inguinal WAT (IWAT). The individual compounds were also tested in the 3T3-L1 cell line. The mix treatment resulted in a significant 15% reduction in fat (25.01 ± 0.91 g) compared to VH treatment (21.19 ± 1.59 g), and the calorimetry results indicated a significant increase in energy expenditure and fat oxidation. We observed a significant downregulation of Fasn mRNA and an upregulation of Atgl and Hsl mRNA in adipose depots in the group treated with the mix. The IWAT showed a tendency of reduction in the number of adipocytes, although no differences in the total adipocyte area were found. GSPE and anthocyanins modulated the lipid content and downregulated the gene and protein levels of Fasn compared to the untreated group in 3T3-L1 cells. In conclusion, this mix is a promising treatment against obesity, reducing the WAT of obese rats fed a CAF diet, increasing energy expenditure and fat oxidation, and modifying the expression of genes involved in lipid metabolism of the adipose tissue.
Collapse
|
11
|
Gibert-Ramos A, Palacios-Jordan H, Salvadó MJ, Crescenti A. Consumption of out-of-season orange modulates fat accumulation, morphology and gene expression in the adipose tissue of Fischer 344 rats. Eur J Nutr 2019; 59:621-631. [PMID: 30788591 PMCID: PMC7058598 DOI: 10.1007/s00394-019-01930-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/12/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE According to the xenohormesis theory, animals receive signals from plants that give clues about the changing environment, and thus, depending on the season of the year, animals develop physiological changes to adapt in advance to the seasonal changes. Our objective was to study how the same fruit cultivated during two different seasons could affect the adipose tissue of rats. METHODS Thirty-six Fischer 344 rats were acclimated for 4 weeks to long-day or short-day (SD) photoperiods. After adaptation, three groups (n = 6) from each photoperiod were supplemented either with orange from the northern (ON) or southern (OS) hemispheres harvested in the same month or a vehicle (VH) for 10 weeks. Biometric measurements, postprandial plasmatic parameters, gene expression of the inguinal white adipose tissue (IWAT) and brown adipose tissue (BAT), and the histology of the IWAT were analysed. RESULTS The OSSD group increased its fat content compared to the VHSD, while the ON groups showed no biometric differences. The OS groups were further studied, and the IWAT showed increased levels of Pparγ gene expression and a higher percentage of larger adipocytes compared to the VH group. The BAT showed down-regulation of Lpl, Cpt1b and Pparα in the OSSD group compared to that in the VHSD group, suggesting an inhibition of BAT activity, however, Ucp1 gene expression was up-regulated. CONCLUSIONS We observed a different effect from both fruits, with the OS promoting a phenotype prone to fat accumulation when consumed in an SD photoperiod, which might be explained by the xenohormesis theory.
Collapse
Affiliation(s)
- Albert Gibert-Ramos
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Campus Sescelades, Building N4, Marcel·lí Domingo 1, 43007, Tarragona, Spain.
| | - Hector Palacios-Jordan
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Campus Sescelades, Building N4, Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - M Josepa Salvadó
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Campus Sescelades, Building N4, Marcel·lí Domingo 1, 43007, Tarragona, Spain.
| | - Anna Crescenti
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| |
Collapse
|
12
|
Mariné-Casadó R, Domenech-Coca C, Del Bas JM, Bladé C, Arola L, Caimari A. The Exposure to Different Photoperiods Strongly Modulates the Glucose and Lipid Metabolisms of Normoweight Fischer 344 Rats. Front Physiol 2018; 9:416. [PMID: 29725308 PMCID: PMC5917113 DOI: 10.3389/fphys.2018.00416] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/04/2018] [Indexed: 01/08/2023] Open
Abstract
Seasonal variations in day length trigger clear changes in the behavior, growth, food intake, and reproductive status of photoperiod-sensitive animals, such as Fischer 344 rats. However, there is little information about the effects of seasonal fluctuations in day length on glucose and lipid metabolisms and their underlying mechanisms in this model. To gain knowledge on these issues, three groups of male Fischer 344 rats were fed with a standard diet and exposed to different photoperiods for 14 weeks: normal photoperiod (L12, 12 h light/day), long photoperiod (L18, 18 h light/day), and short photoperiod (L6, 6 h light/day). A multivariate analysis carried out with 239 biometric, serum, hepatic and skeletal muscle parameters revealed a clear separation among the three groups. Compared with L12 rats, L6 animals displayed a marked alteration of glucose homeostasis and fatty acid uptake and oxidation, which were evidenced by the following observations: (1) increased circulating levels of glucose and non-esterified fatty acids; (2) a sharp down-regulation of the phosphorylated Akt2 levels, a downstream post-receptor target of insulin, in both the soleus and gastrocnemius muscles; (3) decreased expression in the soleus muscle of the glucose metabolism-related microRNA-194 and lower mRNA levels of the genes involved in glucose metabolism (Irs1, soleus, and Glut2, liver), β-oxidation (Had and Cpt1β, soleus) and fatty acid transport (Cd36, soleus, and liver). L18 animals also displayed higher blood glucose levels than L12 rats and profound changes in other glucose and lipid metabolism-related parameters in the blood, liver, and skeletal muscles. However, the mechanisms that account for the observed effects were less evident than those reported in L6 animals. In conclusion, exposure to different photoperiods strongly modulated glucose and lipid metabolisms in normoweight rats. These findings emphasize the relevance of circannual rhythms in metabolic homeostasis regulation and suggest that Fischer 344 rats are a promising animal model with which to study glucose- and lipid-related pathologies that are influenced by seasonal variations, such as obesity, cardiovascular disease and seasonal affective disorder.
Collapse
Affiliation(s)
- Roger Mariné-Casadó
- Technological Unit of Nutrition and Health, Eurecat, Technology Centre of Catalonia, Reus, Spain
| | - Cristina Domenech-Coca
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep M Del Bas
- Technological Unit of Nutrition and Health, Eurecat, Technology Centre of Catalonia, Reus, Spain
| | - Cinta Bladé
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Lluís Arola
- Technological Unit of Nutrition and Health, Eurecat, Technology Centre of Catalonia, Reus, Spain.,Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Antoni Caimari
- Technological Unit of Nutrition and Health, Eurecat, Technology Centre of Catalonia, Reus, Spain
| |
Collapse
|
13
|
Laperrousaz E, Denis RG, Kassis N, Contreras C, López M, Luquet S, Cruciani-Guglielmacci C, Magnan C. Lipoprotein Lipase Expression in Hypothalamus Is Involved in the Central Regulation of Thermogenesis and the Response to Cold Exposure. Front Endocrinol (Lausanne) 2018; 9:103. [PMID: 29593657 PMCID: PMC5861133 DOI: 10.3389/fendo.2018.00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/02/2018] [Indexed: 11/15/2022] Open
Abstract
Lipoprotein lipase (LPL) is expressed in different areas of the brain, including the hypothalamus and plays an important role in neural control of the energy balance, including feeding behavior and metabolic fluxes. This study tested the hypothesis that hypothalamic LPL participates in the control of body temperature. We first showed that cold exposure induces decreased activity and expression of LPL in the mouse hypothalamus. We then selectively deleted LPL in the mediobasal hypothalamus (MBH) through an adeno-associated virus approach in LPL-floxed mice and generated MBHΔ Lpl mice with 30-35% decrease in hypothalamic LPL activity. Results showed a decrease in body temperature in MBHΔ Lpl mice when compared with controls at 22°C. Exposure to cold (4°C for 4 h) decreased the body temperature of the control mice while that of the MBHΔ Lpl mice remained similar to that observed at 22°C. MBHΔ Lpl mice also showed increased energy expenditure during cold exposure, when compared to controls. Finally, the selective MBH deletion of LPL also increased the expression of the thermogenic PRMD16 and Dio2 in subcutaneous and perigonadal adipose tissues. Thus, the MBH LPL deletion seems to favor thermogenesis. These data demonstrate that for the first time hypothalamic LPL appears to function as a regulator of body temperature and cold-induced thermogenesis.
Collapse
Affiliation(s)
- Elise Laperrousaz
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Raphaël G Denis
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Nadim Kassis
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Cristina Contreras
- NeurObesity Group, Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Céline Cruciani-Guglielmacci
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| |
Collapse
|
14
|
Heat-killed Bifidobacterium animalis subsp. Lactis CECT 8145 increases lean mass and ameliorates metabolic syndrome in cafeteria-fed obese rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
15
|
Reynés B, Klein Hazebroek M, García-Ruiz E, Keijer J, Oliver P, Palou A. Specific Features of the Hypothalamic Leptin Signaling Response to Cold Exposure Are Reflected in Peripheral Blood Mononuclear Cells in Rats and Ferrets. Front Physiol 2017; 8:581. [PMID: 28860997 PMCID: PMC5559547 DOI: 10.3389/fphys.2017.00581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/27/2017] [Indexed: 01/06/2023] Open
Abstract
Objectives: Cold exposure induces hyperphagia to counteract fat loss related to lipid mobilization and thermogenic activation. The aim of this study was investigate on the molecular mechanisms involved in cold-induced compensatory hyperphagia. Methods: We analyzed the effect of cold exposure on gene expression of orexigenic and anorexigenic peptides, and of leptin signaling-related genes in the hypothalamus of rats at different ages (1, 2, 4, and 6 months), as well as in ferrets. We also evaluated the potential of peripheral blood mononuclear cells to reflect hypothalamic molecular responses. Results: As expected, cold exposure induced hypoleptinemia in rats, which could be responsible for the increased ratio of orexigenic/anorexigenic peptides gene expression in the hypothalamus, mainly due to decreased anorexigenic gene expression, especially in young animals. In ferrets, which resemble humans more closely, cold exposure induced greater changes in hypothalamic mRNA levels of orexigenic genes. Despite the key role of leptin in food intake control, the effect of cold exposure on the expression of key hypothalamic leptin signaling cascade genes is not clear. In our study, cold exposure seemed to affect leptin signaling in 4-month-old rats (increased Socs3 and Lepr expression), likely associated with the smaller-increase in food intake and decreased body weight observed at this particular age. Similarly, cold exposed ferrets showed greater hypothalamic Socs3 and Stat3 gene expression. Interestingly, peripheral blood mononuclear cells (PBMC) mimicked the hypothalamic increase in Lepr and Socs3 observed in 4-month-old rats, and the increased Socs3 mRNA expression observed in ferrets in response to cold exposure. Conclusions: The most outstanding result of our study is that PBMC reflected the specific modulation of leptin signaling observed in both animal models, rats and ferrets, which points forwards PBMC as easily obtainable biological material to be considered as a potential surrogate tissue to perform further studies on the regulation of hypothalamic leptin signaling in response to cold exposure.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Laboratory of Molecular Biology, Nutrition, and Biotechnology, Universitat de les Illes BalearsPalma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)Palma, Spain.,Balearic Islands Health Research Institute (IdISBa)Palma, Spain
| | - Marlou Klein Hazebroek
- Human and Animal Physiology Group, Wageningen University and Research CentreWageningen, Netherlands
| | - Estefanía García-Ruiz
- Laboratory of Molecular Biology, Nutrition, and Biotechnology, Universitat de les Illes BalearsPalma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)Palma, Spain
| | - Jaap Keijer
- Human and Animal Physiology Group, Wageningen University and Research CentreWageningen, Netherlands
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition, and Biotechnology, Universitat de les Illes BalearsPalma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)Palma, Spain.,Balearic Islands Health Research Institute (IdISBa)Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition, and Biotechnology, Universitat de les Illes BalearsPalma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)Palma, Spain.,Balearic Islands Health Research Institute (IdISBa)Palma, Spain
| |
Collapse
|
16
|
Long-term intake of a high-protein diet increases liver triacylglycerol deposition pathways and hepatic signs of injury in rats. J Nutr Biochem 2017; 46:39-48. [DOI: 10.1016/j.jnutbio.2017.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/07/2017] [Accepted: 04/11/2017] [Indexed: 12/24/2022]
|
17
|
Cifre M, Díaz-Rúa R, Varela-Calviño R, Reynés B, Pericás-Beltrán J, Palou A, Oliver P. Human peripheral blood mononuclear cell in vitro system to test the efficacy of food bioactive compounds: Effects of polyunsaturated fatty acids and their relation with BMI. Mol Nutr Food Res 2016; 61. [PMID: 27873461 DOI: 10.1002/mnfr.201600353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 01/04/2023]
Abstract
SCOPE To analyse the usefulness of isolated human peripheral blood mononuclear cells (PBMC) to rapidly/easily reflect n-3 long-chain polyunsaturated fatty acid (LCPUFA) effects on lipid metabolism/inflammation gene profile, and evaluate if these effects are body mass index (BMI) dependent. METHODS AND RESULTS PBMC from normoweight (NW) and overweight/obese (OW/OB) subjects were incubated with physiological doses of docosahexaenoic (DHA), eicosapentaenoic acid (EPA), or their combination. PBMC reflected increased beta-oxidation-like capacity (CPT1A expression) in OW/OB but only after DHA treatment. However, insensitivity to n-3 LCPUFA was evident in OW/OB for lipogenic genes: both PUFA diminished FASN and SREBP1C expression in NW, but no effect was observed for DHA in PBMC from high-BMI subjects. This insensitivity was also evident for inflammation gene profile: all treatments inhibited key inflammatory genes in NW; nevertheless, no effect was observed in OW/OB after DHA treatment, and EPA effect was impaired. SLC27A2, IL6 and TNFα PBMC expression analysis resulted especially interesting to determine obesity-related n-3 LCPUFA insensitivity. CONCLUSION A PBMC-based human in vitro system reflects n-3 LCPUFA effects on lipid metabolism/inflammation which is impaired in OW/OB. These results confirm the utility of PBMC ex vivo systems for bioactive-compound screening to promote functional food development and to establish appropriate dietary strategies for obese population.
Collapse
Affiliation(s)
- Margalida Cifre
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Rubén Díaz-Rúa
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Rubén Varela-Calviño
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Bàrbara Reynés
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Jordi Pericás-Beltrán
- Research Group on Evidence, Lifestyles & Health, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| |
Collapse
|
18
|
Matsubara T, Shimamoto S, Ijiri D, Ohtsuka A, Kanai Y, Hirabayashi M. The effects of acute cold exposure on morphology and gene expression in the heart of neonatal chicks. J Comp Physiol B 2016; 186:363-72. [PMID: 26733397 DOI: 10.1007/s00360-015-0957-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 12/01/2015] [Accepted: 12/16/2015] [Indexed: 12/31/2022]
Abstract
Cold exposure induces an increase in blood flow and blood pressure, and long-term exposure to cold causes cardiac hypertrophy. Neonatal chicks (Gallus gallus domesticus) are highly sensitive to cold exposure, because their capacity for thermogenesis is immature until 1 week after hatching. Hence, we hypothesized that the heart of chicks at around 1 week of age acutely responds to cold environment. To investigate the effect of acute (24 h) and long-term (2 weeks) cold on the heart of chicks, 7-day-old chicks were exposed to cold temperature (4 °C) or kept warm (30 °C). Chicks exposed to the cold showed cardiac hypertrophy with marked left ventricular (LV) chamber dilation and wall thickening. On the other hand, long-term cold exposure (2 weeks from 7-day-old) induced an increase in total ventricular mass, but not in LV morphological parameters. Then, we investigated the details of acute cardiac hypertrophy in chicks. Electron microscopy revealed that cardiomyocytes in the hypertrophied LV had enlarged mitochondria with less dense cristae. Although the mRNA expression of lipoprotein lipase in the LV of the cold-exposed chicks significantly increased, the mRNA expression of genes involved in fatty acid β-oxidation did not change in response to cold exposure. In addition, the mRNA expression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha, which enhances mitochondrial biogenesis and function under physiological cardiac hypertrophy, increased in LV of cold-exposed chicks. The study found that acute cold exposure to neonatal chicks induces LV hypertrophy. However, these results suggest that acute cold exposure to chicks might induce both adaptive and maladaptive responses of the LV.
Collapse
Affiliation(s)
- Tomoko Matsubara
- Division of Agro-biological Resource Sciences and Technology, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.,Division of Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Saki Shimamoto
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Daichi Ijiri
- Division of Agro-biological Resource Sciences and Technology, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. .,Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Akira Ohtsuka
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Yukio Kanai
- Division of Agro-biological Resource Sciences and Technology, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Miho Hirabayashi
- Division of Agro-biological Resource Sciences and Technology, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
19
|
Reynés B, García-Ruiz E, Oliver P, Palou A. Gene expression of peripheral blood mononuclear cells is affected by cold exposure. Am J Physiol Regul Integr Comp Physiol 2015; 309:R824-34. [PMID: 26246506 DOI: 10.1152/ajpregu.00221.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/03/2015] [Indexed: 12/25/2022]
Abstract
Because of the discovery of brown adipose tissue (BAT) in humans, there is increased interest in the study of induction of this thermogenic tissue as a basis to combat obesity and related complications. Cold exposure is one of the strongest stimuli able to activate BAT and to induce the appearance of brown-like (brite) adipocytes in white fat depots (browning process). We analyzed the potential of peripheral blood mononuclear cells (PBMCs) to reflect BAT and retroperitoneal white adipose tissue (rWAT) response to 1-wk cold acclimation (4°C) at different ages of rat development (1, 2, 4, and 6 mo). As expected, cold exposure increased fatty acid β-oxidation capacity in BAT and rWAT (increased Cpt1a expression), explaining increased circulating nonesterified free fatty acids and decreased adiposity. Cold exposure increased expression of the key thermogenic gene, Ucp1, in BAT and rWAT, but only in 1-mo-old animals. Additionally, other brown/brite markers were affected by cold during the whole developmental period studied in BAT. However, in rWAT, cold exposure increased studied markers mainly at early age. PBMCs did not express Ucp1, but expressed other brown/brite markers, which were cold regulated. Of particular interest, PBMCs reflected adipose tissue-increased Cpt1a mRNA expression in response to cold (in older animals) and browning induction occurring in rWAT of young animals (1 mo) characterized by increased Cidea expression and by the appearance of a high number of multilocular CIDE-A positive adipocytes. These results provide evidence pointing to PBMCs as an easily obtainable biological material to be considered to perform browning studies with minimum invasiveness.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and Centro de Investigación Biomedica en Red de Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| | - Estefanía García-Ruiz
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and Centro de Investigación Biomedica en Red de Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and Centro de Investigación Biomedica en Red de Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and Centro de Investigación Biomedica en Red de Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| |
Collapse
|
20
|
Díaz-Rúa R, García-Ruiz E, Caimari A, Palou A, Oliver P. Sustained exposure to diets with an unbalanced macronutrient proportion alters key genes involved in energy homeostasis and obesity-related metabolic parameters in rats. Food Funct 2015; 5:3117-31. [PMID: 25266916 DOI: 10.1039/c4fo00429a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have investigated the effects of long term intake of two unbalanced diets (rich in fat -HF- or protein -HP-) administered under isocaloric conditions to a control balanced diet (pair-feeding) to adult rats. Isocaloric intake of a HF diet did not affect the body weight but increased adiposity, liver-fat deposition, and induced insulin resistance. Gene expression changes in the liver and adipose tissue (increased lipolytic and decreased lipogenic gene expression) could try to compensate for increased adiposity. The HP diet decreased caloric intake, the body weight, the size of subcutaneous adipocytes, and circulating cholesterol. Higher insulin levels apparently not related to insulin resistance were observed. Changes at the gene expression level reflected an adaptation to lower diet carbohydrate content and to the use of amino acids as the energy source. The kidney size increased in HP-fed animals but serum creatinine was not affected. Circulating TNF-alpha levels were higher in both dietary models. Thus, a long-term increase in dietary fat proportion produces alterations related to metabolic syndrome even in the absence of increased body weight, whereas an increase in diet protein content reduces the body weight but alters metabolic parameters and kidney size which could be linked to an increased risk of suffering from different pathologies.
Collapse
Affiliation(s)
- Rubén Díaz-Rúa
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain.
| | | | | | | | | |
Collapse
|
21
|
Viscarra JA, Ortiz RM. Cellular mechanisms regulating fuel metabolism in mammals: role of adipose tissue and lipids during prolonged food deprivation. Metabolism 2013; 62:889-97. [PMID: 23357530 PMCID: PMC3640658 DOI: 10.1016/j.metabol.2012.12.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/06/2012] [Accepted: 12/25/2012] [Indexed: 01/11/2023]
Abstract
Food deprivation in mammals results in profound changes in fuel metabolism and substrate regulation. Among these changes are decreased reliance on the counter-regulatory dynamics by insulin-glucagon due to reduced glucose utilization, and increased concentrations of lipid substrates in plasma to meet the energetic demands of peripheral tissues. As the primary storage site of lipid substrates, adipose tissue must then be a primary contributor to the regulation of metabolism in food deprived states. Through its regulation of lipolysis, adipose tissue influences the availability of carbohydrate, lipid, and protein substrates. Additionally, lipid substrates can act as ligands to various nuclear receptors (retinoid x receptor (RXR), liver x receptor (LXR), and peroxisome proliferator-activated receptor (PPAR)) and exhibit prominent regulatory capabilities over the expression of genes involved in substrate metabolism within various tissues. Therefore, through its control of lipolysis, adipose tissue also indirectly regulates the utilization of metabolic substrates within peripheral tissues. In this review, these processes are described in greater detail and the extent to which adipose tissue and lipid substrates regulate metabolism in food deprived mammals is explored with comments on future directions to better assess the contribution of adipose tissue to metabolism.
Collapse
Affiliation(s)
- Jose Abraham Viscarra
- Department of Molecular and Cellular Biology, University of California, Merced, 5200 N Lake Rd., Merced, CA 95343, USA.
| | | |
Collapse
|
22
|
Yasmeen R, Reichert B, Deiuliis J, Yang F, Lynch A, Meyers J, Sharlach M, Shin S, Volz KS, Green KB, Lee K, Alder H, Duester G, Zechner R, Rajagopalan S, Ziouzenkova O. Autocrine function of aldehyde dehydrogenase 1 as a determinant of diet- and sex-specific differences in visceral adiposity. Diabetes 2013; 62:124-36. [PMID: 22933113 PMCID: PMC3526050 DOI: 10.2337/db11-1779] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mechanisms for sex- and depot-specific fat formation are unclear. We investigated the role of retinoic acid (RA) production by aldehyde dehydrogenase 1 (Aldh1a1, -a2, and -a3), the major RA-producing enzymes, on sex-specific fat depot formation. Female Aldh1a1(-/-) mice, but not males, were resistant to high-fat (HF) diet-induced visceral adipose formation, whereas subcutaneous fat was reduced similarly in both groups. Sexual dimorphism in visceral fat (VF) was attributable to elevated adipose triglyceride lipase (Atgl) protein expression localized in clusters of multilocular uncoupling protein 1 (Ucp1)-positive cells in female Aldh1a1(-/-) mice compared with males. Estrogen decreased Aldh1a3 expression, limiting conversion of retinaldehyde (Rald) to RA. Rald effectively induced Atgl levels via nongenomic mechanisms, demonstrating indirect regulation by estrogen. Experiments in transgenic mice expressing an RA receptor response element (RARE-lacZ) revealed HF diet-induced RARE activation in VF of females but not males. In humans, stromal cells isolated from VF of obese subjects also expressed higher levels of Aldh1 enzymes compared with lean subjects. Our data suggest that an HF diet mediates VF formation through a sex-specific autocrine Aldh1 switch, in which Rald-mediated lipolysis in Ucp1-positive visceral adipocytes is replaced by RA-mediated lipid accumulation. Our data suggest that Aldh1 is a potential target for sex-specific antiobesity therapy.
Collapse
Affiliation(s)
- Rumana Yasmeen
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio
| | - Barbara Reichert
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio
| | - Jeffrey Deiuliis
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Fangping Yang
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio
| | - Alisha Lynch
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio
| | - Joseph Meyers
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio
| | - Molly Sharlach
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California
| | - Sangsu Shin
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio
| | - Katharina S. Volz
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio
| | - Kari B. Green
- Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, Ohio
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio
| | - Hansjuerg Alder
- Nucleic Acid Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gregg Duester
- Development and Aging Program, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Rudolf Zechner
- Institute of Molecular Biosciences, Karl Franzens University, Graz, Austria
| | - Sanjay Rajagopalan
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Ouliana Ziouzenkova
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio
- Corresponding author: Ouliana Ziouzenkova,
| |
Collapse
|
23
|
Romo Vaquero M, Yáñez-Gascón MJ, García Villalba R, Larrosa M, Fromentin E, Ibarra A, Roller M, Tomás-Barberán F, Espín de Gea JC, García-Conesa MT. Inhibition of gastric lipase as a mechanism for body weight and plasma lipids reduction in Zucker rats fed a rosemary extract rich in carnosic acid. PLoS One 2012; 7:e39773. [PMID: 22745826 PMCID: PMC3382157 DOI: 10.1371/journal.pone.0039773] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/30/2012] [Indexed: 12/13/2022] Open
Abstract
Background Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. Methods and Principal Findings RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. Conclusions Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption.
Collapse
Affiliation(s)
- María Romo Vaquero
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, Campus de Espinardo, Murcia, Spain
| | - María-Josefa Yáñez-Gascón
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, Campus de Espinardo, Murcia, Spain
| | - Rocío García Villalba
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, Campus de Espinardo, Murcia, Spain
| | - Mar Larrosa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, Campus de Espinardo, Murcia, Spain
| | | | - Alvin Ibarra
- Naturex Inc., South Hackensack, New Jersey, United States of America
| | - Marc Roller
- Naturex SA, Site d'AgroParc, Avignon, France
| | - Francisco Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, Campus de Espinardo, Murcia, Spain
| | - Juan Carlos Espín de Gea
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, Campus de Espinardo, Murcia, Spain
| | - María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, Campus de Espinardo, Murcia, Spain
- * E-mail:
| |
Collapse
|