1
|
Arsecularatne A, Kapini R, Liu Y, Chang D, Münch G, Zhou X. Combination Therapy for Sustainable Fish Oil Products: Improving Cognitive Function with n-3 PUFA and Natural Ingredients. Biomedicines 2024; 12:1237. [PMID: 38927446 PMCID: PMC11201817 DOI: 10.3390/biomedicines12061237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Long-chain polyunsaturated omega-3 fatty acids (n-3 PUFAs), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are recommended as beneficial dietary supplements for enhancing cognitive function. Although fish oil (FO) is renowned for its abundant n-3 PUFA content, combining FO with other natural products is considered as a viable option to support the sustainable development of FO products. This review aims to provide comprehensive insights into the advanced effects of combining FO or its components of DHA and EPA with natural products on protecting cognitive function. In two double-blind random control trials, no advanced effects were observed for adding curcumin to FO on cerebral function protection. However, 16 week's treatment of FO combined with vitamin E did not yield any advanced effects in cognitive factor scores. Several preclinical studies have demonstrated that combinations of FO with natural products can exhibit advanced effects in addressing pathological components in cognitive impairment, including neuroinflammation, oxidative stress, and neuronal survival. In conclusion, evidence from clinical trials for beneficial use of FO and natural ingredients combination is lacking. Greater cohesion is needed between preclinical and clinical data to substantiate the efficacy of FO and natural product combinations in preventing or slowing the progression of cognitive decline.
Collapse
Affiliation(s)
- Anthony Arsecularatne
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rotina Kapini
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
- School of Science, Western Sydney University, Paramatta, NSW 2150, Australia
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
| | - Gerald Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
| |
Collapse
|
2
|
Cai M, Qu Y, Ren Z, Xu X, Ye C, Lu H, Zhang Y, Pan W, Shen H, Li H. Nutritional supplements formulated to prevent cognitive impairment in animals. Curr Res Food Sci 2022; 5:2294-2308. [DOI: 10.1016/j.crfs.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/08/2022] [Accepted: 11/02/2022] [Indexed: 11/20/2022] Open
|
3
|
Lashgari NA, Roudsari NM, Momtaz S, Sathyapalan T, Abdolghaffari AH, Sahebkar A. The involvement of JAK/STAT signaling pathway in the treatment of Parkinson's disease. J Neuroimmunol 2021; 361:577758. [PMID: 34739911 DOI: 10.1016/j.jneuroim.2021.577758] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder in which inflammation and oxidative stress play key etiopathological role. The pathology of PD brain is characterized by inclusions of aggregated α-synuclein (α-SYN) in the cytoplasmic region of neurons. Clinical evidence suggests that stimulation of pro-inflammatory cytokines leads to neuroinflammation in the affected brain regions. Upon neuroinflammation, the Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway, and other transcription factors such as nuclear factor κB (NF-κB), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), mammalian target of rapamycin (mTOR), and toll-like receptors (TLRs) are upregulated and induce the microglial activation, contributing to PD via dopaminergic neuron autophagy. Aberrant activation or phosphorylation of the components of JAK/STAT signaling pathway has been implicated in increased transcription of the inflammation-associated genes and many neurodegenerative disorders such as PD. Interferon gamma (IFN-γ), and interleukine (IL)-6 are two of the most potent activators of the JAK/STAT pathway, and it was shown to be elevated in PD. Stimulation of microglial cell with aggregated α-SYN results in production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and IL-1β in PD. Dysregulation of the JAK/STAT in PD and its involvement in various inflammatory pathways make it a promising PD therapy approach. So far, a variety of synthetic or natural small-molecule JAK inhibitors (Jakinibs) have been found promising in managing a spectrum of ailments, many of which are in preclinical research or clinical trials. Herein, we provided a perspective on the function of the JAK/STAT signaling pathway in PD progression and gathered data that describe the rationale evidence on the potential application of Jakinibs to improve neuroinflammation in PD.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Amir Hossein Abdolghaffari
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Polyphenols and Fish Oils for Improving Metabolic Health: A Revision of the Recent Evidence for Their Combined Nutraceutical Effects. Molecules 2021; 26:molecules26092438. [PMID: 33922113 PMCID: PMC8122614 DOI: 10.3390/molecules26092438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Polyphenols and omega-3 polyunsaturated fatty acids from fish oils, i.e., eicosapentaenoic and docosahexaenoic acids, are well-recognized nutraceuticals, and their single antioxidant and anti-inflammatory properties have been demonstrated in several studies found in the literature. It has been reported that the combination of these nutraceuticals can lead to three-fold increases in glutathione peroxidase activity, two-fold increases in plasma antioxidant capacity, decreases of 50-100% in lipid peroxidation, protein carbonylation, and urinary 8-isoprotanes, as well as 50-200% attenuation of common inflammation biomarkers, among other effects, as compared to their individual capacities. Therefore, the adequate combination of those bioactive food compounds and their single properties should offer a powerful tool for the design of successfully nutritional interventions for the prevention and palliation of a plethora of human metabolic diseases, frequently diet-induced, whose etiology and progression are characterized by redox homeostasis disturbances and a low-grade of chronic inflammation. However, the certain mechanisms behind their biological activities, in vivo interaction (both between them and other food compounds), and their optimal doses and consumption are not well-known yet. Therefore, we review here the recent evidence accumulated during the last decade about the cooperative action between polyphenols and fish oils against diet-related metabolic alterations, focusing on the mechanisms and pathways described and the effects reported. The final objective is to provide useful information for strategies for personalized nutrition based on these nutraceuticals.
Collapse
|
5
|
Hammouda S, Ghzaiel I, Khamlaoui W, Hammami S, Mhenni SY, Samet S, Hammami M, Zarrouk A. Genetic variants in FADS1 and ELOVL2 increase level of arachidonic acid and the risk of Alzheimer's disease in the Tunisian population. Prostaglandins Leukot Essent Fatty Acids 2020; 160:102159. [PMID: 32682282 DOI: 10.1016/j.plefa.2020.102159] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are closely related to various physiological conditions. In several age-related diseases including Alzheimer's disease (AD) altered PUFAs metabolism has been reported. However, the mechanism behind PUFAs impairment and AD developpement remains unclear. In humans, PUFAs biosynthesis requires delta-5 desaturase (D5D), delta-6 desaturase (D6D) and elongase 2 activities; which are encoded by fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2), and elongation of very-long-chain fatty acids-like 2 (ELOVL2) genes, respectively. In the present work, we aim to assess whether genetic variants in FADS1, FADS2 and ELOVL2 genes influence plasma and erythrocyte PUFA composition and AD risk. A case-control study was carried out in 113 AD patients and 161 healthy controls.Rs174556, rs174617, and rs3756963 of FADS1, FADS2, and ELOVL2 genes, respectively were genotyped using PCR-RFLP. PUFA levels were quantified using Gas Chromatography. Genotype distributions of rs174556 (FADS1) and rs3756963 (ELOVL2) were different between case and control groups. The genotype TT of rs174556 and rs3756963 single nucleotide polymorphism (SNP) increases significantly the risk of AD in our population. PUFA analysis showed higher plasma and erythrocyte arachidonic acid (AA) level in patients with AD, whereas only plasma docosahexaenoic acid (DHA) was significantly decreased in AD patients. The indexes AA/Dihomo-gamma-linolenic acid (DGLA) and C24:4n-6/Adrenic acid (AdA) were both higher in the AD group. Interestingly, patients with TT genotype of rs174556 presented higher AA level and AA/DGLA index in both plasma and erythrocyte. In addition, higher AA and AA/DGLA index were observed in erythrocyte of TT genotype ofrs3756963 carrier's patients. Along with, positive correlation between AA/DGLA index, age or Gamma-linolenic acid (GLA)/ Linoleic acid (LA) index was seen in erythrocyte and /or plasma of AD patients. After adjustment for confounding factors, the genotype TT of rs174556, erythrocyte AA and AA/DGLA index were found to be predictive risk factors for AD while plasma DHA was found associated with lower AD risk. Both rs174556 and rs3756963 influence AD risk in the Tunisian population and they are likely associated with high AA level. The combination of the two variants increases further the susceptibility to AD. We suggest that FADS1 and ELOVL2 variants could likely regulate the efficiency of AA biosynthesis which could be at the origin of inflammatory derivate.
Collapse
Affiliation(s)
- Souha Hammouda
- Biochemistry Laboratory, LR12ES05 LR-NAFS 'Nutrition - Functional Food & Health' Faculty of Medicine Monastir, Tunisia
| | - Imen Ghzaiel
- Biochemistry Laboratory, LR12ES05 LR-NAFS 'Nutrition - Functional Food & Health' Faculty of Medicine Monastir, Tunisia
| | - Wided Khamlaoui
- Biochemistry Laboratory, LR12ES05 LR-NAFS 'Nutrition - Functional Food & Health' Faculty of Medicine Monastir, Tunisia
| | - Sonia Hammami
- Biochemistry Laboratory, LR12ES05 LR-NAFS 'Nutrition - Functional Food & Health' Faculty of Medicine Monastir, Tunisia; Department of Internal Medicine Bourguiba Monastir, Geriatric unit, Monastir Tunisia
| | | | - Slim Samet
- Department of neurology, Regional hospital of Kairouan. Tunisia
| | - Mohamed Hammami
- Biochemistry Laboratory, LR12ES05 LR-NAFS 'Nutrition - Functional Food & Health' Faculty of Medicine Monastir, Tunisia
| | - Amira Zarrouk
- Biochemistry Laboratory, LR12ES05 LR-NAFS 'Nutrition - Functional Food & Health' Faculty of Medicine Monastir, Tunisia; Biochemistry Laboratory, Faculty of Medicine Sousse. Tunisia.
| |
Collapse
|
6
|
Neuroprotective Mechanisms of Resveratrol in Alzheimer's Disease: Role of SIRT1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8152373. [PMID: 30510627 PMCID: PMC6232815 DOI: 10.1155/2018/8152373] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/21/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive and neurodegenerative disorder of the cortex and hippocampus, which eventually leads to cognitive impairment. Although the etiology of AD remains unclear, the presence of β-amyloid (Aβ) peptides in these learning and memory regions is a hallmark of AD. Therefore, the inhibition of Aβ peptide aggregation has been considered the primary therapeutic strategy for AD treatment. Many studies have shown that resveratrol has antioxidant, anti-inflammatory, and neuroprotective properties and can decrease the toxicity and aggregation of Aβ peptides in the hippocampus of AD patients, promote neurogenesis, and prevent hippocampal damage. In addition, the antioxidant activity of resveratrol plays an important role in neuronal differentiation through the activation of silent information regulator-1 (SIRT1). SIRT1 plays a vital role in the growth and differentiation of neurons and prevents the apoptotic death of these neurons by deacetylating and repressing p53 activity; however, the exact mechanisms remain unclear. Resveratrol also has anti-inflammatory effects as it suppresses M1 microglia activation, which is involved in the initiation of neurodegeneration, and promotes Th2 responses by increasing anti-inflammatory cytokines and SIRT1 expression. This review will focus on the antioxidant and anti-inflammatory neuroprotective effects of resveratrol, specifically on its role in SIRT1 and the association with AD pathophysiology.
Collapse
|
7
|
Khoury N, Xu J, Stegelmann SD, Jackson CW, Koronowski KB, Dave KR, Young JI, Perez-Pinzon MA. Resveratrol Preconditioning Induces Genomic and Metabolic Adaptations within the Long-Term Window of Cerebral Ischemic Tolerance Leading to Bioenergetic Efficiency. Mol Neurobiol 2018; 56:4549-4565. [PMID: 30343466 DOI: 10.1007/s12035-018-1380-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/04/2018] [Indexed: 01/23/2023]
Abstract
Neuroprotective agents administered post-cerebral ischemia have failed so far in the clinic to promote significant recovery. Thus, numerous efforts were redirected toward prophylactic approaches such as preconditioning as an alternative therapeutic strategy. Our laboratory has revealed a novel long-term window of cerebral ischemic tolerance mediated by resveratrol preconditioning (RPC) that lasts for 2 weeks in mice. To identify its mediators, we conducted an RNA-seq experiment on the cortex of mice 2 weeks post-RPC, which revealed 136 differentially expressed genes. The majority of genes (116/136) were downregulated upon RPC and clustered into biological processes involved in transcription, synaptic signaling, and neurotransmission. The downregulation in these processes was reminiscent of metabolic depression, an adaptation used by hibernating animals to survive severe ischemic states by downregulating energy-consuming pathways. Thus, to assess metabolism, we used a neuronal-astrocytic co-culture model and measured the cellular respiration rate at the long-term window post-RPC. Remarkably, we observed an increase in glycolysis and mitochondrial respiration efficiency upon RPC. We also observed an increase in the expression of genes involved in pyruvate uptake, TCA cycle, and oxidative phosphorylation, all of which indicated an increased reliance on energy-producing pathways. We then revealed that these nuclear and mitochondrial adaptations, which reduce the reliance on energy-consuming pathways and increase the reliance on energy-producing pathways, are epigenetically coupled through acetyl-CoA metabolism and ultimately increase baseline ATP levels. This increase in ATP would then allow the brain, a highly metabolic organ, to endure prolonged durations of energy deprivation encountered during cerebral ischemia.
Collapse
Affiliation(s)
- Nathalie Khoury
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA.,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Jing Xu
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA.,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Samuel D Stegelmann
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA
| | - Charles W Jackson
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA.,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Kevin B Koronowski
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA.,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA.,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Juan I Young
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,John P. Hussman Institute for Human Genomics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Human Genetics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA. .,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA. .,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
8
|
The effect of APOE genotype on Alzheimer's disease risk is influenced by sex and docosahexaenoic acid status. Neurobiol Aging 2018; 69:209-220. [DOI: 10.1016/j.neurobiolaging.2018.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 01/21/2023]
|
9
|
Antidepressant-Like Effect of Selected Egyptian Cultivars of Flaxseed Oil on a Rodent Model of Postpartum Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6405789. [PMID: 29333185 PMCID: PMC5733178 DOI: 10.1155/2017/6405789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 12/24/2022]
Abstract
Flaxseed (Linum usitatissimum L.) is a multipurpose crop with health promoting potential. This study was undertaken to investigate the fatty acid profile and yield of fixed oil of six Egyptian flaxseed cultivars. The selected cultivars with the highest content of polyunsaturated fatty acids (PUFAs) (G9 and G10) were assessed for their antidepressant-like effect in rat model of postpartum depression (PPD) induced by hormone-simulated pregnancy followed by hormone withdrawal and compared to fluoxetine. As compared to control group, administration of G9 and G10 (270 mg/kg/day, p.o) for two weeks during the postpartum period can alleviate anxiety and depressive-like behaviors and biochemical changes in PPD-induced rats. This was confirmed by evaluation of anxiety-like behaviors (elevated plus maze, open field test, and forced swim test tests), in addition to biochemical analysis (brain monoamine oxidase-A, corticosterone level, proinflammatory cytokines, and hippocampal redox state). In conclusion, flaxseed oil of Egyptian cultivars G9 and G10 exhibited significant antidepressant-like effect in rat model of PPD without affecting locomotor activity. At the treatment doses, the antidepressant-like activity of Giza 9 oil is comparable to fluoxetine.
Collapse
|
10
|
Rui Y, Cheng J, Qin L, Shan C, Chang J, Wang G, Wan Z. Effects of vitamin D and resveratrol on metabolic associated markers in liver and adipose tissue from SAMP8 mice. Exp Gerontol 2017; 93:16-28. [PMID: 28411010 DOI: 10.1016/j.exger.2017.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022]
Abstract
SAMP8 mice exhibit multiple metabolic characteristics associated with age, and it is a suitable candidate for researching aging associated metabolic dysfunction. OBJECTIVES We aimed to 1) explore how key metabolic markers will be altered in both liver and adipose tissue with aging in SAMP8 mice; and 2) how the combination of vitamin D (VD) with resveratrol (RSV) will affect aging associated metabolic impairment in liver and adipose tissue from SAMP8 mice. METHODS SAMP8 mice and their control SAMR1 mice were divided into 5 groups, i.e. SAMR1, SAMP8, SAMP8 mice supplemented with VD, RSV and VD combined with RSV group, respectively. At the end of the intervention, glucose and insulin tolerance, p-AMP-activated protein kinase (AMPK) and amyloid precursor protein (APP), and endoplasmic reticulum (ER) stress markers in liver and adipose tissue, adiponectin secretion, p-NF-κBp65 and TNF-α protein expression in adipose tissue were determined. RESULTS Compared to SAMR1 control, SAMP8 mice demonstrate impaired glucose tolerance and reduction in circulating adiponectin level; in the liver, SAMP8 mice have reduction in p-Aktser473, elevation in PTP1B and APP, p-eIF2α, GRP78 and p-JNK protein expression. In epididymal (EPI) fat, SAMP8 mice also have elevated p-Aktser473 and PTP1B compared to SAMR1 mice. In both epididymal (EPI) and subcutaneous (SC) fat, there were elevated ER stress markers, reduced p-AMPK and elevated APP, as well as elevated p-NF-κBp65 and TNF-α protein expression from SAMP8 compared to SAMR1 mice. In liver, the combined intervention significantly restored p-Aktser473, p-eIF2α and p-JNK protein expression. In both EPI and SC fat, the combined intervention is effective for reducing p-NF-κB p65 and TNF-α in both fat depot, while only partially reduced ER stress markers in SC fat. As for adiponectin, their combination is unable to reverse reduction in adiponectin level. Adiponectin secretion in SC fat from VD, RSV and VDRSV group were also significantly reduced compared to SAMR1. CONCLUSION The combined intervention might exert greater beneficial effects for reversing aging associated metabolic dysfunction in liver and adipose tissue from SAMP8 mice.
Collapse
Affiliation(s)
- Yehua Rui
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, PR China
| | - Jinbo Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, PR China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, PR China
| | - Cheng Shan
- University of Waterloo, Waterloo, Ontario, Canada
| | - Jie Chang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Guiping Wang
- Laboratory Animal Center, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| |
Collapse
|
11
|
Perez SD, Du K, Rendeiro C, Wang L, Wu Q, Rubakhin SS, Vazhappilly R, Baxter JH, Sweedler JV, Rhodes JS. A unique combination of micronutrients rejuvenates cognitive performance in aged mice. Behav Brain Res 2017; 320:97-112. [DOI: 10.1016/j.bbr.2016.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/30/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022]
|
12
|
Finch CE, Shams S. Apolipoprotein E and Sex Bias in Cerebrovascular Aging of Men and Mice. Trends Neurosci 2016; 39:625-637. [PMID: 27546867 PMCID: PMC5040339 DOI: 10.1016/j.tins.2016.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/18/2022]
Abstract
Alzheimer disease (AD) research has mainly focused on neurodegenerative processes associated with the classic neuropathologic markers of senile plaques and neurofibrillary tangles. Additionally, cerebrovascular contributions to dementia are increasingly recognized, particularly from cerebral small vessel disease (SVD). Remarkably, in AD brains, the apolipoprotein E (ApoE) ɛ4 allele shows male excess for cerebral microbleeds (CMBs), a marker of SVD, which is opposite to the female excess of plaques and tangles. Mouse transgenic models add further complexities to sex-ApoE ɛ4 allele interactions, with female excess of both CMBs and brain amyloid. We conclude that brain aging and AD pathogenesis cannot be understood in humans without addressing major gaps in the extent of sex differences in cerebrovascular pathology.
Collapse
Affiliation(s)
- Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA.
| | - Sara Shams
- Department of Clinical Science, Intervention, and Technology, Division of Medical Imaging and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
13
|
Radcliffe J, Thomas J, Bramley A, Kouris-Blazos A, Radford B, Scholey A, Pipingas A, Thomas C, Itsiopoulos C. Controversies in omega-3 efficacy and novel concepts for application. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2016. [DOI: 10.1016/j.jnim.2016.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Taha AY, Chang L, Chen M. Threshold changes in rat brain docosahexaenoic acid incorporation and concentration following graded reductions in dietary alpha-linolenic acid. Prostaglandins Leukot Essent Fatty Acids 2016; 105:26-34. [PMID: 26869088 PMCID: PMC4752724 DOI: 10.1016/j.plefa.2015.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/06/2015] [Accepted: 12/11/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND This study tested the dietary level of alpha-linolenic acid (α-LNA, 18:3n-3) required to maintain brain (14)C-Docosahexaenoic acid (DHA, 22:6n-3) metabolism and concentration following graded α-LNA reduction. METHODS Fischer-344 (CDF) male rat pups (18-21 days old) were randomized to the AIN-93G diet containing as a % of total fatty acids, 4.6% ("n-3 adequate"), 3.6%, 2.7%, 0.9% or 0.2% ("n-3 deficient") α-LNA for 15 weeks. Rats were intravenously infused with (14)C-DHA to steady state for 5 min, serial blood samples collected to obtain plasma, and brains excised following microwave fixation. Labeled and unlabeled DHA concentrations were measured in plasma and brain to calculate the incorporation coefficient, k*, and incorporation rate, J(in). RESULTS Compared to 4.6% α-LNA controls, k* was significantly increased in ethanolamine glycerophospholipids in the 0.2% α-LNA group. Circulating unesterified DHA and brain incorporation rates (J(in)) were significantly reduced at 0.2% α-LNA. Brain total lipid and phospholipid DHA concentrations were reduced at or below 0.9% α-LNA. CONCLUSION Threshold changes for brain DHA metabolism and concentration were maintained at or below 0.9% dietary α-LNA, suggesting the presence of homeostatic mechanisms to maintain brain DHA metabolism when dietary α-LNA intake is low.
Collapse
Affiliation(s)
- Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| | - Lisa Chang
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mei Chen
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:172801. [PMID: 26301243 PMCID: PMC4537710 DOI: 10.1155/2015/172801] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and the most common neurodegenerative disease in the elderly. Furthermore, AD has provided the most positive indication to support the fact that inflammation contributes to neurodegenerative disease. The exact etiology of AD is unknown, but environmental and genetic factors are thought to contribute, such as advancing age, family history, presence of chronic diseases such as cardiovascular disease (CVD) and diabetes, and poor diet and lifestyle. It is hypothesised that early prevention or management of inflammation could delay the onset or reduce the symptoms of AD. Normal physiological changes to the brain with ageing include depletion of long chain omega-3 fatty acids and brains of AD patients have lower docosahexaenoic acid (DHA) levels. DHA supplementation can reduce markers of inflammation. This review specifically focusses on the evidence in humans from epidemiological, dietary intervention, and supplementation studies, which supports the role of long chain omega-3 fatty acids in the prevention or delay of cognitive decline in AD in its early stages. Longer term trials with long chain omega-3 supplementation in early stage AD are warranted. We also highlight the importance of overall quality and composition of the diet to protect against AD and dementia.
Collapse
|
16
|
Thomas J, Garg ML, Smith DW. Effects of dietary supplementation with docosahexaenoic acid (DHA) on hippocampal gene expression in streptozotocin induced diabetic C57Bl/6 mice. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2015. [DOI: 10.1016/j.jnim.2015.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
17
|
Thomas J, Garg ML, Smith DW. Dietary resveratrol supplementation normalizes gene expression in the hippocampus of streptozotocin-induced diabetic C57Bl/6 mice. J Nutr Biochem 2013; 25:313-8. [PMID: 24456733 DOI: 10.1016/j.jnutbio.2013.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/09/2013] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with cognitive impairment and brain aging, with alterations in hippocampal neurogenesis and synaptic plasticity implicated in these changes. As the prevalence of diabetes continues to rise, readily implemented strategies are increasingly needed in order to protect the brain's cognitive functions. One possibility is resveratrol (RES) (3,5,4- trihydroxystilbene), a polyphenol of the phytoalexin family that has been shown to be protective in a number of neuropathology paradigms. In the present study, we sought to determine whether dietary supplementation with RES has potential for the protection of cognitive functions in diabetes. Diabetes was induced using streptozotocin, and once stable, animals received AIN93G rodent diet supplemented with RES for 6 weeks. Genome-wide expression analysis was conducted on the hippocampus and genes of interest were confirmed by quantitative, real-time polymerase chain reaction. Genome-wide gene expression analysis of the hippocampus revealed that RES supplementation of the diabetic group resulted in 481 differentially expressed genes compared to non-supplemented diabetic mice. Intriguingly, gene expression that was previously found significantly altered in the hippocampus of diabetic mice, and that is implicated in neurogenesis and synaptic plasticity (Hdac4, Hat1, Wnt7a, ApoE), was normalized following RES supplementation. In addition, pathway analysis revealed Jak-Stat signaling was the most significantly enriched pathway. The Jak-Stat pathway induces a pro-inflammatory signaling cascade, and we found most genes involved in this cascade (e.g. Il15, Il22, Socs2, Socs5) had significantly lower expression following RES supplementation. These data indicate RES could be neuroprotective and beneficial for the maintenance of cognitive function in diabetes.
Collapse
Affiliation(s)
- Jency Thomas
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia; Nutraceuticals Research Group, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Manohar Lal Garg
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia; Nutraceuticals Research Group, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Doug William Smith
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Research Centre for Translational Neuroscience and Mental Health, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|