1
|
Huang H, Zeng X, Zhang L, Cheng H, Hu K, Shang X, Yao C. PA1b-like peptides alleviate mitochondrial dysfunction induced by glucose toxicity through interaction with VDAC1 in β-cells. Food Funct 2025. [PMID: 40035617 DOI: 10.1039/d5fo00054h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
PA1b-like peptides, which are extracted from the seeds of members of the Fabaceae family, display remarkable hypoglycemic and β-cell-protective activities when administered orally. However, the direct targets and mechanisms of action of these peptides in islet β-cells remain unclear. In this study, we found that PA1b-like peptides were mainly distributed in the cotyledon of soybean, rather than in the germ and seed coat. We also identified a direct interaction between PA1b-like peptides and voltage-dependent anion channels (VDACs), with binding energies less than -7 kcal mol-1. Molecular dynamics simulations demonstrated that hydrogen bonding, hydrophobic interactions, and van der Waals forces assist these peptides in forming stable and tight complexes with VDAC1. Moreover, as a member of the PA1B-like peptide family, vglycin (VG) protected mitochondrial function by maintaining the ROS level, ATP production, mitochondrial membrane potential (ΔΨm), intracellular Ca2+ inflow and insulin secretion in β-cells under high glucose stimulation. All these effects were reliant on the direct interaction between VG and VDAC1 in β-cells. This study provides a new strategy for the restoration of mitochondrial function in β-cells under glucose toxicity and establishes a theoretical basis for the treatment of type 2 diabetes (T2D) by PA1b-like peptides.
Collapse
Affiliation(s)
- Huizhong Huang
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068 Wuhan, Hubei, China.
| | - Xinyu Zeng
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068 Wuhan, Hubei, China.
| | - Liying Zhang
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068 Wuhan, Hubei, China.
| | - Hongchang Cheng
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068 Wuhan, Hubei, China.
| | - Kanghong Hu
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068 Wuhan, Hubei, China.
| | - Xiaoke Shang
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068 Wuhan, Hubei, China.
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenguang Yao
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068 Wuhan, Hubei, China.
| |
Collapse
|
2
|
Fan S, Liu Q, Du Q, Zeng X, Wu Z, Pan D, Tu M. Multiple roles of food-derived bioactive peptides in the management of T2DM and commercial solutions: A review. Int J Biol Macromol 2024; 279:134993. [PMID: 39181375 DOI: 10.1016/j.ijbiomac.2024.134993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a disease that threatens public health worldwide and can cause a series of irreversible complications, has been a major concern. Although the treatment based on hypoglycemic drugs is effective, its side effects should not be ignored, which has led to an urgent need for developing new hypoglycemic drugs. Bioactive peptides with antidiabetic effects obtained from food proteins have become a research hotspot as they are safer and with higher specificity than traditional hypoglycemic drugs. Here, we reviewed antidiabetic peptides that have the ability to inhibit key enzymes (α-glucosidase, α-amylase, and DPP-IV) in T2DM, the hypoglycemic mechanisms and structure-activity relationships were summarized, some antidiabetic peptides that improve insulin resistance and reverse gut microbiota and their metabolites were overviewed, the bitterness of antidiabetic peptides was predicted in silico, proposed solutions to the current challenges encountered in the development of antidiabetic peptide drugs, and provided an outlook on the future focus of commercial production. It provides a reference for the application of food-derived antidiabetic peptides.
Collapse
Affiliation(s)
- Shuo Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China.
| |
Collapse
|
3
|
Wang Y, Liu Y, Xia M, Cao S. A Mendelian Randomization Study about Causal Associations between Tofu Consumption and Stroke as well as Related Subtypes. J Integr Neurosci 2024; 23:198. [PMID: 39613466 DOI: 10.31083/j.jin2311198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 12/01/2024] Open
Abstract
OBJECTIVE Consuming soy in the diet is beneficial for health, and tofu possess the richest source of dietary soy. However, the specific association with stroke and related subtypes remains controversial. In this study, the genetic causal relationship among tofu and stroke as well as the subtypes was investigated by utilizing the data in a number of genome-wide association study (GWAS) based on population. METHODS The tofu intake GWAS analysis is derived from the Medical Research Council (MRC) Integrative Epidemiology Unit at the University of Bristol (MRC-IEU) Consortium. The two-sample Mendelian randomization (MR) study was carried out, utilizing multiple analysis methods to analyze the associations with stroke and related subtypes. The sensitivity, heterogeneity, and potential pleiotropy could be investigated by multiple analysis method. RESULTS We found that tofu intake had no causal relationship with stroke. However, in stroke subtype, there is a causal relationship among tofu intake with the risk of intracerebral hemorrhage (ICH) (odds ratio, OR = 1.24 × 10-5, 95% CI: 1.54 × 10-8-9.95 × 10-3, p = 9.300 × 10-4), while tofu intake does not affect the risk of ischemic stroke (OR = 1.07 × 10-1, 95% CI: 3.84 × 10-4-2.97 × 101, p = 4.362 × 10-1) and subarachnoid hemorrhage (SAH) (OR = 3.33 × 10-3, 95% CI: 1.79 × 10-6-6.18, p = 1.373 × 10-1). Both the Mendelian randomization PRESSO (MR-PRESSO) global test and Cochran's Q test did not detect any sensitivity and heterogeneity. CONCLUSIONS While tofu consumption is associated with a higher risk of ICH, it does not show a significant relationship with ischemic stroke or SAH. The varying effects of tofu on different stroke subtypes underscore the need for considering potential confounding dietary and lifestyle factors in future studies.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, 230011 Hefei, Anhui, China
| | - Yunlong Liu
- The First Clinical College of Anhui Medical University, 230011 Hefei, Anhui, China
| | - Mingwu Xia
- Department of Neurology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, 230011 Hefei, Anhui, China
| | - Shugang Cao
- Department of Neurology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, 230011 Hefei, Anhui, China
| |
Collapse
|
4
|
Zhao H, Dan P, Xi J, Chen Z, Zhang P, Wei W, Zhao Y. Novel soybean polypeptide dglycin alleviates atherosclerosis in apolipoprotein E-deficient mice. Int J Biol Macromol 2023; 251:126347. [PMID: 37586634 DOI: 10.1016/j.ijbiomac.2023.126347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/05/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Atherosclerosis is a dominant cause of cardiovascular disease. Accumulation of low-density lipoproteins (LDL), formation of foam cells, and endothelial dysfunction within the arterial intima contribute to atherosclerotic plaque formation. Soy consumption is thought to have positive effect on the prevention of atherosclerosis. Therefore, in the present study, a novel soybean polypeptide dglycin was purified and characterized. Oral administration of 20 mg/g.d dglycin reduced 47.6 % lesion area, and 49.1 % lipid deposition in the atherosclerotic plaques in aortic roots in ApoE-/- mice. In addition, it decreased the levels of 26.0 % plasma low-density lipoprotein, 27.2 % triglyceride, 40.1 % cholesterol, 25.1 % malondialdehyde and 24.2 % tumor necrosis factor-alpha (TNFα). In vitro experiments revealed that dglycin inhibited inflammatory cytokine secretion from aortic endothelial cells via the inhibition of NF-κB signaling. Furthermore, it inhibited reactive oxygen species generation, subsequently enhanced cell viability, and protected aortic endothelial cells from necrosis and apoptosis via mitochondrial function improvement. On the other hand, dglycin prevented the uptake of oxidized LDL by macrophages via suppressing the expression of scavenger receptor class A1, which suggested that dglycin prevented foam cell formation. Therefore, dglycin alleviated the early-stage of atherosclerosis via depressing inflammation, lipid deposition, protecting aortic endothelial cells and preventing foam cell formation.
Collapse
Affiliation(s)
- Han Zhao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Peng Dan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Jiahui Xi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Zhengwang Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Zhang
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Shandong Province, China
| | - Wei Wei
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Shandong Province, China
| | - Yanying Zhao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
5
|
Dhiman A, Thakur K, Parmar V, Sharma S, Sharma R, Kaur G, Singh B, Suhag R. New insights into tailoring physicochemical and techno-functional properties of plant proteins using conventional and emerging technologies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Soy Consumption and the Risk of Type 2 Diabetes and Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:nu15061358. [PMID: 36986086 PMCID: PMC10058927 DOI: 10.3390/nu15061358] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Soy is rich in plant protein, isoflavones, and polyunsaturated fatty acids. To clarify the associations between soy intake and type 2 diabetes (T2D) and cardiovascular diseases (CVDs) events, we performed a meta-analysis and review. A total of 1963 studies met the inclusion criteria, and 29 articles with 16,521 T2D and 54,213 CVDs events were identified by the eligibility criteria. During a follow-up of 2.5–24 years, the risk of T2D, CVDs, coronary heart disease, and stroke in participants with the highest soy consumption decreased by 17% (total relative risk (TRR) = 0.83, 95% CI: 0.74–0.93), 13% (TRR = 0.87, 95% CI: 0.81–0.94), 21% (TRR = 0.79, 95% CI: 0.71–0.88), and 12% (TRR = 0.88, 95% CI: 0.79–0.99), respectively, compared to the lowest sot consumption. A daily intake of 26.7 g of tofu reduced CVDs risk by 18% (TRR = 0.82, 95% CI: 0.74–0.92) and 11.1 g of natto lowered the risk of CVDs by 17% (TRR = 0.83, 95% CI: 0.78–0.89), especially stroke. This meta-analysis demonstrated that soy consumption was negatively associated with the risks of T2D and CVDs and a specific quantity of soy products was the most beneficial for the prevention of T2D and CVDs. This study has been registered on PROSPERO (registration number: CRD42022360504).
Collapse
|
7
|
Nutritional strategies for intervention of diabetes and improvement of β-cell function. Biosci Rep 2023; 43:232518. [PMID: 36714968 PMCID: PMC9939408 DOI: 10.1042/bsr20222151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus, especially Type 2 diabetes (T2D), is caused by multiple factors including genetics, diets, and lifestyles. Diabetes is a chronic condition and is among the top 10 causes of death globally. Nutritional intervention is one of the most important and effective strategies for T2D management. It is well known that most of intervention strategies can lower blood glucose level and improve insulin sensitivity in peripheral tissues. However, the regulation of pancreatic β cells by dietary intervention is not well characterized. In this review, we summarized some of the commonly used nutritional methods for diabetes intervention. We then discussed the effects and the underlying mechanisms of nutritional intervention in improving the cell mass and function of pancreatic islet β cells. With emerging intervention strategies and in-depth investigation, we are expecting to have a better understanding about the effectiveness of dietary interventions in ameliorating T2D in the future.
Collapse
|
8
|
Hu K, Huang H, Li H, Wei Y, Yao C. Legume-Derived Bioactive Peptides in Type 2 Diabetes: Opportunities and Challenges. Nutrients 2023; 15:nu15051096. [PMID: 36904097 PMCID: PMC10005352 DOI: 10.3390/nu15051096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is a complex disorder characterized by insufficient insulin production or insulin resistance, which results in a lifelong dependence on glucose-lowering drugs for almost all patients. During the fight with diabetes, researchers are always thinking about what characteristics the ideal hypoglycemic drugs should have. From the point of view of the drugs, they should maintain effective control of blood sugar, have a very low risk of hypoglycemia, not increase or decrease body weight, improve β-cell function, and delay disease progression. Recently, the advent of oral peptide drugs, such as semaglutide, brings exciting hope to patients with chronic diabetes. Legumes, as an excellent source of protein, peptides, and phytochemicals, have played significant roles in human health throughout human history. Some legume-derived peptides with encouraging anti-diabetic potential have been gradually reported over the last two decades. Their hypoglycemic mechanisms have also been clarified at some classic diabetes treatment targets, such as the insulin receptor signaling pathway or other related pathways involved in the progress of diabetes, and key enzymes including α-amylase, α-glucosidase, and dipeptidyl peptidase-IV (DPP-4). This review summarizes the anti-diabetic activities and mechanisms of peptides from legumes and discusses the prospects of these peptide-based drugs in type 2 diabetes (T2D) management.
Collapse
|
9
|
Wu Y, Zhao R, Li M, Li H, Chen Z, Zhao Y. Novel soybean peptide iglycin ameliorates insulin resistance of high-fat diet fed C57BL/6J mice and differentiated 3T3L1 adipocytes with improvement of insulin signaling and mitochondrial function. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Afzaal M, Saeed F, Islam F, Ateeq H, Asghar A, Shah YA, Ofoedu CE, Chacha JS. Nutritional Health Perspective of Natto: A Critical Review. Biochem Res Int 2022; 2022:5863887. [PMID: 36312453 PMCID: PMC9616652 DOI: 10.1155/2022/5863887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Natto, a traditional soy food fermented by Bacillus subtilis, is made by steaming or cooking soaked soybean seeds, inoculating them with the bacteria, and then letting them sit for an incubation period. Natto soya has grown popular because of its nutritional importance and health advantages. As a result, farmers have more opportunities, thanks to the natto soybean market. For the natto soybean market to remain stable and grow, improved soybean cultivars with enhanced natto quality traits are essential. Natto's high-quality attributes are influenced by the bacteria strain, processing parameters, and soybean variety. Natto has a specific flavor and aroma with a slimy, sticky consistency. Natto possesses various therapeutic potentials and contains a range of essential nutrients and bioactive compounds, i.e., nattokinase, soybean isoflavone, γ-polyglutamic acid, vitamin K2, and biogenic amines. Bacterial species, processing conditions, and cultivars of soybean determine the quality characteristics of natto. Natto food is higher in menaquinone-7 and contains 100 times more menaquinone-7 than most cheeses. The present review highlights the production technology, microbiology, nutritional composition, and therapeutic potentials of natto.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Fakhar Islam
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Huda Ateeq
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Aasma Asghar
- Department of Home Economics, Government College University, Faisalabad, Pakistan
| | - Yasir Abbas Shah
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Chigozie E. Ofoedu
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - James S. Chacha
- Department of Food Science and Agroprocessing, Sokoine University of Agriculture, P.O. Box 3006, Chuo Kikuu, Morogoro, Tanzania
| |
Collapse
|
11
|
A ~24 kDa protein isolated from protein isolates of Hawaijar, popular fermented soy food of North-East India exhibited promising antidiabetic potential via stimulating PI3K/AKT/GLUT4 signaling pathway of muscle glucose metabolism. Int J Biol Macromol 2022; 224:1025-1039. [DOI: 10.1016/j.ijbiomac.2022.10.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
12
|
Wu Q, Guo Z, Zhou Z, Jin M, Li Q, Zhou X. Recent advances in bioactive peptides from cereal-derived Foodstuffs. Int J Food Sci Nutr 2022; 73:875-888. [PMID: 35896503 DOI: 10.1080/09637486.2022.2104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Cereal-derived proteins account for a major part of human dietary protein consumption. Natural bioactive peptides (NBPs) from these proteins involve a variety of physiological activities and play an important role in the promotion of human health. This review focuses on the characteristics of NBPs obtained from cereals, and the commonly used methods for preparation, separation, purification, and identification. We also discussed the biological functions of cereal-derived NBPs (CNBPs), including the activities of antioxidant, immunomodulatory, antimicrobial, and regulation of hyperglycaemia and hypertension. The paper summarised the latest progress in the research and application of CNBPs and analysed the prospects for the development and application of several protein by-products, providing an important way to improve the added value of protein by-products in cereal processing.
Collapse
Affiliation(s)
- Qin Wu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhijian Guo
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zerong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, P. R. China
| | - Mengyuan Jin
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qizhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, P. R. China
| | - Xuanwei Zhou
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Li L, Tian Y, Feng Y, Zhang S, Jiang Y, Zhang Y, Zhan Y, Wang C. Improvement in Mung Bean Peptide on High-Fat Diet-Induced Insulin Resistance Mice Using Untargeted Serum Metabolomics. Front Nutr 2022; 9:893270. [PMID: 35571892 PMCID: PMC9101312 DOI: 10.3389/fnut.2022.893270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
This study aimed to elucidate the potential regulatory mechanism of mung bean peptides (MBPs) on glucolipid metabolism in insulin-resistant mice induced by high-fat diet (HFD) using untargeted serum metabolomics, enzyme linked immunosorbent assay (ELISA), intraperitoneal injection glucose tolerance test (IPGTT), insulin tolerance test (IPITT), and hematoxylin-eosin staining (H&E). The regulatory effect of MBPs for alleviating insulin resistance was studied by measuring body weight, fasting blood glucose (FBG) and serum insulin levels, C-Peptide levels, inflammatory and antioxidant factors, and histopathological observation of C57BL/6 mice. The experimental results showed that dietary intervention with MBPs (245 mg/kg/d) for 5 weeks significantly relieved insulin resistance in HFD mice. The body weight, insulin resistance index, and the levels of FBG, C-Peptide, IL-6, TNF-α, and MDA in the serum of HFD mice significantly decreased (P < 0.05). Conversely, SOD content and pancreatic β cell function index significantly increased (P < 0.05), and the damaged pancreatic tissue was repaired. One biomarker associated with insulin resistance was glycine. In addition, there were four important differential metabolites: pyroglutamate, D-glutamine, aminoadipic acid, and nicotinamide, involved in 12 metabolic pathway changes. It was found that MBPs may regulate amino acid, glycerol phospholipid, fatty acid, alkaloid, and nicotinamide metabolism to regulate the metabolic profile of HFD mice in a beneficial direction.
Collapse
Affiliation(s)
- Lina Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- Library, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Tian
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuchao Feng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yingjun Jiang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yiwei Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuanyuan Zhan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Changyuan Wang
| |
Collapse
|
14
|
Hu X, Zhang Q, Zhang Q, Ding J, Liu Y, Qin W. An updated review of functional properties, debittering methods, and applications of soybean functional peptides. Crit Rev Food Sci Nutr 2022; 63:8823-8838. [PMID: 35482930 DOI: 10.1080/10408398.2022.2062587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Soybean functional peptides (SFPs) are obtained via the hydrolysis of soybean protein into polypeptides, oligopeptides, and a small amount of amino acids. They have nutritional value and a variety of functional properties, including regulating blood lipids, lowering blood pressure, anti-diabetes, anti-oxidant, preventing COVID-19, etc. SFPs have potential application prospects in food processing, functional food development, clinical medicine, infant milk powder, special medical formulations, among others. However, bitter peptides containing relatively more hydrophobic amino acids can be formed during the production of SFPs, seriously restricting the application of SFPs. High-quality confirmatory human trials are needed to determine effective doses, potential risks, and mechanisms of action, especially as dietary supplements and special medical formulations. Therefore, the physiological activities and potential risks of soybean polypeptides are summarized, and the existing debitterness technologies and their applicability are reviewed. The technical challenges and research areas to be addressed in optimizing debittering process parameters and improving the applicability of SFPs are discussed, including integrating various technologies to obtain higher quality functional peptides, which will facilitate further exploration of physiological mechanism, metabolic pathway, tolerance, bioavailability, and potential hazards of SFPs. This review can help promote the value of SFPs and the development of the soybean industry.
Collapse
Affiliation(s)
- Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qinqiu Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jie Ding
- College of Food Science, Sichuan Agricultural University, Ya'an, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
15
|
Yu S, Liu L, Bu T, Jiexia Z, Wang W, Wu JP, Liu D. Purification and characterization of hypoglycemic peptides from traditional Chinese soy-fermented douchi. Food Funct 2022; 13:3343-3352. [DOI: 10.1039/d1fo03941e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Douchi is a popular soy-fermented food originated in China, with documented hypoglycemic effect. However, the responsible molecules and the mechanism underlying its beneficial effects remains unclear. Therefore, in this study,...
Collapse
|
16
|
Das D, Kabir ME, Sarkar S, Wann SB, Kalita J, Manna P. Antidiabetic potential of soy protein/peptide: A therapeutic insight. Int J Biol Macromol 2022; 194:276-288. [PMID: 34848240 DOI: 10.1016/j.ijbiomac.2021.11.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
Soybean (Glycine max) harbours high quality proteins which have been evident to exhibit therapeutic properties in alleviating many diseases including but not limited to diabetes and its related metabolic complications. Since diabetes is often manifested with hyperglycemia, impaired energy homeostasis and even low-grade chronic inflammation, plenty of information has raised the suggestion for soy protein supplementation in preventing and controlling these abnormalities. Moreover, clinical intervention studies have established a noteworthy correlation between soy protein intake and lower prevalence of diabetes. Besides soy protein, various soy-derived peptides also have been found to trigger antidiabetic response in different in vitro and in vivo models. Molecular mechanisms underlying the antidiabetic actions of soy protein and peptide have been predicted in many literatures. Results demonstrate that components of soy protein can act in diversified ways and modulate various cell signaling pathways to bring energy homeostasis and to regulate inflammatory parameters associated with diabetic pathophysiology. The main objective of the present review lies in a systemic understanding of antidiabetic role of soy protein and peptide in the context of impaired glucose and lipid metabolism, and inflammation.
Collapse
Affiliation(s)
- Dibyendu Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mir Ekbal Kabir
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjib Sarkar
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sawlang Borsingh Wann
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Jatin Kalita
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Research Planning and Business Development Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Prasenjit Manna
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
| |
Collapse
|
17
|
Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021; 26:molecules26247453. [PMID: 34946535 PMCID: PMC8708364 DOI: 10.3390/molecules26247453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Nowadays, cancer has become the second highest leading cause of death, and it is expected to continue to affect the population in forthcoming years. Additionally, treatment options will become less accessible to the public as cases continue to grow and disease mechanisms expand. Hence, specific candidates with confirmed anticancer effects are required to develop new drugs. Among the novel therapeutic options, proteins are considered a relevant source, given that they have bioactive peptides encrypted within their sequences. These bioactive peptides, which are molecules consisting of 2–50 amino acids, have specific activities when administered, producing anticancer effects. Current databases report the effects of peptides. However, uncertainty is found when their molecular mechanisms are investigated. Furthermore, analyses addressing their interaction networks or their directly implicated mechanisms are needed to elucidate their effects on cancer cells entirely. Therefore, relevant peptides considered as candidates for cancer therapeutics with specific sequences and known anticancer mechanisms were accurately reviewed. Likewise, those features which turn certain peptides into candidates and the mechanisms by which peptides mediate tumor cell death were highlighted. This information will make robust the knowledge of these candidate peptides with recognized mechanisms and enhance their non-toxic capacity in relation to healthy cells and further avoid cell resistance.
Collapse
|
18
|
Trinidad-Calderón PA, Varela-Chinchilla CD, García-Lara S. Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021. [DOI: https://doi.org/10.3390/molecules26247453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nowadays, cancer has become the second highest leading cause of death, and it is expected to continue to affect the population in forthcoming years. Additionally, treatment options will become less accessible to the public as cases continue to grow and disease mechanisms expand. Hence, specific candidates with confirmed anticancer effects are required to develop new drugs. Among the novel therapeutic options, proteins are considered a relevant source, given that they have bioactive peptides encrypted within their sequences. These bioactive peptides, which are molecules consisting of 2–50 amino acids, have specific activities when administered, producing anticancer effects. Current databases report the effects of peptides. However, uncertainty is found when their molecular mechanisms are investigated. Furthermore, analyses addressing their interaction networks or their directly implicated mechanisms are needed to elucidate their effects on cancer cells entirely. Therefore, relevant peptides considered as candidates for cancer therapeutics with specific sequences and known anticancer mechanisms were accurately reviewed. Likewise, those features which turn certain peptides into candidates and the mechanisms by which peptides mediate tumor cell death were highlighted. This information will make robust the knowledge of these candidate peptides with recognized mechanisms and enhance their non-toxic capacity in relation to healthy cells and further avoid cell resistance.
Collapse
|
19
|
Antony P, Vijayan R. Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. Int J Mol Sci 2021; 22:9059. [PMID: 34445765 PMCID: PMC8396489 DOI: 10.3390/ijms22169059] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus is a major public health concern associated with high mortality and reduced life expectancy. The alarming rise in the prevalence of diabetes is linked to several factors including sedentary lifestyle and unhealthy diet. Nutritional intervention and increased physical activity could significantly contribute to bringing this under control. Food-derived bioactive peptides and protein hydrolysates have been associated with a number health benefits. Several peptides with antidiabetic potential have been identified that could decrease blood glucose level, improve insulin uptake and inhibit key enzymes involved in the development and progression of diabetes. Dietary proteins, from a wide range of food, are rich sources of antidiabetic peptides. Thus, there are a number of benefits in studying peptides obtained from food sources to develop nutraceuticals. A deeper understanding of the underlying molecular mechanisms of these peptides will assist in the development of new peptide-based therapeutics. Despite this, a comprehensive analysis of the antidiabetic properties of bioactive peptides derived from various food sources is still lacking. Here, we review the recent literature on food-derived bioactive peptides possessing antidiabetic activity. The focus is on the effectiveness of these peptides as evidenced by in vitro and in vivo studies. Finally, we discuss future prospects of peptide-based drugs for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
20
|
Yang F, Wang J, Zhang H, Xie Y, Jin J, Liu H, Pang X, Hao H. Hypoglycemic effects of space-induced Lactobacillus plantarum SS18-5 on type 2 diabetes in a rat model. J Food Biochem 2021; 45:e13899. [PMID: 34396541 DOI: 10.1111/jfbc.13899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022]
Abstract
Probiotics can improve dyslipidemia and promote metabolic control as a therapeutic approach for type 2 diabetes mellitus (T2DM). The hypoglycemic effects of space-induced Lactobacillus plantarum SS18-5 on T2DM were explored in 4-week-old male Sprague Dawley rats. The normal (N) group was fed a basal diet, while the other groups received a high glucose fat diet. T2DM was established by streptozotocin injection and the T2DM rats were randomly divided into three groups, a diabetic (D) group (T2DM rats treated with saline only), GS18 group (T2DM rats treated with 109 CFU/ml of L. plantarum GS18), and SS18-5 group (T2DM rats treated with 109 CFU/ml of L. plantarum SS18-5). After continuous gavage for 6 weeks, blood biochemical indices were measured and livers were collected for histopathological examination. The colon contents were collected for counting of Escherichia coli, Clostridium perfringens, and Lactobacillus sp. The results showed that L. plantarum SS18-5 effectively controlled the weight of rats, reduced levels of fasting blood glucose, glycosylated hemoglobin, and insulin, increased liver glycogen levels, improved abnormal metabolism of blood lipids, enhanced the effect of anti-lipid peroxidation, alleviated chronic inflammation and fatty liver disease, and regulated the intestinal microbiota by reducing the numbers of E. coli and C. perfringens, and increasing the numbers of Lactobacillus sp. From these results, we conclude that space-induced L. plantarum SS18-5 has the potential to improve T2DM by alleviating hypoglycemia and regulating the intestinal microbiota. PRACTICAL APPLICATIONS: With the exploration of the universe, a large number of studies have observed the changes of microorganisms in space flight, which provided a new method for high-quality microbial pharmaceuticals in the space environment. In this study, the space environment mutated. Lactobacillus plantarum SS18-5 can effectively improve the blood glucose of rats with type 2 diabetes, relieve oxidative stress, reduce blood lipid content, enhance immune capacity, and regulate intestinal microflora, which has potential use in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Feiyu Yang
- Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Food Science and Engineering College, Beijing University of Agriculture, Beijing, China.,Fullarton Bioengineering Technology Co., Ltd, Beijing, China
| | - Jiyu Wang
- Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
| | - Hongxing Zhang
- Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
| | - Yuanhong Xie
- Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
| | - Junhua Jin
- Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
| | - Hui Liu
- Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
| | - Xiaona Pang
- Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
| | - Hongwei Hao
- Fullarton Bioengineering Technology Co., Ltd, Beijing, China
| |
Collapse
|
21
|
Kim IS, Yang WS, Kim CH. Beneficial Effects of Soybean-Derived Bioactive Peptides. Int J Mol Sci 2021; 22:8570. [PMID: 34445273 PMCID: PMC8395274 DOI: 10.3390/ijms22168570] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/19/2022] Open
Abstract
Peptides present in foods are involved in nutritional functions by supplying amino acids; sensory functions related to taste or solubility, emulsification, etc.; and bioregulatory functions in various physiological activities. In particular, peptides have a wide range of physiological functions, including as anticancer agents and in lowering blood pressure and serum cholesterol levels, enhancing immunity, and promoting calcium absorption. Soy protein can be partially hydrolyzed enzymatically to physiologically active soy (or soybean) peptides (SPs), which not only exert physiological functions but also help amino acid absorption in the body and reduce bitterness by hydrolyzing hydrophobic amino acids from the C- or N-terminus of soy proteins. They also possess significant gel-forming, emulsifying, and foaming abilities. SPs are expected to be able to prevent and treat atherosclerosis by inhibiting the reabsorption of bile acids in the digestive system, thereby reducing blood cholesterol, low-density lipoprotein, and fat levels. In addition, soy contains blood pressure-lowering peptides that inhibit angiotensin-I converting enzyme activity and antithrombotic peptides that inhibit platelet aggregation, as well as anticancer, antioxidative, antimicrobial, immunoregulatory, opiate-like, hypocholesterolemic, and antihypertensive activities. In animal models, neuroprotective and cognitive capacity as well as cardiovascular activity have been reported. SPs also inhibit chronic kidney disease and tumor cell growth by regulating the expression of genes associated with apoptosis, inflammation, cell cycle arrest, invasion, and metastasis. Recently, various functions of soybeans, including their physiologically active functions, have been applied to health-oriented foods, functional foods, pharmaceuticals, and cosmetics. This review introduces some current results on the role of bioactive peptides found in soybeans related to health functions.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bioresource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | | | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoul 16419, Gyunggi-Do, Korea
- Samsung Advanced Institute of Health Science and Technology, Seoul 16419, Gyunggi-Do, Korea
| |
Collapse
|
22
|
Chai TT, Ee KY, Kumar DT, Manan FA, Wong FC. Plant Bioactive Peptides: Current Status and Prospects Towards Use on Human Health. Protein Pept Lett 2021; 28:623-642. [PMID: 33319654 DOI: 10.2174/0929866527999201211195936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022]
Abstract
Large numbers of bioactive peptides with potential applications in protecting against human diseases have been identified from plant sources. In this review, we summarized recent progress in the research of plant-derived bioactive peptides, encompassing their production, biological effects, and mechanisms. This review focuses on antioxidant, antimicrobial, antidiabetic, and anticancer peptides, giving special attention to evidence derived from cellular and animal models. Studies investigating peptides with known sequences and well-characterized peptidic fractions or protein hydrolysates will be discussed. The use of molecular docking tools to elucidate inter-molecular interactions between bioactive peptides and target proteins is highlighted. In conclusion, the accumulating evidence from in silico, in vitro and in vivo studies to date supports the envisioned applications of plant peptides as natural antioxidants as well as health-promoting agents. Notwithstanding, much work is still required before the envisioned applications of plant peptides can be realized. To this end, future researches for addressing current gaps were proposed.
Collapse
Affiliation(s)
- Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Kah-Yaw Ee
- Center for Biodiversity Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - D Thirumal Kumar
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, India
| | - Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| |
Collapse
|
23
|
Hirano H. Basic 7S globulin in plants. J Proteomics 2021; 240:104209. [PMID: 33794343 DOI: 10.1016/j.jprot.2021.104209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
Soybean seed basic 7S globulin (Bg7S)-like proteins are found in many plant species. Bg7S was originally thought to be a major seed storage protein but was later found to be multifunctional, with stress response, antibacterial activity, hormone receptor-like activity. Moreover, functional differences between Bg7S proteins from legumes and other plants have been revealed. In non-leguminous plants, Bg7S molecules inhibit the invasion of pathogenic microorganisms. However, although leguminous plants have a peptide called leg-insulin that can bind to Bg7S, non-leguminous plants do not have leginsulin. Bg7S in leguminous plants and other plants may have evolved in functionally different directions. Several homologs of Bg7S in plants are reported, but there is no homolog of this protein in peas, suggesting that the pea evolution might have followed a different route when compared to other leguminous plants. Although the functions of Bg7S are well documented in plants, recent studies suggest that this protein is also important in controlling blood glucose level, blood pressure and plasma cholesterol level, and cancer cell antiproliferative actions.
Collapse
Affiliation(s)
- Hisashi Hirano
- Advanced Medical Science Research Center, Gunma Paz University, Shibukawa 1338-4, Shibukawa, Gunma 377-0008, Japan; Institute for Molecular and Cellular Regulation, Gunma University, Showa 3-39-15, Maebashi 371-8512, Japan.
| |
Collapse
|
24
|
Yao CC, Tong YX, Jiang H, Yang DR, Zhang XJ, Zhang P, Su L, Zhao YY, Chen ZW. Native polypeptide vglycin prevents nonalcoholic fatty liver disease in mice by activating the AMPK pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
25
|
Costa IS, Medeiros AF, Piuvezam G, Medeiros GCBS, Maciel BLL, Morais AHA. Insulin-Like Proteins in Plant Sources: A Systematic Review. Diabetes Metab Syndr Obes 2020; 13:3421-3431. [PMID: 33061503 PMCID: PMC7533237 DOI: 10.2147/dmso.s256883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/14/2020] [Indexed: 01/30/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia. Proteins in plant sources that enable the maintenance of the glycemic profile may be of interest in the context of T2DM. However, their mechanisms of action are unclear, unlike other bioactive compounds. This systematic review identified and described the mechanisms of action of isolated and purified proteins and peptides extracted from vegetables on the reduction of blood glucose in T2DM in experimental studies. The research was done in PubMed, ScienceDirect, Scopus, Web of Science, Embase and Virtual Health Library (VHL) databases in March 2019. The initial search retrieved 916 articles, and, after reading the title, abstract and keywords, 24 articles were eligible for full reading. Then, five articles were eligible to build this systematic review. The evaluation of the evidence and the strength of the recommendations of the studies was evaluated with the SYstematic Review Center for Laboratory animal Experimentation - SYRCLE. Studies with proteins or peptides extracted from soybean (Glycine max), corn (Zea mays), peas (Pisum sativum), costus (Costus igneus) and ginseng (Panax ginseng) were found, and all of them decreased glycemia but not by the same mechanisms. The mechanism of action of proteins extracted from Glycine max, Pisum sativum, Costus igneus were similar, acting in the insulin-mediated pathways. The peptide derived from Zea mays increased GLP-1 expression, and the peptide from Panax ginseng reduced NF-kB signaling, both resulting in stimulating the release of insulin. Therefore, bioactive proteins and peptides of plant sources act through biochemical pathways, in the modulation of insulin resistance and the hyperglycemic state. These compounds are promising in scientific research on T2DM, because there is a probable similarity of these proteins with insulin, which enables them to act as insulin-like molecules.
Collapse
Affiliation(s)
- Izael S Costa
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Amanda F Medeiros
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Grasiela Piuvezam
- Department of Collective Health (DSC), Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Collective Health Postgraduate Program (PPGSCoL), Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Gidyenne C B S Medeiros
- Collective Health Postgraduate Program (PPGSCoL), Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Bruna L L Maciel
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Heloneida A Morais
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
26
|
Qian L, Zhu K, Lin Y, An L, Huang F, Yao Y, Ren L. Insulin secretion impairment induced by rosuvastatin partly though autophagy in INS-1E cells. Cell Biol Int 2020; 44:127-136. [PMID: 31342626 DOI: 10.1002/cbin.11208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/21/2019] [Indexed: 01/24/2023]
Abstract
Statins are used extensively for the clinical treatment of cardiovascular diseases. Recent studies suggest that statins increase the risk of new-onset diabetes mellitus (NODM). However, the mechanisms of statin-induced NODM remain unclear. The present study investigated the effects of autophagy on insulin secretion impairment induced by rosuvastatin (RS) in rat insulinoma cells (INS-1E) cells. INS-1E cells were cultured and treated with RS at different concentrations (0.2-20 μM) for 24 h. Insulin secretion in INS-1E cells was detected by enzyme-linked immunosorbent assay, and the co-localization of microtubule-associated protein light chain 3 (LC3) and lysosome-associated membrane protein 2 (LAMP-2) was observed by immunofluorescence staining. Western blotting was used to assess the conversion of LC3 and p62. The results showed that the insulin secretion and cell viability decrease induced by RS treatment for 24 h occurred in a dose-dependent manner in INS-1E cells. RS significantly inhibited the expression of LC3-II but increased the protein expression of p62. Simultaneously, RS diminished the co-localization of LC3-II and LAMP-2 fluorescence signals. These results suggested that RS-inhibited autophagy in INS-1E cells. Rapamycin, an autophagy agonist, reversed the insulin secretion and cell viability suppression induced by RS in INS-1E cells. RS also decreased the phosphorylation of the mammalian target of rapamycin (mTOR). The results indicated that RS impairs insulin secretion in INS-1E cells, which may be partly due to the inhibition of autophagy via an mTOR-dependent pathway.
Collapse
Affiliation(s)
- Linglin Qian
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Kongbo Zhu
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yanshan Lin
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Li An
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Feiyang Huang
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Liqun Ren
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
27
|
TGF-β1/Smad7 signaling pathway and cell apoptosis: Two key aspects of Selenium-biofortified soybean peptide attenuating liver fibrosis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
28
|
Yan J, Zhao J, Yang R, Zhao W. Bioactive peptides with antidiabetic properties: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14090] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jiai Yan
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- Collaborative innovation center of food safety and quality control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Jianguang Zhao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- Collaborative innovation center of food safety and quality control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- Collaborative innovation center of food safety and quality control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- Collaborative innovation center of food safety and quality control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| |
Collapse
|
29
|
Chatterjee C, Gleddie S, Xiao CW. Soybean Bioactive Peptides and Their Functional Properties. Nutrients 2018; 10:E1211. [PMID: 30200502 PMCID: PMC6164536 DOI: 10.3390/nu10091211] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
Soy consumption has been associated with many potential health benefits in reducing chronic diseases such as obesity, cardiovascular disease, insulin-resistance/type II diabetes, certain type of cancers, and immune disorders. These physiological functions have been attributed to soy proteins either as intact soy protein or more commonly as functional or bioactive peptides derived from soybean processing. These findings have led to the approval of a health claim in the USA regarding the ability of soy proteins in reducing the risk for coronary heart disease and the acceptance of a health claim in Canada that soy protein can help lower cholesterol levels. Using different approaches, many soy bioactive peptides that have a variety of physiological functions such as hypolipidemic, anti-hypertensive, and anti-cancer properties, and anti-inflammatory, antioxidant, and immunomodulatory effects have been identified. Some soy peptides like lunasin and soymorphins possess more than one of these properties and play a role in the prevention of multiple chronic diseases. Overall, progress has been made in understanding the functional and bioactive components of soy. However, more studies are required to further identify their target organs, and elucidate their biological mechanisms of action in order to be potentially used as functional foods or even therapeutics for the prevention or treatment of chronic diseases.
Collapse
Affiliation(s)
- Cynthia Chatterjee
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Banting Research Centre, 251 Sir Frederick Banting Drive, Ottawa, ON K1A 0K9, Canada.
- Ottawa Research & Development Centre, Central Experimental Farm, Agriculture and Agri-Food Canada, 960 Carling Avenue Building#21, Ottawa, ON K1A 0C6, Canada.
| | - Stephen Gleddie
- Ottawa Research & Development Centre, Central Experimental Farm, Agriculture and Agri-Food Canada, 960 Carling Avenue Building#21, Ottawa, ON K1A 0C6, Canada.
| | - Chao-Wu Xiao
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Banting Research Centre, 251 Sir Frederick Banting Drive, Ottawa, ON K1A 0K9, Canada.
- Food and Nutrition Science Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
30
|
Gao C, Sun R, Xie YR, Jiang AL, Lin M, Li M, Chen ZW, Zhang P, Jin H, Feng JP. The soy-derived peptide Vglycin inhibits the growth of colon cancer cells in vitro and in vivo. Exp Biol Med (Maywood) 2017; 242:1034-1043. [PMID: 28492347 DOI: 10.1177/1535370217697383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vglycin, a novel natural polypeptide isolated from pea seeds, possesses antidiabetic properties. Our previous studies have shown that Vglycin can induce the differentiation of human colon adenocarcinoma cells. We aimed to determine the anticancer activity of Vglycin against colon cancer cells and to elucidate related apoptosis-inducing mechanisms. Treatment with purified Vglycin significantly reduced growth, viability, and colony formation of CT-26, SW480, and NCL-H716 colon cancer cells in a dose-dependent manner while down-regulating the expression of proliferating cell nuclear antigen. Mouse xenograft studies showed a 38% inhibition of colon cancer growth in mice treated with Vglycin (20 mg/kg/day) at day 21. Furthermore, the potential mechanisms involved in Vglycin-induced cell apoptosis were examined using cell cycle studies, ultrastructural examination, as well as apoptosis-associated pathway analysis. The results showed that Vglycin significantly promoted apoptosis and G1/S phase cell cycle arrest. As revealed by Western blot, the expression of CDK2 and Cyclin D1 was down-regulated in all three Vglycin-treated colon cancer cells, indicating that the CDK2/Cyclin D1 cell cycle pathway involved in the initiation and progression of colon cancer. Moreover, the inhibition of Vglycin-induced cell proliferation in colon cancer cells was accompanied by alteration of the expression levels of the apoptosis-related proteins Bax, Bcl-2 and Mcl-1, and an increase of caspase-3 activity. Together, our results suggest that Vglycin may be another plant-derived peptide that suppresses colon cancer, supporting the continued investigation of Vglycin as therapeutic agent for colon cancer. Impact statement The antidiabetic properties and the capability of inducing differentiation of human colon adenocarcinoma cells of Vglycin have been reported in our previous studies. However, the anticancer potential of Vglycin on colon cancer cells and its possible related mechanisms were still unknown. In this study, we found that Vglycin could reduce growth, viability, and colony formation or colony size of CT-26, SW480, and NCL-H716 colon cancer cells. Moreover, Vglycin decreased tumor volume by 38% in xenograft mice transplanted with CT-26 cells. The mechanisms of these phenomena may be due to the down-regulated CDK2 and Cyclin D1, G1/S phase cell cycle arrest, and the dysregulated expression of Bax, Bcl-2, and Mcl-1. The findings highlight the anticancer potential of Vglycin against colon cancer cells, and suggest Vglycin may be another colon cancer potential suppressive component of plant-derived peptides.
Collapse
Affiliation(s)
- Chang Gao
- 1 Department of Oncology, PuAi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, P.R. China
| | - Rui Sun
- 1 Department of Oncology, PuAi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, P.R. China
| | - Ya-Rong Xie
- 1 Department of Oncology, PuAi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, P.R. China
| | - An-Li Jiang
- 2 Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Mei Lin
- 1 Department of Oncology, PuAi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, P.R. China
| | - Min Li
- 1 Department of Oncology, PuAi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, P.R. China
| | - Zheng-Wang Chen
- 3 Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ping Zhang
- 4 Shandong TianJiu Biotechnology Company, HeZe 274108, Shandong, China
| | - Honglin Jin
- 5 Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jue-Ping Feng
- 1 Department of Oncology, PuAi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, P.R. China
| |
Collapse
|
31
|
The Soybean Peptide Vglycin Preserves the Diabetic β-cells through Improvement of Proliferation and Inhibition of Apoptosis. Sci Rep 2015; 5:15599. [PMID: 26510947 PMCID: PMC4625148 DOI: 10.1038/srep15599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/29/2015] [Indexed: 01/18/2023] Open
Abstract
Replenishment of insulin-producing pancreatic β-cells would be beneficial in diabetes. The number of β-cells is maintained primarily by self-neogenesis to compensate for β-cell failure, loss or dedifferentiation. We present here a polypeptide vglycin, which was isolated and purified from germinating pea seeds. Vglycin exhibited positive effects in our diabetic models by promoting the proliferation and suppressing the apoptosis and dedifferentiation of β-cells. Vglycin promoted the restoration of β-cells in both young streptozotocin (STZ)-induced type 1 diabetic SD rats and in aged high-fat diet with (or without) STZ-induced type 2 diabetic C57BL/6 mice. We demonstrated that vglycin triggers this positive signaling by activating the insulin receptor and corresponding transcription factors. Impaired insulin sensitivity and glucose tolerance in aged T2DM mice were dramatically improved after long-term vglycin treatment, consistent with the altered level of inflammatory factor IL-1β/6. In addition, energy expenditure and body weights were significantly decreased in the mouse models after vglycin therapy. These results provide insight into the protective effects of vglycin on ameliorating β-cell function in standing glucolipotoxicity. Thus, vglycin may represent a new therapeutic agent for preventing and treating diabetes by replenishing endogenous insulin-positive cells.
Collapse
|