1
|
Yu W, Haoyu Y, Ling Z, Xing H, Pengfei X, Anzhu W, Lili Z, Linhua Z. Targeting lipid metabolic reprogramming to alleviate diabetic kidney disease: molecular insights and therapeutic strategies. Front Immunol 2025; 16:1549484. [PMID: 40352935 PMCID: PMC12061959 DOI: 10.3389/fimmu.2025.1549484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/14/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic kidney disease (DKD) is one of the major complications of diabetes, and its pathological progression is closely associated with lipid metabolic reprogramming. Under diabetic conditions, renal cells undergo significant lipid metabolic abnormalities, including increased lipid uptake, impaired fatty acid oxidation, disrupted cholesterol efflux, and enhanced lipid catabolism, as adaptive responses to metabolic stress. These changes result in the accumulation of lipids such as free fatty acids, diacylglycerol, and ceramides, leading to lipotoxicity that triggers inflammation and fibrosis. Hypoxia in the DKD microenvironment suppresses fatty acid oxidation and promotes lipid synthesis through the HIF-1α pathway, while chronic inflammation exacerbates lipid metabolic disturbances via inflammatory cytokines, inflammasomes, and macrophage polarization. Targeting lipid metabolism represents a promising therapeutic strategy for alleviating DKD; however, further clinical translational studies are warranted to validate the efficacy and safety of these approaches.
Collapse
Affiliation(s)
- Wei Yu
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Haoyu
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhou Ling
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Hang Xing
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xie Pengfei
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Wang Anzhu
- Chinese-Japanese Friendship Hospital, Beijing, China
| | - Zhang Lili
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhao Linhua
- Department of Endocrinology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
2
|
Mokhtari I, Shahat AA, Noman OM, Milenkovic D, Amrani S, Harnafi H. Effects of Cynara scolymus L. Bract Extract on Lipid Metabolism Disorders Through Modulation of HMG-CoA Reductase, Apo A-1, PCSK-9, p-AMPK, SREBP-2, and CYP2E1 Expression. Metabolites 2024; 14:728. [PMID: 39728509 DOI: 10.3390/metabo14120728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Hyperlipidemia is a major contributor to metabolic complications and tissue damage, leading to conditions such as liver steatosis, atherosclerosis, and obesity. This study aimed to investigate the effects of aqueous artichoke bract extract (AE) on lipid metabolism, liver antioxidative defense, and liver steatosis in mice fed a high-fat, high-sucrose diet while elucidating the underlying mechanisms. Methods: An 8-week study used hyperlipidemic mice treated with AE at daily doses of 100 and 200 mg/kg bw, compared to fenofibrate. Plasma, liver, fecal, and biliary lipids, as well as blood glucose, were analyzed enzymatically. The liver antioxidative defense was assessed by measuring reduced glutathione, malondialdehyde (MDA), and antioxidant enzyme activities, while liver steatosis was evaluated through transaminase and alkaline phosphatase activities and histological monitoring of lipid droplets. Polyphenol profiling and quantification were performed using HPLC-DAD, and potential mechanisms were predicted by molecular docking and confirmed in HepG2 cells. Results: At 200 mg/kg, AE significantly improved plasma lipid profiles by reducing total cholesterol, triglycerides, and LDL-cholesterol while increasing HDL-cholesterol. It facilitated cholesterol reduction in the liver and its excretion, indicating activation of reverse cholesterol transport, which led to reduced body weight and liver steatosis. AE lowered MDA levels and enhanced antioxidant enzyme activities. AE was found to be safe (LD50 > 5000 mg/kg) and modulated gene expression in HepG2 cells. Conclusions: Based on our results, the artichoke bract extract could be considered a natural resource of bioactive compounds to treat hyperlipidemia and related cardiometabolic diseases.
Collapse
Affiliation(s)
- Imane Mokhtari
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60000, Morocco
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Dragan Milenkovic
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA
| | - Souliman Amrani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60000, Morocco
| | - Hicham Harnafi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60000, Morocco
| |
Collapse
|
3
|
Chen Y, Tao J, He Y, Hou X, Fang J, Huang J, Wang L, Shen J, Zhu B, Wang N, Cao A. Curcumin targets CXCL16-mediated podocyte injury and lipid accumulation in diabetic kidney disease treatment. Arch Pharm Res 2024; 47:924-939. [PMID: 39607647 DOI: 10.1007/s12272-024-01521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Among the complications of diabetes, diabetic kidney disease (DKD) frequently emerges, typified by the detrimental effects on renal function, manifesting through inflammation, dysregulated lipid metabolism, and harm to podocytes. Existing research underscores the significance of the soluble form of C-X-C chemokine ligand 16 (CXCL16) within the context of renal impairments. However, whether CXCL16 is involved in the pathogenesis of DKD remains elusive. We report that CXCL16 levels in the serum and kidneys of individuals with DKD were elevated and correlated with various lipid parameters. The expression of CXCL16 in human podocytes subjected to high glucose or palmitic acid induction and exogenous CXCL16 administration in these cells were examined. Higher CXCL16 levels were linked to abnormal lipid metabolism. Exogenous CXCL16 administration induced lipid droplets, microfilament disorganization, apoptosis, oxidative stress, and inflammation, inhibited PPAR γ, up-regulated COX2 expression, and inhibited Nrf2 translocation in podocytes. Molecular analysis revealed that Curcumin (Cur), a polyphenolic compound derived from Curcuma longa and an Nrf2 agonist, targets the ATP-binding pocket of CXCL16, inhibiting its kinase activity. Meanwhile, Cur therapy alleviated podocyte injury, lipid accumulation, improved glomerulopathy, and reduced albuminuria. Furthermore, after silencing CXCL16 expression in podocytes using siRNA, the effects of exogenous CXCL16 were nullified, and Cur no longer exhibited any significant impact. Thus, CXCL16 participates in the pathogenesis of DKD. Inhibition of CXCL16 has shown promising results in experimental models, suggesting its beneficial effects in ameliorating DKD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jun Tao
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yijun He
- Department of Respiratory Medicine, Jin'an District Zhabei Central Hospital, Shanghai, 200070, China
| | - Xudong Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ji Fang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jiebo Huang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Li Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Junlong Shen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Bingbing Zhu
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Aili Cao
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
4
|
Jagdale AD, Angal MM, Patil RS, Tupe RS. Exploring the glycation association with dyslipidaemia: Novel approach for diabetic nephropathy. Biochem Pharmacol 2024; 229:116513. [PMID: 39218042 DOI: 10.1016/j.bcp.2024.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The transcription factor known as sterol regulatory element-binding protein (SREBP) and the glycation pathways, specifically the formation of Advanced Glycation End Products (AGEs), have a significant and deleterious impact on the kidney. They alter renal lipid metabolism and promote glomerulosclerosis, mesangial cell expansion, tubulointerstitial fibrosis, and inflammation, leading to diabetic nephropathy (DN) progression. Although several pieces of scientific evidence are reported for potential causes of glycation and lipotoxicity in DN, the underlying mechanism of renal lipid accumulation still needs to be fully understood. We provide a rationalized view on how AGEs exert multiple effects that cause SREBP activation and inflammation, contributing to DN through Receptor for AGEs (RAGE) signaling, AGE-R1-dependent downregulation of Sirtuin 1 (SIRT-1), and increased SREBP Cleavage Activating Protein (SCAP) glycosylation. This review emphasizes the association between glycation and the SREBP pathway and how it affects the onset of DN associated with obesity. Finally, we discuss the correlation of glycation and the SREBP pathway with insulin resistance (IR), oxidative stress, endoplasmic reticulum stress, inflammation, and existing and emerging therapeutic approaches toward better controlling obesity-related DN.
Collapse
Affiliation(s)
- Ashwini D Jagdale
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Mukul M Angal
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Rahul S Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India.
| |
Collapse
|
5
|
Jin Z, Wang X. Traditional Chinese medicine and plant-derived natural products in regulating triglyceride metabolism: Mechanisms and therapeutic potential. Pharmacol Res 2024; 208:107387. [PMID: 39216839 DOI: 10.1016/j.phrs.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The incidence of cardiometabolic disease is increasing globally, with a trend toward younger age of onset. Among these, atherosclerotic cardiovascular disease is a leading cause of mortality worldwide. Despite the efficacy of traditional lipid-lowering drugs, such as statins, in reducing low-density lipoprotein cholesterol levels, a significant residual risk of cardiovascular events remains, which is closely related to unmet triglyceride (TG) targets. The clinical application of current TG-lowering Western medicines has certain limitations, necessitating alternative or complementary therapeutic strategies. Traditional Chinese medicine (TCM) and plant-derived natural products, known for their safety owing to their natural origins and diverse biological activities, offer promising avenues for TG regulation with potentially fewer side effects. This review systematically summarises the mechanisms of TG metabolism and subsequently reviews the regulatory effects of TCM and plant-derived natural products on TG metabolism, including the inhibition of TG synthesis (via endogenous and exogenous pathways), promotion of TG catabolism, regulation of fatty acid absorption and transport, enhancement of lipophagy, modulation of the gut microbiota, and other mechanisms. In conclusion, through a comprehensive analysis of recent studies, this review consolidates the multifaceted regulatory roles of TCM and plant-derived natural products in TG metabolism and elucidates their potential as safer, multi-target therapeutic agents in managing hypertriglyceridemia and mitigating cardiovascular risk, thereby providing a basis for new drug development.
Collapse
Affiliation(s)
- Zhou Jin
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolong Wang
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Bhuia MS, Chowdhury R, Ara I, Mamun M, Rouf R, Khan MA, Uddin SJ, Shakil MAK, Habtemariam S, Ferdous J, Calina D, Sharifi-Rad J, Islam MT. Bioactivities of morroniside: A comprehensive review of pharmacological properties and molecular mechanisms. Fitoterapia 2024; 175:105896. [PMID: 38471574 DOI: 10.1016/j.fitote.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Iffat Ara
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mamun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muahmmad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Md Abdul Kader Shakil
- Research Center, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
7
|
Chen X, Li X, Cao B, Chen X, Zhang K, Han F, Kan C, Zhang J, Sun X, Guo Z. Mechanisms and efficacy of traditional Chinese herb monomers in diabetic kidney disease. Int Urol Nephrol 2024; 56:571-582. [PMID: 37552392 DOI: 10.1007/s11255-023-03703-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/04/2023] [Indexed: 08/09/2023]
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes and is the primary cause of end-stage renal disease. Current treatment strategies primarily focus on the inhibition of the renin-angiotensin-aldosterone system and the attainment of blood glucose control. Although current medical therapies for DKD have been shown to delay disease progression and improve long-term outcomes, their efficacy is limited and they may be restricted in certain cases, particularly when hyperkalemia is present. Traditional Chinese medicine (TCM) treatment has emerged as a significant complementary approach for DKD. TCM monomers, derived from various Chinese herbs, have been found to modulate multiple therapeutic targets and exhibit a broad range of therapeutic effects in patients with DKD. This review aims to summarize the mechanisms of action of TCM monomers in the treatment of DKD, based on findings from clinical trials, as well as cell and animal studies. The results of these investigations demonstrate the potential effective use of TCM monomers in treating or preventing DKD, offering a promising new direction for future research in the field. By providing a comprehensive overview of the mechanisms and efficacy of TCM monomers in DKD, this review highlights the potential of these natural compounds as alternative therapeutic options for improving outcomes in patients with DKD.
Collapse
Affiliation(s)
- Xuexun Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Xuan Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Bo Cao
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Xinping Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Jingwen Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Xiaodong Sun
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China.
| | - Zhentao Guo
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
8
|
Beniwal A, Jain JC, Jain A. Lipids: A Major Culprit in Diabetic Nephropathy. Curr Diabetes Rev 2024; 20:60-69. [PMID: 38018185 DOI: 10.2174/0115733998259273231101052549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/13/2023] [Accepted: 09/28/2023] [Indexed: 11/30/2023]
Abstract
The pathophysiology of diabetic nephropathy (DN) is too complex and involves a variety of pathways and mediators. Hyperglycaemia and dyslipidemia are identified as major risk factors for diabetic nephropathy. Various studies revealed the fact that dyslipidemia is a major contributor to the process of diabetic nephropathy. Dyslipidemia refers to abnormal lipid levels. Lipids like LDL, free fatty acids, abnormal lipoproteins, ceramides, etc., are unsafe for kidneys. They target proximal tubular epithelial cells, podocytes, and tubulointerstitial tissues through biochemical changes, especially by enhancing the release of reactive oxygen species (ROS) and lipid peroxidation, endorsing tissue inflammation and mitochondrial damage, which give rise to nephropathy. Major lipid targets identified are SREBP1, LXR, FXR PPAR, CD-36, PKc, AGE/RAGE pathway, and ferroptosis. The drug acting on these targets has shown improvement in DN patients. Various preclinical and clinical studies support the fact that hyperlipidemic agents are promising targets for DN. Therefore, in conjunction with other standard therapies, drugs acting on dyslipidemia can be added as a part of the regimen in order to prevent the incidence of ESRD and CVD.
Collapse
Affiliation(s)
- Ankita Beniwal
- College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Jasmine Chaudhary Jain
- College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Akash Jain
- College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
9
|
Chen Q, Xie C, Tang K, Luo M, Zhang Z, Jin Y, Liu Y, Zhou L, Kong Y. The E3 ligase Trim63 promotes podocyte injury and proteinuria by targeting PPARα to inhibit fatty acid oxidation. Free Radic Biol Med 2023; 209:40-54. [PMID: 37793501 DOI: 10.1016/j.freeradbiomed.2023.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
Podocyte injury is a hallmark of glomerular disease and one of the leading causes of chronic kidney disease (CKD). Peroxisome proliferator-activated receptor α (PPARα) plays a key role in podocyte fatty acid oxidation (FAO). However, the underlying regulatory mechanisms remain unresolved. Trim63 is an E3 ubiquitin ligase that has been shown to inhibit PPARα activity; however, its role in fatty acid metabolism in the kidney has not been elucidated to date. In this study, we investigated the effects of overexpression and knockdown of Trim63 in Adriamycin (ADR)-induced nephropathy and diabetic nephropathy models and a podocyte cell line. In both rodents and human patients with proteinuric CKD, Trim63 was upregulated, particularly in the podocytes of injured glomeruli. In the ADR-induced nephropathy model, ectopic Trim63 application aggravated FAO deficiency and mitochondrial dysfunction and triggered intense lipid deposition, podocyte injury, and proteinuria. Notably, Trim63 inhibition alleviated FAO deficiency and mitochondrial dysfunction, and markedly restored podocyte injury and renal fibrosis in ADR-induced and diabetic nephropathy (DN) models. Additionally, Trim63 was observed to mediate PPARα ubiquitination and degradation, leading to podocyte injury. We demonstrate the pathological role of Trim63, which was previously unrecognized in kidney tissue, in FAO deficiency and podocyte injury. Targeting Trim63 may represent a viable therapeutic strategy for podocyte injury and proteinuria.
Collapse
Affiliation(s)
- Qiyan Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Division of Nephrology, The First People's Hospital of Foshan, Foshan, China
| | - Chao Xie
- Division of Nephrology, The First People's Hospital of Foshan, Foshan, China
| | - Kaiyue Tang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mujin Luo
- Division of Nephrology, The First People's Hospital of Foshan, Foshan, China
| | - Zhe Zhang
- Division of Nephrology, The First People's Hospital of Foshan, Foshan, China
| | - Yabin Jin
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yaozhong Kong
- Division of Nephrology, The First People's Hospital of Foshan, Foshan, China.
| |
Collapse
|
10
|
Chauhan S, Singh AP, Rana AC, Kumar S, Kumar R, Singh J, Jangra A, Kumar D. Natural activators of AMPK signaling: potential role in the management of type-2 diabetes. J Diabetes Metab Disord 2023; 22:47-59. [PMID: 37255783 PMCID: PMC10225395 DOI: 10.1007/s40200-022-01155-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/30/2022] [Indexed: 06/01/2023]
Abstract
Adenosine 5'-monophosphate-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase involved in the homeostasis of cellular energy. AMPK has developed as an appealing clinical target for the diagnosis of multiple metabolic diseases such as diabetes mellitus, obesity, inflammation, and cancer. Genetic and pharmacological studies indicate that AMPK is needed in response to glucose deficiency, dietary restriction, and increased physical activity for preserving glucose homeostasis. After activation, AMPK influences metabolic mechanisms contributing to enhanced ATP production, thus growing processes that absorb ATP simultaneously. In this review, several natural products have been discussed which enhance the sensitivity of AMPK and alleviate sub complications or different pathways by which such AMPK triggers can be addressed. AMPK Natural products as potential AMPK activators can be developed as alternate pharmacological intervention to reverse metabolic disorders including type 2 diabetes.
Collapse
Affiliation(s)
- Sanyogita Chauhan
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Aakash Partap Singh
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Avtar Chand Rana
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Sunil Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Haryana 122502 Rewari, India
| | - Ravi Kumar
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh, 123031 Haryana India
| | - Jitender Singh
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, P.O. Mianpur, Ropar, 140108 Punjab India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031 India
| | - Dinesh Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
- Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031 India
| |
Collapse
|
11
|
Rabiee R, Hosseini Hooshiar S, Ghaderi A, Jafarnejad S. Schizophrenia, Curcumin and Minimizing Side Effects of Antipsychotic Drugs: Possible Mechanisms. Neurochem Res 2023; 48:713-724. [PMID: 36357748 DOI: 10.1007/s11064-022-03798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/12/2022]
Abstract
Schizophrenia is a mental disorder characterized by episodes of psychosis; major symptoms include hallucinations, delusions, and disorganized thinking. More recent theories focus on particular disorders of interneurons, dysfunctions in the immune system, abnormalities in the formation of myelin, and augmented oxidative stress that lead to alterations in brain structure. Decreased dopaminergic activity and increased phospholipid metabolism in the prefrontal cortex might be involved in schizophrenia. Antipsychotic drugs used to treat schizophrenia have many side effects. Alternative therapy such as curcumin (CUR) can reduce the severity of symptoms without significant side effects. CUR has important therapeutic properties such as antioxidant, anti-mutagenic, anti-inflammatory, and antimicrobial functions and protection of the nervous system. Also, the ability of CUR to pass the blood-brain barrier raises new hopes for neuroprotection. CUR can improve and prevent further probable neurological and behavioral disorders in patients with schizophrenia. It decreases the side effects of neuroleptics and retains lipid homeostasis. CUR increases the level of brain-derived neurotrophic factor and improves hyperkinetic movement disorders. CUR may act as an added counteraction mechanism to retain cell integrity and defense against free radical injury. Thus it appears to have therapeutic potential for improvement of schizophrenia. In this study, we review several properties of CUR and its ability to improve schizophrenia and minimize the side effects of antipsychotic drugs, and we explore the underlying mechanisms by which CUR affects schizophrenia and its symptoms.
Collapse
Affiliation(s)
- Reyhaneh Rabiee
- Student Research Committee, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeedeh Hosseini Hooshiar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine and Clinical Research Development Unit, Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
12
|
Wang A, Zhang S, Li Y, Zhu F, Xie B. Study on the relationship between lipoprotein (a) and diabetic kidney disease. J Diabetes Complications 2023; 37:108378. [PMID: 36549039 DOI: 10.1016/j.jdiacomp.2022.108378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Little is currently known about the role of lipid metabolism in diabetic kidney disease (DKD), warranting further study. The present study sought to investigate the correlation between lipid metabolism and renal function as well as renal pathological grade/score in DKD patients. METHODS A total of 224 patients diagnosed with DKD by pathological examination were retrospectively analyzed, of which 74 patients were further evaluated by DKD pathological grade/score. ANOVA was used to investigate serum lipoprotein (a) [Lp (a)] levels in DKD patients with different chronic kidney disease (CKD) stages. Spearman correlation analysis was used to evaluate the relationship between Lp (a) and renal function-related indicators. The DKD pathological grade/score was also evaluated with this method. The receiver operating characteristic (ROC) curve was used to analyze the value of Lp (a) in assessing renal function and pathological changes. RESULTS There were significant differences in Lp (a) levels among different CKD stages (H = 17.063, p = 0.002) and glomerular grades (H = 12.965, p = 0.005). Lp (a) levels correlated with serum creatinine (p = 0.000), blood urea nitrogen (p = 0.000), estimated glomerular filtration rate (p = 0.000), 24-h proteinuria (24hUPro, p = 0.000), urine microalbumin (p = 0.000), urine albumin creatinine ratio (p = 0.000), glomerular basement membrane thickness (p = 0.003), and glomerular grade (p = 0.039). ROC curve demonstrated good performance of Lp (a) as an indicator to assess CKD stage 4-5 (AUC = 0.684, p = 0.000), 24hUPro > 3.5 g (AUC = 0.720, p = 0.000), and glomerular grade III-IV (AUC = 0.695, p = 0.012). CONCLUSIONS Elevated levels of Lp (a) are associated with decreased GFR, increased proteinuria, and renal pathological progression, suggesting they could be used to monitor changes in DKD patients.
Collapse
Affiliation(s)
- Anni Wang
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Rd 453, Hangzhou 310007, People's Republic of China.
| | - Shaojie Zhang
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Rd 453, Hangzhou 310007, People's Republic of China
| | - Yayu Li
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Rd 453, Hangzhou 310007, People's Republic of China
| | - Fenggui Zhu
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Rd 453, Hangzhou 310007, People's Republic of China
| | - Bo Xie
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Rd 453, Hangzhou 310007, People's Republic of China; Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Westlake Ave 38, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
13
|
Mohamadian M, Parsamanesh N, Chiti H, Sathyapalan T, Sahebkar A. Protective effects of curcumin on ischemia/reperfusion injury. Phytother Res 2022; 36:4299-4324. [PMID: 36123613 DOI: 10.1002/ptr.7620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion (I/R) injury is a term used to describe phenomena connected to the dysfunction of various tissue damage due to reperfusion after ischemic injury. While I/R may result in systemic inflammatory response syndrome or multiple organ dysfunction syndrome, there is still a long way to improve therapeutic outcomes. A number of cellular metabolic and ultrastructural alterations occur by prolonged ischemia. Ischemia increases the expression of proinflammatory gene products and bioactive substances within the endothelium, such as cytokines, leukocytes, and adhesion molecules, even as suppressing the expression of other "protective" gene products and substances, such as thrombomodulin and constitutive nitric oxide synthase (e.g., prostacyclin, nitric oxide [NO]). Curcumin is the primary phenolic pigment derived from turmeric, the powdered rhizome of Curcuma longa. Numerous studies have shown that curcumin has strong antiinflammatory and antioxidant characteristics. It also prevents lipid peroxidation and scavenges free radicals like superoxide anion, singlet oxygen, NO, and hydroxyl. In our study, we highlight the mechanisms of protective effects of curcumin against I/R injury in various organs.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Zhu X, Xu X, Du C, Su Y, Yin L, Tan X, Liu H, Wang Y, Xu L, Xu X. An examination of the protective effects and molecular mechanisms of curcumin, a polyphenol curcuminoid in diabetic nephropathy. Biomed Pharmacother 2022; 153:113438. [DOI: 10.1016/j.biopha.2022.113438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022] Open
|
15
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Jha NK, Gupta G, Devkota HP, Prasher P, Chellappan DK, Dua K. A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:944-962. [DOI: 10.1016/j.sajb.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Lu W, Khatibi Shahidi F, Khorsandi K, Hosseinzadeh R, Gul A, Balick V. An update on molecular mechanisms of curcumin effect on diabetes. J Food Biochem 2022; 46:e14358. [PMID: 35945662 DOI: 10.1111/jfbc.14358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022]
Abstract
Owing to its prevalent nature, diabetes mellitus has become one of the most serious endocrine illnesses affecting a patient's quality of life due to the manifestation of side effects such as cardiovascular diseases, retinopathy, neuropathy, and nephropathy. Curcumin ((1E, 6E) 21, 7-bis (4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a major compound of turmeric, has been used in conventional medicine because of its safe nature and cost-effectiveness to meliorate diabetes and its comorbidities. These effects have also been observed in rodent models of diabetes resulting in a reduction of glycemia and blood lipids. Both the preventive and therapeutic activities of this compound are due to its antioxidant and anti-inflammatory characteristics. Furthermore, preclinical outcomes and clinical investigation demonstrate that the use of curcumin neutralizes insulin resistance, obesity, and hyperglycemia. Despite the many benefits of curcumin, its two limiting factors, solubility and bioavailability, remain a challenge for researchers; therefore, several methods such as drug formulation, nano-drug delivery, and the use of curcumin analogs have been developed to deliver curcumin and increase its bioavailability. PRACTICAL APPLICATIONS: The rise of people with type 2 diabetes has become a major concern at the global healthcare level. The best diabetes treatments today are anti-diabetic drug administration, lifestyle-related interventions (such as healthy eating and daily physical activity), arterial pressure detection, and fat control. The polyphenol curcumin, found in turmeric, can promote health by acting on a variety of cellular signaling pathways. This review article discusses curcumin and its role in the treatment of diabetes.
Collapse
Affiliation(s)
- Wensong Lu
- People's Hospital of Longhua, Shenzhen, China
| | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Reza Hosseinzadeh
- Department of Chromatography Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Urmia, Iran
| | - Asma Gul
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Veronica Balick
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
17
|
Chen L, Pu Y, Xu Y, He X, Cao J, Ma Y, Jiang W. Anti-diabetic and anti-obesity: Efficacy evaluation and exploitation of polyphenols in fruits and vegetables. Food Res Int 2022; 157:111202. [PMID: 35761524 DOI: 10.1016/j.foodres.2022.111202] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
|
18
|
How Curcumin Targets Inflammatory Mediators in Diabetes: Therapeutic Insights and Possible Solutions. Molecules 2022; 27:molecules27134058. [PMID: 35807304 PMCID: PMC9268477 DOI: 10.3390/molecules27134058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a multifactorial chronic metabolic disorder, characterized by altered metabolism of macro-nutrients, such as fats, proteins, and carbohydrates. Diabetic retinopathy, diabetic cardiomyopathy, diabetic encephalopathy, diabetic periodontitis, and diabetic nephropathy are the prominent complications of diabetes. Inflammatory mediators are primarily responsible for these complications. Curcumin, a polyphenol derived from turmeric, is well known for its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. The regulation of several signaling pathways effectively targets inflammatory mediators in diabetes. Curcumin’s anti-inflammatory and anti-oxidative activities against a wide range of molecular targets have been shown to have therapeutic potential for a variety of chronic inflammatory disorders, including diabetes. Curcumin’s biological examination has shown that it is a powerful anti-oxidant that stops cells from growing by releasing active free thiol groups at the target location. Curcumin is a powerful anti-inflammatory agent that targets inflammatory mediators in diabetes, and its resistant form leads to better therapeutic outcomes in diabetes complications. Moreover, Curcumin is an anti-oxidant and NF-B inhibitor that may be useful in treating diabetes. Curcumin has been shown to inhibit diabetes-related enzymes, such as a-glucosidase, aldose reductase and aldose reductase inhibitors. Through its anti-oxidant and anti-inflammatory effects, and its suppression of vascular endothelial development and nuclear transcription factors, curcumin has the ability to prevent, or reduce, the course of diabetic retinopathy. Curcumin improves insulin sensitivity by suppressing phosphorylation of ERK/JNK in HG-induced insulin-resistant cells and strengthening the PI3K-AKT-GSK3B signaling pathway. In the present article, we aimed to discuss the anti-inflammatory mechanisms of curcumin in diabetes regulated by various molecular signaling pathways.
Collapse
|
19
|
Sukumaran V, Gurusamy N, Yalcin HC, Venkatesh S. Understanding diabetes-induced cardiomyopathy from the perspective of renin angiotensin aldosterone system. Pflugers Arch 2022; 474:63-81. [PMID: 34967935 PMCID: PMC12120836 DOI: 10.1007/s00424-021-02651-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022]
Abstract
Experimental and clinical evidence suggests that diabetic subjects are predisposed to a distinct cardiovascular dysfunction, known as diabetic cardiomyopathy (DCM), which could be an autonomous disease independent of concomitant micro and macrovascular disorders. DCM is one of the prominent causes of global morbidity and mortality and is on a rising trend with the increase in the prevalence of diabetes mellitus (DM). DCM is characterized by an early left ventricle diastolic dysfunction associated with the slow progression of cardiomyocyte hypertrophy leading to heart failure, which still has no effective therapy. Although the well-known "Renin Angiotensin Aldosterone System (RAAS)" inhibition is considered a gold-standard treatment in heart failure, its role in DCM is still unclear. At the cellular level of DCM, RAAS induces various secondary mechanisms, adding complications to poor prognosis and treatment of DCM. This review highlights the importance of RAAS signaling and its major secondary mechanisms involving inflammation, oxidative stress, mitochondrial dysfunction, and autophagy, their role in establishing DCM. In addition, studies lacking in the specific area of DCM are also highlighted. Therefore, understanding the complex role of RAAS in DCM may lead to the identification of better prognosis and therapeutic strategies in treating DCM.
Collapse
Affiliation(s)
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Al-Tarfa, 2371, Doha, Qatar
| | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
20
|
Liu X, Lv Y, Zheng M, Yin L, Wang X, Fu Y, Yu B, Li J. Polyphenols from blue honeysuckle (Lonicera caerulea var. edulis) berry inhibit lipid accumulation in adipocytes by suppressing lipogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114403. [PMID: 34245835 DOI: 10.1016/j.jep.2021.114403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blue honeysuckle (Lonicera caerulea var. edulis) berry has been used in folk medicine for the treatment of bacterial infections, gastrointestinal disorders, and metabolic diseases. There is evidence to support its pharmacological effects in improving diabetes, fatty liver, and obesity. AIM OF STUDY To investigate the effect of blue honeysuckle berry extract (BHBE) on lipid accumulation in adipocytes and the underlying mechanism. MATERIALS AND METHODS High-performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) was applied to analyze the polyphenolic compounds in BHBE. 3T3-L1 cells were used to induce into adipocytes. Oil Red O staining combined with triglyceride (TG) content determination were carried out to evaluate intracellular lipid accumulation. Western blot was used to determine the expression of lipogenic enzymes and transcription factors. Real-time PCR was used to determine the expression of lipolytic enzymes and adipocyte markers. RESULTS The primary polyphenols in BHBE are flavonoids (mainly flavonols and anthocyanins). BHBE dose-dependently inhibited lipid accumulation in adipocytes by reducing the expression of fatty acid synthase (FAS) and increasing the phosphorylation level of acetyl-CoA carboxylase (ACC). Moreover, BHBE was found to promote the phosphorylation of AMP-activated protein kinase (AMPK) and further reduce the expression of lipogenic transcription factors (PPARγ, C/EBPα, and SREBP-1c), while the selective AMPK inhibitor attenuated the suppressive effect of BHBE on lipogenesis. In addition, BHBE increased the expression of beige adipocyte markers (Cd137 and Tmem26) and uncoupling protein 1 (UCP1) without affecting the expression of brown adipocyte markers (Ebf3 and Eva1). CONCLUSION BHBE inhibits lipid accumulation in adipocytes by suppressing lipogenesis via AMPK activation as well as by promoting beiging of adipocytes, which supports the anti-obesity potential of blue honeysuckle berry.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Ying Lv
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Mengyu Zheng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Li Yin
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Xiqing Wang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
| | - Yujie Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, PR China.
| |
Collapse
|
21
|
Morroniside Promotes PGC-1 α-Mediated Cholesterol Efflux in Sodium Palmitate or High Glucose-Induced Mouse Renal Tubular Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9942152. [PMID: 34485530 PMCID: PMC8410408 DOI: 10.1155/2021/9942152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022]
Abstract
Lipid deposition is an etiology of renal damage caused by lipid metabolism disorder in diabetic nephropathy (DN). Thus, reducing lipid deposition is a feasible strategy for the treatment of DN. Morroniside (MOR), an iridoid glycoside isolated from the Chinese herb Cornus officinalis Sieb. et Zucc., is considered to be an effective drug in inhibiting oxidative stress, reducing inflammatory response, and countering apoptosis. To explore the protective mechanism of MOR in attenuating renal lipotoxicity in DN, we investigated the effect of MOR on an in vitro model of lipid metabolism disorder of DN established by stimulating mouse renal tubular epithelial cells (mRTECs) with sodium palmitate (PA) or high glucose (HG). Oil Red O and filipin cholesterol staining assays were used to determine intracellular lipid accumulation status. Results revealed that PA or HG stimulation inhibited the expressions of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), liver X receptors (LXR), ATP-binding cassette subfamily A member 1 (ABCA1), ABCG1, and apolipoprotein E (ApoE) in mRTECs as evidenced by western blot and quantitative real-time PCR, resulting in increased intracellular lipid deposition. Interestingly, MOR upregulated expressions of PGC-1α, LXR, ABCA1, ABCG1, and ApoE, thus reducing cholesterol accumulation in mRTECs, suggesting that MOR might promote cholesterol efflux from mRTECs via the PGC-1α/LXR pathway. Of note, silencing PGC-1α reversed the promotive effect of MOR on PA- or HG-induced cellular cholesterol accumulation. In conclusion, our results suggest that MOR has a protective effect on mRTECs under high lipid or high glucose conditions, which may be related to the promotion of intracellular cholesterol efflux mediated by PGC-1α.
Collapse
|
22
|
Yaribeygi H, Sathyapalan T, Jamialahmadi T, Sahebkar A. Natural Insulin Sensitizers for the Management of Diabetes Mellitus: A Review of Possible Molecular Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:401-410. [PMID: 34981492 DOI: 10.1007/978-3-030-73234-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Diabetes mellitus is a growing health challenge globally which is increasing in epidemic proportion. Naturally occurring pharmacological agents are more likely to provide beneficial therapeutic effects without undesirable side effects compared to the synthetic agents. There is a growing evidence that some naturally occurring pharmacological agents derived from plants have potential antihyperglycemic effects. In this study, we have reviewed the molecular mechanism behind potential hypoglycemic properties of four well-known herbal-based agents, namely, ginger, curcumin, garlic, and cinnamon. Also, we present the related clinical data confirming experimental results aiming to develop novel therapeutic strategies based on these herbal agents potentially for the management of patients with diabetes.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine The University of Western Australia, Perth, Australia.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Dehdashtian E, Pourhanifeh MH, Hemati K, Mehrzadi S, Hosseinzadeh A. Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications. Diabetes Metab Res Rev 2020; 36:e3336. [PMID: 32415805 DOI: 10.1002/dmrr.3336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disease which may cause several complications, such as diabetic nephropathy (DN). The routine medical treatments used for DM are not effective enough and have many undesirable side effects. Moreover, the global increased prevalence of DM makes researchers try to explore potential complementary or alternative treatments. Nutraceuticals, as natural products with pharmaceutical agents, have a wide range of therapeutic properties in various pathologic conditions such as DN. However, the exact underlying mechanisms have not been fully understood. The purpose of this review is to summarize recent findings on the effect of nutraceuticals on DN.
Collapse
Affiliation(s)
- Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Wang L, Xu Z, Ling D, Li J, Wang Y, Shan T. The regulatory role of dietary factors in skeletal muscle development, regeneration and function. Crit Rev Food Sci Nutr 2020; 62:764-782. [PMID: 33021403 DOI: 10.1080/10408398.2020.1828812] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle plays a crucial role in motor function, respiration, and whole-body energy homeostasis. How to regulate the development and function of skeletal muscle has become a hot research topic for improving lifestyle and extending life span. Numerous transcription factors and nutritional factors have been clarified are closely associated with the regulation of skeletal muscle development, regeneration and function. In this article, the roles of different dietary factors including green tea, quercetin, curcumin (CUR), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and resveratrol (RES) in regulating skeletal muscle development, muscle mass, muscle function, and muscle recovery have been summarized and discussed. We also reviewed the potential regulatory molecular mechanism of these factors. Based on the current findings, dietary factors may be used as a potential therapeutic agent to treat skeletal muscle dysfunction as well as its related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
25
|
Shrikanth CB, Nandini CD. AMPK in microvascular complications of diabetes and the beneficial effects of AMPK activators from plants. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152808. [PMID: 30935723 DOI: 10.1016/j.phymed.2018.12.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/19/2018] [Accepted: 12/23/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Diabetes mellitus is a multifactorial disorder with the risk of micro- and macro-vascular complications. High glucose-induced derangements in metabolic pathways are primarily associated with the initiation and progression of secondary complications namely, diabetic nephropathy, neuropathy, and retinopathy. Adenosine monophosphate-activated protein kinase (AMPK) has emerged as an attractive therapeutic target to treat various metabolic disorders including diabetes mellitus. It is a master metabolic regulator that helps in maintaining cellular energy homeostasis by promoting ATP-generating catabolic pathways and inhibiting ATP-consuming anabolic pathways. Numerous pharmacological and plant-derived bioactive compounds that increase AMP-activated protein kinase activation has shown beneficial effects by mitigating secondary complications namely retinopathy, nephropathy, and neuropathy. PURPOSE The purpose of this review is to highlight current knowledge on the role of AMPK and its activators from plant origin in diabetic microvascular complications. METHODS Search engines such as Google Scholar, PubMed, Science Direct and Web of Science are used to extract papers using relevant key words. Papers mainly focusing on the role of AMPK and AMPK activators from plant origin in diabetic nephropathy, retinopathy, and neuropathy was chosen to be highlighted. RESULTS According to results, decrease in AMPK activation during diabetes play a causative role in the pathogenesis of diabetic microvascular complications. Some of the plant-derived bioactive compounds were beneficial in restoring AMPK activity and ameliorating diabetic microvascular complications. CONCLUSION AMPK activators from plant origin are beneficial in mitigating diabetic microvascular complications. These pieces of evidence will be helpful in the development of AMPK-centric therapies to mitigate diabetic microvascular complications.
Collapse
Affiliation(s)
- C B Shrikanth
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI campus, Mysuru, Karnataka 570 020, India
| | - C D Nandini
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI campus, Mysuru, Karnataka 570 020, India.
| |
Collapse
|
26
|
Mukai Y, Kataoka S, Sato S. Sorghum (Sorghum bicolor) Extract Affects Plasma Lipid Metabolism and Hepatic Macrophage Infiltration in Diabetic Rats. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190114153933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Chronic hyperglycemia is known to be a high-risk factor for progressive
chronic liver diseases, such as abnormal lipid metabolism. The activation of AMP-activated protein
kinase (AMPK) has a beneficial effect on dyslipidemia. Polyphenols derived from various plants are
involved in AMPK activation.
Objective:
We investigated the effects of polyphenol-containing sorghum (Sorghum bicolor) extract
(SE) on plasma lipid metabolism and macrophage infiltration, and measured the expression and
phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in diabetic rat livers.
Methods:
Streptozotocin-induced diabetic rats received 0, 50, or 250 mg/kg of SE orally for 4 weeks.
Blood chemistry, total and phosphorylated protein levels of AMPK and ACC, sterol regulatory element-
binding protein-1c (SREBP-1c) mRNA and protein levels, and macrophage infiltration in the
livers were examined.
Results:
Plasma glucose and triacylglycerol levels, which were increased in the untreated diabetic
rats, were significantly lower in the 250 mg/kg SE-treated diabetic rats. AMPK and ACC phosphorylation
levels were significantly increased in the 250 mg/kg SE-treated diabetic rats compared with
those in the untreated rats. There was no difference in the hepatic expression of SREBP-1c between
the diabetic rat groups. Macrophage infiltration in the liver was suppressed by 250 mg/kg of SEtreatment.
Conclusion:
These data suggest that SE treatment may affect plasma lipid metabolism and chronic
inflammation by upregulating phosphorylation of AMPK and ACC in diabetic rat livers.
Collapse
Affiliation(s)
- Yuuka Mukai
- Department of Food Hygiene and Function, School of Nutrition and Dietetics, Faculty of Health and Social Work, Kanagawa University of Human Services, Kanagawa, Japan
| | - Saori Kataoka
- Department of Nutrition, Aomori University of Health and Welfare, Aomori, Japan
| | - Shin Sato
- Department of Nutrition, Aomori University of Health and Welfare, Aomori, Japan
| |
Collapse
|
27
|
Lian X, Wang N, Ma L, Jiang H, Bai D, Xue H, Ma Q. Determination of aucubin by supramolecular solvent-based dispersive liquid-liquid microextraction and UPLC-MS/MS: Application to a pharmacokinetic study in rats with type 1 diabetes. J Pharm Biomed Anal 2020; 186:113301. [DOI: 10.1016/j.jpba.2020.113301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
28
|
Qiao Y, Jiao H, Wang F, Niu H. Ophiopogonin D of Ophiopogon japonicus ameliorates renal function by suppressing oxidative stress and inflammatory response in streptozotocin-induced diabetic nephropathy rats. ACTA ACUST UNITED AC 2020; 53:e9628. [PMID: 32520209 PMCID: PMC7279694 DOI: 10.1590/1414-431x20209628] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/26/2020] [Indexed: 01/14/2023]
Abstract
Ophiopogonin D (OP-D) is the principal pharmacologically active ingredient from Ophiopogon japonicas, which has been demonstrated to have numerous pharmacological activities. However, its protective effect against renal damage in streptozotocin (STZ)-induced diabetic nephropathy (DN) rats remains unclear. The present study was performed to investigate the protective effect of OP-D in the STZ-induced DN rat model. DN rats showed renal dysfunction, as evidenced by decreased serum albumin and creatinine clearance, along with increases in serum creatinine, blood urea nitrogen, TGF-β1, and kidney hypertrophy, and these were reversed by OP-D. In addition, STZ induced oxidative damage and inflammatory response in diabetic kidney tissue. These abnormalities were reversed by OP-D treatment. The findings obtained in the present study indicated that OP-D might possess the potential to be a therapeutic agent against DN via inhibiting renal inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yanhong Qiao
- Nephrology Department, Heping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Haiyan Jiao
- Nephrology Department, Heping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Feng Wang
- Nephrology Department, Heping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Huimin Niu
- Nephrology Department, Heping Hospital affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
29
|
Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21113798. [PMID: 32471207 PMCID: PMC7312633 DOI: 10.3390/ijms21113798] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is associated with an increased morbidity and mortality, resulting in elevated cost for public health systems. DN is the main cause of chronic kidney disease (CKD) and its incidence increases the number of patients that develop the end-stage renal disease (ESRD). There are growing epidemiological and preclinical evidence about the close relationship between inflammatory response and the occurrence and progression of DN. Several anti-inflammatory strategies targeting specific inflammatory mediators (cell adhesion molecules, chemokines and cytokines) and intracellular signaling pathways have shown beneficial effects in experimental models of DN, decreasing proteinuria and renal lesions. A number of inflammatory molecules have been shown useful to identify diabetic patients at high risk of developing renal complications. In this review, we focus on the key role of inflammation in the genesis and progression of DN, with a special interest in effector molecules and activated intracellular pathways leading to renal damage, as well as a comprehensive update of new therapeutic strategies targeting inflammation to prevent and/or retard renal injury.
Collapse
|
30
|
Opazo-Ríos L, Mas S, Marín-Royo G, Mezzano S, Gómez-Guerrero C, Moreno JA, Egido J. Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. Int J Mol Sci 2020; 21:E2632. [PMID: 32290082 PMCID: PMC7177360 DOI: 10.3390/ijms21072632] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Lipotoxicity is characterized by the ectopic accumulation of lipids in organs different from adipose tissue. Lipotoxicity is mainly associated with dysfunctional signaling and insulin resistance response in non-adipose tissue such as myocardium, pancreas, skeletal muscle, liver, and kidney. Serum lipid abnormalities and renal ectopic lipid accumulation have been associated with the development of kidney diseases, in particular diabetic nephropathy. Chronic hyperinsulinemia, often seen in type 2 diabetes, plays a crucial role in blood and liver lipid metabolism abnormalities, thus resulting in increased non-esterified fatty acids (NEFA). Excessive lipid accumulation alters cellular homeostasis and activates lipogenic and glycogenic cell-signaling pathways. Recent evidences indicate that both quantity and quality of lipids are involved in renal damage associated to lipotoxicity by activating inflammation, oxidative stress, mitochondrial dysfunction, and cell-death. The pathological effects of lipotoxicity have been observed in renal cells, thus promoting podocyte injury, tubular damage, mesangial proliferation, endothelial activation, and formation of macrophage-derived foam cells. Therefore, this review examines the recent preclinical and clinical research about the potentially harmful effects of lipids in the kidney, metabolic markers associated with these mechanisms, major signaling pathways affected, the causes of excessive lipid accumulation, and the types of lipids involved, as well as offers a comprehensive update of therapeutic strategies targeting lipotoxicity.
Collapse
Affiliation(s)
- Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Sebastián Mas
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Gema Marín-Royo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Sergio Mezzano
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, 5090000 Valdivia, Chile;
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain
- Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| |
Collapse
|
31
|
Dolati S, Namiranian K, Amerian R, Mansouri S, Arshadi S, Azarbayjani MA. The Effect of Curcumin Supplementation and Aerobic Training on Anthropometric Indices, Serum Lipid Profiles, C-Reactive Protein and Insulin Resistance in Overweight Women: A Randomized, Double-Blind, Placebo-Controlled Trial. J Obes Metab Syndr 2020; 29:47-57. [PMID: 32145720 PMCID: PMC7118005 DOI: 10.7570/jomes19055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/07/2019] [Accepted: 01/27/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND This study aimed to investigate the effects of curcumin supplementation alone and in combination with aerobic training on body composition, glycemic variables, serum levels of C-reactive protein (CRP) and lipid profiles in overweight women. METHODS In this randomized, double-blind, placebo-controlled trial, 40 healthy sedentary overweight females (aged 30-45 years with body mass index [BMI] of 25-30 kg/m2) were randomly assigned to four groups of 10 subjects each: curcumin supplementation (Cur), placebo (Pla), placebo+aerobic training (Pla+Tra), curcumin supplementation+aerobic training (Cur+Tra). Curcumin or placebo capsules (500 mg/day) were administered for 8 weeks. RESULTS During the intervention, Cur group showed significant reductions in weight, BMI and fasting blood glucose level; Cur+Tra group decreased waist circumference, waist-to-hip ratio, homeostatic model assessment for insulin resistance, serum insulin level, low-density lipoprotein to high-density lipoprotein ratio, and total cholesterol to high-density lipoprotein ratio and increased serum high-density lipoprotein cholesterol. The between-groups analysis indicated increased high-density lipoprotein cholesterol in the Cur and Cur+Tra groups compared to the Pla group. The estimated marginal means of serum CRP were significantly higher in Pla+Tra group than in the Cur and Cur+Tra groups. CONCLUSION These findings suggest that the combination of curcumin supplementation with aerobic training more effectively improves glycemic and lipidemic statuses than curcumin supplementation or aerobic training alone.
Collapse
Affiliation(s)
- Sepideh Dolati
- Department of Nutrition, Ministry of Health, Tehran, Iran
| | | | - Reyhaneh Amerian
- Department of Exercise Physiology, Faculty of Physical Education, Islamic Azad University of Tehran, Tehran, Iran
| | - Samane Mansouri
- Nutrition Group, Abadan School of Medical Sciences, Abadan, Iran
| | - Sajad Arshadi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Mohammad Ali Azarbayjani
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| |
Collapse
|
32
|
Zhang P, Fang J, Zhang J, Ding S, Gan D. Curcumin Inhibited Podocyte Cell Apoptosis and Accelerated Cell Autophagy in Diabetic Nephropathy via Regulating Beclin1/UVRAG/Bcl2. Diabetes Metab Syndr Obes 2020; 13:641-652. [PMID: 32184643 PMCID: PMC7060797 DOI: 10.2147/dmso.s237451] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Curcumin has various biological properties including being anti-inflammatory and antidiabetic. Podocyte apoptosis and autophagy dysfunction have been found to be responsible for the development of diabetic nephropathy (DN). Thus, the aim of the study was to investigate the effects of curcumin on the podocyte apoptosis and autophagy in DN and clarify its potential mechanisms. METHODS The mice with DN induced by injection of streptozotocin were treated with curcumin by gavage at a dose of 200 mg/kg/day for 8 weeks. The serum lipid levels were detected by total cholesterol (TC) and triglyceride (TG) kits at different time points. Renal damage was assessed by detecting urine albumin, serum creatinine (Scr), HE staining and PAS staining. The renal impairment was detected by immunohistochemical staining and TUNEL staining. Western blot assay tested the expression of autophagy-related and apoptotic-related proteins in vivo and vitro. The viabilities and apoptosis of MPC5 cells exposed to high glucose (HG) or curcumin were respectively detected by CCK-8 assay and flow cytometry. RESULTS The results showed that curcumin significantly decreased the progress of DN possibly via increasing autophagy and inhibiting apoptosis of renal cell in DN mice. Besides, podocyte marker proteins (podocalyxin and nephrin) were markedly increased in DN mice by curcumin treatment. The autophagy-related proteins LC3, p62, Beclin1, UVRAG and ATG5 were significantly affected in DN mice by curcumin, along with reducing expression of pro-apoptotic protein Bax and caspase-3 and increasing anti-apoptotic protein Bcl-2. In vitro, curcumin increased the viabilities and inhibited apoptosis of MPC5 cells exposed to high glucose (HG). In addition, the podocyte autophagy was enhanced partly via regulating beclin1/UVRAG. DISCUSSION Together, the results showed that curcumin inhibited podocyte apoptosis and accelerated cell autophagy via regulating Beclin1/UVRAG/Bcl2. Thus, the study showed that curcumin exerted significantly protective effects in DN.
Collapse
Affiliation(s)
- Pingping Zhang
- Department of Endocrinology, Ningbo Women and Children’s Hospital, Ningbo City, Zhejiang Province, People’s Republic of China
| | - Jie Fang
- Department of Endocrinology, Ningbo Women and Children’s Hospital, Ningbo City, Zhejiang Province, People’s Republic of China
| | - Jianping Zhang
- Department of Endocrinology, Ningbo Women and Children’s Hospital, Ningbo City, Zhejiang Province, People’s Republic of China
| | - Shuxia Ding
- Department of Endocrinology, Ningbo Women and Children’s Hospital, Ningbo City, Zhejiang Province, People’s Republic of China
| | - Dongmei Gan
- Department of Endocrinology, Ningbo Women and Children’s Hospital, Ningbo City, Zhejiang Province, People’s Republic of China
| |
Collapse
|
33
|
Noor HB, Mou NA, Salem L, Shimul MF, Biswas S, Akther R, Khan S, Raihan S, Mohib MM, Sagor MA. Anti-inflammatory Property of AMP-activated Protein Kinase. Antiinflamm Antiallergy Agents Med Chem 2020; 19:2-41. [PMID: 31530260 PMCID: PMC7460777 DOI: 10.2174/1871523018666190830100022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND One of the many debated topics in inflammation research is whether this scenario is really an accelerated form of human wound healing and immunityboosting or a push towards autoimmune diseases. The answer requires a better understanding of the normal inflammatory process, including the molecular pathology underlying the possible outcomes. Exciting recent investigations regarding severe human inflammatory disorders and autoimmune conditions have implicated molecular changes that are also linked to normal immunity, such as triggering factors, switching on and off, the influence of other diseases and faulty stem cell homeostasis, in disease progression and development. METHODS We gathered around and collected recent online researches on immunity, inflammation, inflammatory disorders and AMPK. We basically searched PubMed, Scopus and Google Scholar to assemble the studies which were published since 2010. RESULTS Our findings suggested that inflammation and related disorders are on the verge and interfere in the treatment of other diseases. AMPK serves as a key component that prevents various kinds of inflammatory signaling. In addition, our table and hypothetical figures may open a new door in inflammation research, which could be a greater therapeutic target for controlling diabetes, obesity, insulin resistance and preventing autoimmune diseases. CONCLUSION The relationship between immunity and inflammation becomes easily apparent. Yet, the essence of inflammation turns out to be so startling that the theory may not be instantly established and many possible arguments are raised for its clearance. However, this study might be able to reveal some possible approaches where AMPK can reduce or prevent inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Md A.T. Sagor
- Address correspondence to this author at the Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; Tel: +8801719130130; E-mail:
| |
Collapse
|
34
|
Den Hartogh DJ, Gabriel A, Tsiani E. Antidiabetic Properties of Curcumin II: Evidence from In Vivo Studies. Nutrients 2019; 12:nu12010058. [PMID: 31881654 PMCID: PMC7019668 DOI: 10.3390/nu12010058] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a growing metabolic disease characterized by insulin resistance and hyperglycemia. Current preventative and treatment approaches to insulin resistance and T2DM lack in efficacy, resulting in the need for new approaches to prevent and treat the disease. In recent years, epidemiological studies have suggested that diets rich in fruits and vegetables have beneficial health effects, including protection against insulin resistance and T2DM. Curcumin, a polyphenol found in turmeric, and curcuminoids have been reported to have antioxidant, anti-inflammatory, hepatoprotective, nephroprotective, neuroprotective, immunomodulatory and antidiabetic properties. The current review (II of II) summarizes the existing in vivo studies examining the antidiabetic effects of curcumin.
Collapse
Affiliation(s)
- Danja J. Den Hartogh
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (D.J.D.H.); (A.G.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Alessandra Gabriel
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (D.J.D.H.); (A.G.)
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (D.J.D.H.); (A.G.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
- Correspondence: ; Tel.: +1-905-688-5550 (ext. 3881)
| |
Collapse
|
35
|
Zhang XX, Jiang CH, Liu Y, Lou DX, Huang YP, Gao M, Zhang J, Yin ZQ, Pan K. Cyclocarya paliurus triterpenic acids fraction attenuates kidney injury via AMPK-mTOR-regulated autophagy pathway in diabetic rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153060. [PMID: 31401495 DOI: 10.1016/j.phymed.2019.153060] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUD Diabetic nephropathy is the most serious complication of diabetes. Cyclocarya paliurus (CP), an herbal plant in China, has been reported the biological activity of anti-hyperglycemia. However, its effects on the diabetic nephropathy (DN) remain unclear. PURPOSE We aimed to investigate the potential role of CP and its underlying mechanisms on DN. STUDY DESIGN In this study, the effects of triterpenic acids-enriched fraction from CP (CPT) on DN was evaluated in streptozotocin (STZ)-induced rats and high glucose (HG)-induced HK-2 cells models. METHODS After oral administration with or without CPT for 10 weeks, body weight, glucose, microalbumin, serum creatinine and blood urea in STZ-induced rats were detected. Histological analysis was performed to evaluate renal function of mice. Moreover, the level of autophagy was detected by western blot or immunostaining. In vitro, HG-induced HK-2 cell was conducted to evaluate the renal protection and mechanism of CPT. RESULTS CPT dramatically decreased the levels of microalbumin, serum creatinine and blood urea nitrogen and ameliorated increased mesangial matrix and glomerular fibrosis. In addition, we found the CPT prevented renal damage and cell apoptosis through the autophagy. Furthermore, CPT could increase the phosphorylation of AMPK and decrease its downstream effector phosphorylation of mTOR. Besides, the expression of LC3-II were locked by AMPK inhibitor dorsomorphin dihydrochloride (compound C), implying that the autophagy may be regulated with AMPK activation. CONCLUSION These findings suggested that CPT might be a desired candidate against diabetes, potentially through AMPK-mTOR-regulated autophagy pathway.
Collapse
Affiliation(s)
- Xuan-Xuan Zhang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, PR China; Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210009, PR China
| | - Cui-Hua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210009, PR China
| | - Yao Liu
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dong-Xiao Lou
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210009, PR China
| | - Ya-Ping Huang
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210009, PR China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210009, PR China
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210009, PR China.
| | - Zhi-Qi Yin
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Ke Pan
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
36
|
Madhavi Y, Gaikwad N, Yerra VG, Kalvala AK, Nanduri S, Kumar A. Targeting AMPK in Diabetes and Diabetic Complications: Energy Homeostasis, Autophagy and Mitochondrial Health. Curr Med Chem 2019; 26:5207-5229. [DOI: 10.2174/0929867325666180406120051] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/16/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Adenosine 5′-monophosphate activated protein kinase (AMPK) is a key enzymatic protein involved
in linking the energy sensing to the metabolic manipulation. It is a serine/threonine kinase activated
by several upstream kinases. AMPK is a heterotrimeric protein complex regulated by AMP, ADP, and
ATP allosterically. AMPK is ubiquitously expressed in various tissues of the living system such as heart,
kidney, liver, brain and skeletal muscles. Thus malfunctioning of AMPK is expected to harbor several
human pathologies especially diseases associated with metabolic and mitochondrial dysfunction. AMPK
activators including synthetic derivatives and several natural products that have been found to show therapeutic
relief in several animal models of disease. AMP, 5-Aminoimidazole-4-carboxamide riboside (AICA
riboside) and A769662 are important activators of AMPK which have potential therapeutic importance
in diabetes and diabetic complications. AMPK modulation has shown beneficial effects against
diabetes, cardiovascular complications and diabetic neuropathy. The major impact of AMPK modulation
ensures healthy functioning of mitochondria and energy homeostasis in addition to maintaining a strict
check on inflammatory processes, autophagy and apoptosis. Structural studies on AMP and AICAR suggest
that the free amino group is imperative for AMPK stimulation. A769662, a non-nucleoside
thienopyridone compound which resulted from the lead optimization studies on A-592107 and several
other related compound is reported to exhibit a promising effect on diabetes and its complications through
activation of AMPK. Subsequent to the discovery of A769662, several thienopyridones,
hydroxybiphenyls pyrrolopyridones have been reported as AMPK modulators. The review will explore
the structure-function relationships of these analogues and the prospect of targeting AMPK in diabetes
and diabetic complications.
Collapse
Affiliation(s)
- Y.V. Madhavi
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Nikhil Gaikwad
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Veera Ganesh Yerra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Anil Kumar Kalvala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Srinivas Nanduri
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| |
Collapse
|
37
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
38
|
Abstract
Finding new therapeutic targets of glomerulosclerosis treatment is an ongoing quest. Due to a living environment of various stresses and pathological stimuli, podocytes are prone to injuries; moreover, as a cell without proliferative potential, loss of podocytes is vital in the pathogenesis of glomerulosclerosis. Thus, sufficient understanding of factors and underlying mechanisms of podocyte injury facilitates the advancement of treating and prevention of glomerulosclerosis. The clinical symptom of podocyte injury is proteinuria, sometimes with loss of kidney functions progressing to glomerulosclerosis. Injury-induced changes in podocyte physiology and function are actually not a simple passive process, but a complex interaction of proteins that comprise the anatomical structure of podocytes at molecular levels. This chapter lists several aspects of podocyte injuries along with potential mechanisms, including glucose and lipid metabolism disorder, hypertension, RAS activation, micro-inflammation, immune disorder, and other factors. These aspects are not technically separated items, but intertwined with each other in the pathogenesis of podocyte injuries.
Collapse
|
39
|
Tan J, Huang C, Luo Q, Liu W, Cheng D, Li Y, Xia Y, Li C, Tang L, Fang J, Pan K, Ou Y, Cheng A, Chen Z. Soy Isoflavones Ameliorate Fatty Acid Metabolism of Visceral Adipose Tissue by Increasing the AMPK Activity in Male Rats with Diet-Induced Obesity (DIO). Molecules 2019; 24:E2809. [PMID: 31374939 PMCID: PMC6696083 DOI: 10.3390/molecules24152809] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022] Open
Abstract
Soy isoflavones are natural active ingredients of soy plants that are beneficial to many metabolic diseases, especially obesity. Many studies have reported that obesity is closely related to visceral fatty acid metabolism, but the effect has not been well defined. In this study, we show that soy isoflavones improve visceral fatty acid metabolism in diet-induced obese male rats, which was indicated by reduced body weight and visceral fat cell area, as well as suppressed visceral fat synthesis and accelerated fat hydrolysis. We also found that common components of soy isoflavones, daidzein and genistein, were able to inhibit the lipid accumulation process in 3T3-L1 cells. Moreover, we showed that soy isoflavones can promote on AMP-activated protein kinase (AMPK) activity both in vivo and in vitro, which may be implicated in lipid metabolism regulation of soy isoflavones. Our study demonstrates the potential of soy isoflavones as a mechanism for regulating lipid homeostasis in visceral adipose tissue, proven to be beneficial for obesity treatment.
Collapse
Affiliation(s)
- Jinlong Tan
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Chao Huang
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qihui Luo
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wentao Liu
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Dongjing Cheng
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yifan Li
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yu Xia
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Chao Li
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Li Tang
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yangping Ou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Anchun Cheng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zhengli Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
40
|
Jiang Y, Du H, Liu X, Fu X, Li X, Cao Q. Artemisinin alleviates atherosclerotic lesion by reducing macrophage inflammation via regulation of AMPK/NF-κB/NLRP3 inflammasomes pathway. J Drug Target 2019; 28:70-79. [PMID: 31094238 DOI: 10.1080/1061186x.2019.1616296] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is increasing evidence that atherosclerosis is the significant risk factor for cardiovascular diseases, which are the leading causes of morbidity and mortality worldwide. Artemisinin is a natural endoperoxides quiterpene lactone compound in Artemisia annua L with vasculoprotective effects. The primary aim of this study was to investigate whether artemisinin could be conferred an anti-atherosclerotic effect in high-fat diet (HFD)-fed ApoE-/- mice and explore the possible mechanism. We found that treatment with artemisinin (50 and 100 mg/kg) effectively ameliorated atherosclerotic lesions, such as foam cell formation, hyperplasia and fibrosis in the aortic intima. Atherosclerotic mice treated with artemisinin showed reduced inflammation by up-regulating adenosine 5'-monophosphate (AMP) activated protein kinase (AMPK) activation and by down-regulating nuclear factor-κB (NF-κB) phosphorylation and nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome expression in the aortas. In addition, artemisinin was found to promote AMPK activity in macrophages and its anti-inflammatory effect was neutralised by AMPK silence using specific siRNA. In conclusion, we demonstrate that artemisinin may protect the aortas from atherosclerotic lesions by suppression of inflammatory reaction via AMPK/NF-κB/NLRP3 inflammasomes signalling in macrophages.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hongjiao Du
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xue Liu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xi Fu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qian Cao
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
41
|
Anchi P, Khurana A, Swain D, Samanthula G, Godugu C. Dramatic improvement in pharmacokinetic and pharmacodynamic effects of sustain release curcumin microparticles demonstrated in experimental type 1 diabetes model. Eur J Pharm Sci 2019; 130:200-214. [DOI: 10.1016/j.ejps.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/17/2018] [Accepted: 02/03/2019] [Indexed: 12/19/2022]
|
42
|
Park JH, Ahn EK, Kim JK, Oh JS. Antihyperlipidemic Activity of Ligularia fischeri Extract in Mice Fed a High-Carbohydrate Diet. J Med Food 2019; 22:374-383. [PMID: 30801226 DOI: 10.1089/jmf.2018.4248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ligularia fischeri, indigenous to eastern Asia, has been used as a traditional herbal medicine. Ligularia fischeri reportedly possesses a number of biological activities such as antimutagenic, antioxidant, antigenotoxic, and anti-inflammation. This study demonstrated the effects of ethanol extracts of Ligularia fischeri (ELF) on a high-carbohydrate diet (HCD)-induced hyperlipidemia in C57BL/6 mice. The mice were divided into six groups (n = 7/group) as follows: normal diet, HCD, or HCD+ELF (100, 200, 400, and 800 mg/kg/day), which were orally administered daily for 12 weeks. Various lipid parameters and histological changes in liver and fat tissue were compared among the treatment and control groups. ELF remarkably reduced body weight gain and attenuated hyperlipidemia by improving the plasma levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, atherogenic index, and cardiac risk factor. Moreover, ELF decreased the HCD-induced hepatic accumulation of lipid droplets and adipocyte hypertrophy. These regulatory effects of ELF appeared to be mediated through the phosphorylation of AMP-activated protein kinase, acetyl-CoA carboxylase, sterol regulatory element-binding protein-1c, and expression of fatty acid synthase. Taken together, these findings indicate a functional role for ELF in the regulation of HCD-induced obesity and hyperlipidemia.
Collapse
Affiliation(s)
- Ju-Hyoung Park
- 1 Department of Pharmacy, Dankook University, Cheonan, Chungnam, Korea
| | - Eun-Kyung Ahn
- 2 Department of Bio-Center, Gyeonggido Business and Science Accelerator, Suwon, Gyeonggi, Korea
| | - Jin-Kyu Kim
- 2 Department of Bio-Center, Gyeonggido Business and Science Accelerator, Suwon, Gyeonggi, Korea
| | - Joa Sub Oh
- 1 Department of Pharmacy, Dankook University, Cheonan, Chungnam, Korea
| |
Collapse
|
43
|
Lee ES, Kwon MH, Kim HM, Kim N, Kim YM, Kim HS, Lee EY, Chung CH. Dibenzoylmethane ameliorates lipid-induced inflammation and oxidative injury in diabetic nephropathy. J Endocrinol 2019; 240:169-179. [PMID: 30475214 DOI: 10.1530/joe-18-0206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/31/2018] [Indexed: 11/08/2022]
Abstract
Dibenzoylmethane (DBM) is a beta-diketone analog of curcumin. Numerous studies have shown the beneficial effects of curcumin on diabetes, obesity and diabetic complications including diabetic nephropathy. Recently, we investigated the beneficial metabolic effects of DBM on high-fat diet-induced obesity. However, the effects and mechanisms of action of DBM in the kidney are currently unknown. To investigate the renoprotective effects of DBM in type 2 diabetes, we administered DBM (100 mg/kg) orally for 12 weeks to high-fat diet-induced diabetic model mice. We used mouse renal mesangial (MES13) and macrophage (RAW 264.7) cells to examine the mechanism of action of DBM (20 μM). After DBM treatment, the albumin-to-creatinine ratio was significantly decreased compared to that of the high-fat-diet group. Moreover, damaged renal ultra-structures and functions including increased glomerular volume, glomerular basement membrane thickness and inflammatory signals were ameliorated after DBM treatment. Stimulation of MES13 and RAW264.7 cells by palmitate or high-dose glucose with lipopolysaccharides increased inflammatory signals and macrophage migration. However, these changes were reversed by DBM treatment. In addition, DBM inhibited NADPH oxidase 2 and 4 expression and oxidative DNA damage. Collectively, these data suggested that DBM prevented diabetes-induced renal injury through its anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Mi-Hye Kwon
- The East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung, Korea
| | - Hong Min Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Nami Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - You Mi Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - Eun Young Lee
- Department of Internal Medicine and Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
44
|
Alves A, Mamede A, Alves M, Oliveira P, Rocha S, Botelho M, Maia C. Glycolysis Inhibition as a Strategy for Hepatocellular Carcinoma Treatment? Curr Cancer Drug Targets 2018; 19:26-40. [DOI: 10.2174/1568009618666180430144441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/05/2018] [Accepted: 03/10/2018] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequently detected primary malignant liver tumor, representing a worldwide public health problem due to its high morbidity and mortality rates. The HCC is commonly detected in advanced stage, precluding the use of treatments with curative intent. For this reason, it is crucial to find effective therapies for HCC. Cancer cells have a high dependence of glycolysis for ATP production, especially under hypoxic environment. Such dependence provides a reliable possible strategy to specifically target cancer cells based on the inhibition of glycolysis. HCC, such as other cancer types, presents a clinically well-known upregulation of several glycolytic key enzymes and proteins, including glucose transporters particularly glucose transporter 1 (GLUT1). Such enzymes and proteins constitute potential targets for therapy. Indeed, for some of these targets, several inhibitors were already reported, such as 2-Deoxyglucose, Imatinib or Flavonoids. Although the inhibition of glycolysis presents a great potential for an anticancer therapy, the development of glycolytic inhibitors as a new class of anticancer agents needs to be more explored. Herein, we propose to summarize, discuss and present an overview on the different approaches to inhibit the glycolytic metabolism in cancer cells, which may be very effective in the treatment of HCC.
Collapse
Affiliation(s)
- A.P. Alves
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - A.C. Mamede
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - M.G. Alves
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - P.F. Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - S.M. Rocha
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| | - M.F. Botelho
- Biophysics Unit, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - C.J. Maia
- Centro de Investigacao em Ciencias da Saude (CICS-UBI), Universidade da Beira Interior, Covilha, Portugal
| |
Collapse
|
45
|
Ectopic lipid accumulation: potential role in tubular injury and inflammation in diabetic kidney disease. Clin Sci (Lond) 2018; 132:2407-2422. [PMID: 30348828 DOI: 10.1042/cs20180702] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022]
Abstract
Emerging studies suggest that lipid accumulates in the kidneys during diabetic kidney disease (DKD). However, the correlation between ectopic lipid accumulation with tubular damage has not been thoroughly elucidated to date. Using Oil Red staining, lipid accumulation was observed in the kidneys of type 2 DKD patients (classes II-III) and db/db mice compared with the control and was predominantly located in the proximal tubular compartment. Immunohistochemistry (IHC) staining showed that the intensity of adipose differentiation related protein (ADRP) and sterol regulatory element binding protein-1 (SREBP-1) was clearly up-regulated, which was positively correlated with the tubulointerstitial damage score and inflammation. Furthermore, the urine ADRP content significantly increased in DKD patients compared with the control, which positively correlated with abnormal lipid metabolism, serum creatinine, urine N-acetyl-β-glucosaminidase (NAG), albumin excretion (albumin-to-creatinine ratio (ACR)), and tumor necrosis factor-α (TNF-α) expression. However, there was no significant difference observed in plasma ADRP levels. In addition, the expression of SREBP-1 protein was dramatically increased in peripheral blood mononuclear cells (PBMCs) isolated from DKD patients, which was also tightly correlated with urine NAG, ACR, and TNF-α levels. In vitro studies demonstrated increased ADRP and SREBP-1 expression accompanied by lipid accumulation in HK-2 cells cultured in high glucose (HG). HG induced high levels of TNF-α expression, which was partially blocked by transfection of ADRP siRNA or SREBP-1 siRNA. These data indicated that ADRP and SREBP-1 are crucial factors that mediate lipid accumulation with tubular damage and inflammation in DKD, and ectopic lipid accumulation may serve as a novel therapeutic target for amelioration of tubular injury in DKD.
Collapse
|
46
|
Parsamanesh N, Moossavi M, Bahrami A, Butler AE, Sahebkar A. Therapeutic potential of curcumin in diabetic complications. Pharmacol Res 2018; 136:181-193. [DOI: 10.1016/j.phrs.2018.09.012] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/19/2018] [Indexed: 12/22/2022]
|
47
|
Aerobic exercise training prevents kidney lipid deposition in mice fed a cafeteria diet. Life Sci 2018; 211:140-146. [DOI: 10.1016/j.lfs.2018.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/29/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
|
48
|
Soltani A, Salmaninejad A, Jalili‐Nik M, Soleimani A, Javid H, Hashemy SI, Sahebkar A. 5′‐Adenosine monophosphate‐activated protein kinase: A potential target for disease prevention by curcumin. J Cell Physiol 2018; 234:2241-2251. [DOI: 10.1002/jcp.27192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Arash Soltani
- Department of Clinical BiochemistryFaculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
| | - Arash Salmaninejad
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
| | - Mohammad Jalili‐Nik
- Department of Clinical BiochemistryFaculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
| | - Anvar Soleimani
- Department of Clinical BiochemistryFaculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
| | - Hossein Javid
- Department of Clinical BiochemistryFaculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical SciencesMashhad Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical SciencesMashhad Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhad Iran
- School of Pharmacy, Mashhad University of Medical SciencesMashhad Iran
| |
Collapse
|
49
|
Mohammed A, Islam MS. Spice-Derived Bioactive Ingredients: Potential Agents or Food Adjuvant in the Management of Diabetes Mellitus. Front Pharmacol 2018; 9:893. [PMID: 30186162 PMCID: PMC6113848 DOI: 10.3389/fphar.2018.00893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/23/2018] [Indexed: 01/31/2023] Open
Abstract
Spices possess tremendous therapeutic potential including hypoglycemic action, attributed to their bioactive ingredients. However, there is no study that critically reviewed the hypoglycemic potency, safety and the bioavailability of the spice-derived bioactive ingredients (SDBI). Therefore, the aim of the study was to comprehensively review all published studies regarding the hypoglycemic action of SDBI with the purpose to assess whether the ingredients are potential hypoglycemic agents or adjuvant. Factors considered were concentration/dosages used, the extent of blood glucose reduction, the IC50 values, and the safety concern of the SDBI. From the results, cinnamaldehyde, curcumin, diosgenin, thymoquinone (TQ), and trigonelline were showed the most promising effects and hold future potential as hypoglycemic agents. Conclusively, future studies should focus on improving the tissue and cellular bioavailability of the promising SDBI to achieve greater potency. Additionally, clinical trials and toxicity studies are with these SDBI are warranted.
Collapse
Affiliation(s)
- Aminu Mohammed
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
50
|
Liu P, Peng L, Zhang H, Tang PMK, Zhao T, Yan M, Zhao H, Huang X, Lan H, Li P. Tangshen Formula Attenuates Diabetic Nephropathy by Promoting ABCA1-Mediated Renal Cholesterol Efflux in db/db Mice. Front Physiol 2018; 9:343. [PMID: 29681863 PMCID: PMC5897509 DOI: 10.3389/fphys.2018.00343] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/20/2018] [Indexed: 01/01/2023] Open
Abstract
The commonly prescribed Tangshen Formula (TSF) is a traditional Chinese formulation that has been shown to reduce plasma lipid metabolism and proteinuria and improve the estimated glomerular filtration rate (eGFR) in patients with diabetic kidney disease. This study investigated the underlying mechanism whereby TSF regulates renal lipid accumulation and ameliorates diabetic renal injuries in spontaneous diabetic db/db mice and in vitro in sodium palmitate (PA)-stimulated and Abca1-SiRNA-transfected mouse tubular epithelial cells (mTECs). The results revealed that TSF treatment significantly ameliorated the renal injuries by lowering urinary albumin excretion and improving renal tissue injuries in diabetic (db/db) mice. Interestingly, the treatment with TSF also resulted in decreased cholesterol levels in the renal tissues of db/db mice, which was associated with increased expression of the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), the Liver X receptors (LXR), and ATP-binding cassette subfamily A member 1 (ABCA1), suggesting that TSF might attenuate diabetic kidney injury via a mechanism associated with improving cholesterol efflux in the diabetic kidney. This was investigated in vitro in mTECs, and the results showed that TSF reduced the PA-stimulated cholesterol accumulation in mTECs. Mechanistically, the addition of TSF was capable of reversing PA-induced downregulation of PGC-1α, LXR, and ABCA1 expression and cholesterol accumulation in mTECs, suggesting that TSF might act the protection via the PGC-1α-LXR-ABCA1 pathway to improve the cholesterol efflux in the renal tissues of db/db mice. This was further confirmed by silencing ABCA1 to block the promotive effect of TSF on cholesterol efflux in vitro. In conclusion, TSF might ameliorate diabetic kidney injuries by promoting ABCA1-mediated renal cholesterol efflux.
Collapse
Affiliation(s)
- Peng Liu
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.,Li Ka Shing Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Liang Peng
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Haojun Zhang
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Tingting Zhao
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Meihua Yan
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Hailing Zhao
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoru Huang
- Li Ka Shing Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Huiyao Lan
- Li Ka Shing Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Ping Li
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|