1
|
Priyadarshini S, Goyal K, R R, Gupta S, Roy A, Biswas R, Patra S, Chauhan P, Wadhwa K, Singh G, Kamal M, Iqbal D, Alsaweed M, Nuli MV, Abomughaid MM, Almutary AG, Sinha JK, Bansal P, Rani B, Walia C, Sivaprasad GV, Ojha S, Nelson VK, Jha NK. Polypharmacology and Neuroprotective Effects of Gingerol in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-024-04484-y. [PMID: 39982688 DOI: 10.1007/s12035-024-04484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/22/2024] [Indexed: 02/22/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that results in brain shrinkage and the death of brain cells. The search for new treatment agents with many targets is now crucial due to the insufficient effectiveness, and adverse effects, including pharmacokinetic issues of traditional AD medications. Although phytochemicals have anti-disease characteristics and thus are widely used and accepted by people, researchers have also determined some of their most beneficial functions. Sesquiterpenes, volatile oils, and aromatic ketones (gingerols) are abundant in ginger. The most pharmacologically active components of ginger are considered to be gingerols. These gingerols are the compounds that impart spicy characteristics to the plant. Besides, gingerols readily undergo dehydration and produce another class of compounds, shogaols. These gingerols, shogaols, and other compounds, like zingerone, are mainly responsible for their distinctive aroma and pharmacological effects. This review aims to delineate the therapeutic potentials of gingerol in different AD models by assessing available literature reporting its effect on various cellular and molecular pathways. Although ginger is well recognized as a non-toxic nutraceutical, existing clinical research lacks robust evidence to support its efficacy in treating NDs, including AD. Clinical studies did not provide sufficient data that supports its use in treating various NDs including AD. Therefore, further research is essential to establish the safety and effectiveness of ginger and its constituents, ultimately paving the way for its development as a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Sakthi Priyadarshini
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Keshav Goyal
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Uttar Pradesh, Mathura, India
| | - Aatreyi Roy
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Ritabrata Biswas
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Sandeep Patra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Marg, New Delhi, 110021, India
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana, 124001, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana, 124001, India
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, 11952, Majmaah, Saudi Arabia
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | | | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Chakshu Walia
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Vinod Kumar Nelson
- Department of Natural Products and Drug Discovery, Centre for global health research, Saveetha medical college and Hospital, Saveetha institute of medical and technical sciences, Chennai, Tamil Nadu, India.
| | - Niraj Kumar Jha
- Department of Biotechnology & Bioengineering, School of Biosciences & Technology, Galgotias University, Greater Noida, India.
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
2
|
Naik RA, Mir MN, Malik IA, Bhardwaj R, Alshabrmi FM, Mahmoud MA, Alhomrani M, Alamri AS, Alsanie WF, Hjazi A, Ghatak T, Poeggeler B, Singh MP, Ts G, Singh SK. The Potential Mechanism and the Role of Antioxidants in Mitigating Oxidative Stress in Alzheimer's Disease. FRONT BIOSCI-LANDMRK 2025; 30:25551. [PMID: 40018917 DOI: 10.31083/fbl25551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 03/01/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and a significant contributor to health issues and mortality among older individuals. This condition involves a progressive deterioration in cognitive function and the onset of dementia. Recent advancements suggest that the development of AD is more intricate than its underlying brain abnormalities alone. In addition, Alzheimer's disease, metabolic syndrome, and oxidative stress are all intricately linked to one another. Increased concentrations of circulating lipids and disturbances in glucose homeostasis contribute to the intensification of lipid oxidation, leading to a gradual depletion of the body's antioxidant defenses. This heightened oxidative metabolism adversely impacts cell integrity, resulting in neuronal damage. Pathways commonly acknowledged as contributors to AD pathogenesis include alterations in synaptic plasticity, disorganization of neurons, and cell death. Abnormal metabolism of some membrane proteins is thought to cause the creation of amyloid (Aβ) oligomers, which are extremely hazardous to neurotransmission pathways, especially those involving acetylcholine. The interaction between Aβ oligomers and these neurotransmitter systems is thought to induce cellular dysfunction, an imbalance in neurotransmitter signaling, and, ultimately, the manifestation of neurological symptoms. Antioxidants have a significant impact on human health since they may improve the aging process by combating free radicals. Neurodegenerative diseases are currently incurable; however, they may be effectively managed. An appealing alternative is the utilization of natural antioxidants, such as polyphenols, through diet or dietary supplements, which offer numerous advantages. Within this framework, we have extensively examined the importance of oxidative stress in the advancement of Alzheimer's disease, as well as the potential influence of antioxidants in mitigating its effects.
Collapse
Affiliation(s)
- Rayees Ahmad Naik
- Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya Sagar, 470003 Sagar, Madhya Pradesh, India
| | - Mehak Naseer Mir
- NIMS Institute of Allied Medical Science, National Institute of Medical Sciences (NIMS), 303121 Jaipur, Rajasthan, India
| | - Ishfaq Ahmad Malik
- Department of Zoology, Bar. Ramrao Deshmukh Arts, Smt. Indiraji Kapadia Commerce & Nya. Krishnarao Deshmukh Science College, 444701 Amravati, Maharashtra, India
| | - Rima Bhardwaj
- Department of Chemistry Poona College, Savitribai Phule Pune University, 411007 Pune, Maharashtra, India
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia
| | - Mahmoud Abdulrahman Mahmoud
- Department of Family & Community Medicine, College of Medicine, Imam Muhammad Ibn Saud Islamic University, 13313 Riyadh, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, 21944 Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, 21944 Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, 21944 Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, 21944 Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, 21944 Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, 21944 Taif, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942 Al-Kharj, Saudi Arabia
| | - Tanmoy Ghatak
- Department of Emergency Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences, 226014 Lucknow, Uttar Pradesh, India
| | - Burkhard Poeggeler
- Department of Physiology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Faculty of Biology Georg August University Göttingen, Göttingen and Goettingen Research Campus, D-38524 Sassenburg, Germany
| | - Mahendra P Singh
- Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, 273009 Gorakhpur, Uttar Pradesh, India
| | - Gopenath Ts
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, 570015 Mysuru, Karnataka, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, 226001 Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Ghosh S, Das B, Jana S, Singh KO, Sharma N, Mukherjee PK, Haldar PK. Mechanistic insight into neuroprotective effect of standardized ginger chemo varieties from Manipur, India in scopolamine induced learning and memory impaired mice. Metab Brain Dis 2025; 40:101. [PMID: 39812875 DOI: 10.1007/s11011-025-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Alzheimer's disease is a complex neurodegenerative disease characterized by progressive decline in cognitive function and behaviour. Ginger is the rhizome of the plant Zingiber officinale Roscoe, has been an important ingredient of many Ayurveda formulations to treat neurological disorders. The present study aims to estimate the variation of 6-gingerol content in nine different ginger samples collected from Manipur, India, investigate the neuroprotective potential of the most potent ginger sample against scopolamine-induced cognitively impaired mice, and validate the therapeutic claim by molecular docking analysis. High Performance Thin Layer Chromatography (HPTLC) analysis suggested that the sample GV6 had the highest 6-gingerol content with potent in vitro acetylcholnesterase (AChE) (IC50 = 336.10 µg/mL) and butyrylcholinesterase (BChE) (IC50 = 411.73 µg/mL) enzyme inhibitory activity. The neuroprotective potential of GV6 was tested in scopolamine-induced cognitively impaired mice (200 and 400 mg/kg). The behavioral analysis showed that GV6 alleviated the spatial recognition, and short-term and long-term memory in the experimental mice model. GV6 significantly improved brain AChE and BChE activity, acetylcholine (ACh) level, markedly alleviated the antioxidant parameters, and reversed the neuroinflammation. Brain histopathological observations confirmed the presence of organized nerve fibers, improvement of neuronal cell density, and reverse the nucleus shrinkage. Further molecular docking analysis showed that 6-gingerol and galantamine exhibited stable interaction with AChE (-7.5 and - 7.3 kcaL/moL) and BChE (-7.3 and - 8.5 kcaL/moL). The present study emphasizes the quality-related therapeutic importance of ginger samples from Northeast India and demonstrates that administration of GV6 may improve brain cognitive functions by restoring neurotransmitter levels and inflammatory and antioxidant parameters in scopolamine-induced cognitively impaired mice.
Collapse
Affiliation(s)
- Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India
| | - Bhaskar Das
- Department of Biotechnology, BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Government of India, Imphal, Manipur, 795001, India
| | - Sandipan Jana
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India
| | - Keithellakpam Ojit Singh
- Department of Biotechnology, BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Government of India, Imphal, Manipur, 795001, India
| | - Nanaocha Sharma
- Department of Biotechnology, BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Government of India, Imphal, Manipur, 795001, India
| | - Pulok K Mukherjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India
- Department of Biotechnology, BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Government of India, Imphal, Manipur, 795001, India
| | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| |
Collapse
|
4
|
Özcan ÖÖ, Çevreli B, Kaşıkçı ES, Karahan M, Konuk M. Effects of Quetiapine on Novelty-Related Object Recognition Memory and Hippocampal BDNF Level in Sleep-Deprived Rats. Brain Behav 2025; 15:e70226. [PMID: 39829139 PMCID: PMC11744024 DOI: 10.1002/brb3.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The underlying mechanism of quetiapine (QET) in treating cognitive impairment in sleep deprivation is unclear. The present study aimed to evaluate the effects of treatment with QET on novel object recognition and hippocampal (hippo) brain-derived neurotrophic factor (BDNF) levels in rats submitted to 72 h sleep deprivation (SD). MATERIALS AND METHODS A total of 42 adult male Wistar albino rats were assigned into six experimental groups: non-sleep-deprived (NSD) control, short-term control group (n = 7) received a single intraperitoneal (i.p.) injection 10 mg/kg QET of 1 mL saline (4 days) (NSD-STQET), long-term control group (n = 7) received single i.p. injection 10 mg/kg QET of 1 mL saline (30 days) (NSD-LTQET); 72 h sleep-deprived (SD) group, 72 h SD short-term group received short-term i.p. injection 10 mg/kg QET of either (n = 7) (SD-STQET), and 72 h SD long-term group received long-term i.p. injection 10 mg/kg QET of either (n = 7) QET (SD-LTQET). SD was performed using the modified multiple-platform technique in a water tank for 72 h. Additionally, we aim to reveal the consequences of 72 h SD and QET effects on memory processes with hippo BDNF levels by testing rats in the novel object recognition (NOR) test and ELISA method. RESULTS Long-term QET administration in healthy rats decreased NOR and BDNF protein expression in the hippocampus, as did 72 h SD. Long- and short-term QET administration reversed SD effects, but only short-term QET administration increased hippo BDNF. CONCLUSION These results suggest that the beneficial effects of QET on SD may be partly related to the upregulation of recognition memory and neuroprotective proteins such as BDNF. However, long-term QET treatment in the absence of a disease model may have the potential to negatively impact recognition memory and BDNF levels, which support synaptic plasticity and cognitive function.
Collapse
Affiliation(s)
- Öznur Özge Özcan
- Electro‐Neurophysiology, Vocational School of Health SciencesÜsküdar UniversityİstanbulTurkey
| | - Burcu Çevreli
- Department of Physiology, Faculty of MedicineÜsküdar UniversityİstanbulTurkey
| | - Emel Serdaroğlu Kaşıkçı
- Department of Molecular Biology, Faculty of Engineering and Natural SciencesÜsküdar UniversityİstanbulTurkey
| | - Mesut Karahan
- Medical Laboratory Techniques, Vocational School of Health SciencesÜsküdar UniversityİstanbulTurkey
| | - Muhsin Konuk
- Department of Molecular Biology, Faculty of Engineering and Natural SciencesÜsküdar UniversityİstanbulTurkey
| |
Collapse
|
5
|
Luciano TF, Teodoro de Souza C, de Oliveira J, Muller AP. Reversal of high-fat diet-induced cognitive impairment and oxidative stress in the brain through Zingiber officinale supplementation. Metab Brain Dis 2024; 39:1495-1503. [PMID: 39120852 DOI: 10.1007/s11011-024-01406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Obesity is a significant health concern that is correlated with various adverse health outcomes. Diet-induced obesity (DIO) is associated with impaired cognitive function. Pharmacological treatments for obesity are limited and may have serious adverse effects. Zingiber officinale (ZO) has anti-inflammatory and antioxidant effects, in addition to metabolic effects. This study aimed to assess the effects of Zingiber officinale supplementation on cognitive function, anxiety levels, neurotrophin levels, and the inflammatory and oxidative status in the cortex following DIO in mice. Two-month-old male Swiss mice were fed DIO or standard chow for 4 months and subsequently subdivided into the following groups (n = 10 mice/group): (i) control - vehicle (CNT + vehicle); (ii) CNT supplemented with ZO (CNT + ZO); (iii) obese mice (DIO + vehicle); and (iv) obese mice supplemented with ZO (DIO + ZO) (n = 10). Zingiber officinale extract (400 mg/kg/day) was administered for 35 days via oral gavage. The DIO + vehicle group exhibited impaired recognition memory. The CNT + ZO group presented a greater number of crossings in the open field. No difference between the groups was observed in the plus maze test. DIO + vehicle increased the DCFH and carbonylation levels in the cortex. The DIO + vehicle group presented a reduction in catalase activity. The expression of inflammatory or neurotrophin markers in the cerebral cortex was not different. In conclusion, our findings indicate that supplementation with ZO reverses the cognitive impairment in DIO mice and enhances the antioxidant status of the cerebral cortex.
Collapse
Affiliation(s)
- Thais Fernandes Luciano
- Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Claudio Teodoro de Souza
- Postgraduate Program in Health, Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil
| | - Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alexandre Pastoris Muller
- Department of Biochemistry, Postgraduate Program in Biochemistry and Postgraduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
6
|
Yang C, Zhao M, Chen Y, Song J, Wang D, Zou M, Liu J, Wen W, Xu S. Dietary bitter ginger-derived zerumbone improved memory performance during aging through inhibition of the PERK/CHOP-dependent endoplasmic reticulum stress pathway. Food Funct 2024; 15:9070-9084. [PMID: 39078275 DOI: 10.1039/d4fo00402g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
PERK/CHOP pathway-mediated excessive endoplasmic reticulum (ER) stress is closely linked to aging-related cognitive impairment (ARCD). Zerumbone (ZB), a naturally occurring sesquiterpene molecule obtained from dietary bitter ginger, has garnered significant interest due to its diverse range of biological properties. It is unclear, though, if ZB can reduce ARCD by preventing ER stress that is dependent on the PERK/CHOP pathway. Here, the PERK-CHOP ER stress pathway was the main focus of an evaluation of the effects and mechanisms of ZB for attenuating ARCD in D-galactose (D-gal)-induced aging mice and SH-SY5Y cells. According to our findings, ZB not only greatly decreased neuronal impairment both in vitro and in vivo, but also significantly alleviated learning and memory failure in vivo. ZB significantly reduced the activation of the PERK/CHOP pathway and neuronal apoptosis in vitro and in vivo, exhibiting the down-regulation of GRP78, p-PREK/PERK, and CHOP expression levels, in addition to suppressing oxidative damage (MDA drop and SOD rise). Comparable outcomes were noted in SH-SY5Y cells subjected to severe ER stress caused by TM. On the other hand, 4-PBA, an ER stress inhibitor, considerably reversed these modifications. Remarkably, CCT020312 (a PERK activator) dramatically overrode the inhibitory effects of ZB on the PERK/CHOP pathway and neuronal death in D-gal-induced SH-SY5Y cells. In contrast, GSK2606414 (a PERK inhibitor) significantly increased these effects of ZB. In summary, our results suggested that ZB prevented D-gal-induced cognitive deficits by blocking the PERK/CHOP-dependent ER stress pathway and apoptosis, suggesting that ZB might be a natural sesquiterpene molecule that relieves ARCD.
Collapse
Affiliation(s)
- Chuan Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Meihuan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuanyuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juxian Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dan Wang
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mi Zou
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingru Liu
- University College London, Gower Street, London WC1E 6BT, UK
| | - Wen Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
7
|
Jacquier EF, Kassis A, Marcu D, Contractor N, Hong J, Hu C, Kuehn M, Lenderink C, Rajgopal A. Phytonutrients in the promotion of healthspan: a new perspective. Front Nutr 2024; 11:1409339. [PMID: 39070259 PMCID: PMC11272662 DOI: 10.3389/fnut.2024.1409339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Considering a growing, aging population, the need for interventions to improve the healthspan in aging are tantamount. Diet and nutrition are important determinants of the aging trajectory. Plant-based diets that provide bioactive phytonutrients may contribute to offsetting hallmarks of aging and reducing the risk of chronic disease. Researchers now advocate moving toward a positive model of aging which focuses on the preservation of functional abilities, rather than an emphasis on the absence of disease. This narrative review discusses the modulatory effect of nutrition on aging, with an emphasis on promising phytonutrients, and their potential to influence cellular, organ and functional parameters in aging. The literature is discussed against the backdrop of a recent conceptual framework which describes vitality, intrinsic capacity and expressed capacities in aging. This aims to better elucidate the role of phytonutrients on vitality and intrinsic capacity in aging adults. Such a review contributes to this new scientific perspective-namely-how nutrition might help to preserve functional abilities in aging, rather than purely offsetting the risk of chronic disease.
Collapse
Affiliation(s)
| | | | - Diana Marcu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Jina Hong
- Amway Innovation and Science, Ada, MI, United States
| | - Chun Hu
- Amway Innovation and Science, Ada, MI, United States
| | - Marissa Kuehn
- Amway Innovation and Science, Ada, MI, United States
| | | | - Arun Rajgopal
- Amway Innovation and Science, Ada, MI, United States
| |
Collapse
|
8
|
Abdelaziz M, Mohamed AF, Zaki HF, Gad SS. Agomelatine improves memory and learning impairments in a rat model of LPS-induced neurotoxicity by modulating the ERK/SorLA/BDNF/TrkB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1701-1714. [PMID: 37712973 PMCID: PMC10858839 DOI: 10.1007/s00210-023-02717-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The mutual interplay between neuroinflammation, synaptic plasticity, and autophagy has piqued researchers' interest, particularly when it comes to linking their impact and relationship to cognitive deficits. Being able to reduce inflammation and apoptosis, melatonin has shown to have positive neuroprotective effects; that is why we thought to check the possible role of agomelatine (AGO) as a promising candidate that could have a positive impact on cognitive deficits. In the current study, AGO (40 mg/kg/day, p.o., 7 days) successfully ameliorated the cognitive and learning disabilities caused by lipopolysaccharide (LPS) in rats (250 μg/kg/day, i.p., 7 days). This positive impact was supported by improved histopathological findings and improved spatial memory as assessed using Morris water maze. AGO showed a strong ability to control BACE1 activity and to rein in the hippocampal amyloid beta (Aβ) deposition. Also, it improved neuronal survival, neuroplasticity, and neurogenesis by boosting BDNF levels and promoting its advantageous effects and by reinforcing the pTrkB expression. In addition, it upregulated the pre- and postsynaptic neuroplasticity biomarkers resembled in synapsin I, synaptophysin, and PSD-95. Furthermore, AGO showed a modulatory action on Sortilin-related receptor with A-type repeats (SorLA) pathway and adjusted autophagy. It is noteworthy that all of these actions were abolished by administering PD98059 a MEK/ERK pathway inhibitor (0.3 mg/kg/day, i.p., 7 days). In conclusion, AGO administration significantly improves memory and learning disabilities associated with LPS administration by modulating the ERK/SorLA/BDNF/TrkB signaling pathway parallel to its capacity to adjust the autophagic process.
Collapse
Affiliation(s)
- Mahmoud Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Giza, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt.
- Faculty of Pharmacy, King Salman International University (KSIU), 46612, Ras Sedr, South Sinai, Egypt.
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt
| | - Sameh S Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Giza, Egypt
| |
Collapse
|
9
|
Zou M, Wang D, Chen Y, Yang C, Xu S, Dai Y. Dajianzhong decoction ameliorated D-gal-induced cognitive aging by triggering mitophagy in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117212. [PMID: 37783403 DOI: 10.1016/j.jep.2023.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dajianzhong decoction (DJZ) is a classical famous formula for treating yang-deficiency-syndrome in traditional Chinese medicine and recorded in Jin-Kui-Yao-Lue in Dynasty of Dong Han. Cognitive aging can present similar features of mitochondrial energy deficits to the clinical features of Yang deficiency. However, there is poor understanding of the effects of DJZ treatment on mitophagy in cognitive aging. AIM OF THE STUDY The aims of this work were to decipher the effectiveness and mechanism of DJZ against cognitive aging, focusing on mitophagy. MATERIALS AND METHODS YFP-Parkin HeLa cells, D-galactose (D-gal) -induced mice (500 mg/kg for 35 d, s. c.) and SH-SY5Y cells (80 mg/ml for 6 h) were established. Firstly, the formation of YFP-Parkin puncta (a well-known mitophagy marker) in YFP-Parkin HeLa cells was employed to discover the mitophagy induction of DJZ. Moreover, the genes and proteins related to PINK1/Parkin pathway and mitochondrial functions were evaluated after treatment with DJZ in vivo (3.5 g/kg or 1.75 g/kg, i. g, 35 d) and in vitro (0.2, 2 and 20 μg/ml, 12 h). Furthermore, the effectiveness of DJZ (3.5 g/kg or 1.75 g/kg, i. g) for alleviating cognitive aging and nerve damage was measured in D-gal mice. Finally, siPINK1 was applied to reverse validation of DJZ in vitro. RESULTS The formation of YFP-Parkin puncta in YFP-Parkin HeLa cells was markedly induced by DJZ in a dose-dependent manner. The immunofluorescence intensity of Parkin and the protein expression of Parkin in mitochondrial membrane in D-gal mice were significantly increased after treatment of DJZ. The inhibition of PINK1/Parkin pathway in D-gal-induced mice and SH-SY5Y cells was significantly activated by DJZ. Simultaneously, the impairment of mitochondrial functions induced by D-gal were markedly reversed by DJZ. In addition, DJZ significantly ameliorated the neuropathological injury and cognitive declines in D-gal mice. Finally, after PINK1 was knocked down by siPINK1 in vitro, the neuroprotective effects of DJZ and the Parkin enhancement effect of DJZ were markedly reversed. CONCLUSION Our findings firstly showed DJZ could relieve cognitive aging through facilitating PINK1/Parkin-mediated mitophagy to protect against mitochondrial functions, indicating DJZ may be regarded as a promising intervention in cognitive aging.
Collapse
Affiliation(s)
- Mi Zou
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Dan Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yuanyuan Chen
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chuan Yang
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shijun Xu
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yuan Dai
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
10
|
Wang J, Akbari A, Chardahcherik M, Wu J. Ginger (Zingiber Officinale Roscoe) ameliorates ethanol-induced cognitive impairment by modulating NMDA and GABA-A receptors in rat hippocampus. Metab Brain Dis 2024; 39:67-76. [PMID: 37966694 DOI: 10.1007/s11011-023-01301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/24/2023] [Indexed: 11/16/2023]
Abstract
Brain damage caused by ethanol abuse may lead to permanent damage, including severe dementia. The aim of this study was to investigate the effects of ginger powder on ethanol-induced cognitive disorders by examining oxidative damage and inflammation status, and the gene expression of N-methyl-D-aspartate (NMDA) and γ-Aminobutyric acid (GABA)-A receptors in the hippocampus of male rats. 24 adult male Sprague-Dawley rats were allocated randomly to four groups as follows control, ethanol (4g/kg/day, by gavage), ginger (1g/kg/day, by gavage), and ginger-ethanol. At the end of the study, memory and learning were evaluated by the shuttle box test. Moreover, to explore mechanisms involved in ethanol-induced cognitive impairment and the protective effect of ginger, the expression of Nuclear factor kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), NMDA receptor, and GABA-A receptor was measured along with inflammatory and oxidative biomarkers in the hippocampus tissue. The results showed that ethanol could induce cognitive impairment in the ethanol group, while pretreatment with ginger could reverse it. The gene expression of the NF-κB/ Tumor necrosis factor (TNF)-α/Interleukin (IL)-1β pathway and NMDA and GABA-A receptors significantly increased in the ethanol group compared to the control group. While pretreatment with ginger could significantly improve ethanol-induced cognitive impairment through these pathways in the ginger-ethanol group compared to the ethanol group (P < 0.05). It can be concluded that ginger powder could ameliorate ethanol-induced cognitive impairment by modulating the expression of NMDA and GABA-A receptors and inhibiting oxidative damage and the NF-κB/TNF-α/IL-1β pathway in the rat hippocampus.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
| | - Abolfazl Akbari
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Marjan Chardahcherik
- Department of Biochemistry, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Jun Wu
- Department of Internal Medicine, Xi'an Yanta Qiangsen Meilin Hospital, Xi'an, 710000, China.
| |
Collapse
|
11
|
Shao R, Tan X, Pan M, Huang J, Huang L, Bi B, Huang X, Wang J, Li X. Inulin alters gut microbiota to alleviate post-stroke depressive-like behavior associated with the IGF-1-mediated MAPK signaling pathway. Brain Behav 2024; 14:e3387. [PMID: 38376033 PMCID: PMC10794126 DOI: 10.1002/brb3.3387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Gut microbiota dysbiosis is a key factor of the pathogenesis of post-stroke depression (PSD). PSD is associated with increased hippocampal neuronal apoptosis and decreased synaptic connectivity. Inulin can be involved in hippocampal neuron protection through the microbiome-gut-brain axis. However, the neuroprotective effects of inulin in PSD are still to be further investigated. METHODS By utilizing the GEO public database, we identify differentially expressed genes in the hippocampus following inulin intake. This can help us discover key signaling pathways through functional enrichment analysis. Furthermore, we validate the expression levels of signaling molecules in a rat model of PSD and examine the effects of inulin on behavioral changes and body weight. Additionally, conducting a microbiome analysis to identify significantly different microbial populations and perform correlation analysis. RESULTS The intake of inulin significantly up-regulated mitogen-activated protein kinase signaling pathway in the hippocampus. Inulin changed in the gut microbiota structure, leading to an increase in the abundance of Lactobacillus and Clostridium_sensu_stricto_1 in the intestines of PSD rats, while decreasing the abundance of Ruminococcus UCG_005, Prevotella_9, Oscillospiraceae, and Clostridia UCG_014. Furthermore, the inulin diet elevated levels of insulin-like growth factor 1 in the serum, which showed a positive correlation with the abundance of Lactobacillus. Notably, the consumption of inulin-enriched diet increased activity levels and preference for sugar water in PSD rats, while also reducing body weight. CONCLUSION These findings highlight the potential therapeutic benefits of inulin in the management of depression and emphasize the importance of maintaining a healthy gut microbiota for PSD.
Collapse
Affiliation(s)
- Rong Shao
- School of Clinical MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
| | - Xiongchang Tan
- School of Clinical MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
| | - Minfu Pan
- School of Clinical MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
| | - Jiawen Huang
- School of Clinical MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
| | - Liu Huang
- School of Clinical MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
| | - Binyu Bi
- School of Clinical MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
| | - Xiaohua Huang
- Department of NeurologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Jie Wang
- Department of NeurologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Xuebin Li
- School of Clinical MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
- Department of NeurologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Biological Molecule LaboratoryGuangxi University Key Laboratory of High Incidence Prevention and Control Research in Western GuangxiBaiseGuangxiChina
| |
Collapse
|
12
|
Shaukat MN, Nazir A, Fallico B. Ginger Bioactives: A Comprehensive Review of Health Benefits and Potential Food Applications. Antioxidants (Basel) 2023; 12:2015. [PMID: 38001868 PMCID: PMC10669910 DOI: 10.3390/antiox12112015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Ginger is an herbaceous and flowering plant renowned for its rhizome, which is widely employed as both a spice and an herb. Since ancient times, ginger has been consumed in folk medicine and traditional cuisines for its favorable health effects. Different in vitro and in vivo studies have disclosed the advantageous physiological aspects of ginger, primarily due to its antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic properties. These health-promoting features are linked to the variety of bioactive compounds that are present in ginger. Following the advancement in consumer awareness and the industrial demand for organic antioxidants and functional ingredients, the application of ginger and its derivatives has been broadly investigated in a wide range of food products. The prominent features transmitted by ginger into different food areas are antioxidant and nutraceutical values (bakery); flavor, acceptability, and techno-functional characteristics (dairy); hedonic and antimicrobial properties (beverages); oxidative stability, tenderization, and sensorial attributes (meat); and shelf life and sensorial properties (film, coating, and packaging). This review is focused on providing a comprehensive overview of the tendencies in the application of ginger and its derivatives in the food industry and concurrently briefly discusses the beneficial aspects and processing of ginger.
Collapse
Affiliation(s)
- Muhammad Nouman Shaukat
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95123 Catania, Italy;
| | - Akmal Nazir
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Biagio Fallico
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95123 Catania, Italy;
| |
Collapse
|
13
|
Abdelghany AK, Gamal A, Abdel-Wahab A, Abdel-Razik ARH, El-Samannoudy S, Ibrahim MA, Hassan WH, El-Ela FIA. RETRACTED ARTICLE: Evaluating the neuroprotective effect of Spirulina platensis-loaded niosomes against Alzheimer's disease induced in rats. Drug Deliv Transl Res 2023; 13:2690. [PMID: 36790720 PMCID: PMC10468951 DOI: 10.1007/s13346-023-01301-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Affiliation(s)
- Asmaa K. Abdelghany
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511 Egypt
| | - Amr Gamal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed Abdel-Wahab
- Department of Physiology, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| | - Abdel-Razik H. Abdel-Razik
- Department of Histopathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511 Egypt
| | | | - Marwa A. Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Walid Hamdy Hassan
- Department of Microbiology Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511 Egypt
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511 Egypt
| |
Collapse
|
14
|
Seung HB, Kwon HJ, Kwon CY, Kim SH. Neuroendocrine Biomarkers of Herbal Medicine for Major Depressive Disorder: A Systematic Review and Meta-Analysis. Pharmaceuticals (Basel) 2023; 16:1176. [PMID: 37631092 PMCID: PMC10458856 DOI: 10.3390/ph16081176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Major depressive disorder (MDD) is a medical condition involving persistent sadness and loss of interest; however, conventional treatments with antidepressants and cognitive behavioral therapy have limitations. Based on the pathogenesis of MDD, treatments using herbal medicines (HM) have been identified in animal studies. We conducted a systematic review of clinical studies to identify neurobiological outcomes and evaluate the effectiveness of HM in treating MDD. A meta-analysis was performed by searching nine databases from their inception until 12 September 2022, including 31 randomized controlled trials with 3133 participants, to examine the effects of HM on MDD using neurobiological biomarkers and a depression questionnaire scale. Quality assessment was performed using a risk of bias tool. Compared to antidepressants alone, HM combined with an antidepressant significantly increased concentrations of serotonin (SMD = 1.96, 95% CI: 1.24-2.68, p < 0.00001, I2 = 97%), brain-derived neurotrophic factor (SMD = 1.38, 95% CI: 0.92-1.83, p < 0.00001, I2 = 91%), and nerve growth factors (SMD = 2.38, 95% CI: 0.67-4.10, p = 0.006, I2 = 96%), and decreased cortisol concentrations (SMD = -3.78, 95% CI: -4.71 to -2.86, p < 0.00001, I2 = 87%). Although HM or HM with an antidepressant benefits MDD treatment through improving neuroendocrine factors, these findings should be interpreted with caution because of the low methodological quality and clinical heterogeneity of the included studies.
Collapse
Affiliation(s)
- Hye-Bin Seung
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (H.-B.S.); (H.-J.K.)
| | - Hui-Ju Kwon
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (H.-B.S.); (H.-J.K.)
| | - Chan-Young Kwon
- Department of Oriental Neuropsychiatry, Dong-Eui University College of Korean Medicine, Busan 47227, Republic of Korea;
| | - Sang-Ho Kim
- Department of Neuropsychiatry of Korean Medicine, Pohang Korean Medicine Hospital, Daegu Haany University, 411 Saecheonnyeon-daero, Nam-gu, Pohang-si 790-826, Republic of Korea
| |
Collapse
|
15
|
Nakyam T, Wattanathorn J, Thukham-mee W, Muchimapura S. The Polyherbal Functional Ingredient Containing Ginger, Chinese Date, and Wood Ear Mushroom Protects against Dementia following Metabolic Syndrome. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9911397. [PMID: 37564141 PMCID: PMC10412205 DOI: 10.1155/2023/9911397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 08/12/2023]
Abstract
The anti-dementia effect following ischemic stroke with metabolic syndrome (MetS) of the polyherbal functional ingredient comprising ginger, Chinese date, and wood ear mushroom (GCJ) was hypothesized due to its neuroprotective effect against stroke. This study was performed to test this hypothesis and to explore the underlying mechanism. Male Wistar rats weighing 180-220 g were induced metabolic syndrome (MetS) with a 16-week high-carbohydrate high-fat diet (HCHF) feeding. The rats with MetS characteristics were orally administered GCJ at various doses (GCJ100, GCJ200, and GCJ300 mg kg-1 BW) 21 days pre-induction and 21 days post-induction of reperfusion injury (I/R) at the right middle cerebral artery (MCAO). Memory was evaluated every 7 days during the study period. At the end of the study, neuron density, AChE activity, and the expressions of eNOS, BDNF, and pERK/ERK in the prefrontal cortex, and hippocampus were also determined. MetS rats with GCJ treatment improved memory impairment, enhanced neuron density, and increased the expressions of eNOS, BDNF, and pERK/ERK but suppressed AChE in both areas. Therefore, the anti-dementia effect following ischemic stroke with metabolic syndrome of GCJ may involve the improvement of AChE, eNOS, BDNF, pERK/ERK, and neural plasticity. However, this required confirmation by clinical study.
Collapse
Affiliation(s)
- Thuntiva Nakyam
- Department of Physiology and Graduate School (Neuroscience Program), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand 40002
| | - Jintanaporn Wattanathorn
- Integrative Complementary Alternative Medicine Research and Development Center in Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, Thailand 40002
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand 40002
| | - Wipawee Thukham-mee
- Integrative Complementary Alternative Medicine Research and Development Center in Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, Thailand 40002
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand 40002
| | - Supaporn Muchimapura
- Integrative Complementary Alternative Medicine Research and Development Center in Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, Thailand 40002
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand 40002
| |
Collapse
|
16
|
Chen P, Ban W, Wang W, You Y, Yang Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023; 5:276-294. [PMID: 37218868 DOI: 10.3390/clockssleep5020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In this narrative review article, we discuss the role of sleep deprivation (SD) in memory processing in rodent models. Numerous studies have examined the effects of SD on memory, with the majority showing that sleep disorders negatively affect memory. Currently, a consensus has not been established on which damage mechanism is the most appropriate. This critical issue in the neuroscience of sleep remains largely unknown. This review article aims to elucidate the mechanisms that underlie the damaging effects of SD on memory. It also proposes a scientific solution that might explain some findings. We have chosen to summarize literature that is both representative and comprehensive, as well as innovative in its approach. We examined the effects of SD on memory, including synaptic plasticity, neuritis, oxidative stress, and neurotransmitters. Results provide valuable insights into the mechanisms by which SD impairs memory function.
Collapse
Affiliation(s)
- Pinqiu Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
17
|
Chen Y, Yang C, Zou M, Wang D, Sheng R, Zhan M, Chen Q, Yang W, Liu X, Xu S. Inhibiting mitochondrial inflammation through Drp1/HK1/NLRP3 pathway: A mechanism of alpinetin attenuated aging-associated cognitive impairment. Phytother Res 2023. [PMID: 36772986 DOI: 10.1002/ptr.7767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/20/2022] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
Mitochondrial inflammation triggered by abnormal mitochondrial division and regulated by the Drp1/HK1/NLRP3 pathway is correlated with the progression of aging-associated cognitive impairment (AACI). Alpinetin is a novel flavonoid derived from Zingiberaceae that has many bioactivities such as antiinflammation and anti-oxidation. However, whether alpinetin alleviates AACI by suppressing Drp1/HK1/NLRP3 pathway-inhibited mitochondrial inflammation is still unknown. In the present study, D-galactose (D-gal)-induced aging mice and BV-2 cells were used, and the effects of alpinetin on learning and memory function, neuroprotection and activation of the Drp1/HK1/NLRP3 pathway were investigated. Our data indicated that alpinetin significantly alleviated cognitive dysfunction and neuronal damage in the CA1 and CA3 regions of D-gal-treated mice. Moreover, D-gal-induced microglial activation was markedly reduced by alpinetin by inhibiting the Drp1/HK1/NLRP3 pathway-suppressed mitochondrial inflammation, down-regulating the levels of p-Drp1 (s616), VDAC, NLRP3, ASC, Cleaved-caspase 1, IL-18, and IL-1β, and up-regulating the expression of HK1. Furthermore, after Drp1 inhibition by Mdivi-1 in vitro, the inhibitory effect of alpinetin on Drp1/HK1/NLRP3 pathway was more evident. In summary, the current results implied that alpinetin attenuated aging-related cognitive deficits by inhibiting the Drp1/HK1/NLRP3 pathway and suppressing mitochondrial inflammation, suggesting that the inhibition of the Drp1/HK1/NLRP3 pathway is one of the mechanisms by which alpinetin attenuates AACI.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mi Zou
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Wang
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruilin Sheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenqin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Chiou JS, Chou CH, Ho MW, Tien N, Liang WM, Chiu ML, Tsai FJ, Wu YC, Chou IC, Lu HF, Lin TH, Liao CC, Huang SM, Li TM, Lin YJ. Effect of Chinese herbal medicine therapy on risks of all-cause mortality, infections, parasites, and circulatory-related mortality in HIV/AIDS patients with neurological diseases. Front Pharmacol 2023; 14:1097862. [PMID: 36937878 PMCID: PMC10020503 DOI: 10.3389/fphar.2023.1097862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Long-term living with human immunodeficiency virus (HIV) and/or antiretroviral therapy (ART) is associated with various adverse effects, including neurocognitive impairment. Heterogeneous neurocognitive impairment remains an important issue, affecting between 15-65% of human immunodeficiency virus infection and acquired immunodeficiency syndrome (HIV/AIDS) patients and resulting in work performance, safety, and health-related outcomes that have a heavy economic burden. Methods: We identified 1,209 HIV/AIDS patients with neurological diseases during 2010-2017. The Kaplan-Meier method, log-rank test, and Cox proportional hazards model were used to analyze 308 CHM users and 901 non-CHM users within this population. Major CHM clusters were determined using association rule mining and network analysis. Results and Discussion: Results showed that CHM users had a 70% lower risk of all-cause mortality (adjusted hazard ratio (aHR) = 0.30, 95% confidence interval (CI):0.16-0.58, p < 0.001) (p = 0.0007, log-rank test). Furthermore, CHM users had an 86% lower risk of infections, parasites, and circulatory-related mortality (aHR = 0.14, 95% confidence interval (CI):0.04-0.46, p = 0.001) (p = 0.0010, log-rank test). Association rule mining and network analysis showed that two CHM clusters were important for patients with neurological diseases. In the first CHM cluster, Huang Qin (HQ; root of Scutellaria baicalensis Georgi), Gan Cao (GC; root of Glycyrrhiza uralensis Fisch.), Huang Lian (HL; root of Coptis chinensis Franch.), Jie Geng (JG; root of Platycodon grandiflorus (Jacq.) A.DC.), and Huang Bai (HB; bark of Phellodendron amurense Rupr.) were identified as important CHMs. Among them, the strongest connection strength was identified between the HL and HQ. In the second CHM cluster, Suan-Zao-Ren-Tang (SZRT) and Ye Jiao Teng (YJT; stem of Polygonum multiflorum Thunb.) were identified as important CHMs with the strongest connection strength. CHMs may thus be effective in treating HIV/AIDS patients with neurological diseases, and future clinical trials are essential for the prevention of neurological dysfunction in the population.
Collapse
Affiliation(s)
- Jian-Shiun Chiou
- PhD Program for Health Science and Industry, College of Healthcare, China Medical University, Taichung, Taiwan
| | - Chen-Hsing Chou
- PhD Program for Health Science and Industry, College of Healthcare, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Section of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ni Tien
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Mu-Lin Chiu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
- Department of Pediatrics, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - I-Ching Chou
- Department of Pediatrics, China Medical University Children’s Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Hsing-Fang Lu
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Te-Mao Li, ; Ying-Ju Lin,
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Te-Mao Li, ; Ying-Ju Lin,
| |
Collapse
|
19
|
Kim KJ, Hwang ES, Kim MJ, Rha CS, Song MC, Maeng S, Park JH, Kim DO. Effects of Phenolic-Rich Pinus densiflora Extract on Learning, Memory, and Hippocampal Long-Term Potentiation in Scopolamine-Induced Amnesic Rats. Antioxidants (Basel) 2022; 11:antiox11122497. [PMID: 36552705 PMCID: PMC9774118 DOI: 10.3390/antiox11122497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease is the most common type of dementia with cognitive impairment. Various plant-derived phenolics are known to alleviate cognitive impairment in Alzheimer's disease by radical scavenging and strengthening synaptic plasticity activities. Here, we examined the cognition-improving effect of Pinus densiflora Sieb. et Zucc. bark extract (PBE). We identified and quantified phenolics in the PBE using a UHPLC-Orbitrap mass spectrometer. To evaluate the cognition-enhancing effects of PBE, scopolamine-induced amnesic Sprague-Dawley (SD) rats (5 weeks old) and ion channel antagonist-induced organotypic hippocampal slices of SD rats (7 days old) were used. Twenty-three phenolics were tentatively identified in PBE, 10 of which were quantified. Oral administration of PBE to the scopolamine-induced SD rats improved cognitive impairment in behavioral tests. PBE-fed SD rats showed significantly improved antioxidant indices (superoxide dismutase and catalase activities, and malondialdehyde content) and reduced acetylcholinesterase activity in hippocampal lysate compared with the scopolamine group. PBE increased the long-term potentiation (LTP) induction and rescued LTP from blockades by the muscarinic cholinergic receptor antagonist (scopolamine) and N-methyl-D-aspartate channel antagonist (2-amino-5-phosphonovaleric acid) in the organotypic hippocampal slices. These results suggest that polyphenol-rich PBE is applicable as a cognition-improving agent due to its antioxidant properties and enhancement of LTP induction.
Collapse
Affiliation(s)
- Kwan Joong Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun-Sang Hwang
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Min-Jeong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chan-Su Rha
- AMOREPACIFIC R&I Center, Yongin 17074, Republic of Korea
| | - Myoung Chong Song
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungho Maeng
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ji-Ho Park
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Correspondence: (J.-H.P.); (D.-O.K.); Tel.: +82-31-201-2916 (J.-H.P.); Tel.: +82-31-201-3796 (D.-O.K.)
| | - Dae-Ok Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- Correspondence: (J.-H.P.); (D.-O.K.); Tel.: +82-31-201-2916 (J.-H.P.); Tel.: +82-31-201-3796 (D.-O.K.)
| |
Collapse
|
20
|
Im H, Ju IG, Kim JH, Lee S, Oh MS. Trichosanthis Semen and Zingiberis Rhizoma Mixture Ameliorates Lipopolysaccharide-Induced Memory Dysfunction by Inhibiting Neuroinflammation. Int J Mol Sci 2022; 23:ijms232214015. [PMID: 36430493 PMCID: PMC9692726 DOI: 10.3390/ijms232214015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroinflammation, a key pathological contributor to various neurodegenerative diseases, is mediated by microglial activation and subsequent secretion of inflammatory cytokines via the mitogen-activated protein kinase (MAPK) signaling pathway. Moreover, neuroinflammation leads to synaptic loss and memory impairment. This study investigated the inhibitory effects of PNP001, a mixture of Trichosanthis Semen and Zingiberis Rhizoma in a ratio of 3:1, on neuroinflammation and neurological deficits induced by lipopolysaccharide (LPS). For the in vitro study, PNP001 was administered in LPS-stimulated BV2 microglial cells, and reduced the pro-inflammatory mediators, such as nitric oxide, inducible nitric oxide synthase, and cyclooxygenase-2 by downregulating MAPK signaling. For the in vivo study, ICR mice were orally administered PNP001 for 18 consecutive days, and concurrently treated with LPS (1 mg/kg, i.p.) for 10 days, beginning on the 4th day of PNP001 administration. The remarkably decreased number of activated microglial cells and increased expression of pre- and post-synaptic proteins were observed more in the hippocampus of the PNP001 administered groups than in the LPS-treated group. Furthermore, daily PNP001 administration significantly attenuated long-term memory decline compared with the LPS-treated group. Our study demonstrated that PNP001 inhibits LPS-induced neuroinflammation and its associated memory dysfunction by alleviating microglial activation and synaptic loss.
Collapse
Affiliation(s)
- Hyeri Im
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 02447, Korea
| | - Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seungmin Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Myung Sook Oh
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 02447, Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-9436; Fax: +82-2-963-9436
| |
Collapse
|
21
|
Xu T, Tao M, Li R, Xu X, Pan S, Wu T. Longevity-promoting properties of ginger extract in Caenorhabditis elegans via the insulin/IGF-1 signaling pathway. Food Funct 2022; 13:9893-9903. [PMID: 36052763 DOI: 10.1039/d2fo01602h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ginger is a traditional medicinal and edible plant with multiple health-promoting properties. Nevertheless, the effects and potential mechanism of ginger on antiaging remain unknown. The aim of this study was to comprehend the antiaging effects and potential mechanism of ginger in Caenorhabditis elegans (C. elegans). The current findings showed that the lifespan of C. elegans was prolonged by 23.16% with the supplementation of 60 μg mL-1 ginger extract (GE), and the extension of lifespan was mainly attributed to the major bioactive compounds in GE, 6-, 8-, 10-gingerol and 6-, 8-, 10-shogaol. Subsequently, GE promoted healthy aging by improving nematode movement and attenuating lipofuscin accumulation, and enhanced stress tolerance by up-regulating the expression of stress-related genes and activating DAF-16 and SKN-1. Moreover, lifespan assays of relative mutants revealed that GE mediated extension of lifespan via the insulin/IGF-1 signaling (IIS) pathway. In summary, GE endowed nematodes (C. elegans) with longevity and stress resistance in an IIS pathway dependent manner.
Collapse
Affiliation(s)
- Tingting Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Mingfang Tao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Rong Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
22
|
Abdelghany AK, El-Nahass ES, Ibrahim MA, El-Kashlan AM, Emeash HH, Khalil F. Neuroprotective role of medicinal plant extracts evaluated in a scopolamine-induced rat model of Alzheimer's disease. Biomarkers 2022; 27:773-783. [PMID: 35950787 DOI: 10.1080/1354750x.2022.2112975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BackgroundAlzheimer's disease is a debilitating neurological brain disease with memory impairment among the first signs. Scopolamine (SCO), a muscarinic receptor antagonist that disrupts cognition and memory acquisition, is considered a psychopharmacological AD model. We investigate the effectiveness of medicinal plants in mitigating the SCO-induced neurobehavioural damage in rats.Materials and MethodsAnimals were injected with Scopolamine hydrobromide trihydrate (2.2 mg/kg IP.) daily for 2 months. Each treatment group was administered one of four medicinal spice extracts (Nigella sativa, 400 mg/kg; rosemary, 200 mg/kg; sage, 600 mg/kg and ginseng;200 mg/kg 90 minutes after SCO injection. Animals were subjected to cognitive-behavioral tests (NOR, Y-maze, and MWM). After the experiment, we extracted the brains for histopathological examination and biochemical assessment for oxidative stress (levels of TT, CAT and TBARS) and gene expression of acetylcholinesterase and brain monoamines.ResultsAs expected, SCO treatment impaired memory and cognition, increased oxidative stress, decreased neurotransmitters, and caused severe neurodegenerative changes in the brain.ConclusionSurprisingly, these effects were measurably moderated by the administration of all four plant extracts, indicating a neuroprotective action that we suggest could alleviate AD disease manifestations.
Collapse
Affiliation(s)
- Asmaa K Abdelghany
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - El-Shymaa El-Nahass
- Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University
| | - Akram M El-Kashlan
- Biochemistry Department, Faculty of Pharmacy, University of Sadat City, Monufia, Egypt
| | - H H Emeash
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma Khalil
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
23
|
Tocotrienols Attenuate White Adipose Tissue Accumulation and Improve Serum Cholesterol Concentration in High-Fat Diet-Treated Mice. Molecules 2022; 27:molecules27072188. [PMID: 35408585 PMCID: PMC9000465 DOI: 10.3390/molecules27072188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Tocotrienols (T3s), which are vitamin E homologs, have not only antioxidant function but also inhibitory effects on body weight gain and hepatic lipid droplet accumulation. However, the mechanisms of the anti-obesity effects of T3s are not yet understood. In this study, C57BL/6 mice were fed a high-fat diet in the presence or absence of T3s. Treatment with T3s inhibited white adipose tissue accumulation and elevation of serum cholesterol concentrations. Additionally, to clarify the relationship between obesity-induced cognitive dysfunction and the neuroprotective effect of T3s, cognitive function, brain oxidation, and protein expression levels of brain-derived neurotrophic factor (BDNF), which is strongly involved in neuronal growth and differentiation, were measured. Although mice behaviors were improved by oral T3 intake, there were no significant differences in brain oxidation levels and BDNF expression. These results suggest that T3s attenuate obesity via inhibition of body fat and serum cholesterol increase.
Collapse
|
24
|
Targeting the Erk1/2 and autophagy signaling easily improved the neurobalst differentiation and cognitive function after young transient forebrain ischemia compared to old gerbils. Cell Death Dis 2022; 8:87. [PMID: 35220404 PMCID: PMC8882190 DOI: 10.1038/s41420-022-00888-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
The hippocampal neurogenesis occurs constitutively throughout adulthood in mammalian species, but declines with age. In this study, we overtly found that the neuroblast proliferation and differentiation in the subgranular zone and the maturation into fully functional and integrated neurons in the granule-cell layer in young gerbils following cerebral ischemia/reperfusion was much more than those in old gerbils. The neurological function and cognitive and memory-function rehabilitation in the young gerbils improved faster than those in the old one. These results demonstrated that, during long term after cerebral ischemia/reperfusion, the ability of neurogenesis and recovery of nerve function in young animals were significantly higher than that in the old animals. We found that, after 14- and 28-day cerebral ischemia/reperfusion, the phosphorylation of MEK1/2, ERK1/2, p90RSK, and MSK1/2 protein levels in the hippocampus of young gerbils was significantly much higher than that of old gerbils. The levels of autophagy-related proteins, including Beclin-1, Atg3, Atg5, and LC3 in the hippocampus were effectively maintained and elevated at 28 days after cerebral ischemia/reperfusion in the young gerbils compared with those in the old gerbils. These results indicated that an increase or maintenance of the phosphorylation of ERK1/2 signal pathway and autophagy-related proteins was closely associated with the neuroblast proliferation and differentiation and the process of maturation into neurons. Further, we proved that neuroblast proliferation and differentiation in the dentate gyrus and cognitive function were significantly reversed in young cerebral ischemic gerbils by administering the ERK inhibitor (U0126) and autophagy inhibitor (3MA). In brief, following experimental young ischemic stroke, the long-term promotion of the neurogenesis in the young gerbil’s hippocampal dentate gyrus by upregulating the phosphorylation of ERK signaling pathway and maintaining autophagy-related protein levels, it overtly improved the neurological function and cognitive and memory function.
Collapse
|
25
|
Ju IG, Hong SM, Yun SW, Huh E, Kim DH, Kim SY, Oh MS. CCL01, a novel formulation composed of Cuscuta seeds and Lactobacillus paracasei NK112, enhances memory function via nerve growth factor-mediated neurogenesis. Food Funct 2021; 12:10690-10699. [PMID: 34605514 DOI: 10.1039/d1fo01403j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Memory decline occurs due to various factors, including stress, depression, and aging, and lowers the quality of life. Several nutritional supplements and probiotics have been used to enhance memory function, and efforts have been made to develop mixed supplements with maximized efficacy. In this study, we aimed to examine whether a novel formulation composed of Cuscuta seeds and Lactobacillus paracasei NK112, CCL01, enhances memory function and induces neurogenesis via nerve growth factor (NGF) induction. Firstly, we orally administered CCL01 to normal mice and assessed their memory function 4 weeks after the first administration by performing a step-through passive avoidance test. We found that CCL01 at 100 mg kg-1 treatment enhanced the fear-based memory function. By analyzing the expression of Ki-67 and doublecortin, which are the markers of proliferating cells and immature neurons, respectively, we observed that CCL01 induced neuronal proliferation and differentiation in the hippocampus of the mice. Additionally, we found that the expression of synaptic markers increased in the hippocampus of CCL01-treated mice. We measured the NGF expression in the supernatant of C6 cells after CCL01 treatment and found that CCL01 increased NGF release. Furthermore, treatment of CCL01-conditioned glial media on N2a cells increased neuronal differentiation via the TrkA/ERK/CREB signaling pathway and neurotrophic factor expression. Moreover, when CCL01 was administered and scopolamine was injected, CCL01 ameliorated memory decline. These results suggest that CCL01 is an effective enhancer of memory function and can be applied to various age groups requiring memory improvement.
Collapse
Affiliation(s)
- In Gyoung Ju
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Seong Min Hong
- Department of Pharmacy, College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea.
| | - Soo-Won Yun
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eugene Huh
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Sun Yeou Kim
- Department of Pharmacy, College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea.
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea. .,Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
26
|
da Rosa N, de Medeiros FD, de Oliveira J, Laurentino AOM, Peretti EDM, Machado RS, Lourenço MP, da Silva TI, Fernandes TDC, Reis PA, de Castro Faria Neto HC, Prophiro JS, Fortunato JJ, Petronilho F. 6-shogaol exerts a neuroprotective factor in offspring after maternal immune activation in rats. Dev Neurosci 2021; 44:13-22. [PMID: 34695825 DOI: 10.1159/000519992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Fabiana Durante de Medeiros
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Juliana de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Ana Olívia Martins Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Eduardo de Medeiros Peretti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Millena Pais Lourenço
- Immunopharmacology Laboratory, Oswaldo Cruz Institute/IOC/FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | - Patrícia Alves Reis
- Immunopharmacology Laboratory, Oswaldo Cruz Institute/IOC/FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Josiane Somariva Prophiro
- Research Group in Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, (UNISUL), Tubarão, Brazil
| | - Jucélia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| |
Collapse
|
27
|
Bahlakeh G, Rahbarghazi R, Mohammadnejad D, Abedelahi A, Karimipour M. Current knowledge and challenges associated with targeted delivery of neurotrophic factors into the central nervous system: focus on available approaches. Cell Biosci 2021; 11:181. [PMID: 34641969 PMCID: PMC8507154 DOI: 10.1186/s13578-021-00694-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
During the last decades, numerous basic and clinical studies have been conducted to assess the delivery efficiency of therapeutic agents into the brain and spinal cord parenchyma using several administration routes. Among conventional and in-progress administrative routes, the eligibility of stem cells, viral vectors, and biomaterial systems have been shown in the delivery of NTFs. Despite these manifold advances, the close association between the delivery system and regeneration outcome remains unclear. Herein, we aimed to discuss recent progress in the delivery of these factors and the pros and cons related to each modality.
Collapse
Affiliation(s)
- Gozal Bahlakeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daruosh Mohammadnejad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Nanonaringenin and Vitamin E Ameliorate Some Behavioral, Biochemical, and Brain Tissue Alterations Induced by Nicotine in Rats. J Toxicol 2021; 2021:4411316. [PMID: 34608387 PMCID: PMC8487377 DOI: 10.1155/2021/4411316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/11/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotine is the major alkaloid present in cigarettes that induces various biochemical and behavioral changes. Nanonaringenin (NNG) and vitamin E are antioxidants that are reported to mitigate serious impairments caused by some toxins and oxidants. Thus, we aimed to investigate the efficacy of NNG, vitamin E, and their combinations to ameliorate behavioral, biochemical, and histological alterations induced by nicotine in rats. Adult male albino rats were randomly grouped into six equal groups (10 rats/group): control, N (nicotine 1 mg/kg b.w./day S/C from 15th to 45th day, 5 days a week), NNG (25 mg/kg b.w./day orally for 45 days), N + NNG, N + E (nicotine + vitamin E 200 mg/kg b.w./day orally), and N + NNG + E (nicotine + NNG + vitamin E at the aforementioned doses). Behavioral tests were conducted on day 15 and 30 postnicotine injection, while memory tests, brain neurotransmitters, antioxidants, and histopathological examination were examined at day 30 only. As a result, nicotine impaired rats' activity (hypoactivity and hyperactivity) and memory, induced anxiolytic and anxiogenic effects on rats, and altered neurotransmitters (acetylcholinesterase, serotonin, and dopamine), and redox markers (MDA, H2O2, GSH, and catalase) levels in brain homogenates. Thickening and congestion of the meninges and degeneration of the cerebral neurons and glia cells were observed. Cosupplementation with NNG, vitamin E, and their combination with nicotine was beneficial in the alleviation of activity impairments and improved short memory and cognition defects and exploratory behaviors. Our results indicate the antioxidant potential of NNG and vitamin E by modulating redox markers and neurotransmitters in the brain. Thus, data suggest that the prophylactic use of NNG, vitamin E, and/or their combination for (45 days) may have a successful amelioration of the disrupted behavior and cognition and biochemical and histopathological alterations induced by nicotine.
Collapse
|
29
|
Kropf E, Fahnestock M. Effects of Reactive Oxygen and Nitrogen Species on TrkA Expression and Signalling: Implications for proNGF in Aging and Alzheimer's Disease. Cells 2021; 10:cells10081983. [PMID: 34440751 PMCID: PMC8392605 DOI: 10.3390/cells10081983] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Nerve growth factor (NGF) and its precursor form, proNGF, are critical for neuronal survival and cognitive function. In the brain, proNGF is the only detectable form of NGF. Dysregulation of proNGF in the brain is implicated in age-related memory loss and Alzheimer’s disease (AD). AD is characterized by early and progressive degeneration of the basal forebrain, an area critical for learning, memory, and attention. Learning and memory deficits in AD are associated with loss of proNGF survival signalling and impaired retrograde transport of proNGF to the basal forebrain. ProNGF transport and signalling may be impaired by the increased reactive oxygen and nitrogen species (ROS/RNS) observed in the aged and AD brain. The current literature suggests that ROS/RNS nitrate proNGF and reduce the expression of the proNGF receptor tropomyosin-related kinase A (TrkA), disrupting its downstream survival signalling. ROS/RNS-induced reductions in TrkA expression reduce cell viability, as proNGF loses its neurotrophic function in the absence of TrkA and instead generates apoptotic signalling via the pan-neurotrophin receptor p75NTR. ROS/RNS also interfere with kinesin and dynein motor functions, causing transport deficits. ROS/RNS-induced deficits in microtubule motor function and TrkA expression and signalling may contribute to the vulnerability of the basal forebrain in AD. Antioxidant treatments may be beneficial in restoring proNGF signalling and axonal transport and reducing basal forebrain neurodegeneration and related deficits in cognitive function.
Collapse
Affiliation(s)
- Erika Kropf
- Graduate Program in Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence:
| |
Collapse
|
30
|
Majdi Yazdi G, Vaezi G, Hojati V, Mohammad-Zadeh M. The Effect of 6-gingerol on Growth Factors and Apoptosis Indices in Rats Exposed to Gold Nanoparticles. Basic Clin Neurosci 2021; 12:301-307. [PMID: 34917289 PMCID: PMC8666918 DOI: 10.32598/bcn.2021.357.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/03/2019] [Accepted: 04/04/2020] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Research has shown that gold nanoparticles (AuNPs) can damage the physiological processes of brain tissue. Given the antioxidant properties of Gingerol (GING), this study aimed to determine the protective effect of 6-gingerol on hippocampal levels of Brain-Derived Neurotrophic Factor (BDNF), Nerve Growth Factor (NGF), DNA oxidative damage, and the amount of Bax and Bcl2 apoptosis indices of rats exposed to AuNPs. METHODS A total of 42 male Wistar rats were divided into four groups: control (30 days 0.5 mL saline), AuNPs (one time injection of 0.5 mL AuNPs, 200 ppm and 60 Nm + 30 days 0.5 mL saline), AuNPs+GING 50 (one time injection of 0.5 mL AuNPs, 200 ppm and 60 Nm + 30 days 0.5 mL density of gingerol 50 mg/kg), and AuNPs+GING100 (one time injection of 0.5 mL AuNPs, 200 ppm and 60 Nm + 30 days 0.5 mL density of gingerol 100 mg/kg). At the end of the treatment period, the hippocampal levels of NGF, BDNF, 8-hydroxy-desoxyguanosine (8-HOdG), and apoptotic indices of Bax and Bcl-2 were assessed with the ELISA method. RESULTS Compared with the AuNPs group, hippocampal levels of BDNF, NGF, and Bcl-2 in rats in the AuNPs+GING 50 and AuNPs+GING 100 groups significantly increased dose-dependently. However, the hippocampal levels of Bax and 8-HOdG significantly decreased dose-dependently (P<0.05). CONCLUSION According to obtained results, gingerol may improve hippocampal BDNF and NGF levels in rats exposed to AuNPs, probably by reducing apoptosis and oxidative DNA damage.
Collapse
Affiliation(s)
- Ghasem Majdi Yazdi
- Department of Biology, Faculty of Basic Sciences, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Gholamhasan Vaezi
- Department of Biology, Faculty of Basic Sciences, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Faculty of Basic Sciences, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mohammad Mohammad-Zadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Varshney H, Siddique YH. Role of natural plant products against Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:904-941. [PMID: 33881973 DOI: 10.2174/1871527320666210420135437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 02/09/2021] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative disorder. Deposition of amyloid fibrils and tau protein are associated with various pathological symptoms. Currently limited medication is available for AD treatment. Most of the drugs are basically cholinesterase inhibitors and associated with various side effects. Natural plant products have shown potential as a therapeutic agent for the treatment of AD symptoms. Variety of secondary metabolites like flavonoids, tannins, terpenoids, alkaloids and phenols are used to reduce the progression of the disease. Plant products have less or no side effect and are easily available. The present review gives a detailed account of the potential of natural plant products against the AD symptoms.
Collapse
Affiliation(s)
- Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
32
|
Xu T, Liu J, Li XR, Yu Y, Luo X, Zheng X, Cheng Y, Yu PQ, Liu Y. The mTOR/NF-κB Pathway Mediates Neuroinflammation and Synaptic Plasticity in Diabetic Encephalopathy. Mol Neurobiol 2021; 58:3848-3862. [PMID: 33860440 DOI: 10.1007/s12035-021-02390-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Diabetic encephalopathy, a severe complication of diabetes mellitus, is characterized by neuroinflammation and aberrant synaptogenesis in the hippocampus leading to cognitive decline. Mammalian target of rapamycin (mTOR) is associated with cognition impairment. Nuclear factor-κB (NF-κB) is a transcription factor of proinflammatory cytokines. Although mTOR has been ever implicated in processes occurring in neuroinflammation, the role of this enzyme on NF-κB signaling pathway remains unclear in diabetic encephalopathy. In the present study, we investigated whether mTOR regulates the NF-κB signaling pathway to modulate inflammatory cytokines and synaptic plasticity in hippocampal neurons. In vitro model was constructed in mouse HT-22 hippocampal neuronal cells exposed to high glucose. With the inhibition of mTOR or NF-κB by either chemical inhibitor or short-hairpin RNA (shRNA)-expressing lentivirus-vector, we examined the effects of mTOR/NF-κB signaling on proinflammatory cytokines and synaptic proteins. The diabetic mouse model induced by a high-fat diet combined with streptozotocin injection was administrated with rapamycin (mTOR inhibitor) and PDTC (NF-κB inhibitor), respectively. High glucose significantly increased mTOR phosphorylation in HT-22 cells. While inhibiting mTOR by rapamycin or shmTOR significantly suppressed high glucose-induced activation of NF-κB and its regulators IKKβ and IκBα, suggesting mTOR is the upstream regulator of NF-κB. Furthermore, inhibiting NF-κB by PDTC and shNF-κB decreased proinflammatory cytokines expression (IL-6, IL-1β, and TNF-α) and increased brain-derived neurotrophic factor (BDNF) and synaptic proteins (synaptophysin and PSD-95) in HT-22 cells under high glucose conditions. Besides, the mTOR and NF-κB inhibitors improved cognitive decline in diabetic mice. The inhibition of mTOR and NF-κB suppressed mTOR/NF-κB signaling pathway, increased synaptic proteins, and improved ultrastructural synaptic plasticity in the hippocampus of diabetic mice. Activating mTOR/NF-κB signaling pathway regulates the pathogenesis of diabetic encephalopathy, such as neuroinflammation, synaptic proteins loss, and synaptic ultrastructure impairment. The findings provide the implication that mTOR/NF-κB is potential new drug targets to treat diabetic encephalopathy.
Collapse
Affiliation(s)
- Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jiao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xin-Rui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Xuan Luo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xian Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuan Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Pei-Quan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China. .,Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China. .,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
33
|
Li X, Ao M, Zhang C, Fan S, Chen Z, Yu L. Zingiberis Rhizoma Recens: A Review of Its Traditional Uses, Phytochemistry, Pharmacology, and Toxicology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6668990. [PMID: 33747112 PMCID: PMC7943299 DOI: 10.1155/2021/6668990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 01/04/2023]
Abstract
Zingiberis Rhizoma Recens (ZRR, the fresh rhizoma of Zingiber officinale Roscoe) is a widely used traditional Chinese medicine (TCM). It is also a traditional spice, widely used around the world. The present paper reviews advances in research relating to the botany, ethnopharmacology, phytochemistry, pharmacology, and toxicology of Zingiberis Rhizoma Recens. In addition, this review also discusses some significant issues and the potential direction of future research on Zingiberis Rhizoma Recens. More than 100 chemical compounds have been isolated from Zingiberis Rhizoma Recens, including gingerols, essential oils, diarylheptanoids, and other compounds. Modern studies have confirmed that Zingiberis Rhizoma Recens has pharmacological effects on the nervous system and cardiovascular and cerebrovascular systems, as well as antiemetic, antibacterial, antitumor, anti-inflammatory, and antioxidant effects. However, the modern studies of Zingiberis Rhizoma Recens are still not complete and more bioactive components and potential pharmacological effects need to be explored in the future. There is no unified standard to evaluate the quality and clinical efficacy of Zingiberis Rhizoma Recens. Therefore, we should establish reasonable, accurate, and reliable quality control standards to make better use of Zingiberis Rhizoma Recens.
Collapse
Affiliation(s)
- Xing Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 6111137, China
| | - Mingyue Ao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 6111137, China
| | - Chunling Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 6111137, China
| | - Shunming Fan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 6111137, China
| | - Zhimin Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 6111137, China
| | - Lingying Yu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 6111137, China
| |
Collapse
|
34
|
Zhang M, Zhao R, Wang D, Wang L, Zhang Q, Wei S, Lu F, Peng W, Wu C. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother Res 2021; 35:711-742. [PMID: 32954562 DOI: 10.1002/ptr.6858] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/17/2020] [Accepted: 08/02/2020] [Indexed: 12/25/2022]
Abstract
Zingiber officinale Rosc. (Zingiberacae), commonly known as ginger, is a perennial and herbaceous plant with long cultivation history. Ginger rhizome is one of the most popular food spices with unique pungent flavor and is prescribed as a well-known traditional Chinese herbal medicine. To date, over 160 constituents, including volatile oil, gingerol analogues, diarylheptanoids, phenylalkanoids, sulfonates, steroids, and monoterpenoid glycosides compounds, have been isolated and identified from ginger. Increasing evidence has revealed that ginger possesses a broad range of biological activities, especially gastrointestinal-protective, anti-cancer, and obesity-preventive effects. In addition, gingerol analogues such as 6-gingerol and 6-shogaol can be rapidly eliminated in the serum and detected as glucuronide and sulfate conjugates. Structural variation would be useful to improve the metabolic characteristics and bioactivities of lead compounds derived from ginger. Furthermore, some clinical trials have indicated that ginger can be consumed for attenuating nausea and vomiting during early pregnancy; however, there is not sufficient data available to rule out its potential toxicity, which should be monitored especially over longer periods. This review provides an up-to-date understanding of the scientific evidence on the development of ginger and its active compounds as health beneficial agents in future clinical trials.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujun Wei
- Basic Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
35
|
Sørnes EØ, Risal A, Manandhar K, Thomas H, Steiner TJ, Linde M. Use of medicinal plants for headache, and their potential implication in medication-overuse headache: Evidence from a population-based study in Nepal. Cephalalgia 2021; 41:561-581. [PMID: 33435708 PMCID: PMC8047708 DOI: 10.1177/0333102420970904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background In Nepal, traditional treatment using medicinal plants is popular. Whereas
medication-overuse headache is, by definition, caused by excessive use of
acute headache medication, we hypothesized that medicinal plants, being
pharmacologically active, were as likely a cause. Methods We used data from a cross-sectional, nationwide population-based study, which
enquired into headache and use of medicinal plants and allopathic
medications. We searched the literature for pharmacodynamic actions of the
medicinal plants. Results Of 2100 participants, 1794 (85.4%) reported headache in the preceding year;
161 (7.7%) reported headache on ≥15 days/month, of whom 28 (17.4%) had used
medicinal plants and 117 (72.7%) allopathic medication(s). Of 46 with
probable medication-overuse headache, 87.0% (40/46) were using allopathic
medication(s) and 13.0% (6/46) medicinal plants, a ratio of 6.7:1, higher
than the overall ratio among those with headache of 4.9:1 (912/185). Of 60
plant species identified, 49 were pharmacodynamically active on the central
nervous system, with various effects of likely relevance in
medication-overuse headache causation. Conclusions MPs are potentially a cause of medication-overuse headache, and not to be
seen as innocent in this regard. Numbers presumptively affected in Nepal are
low but not negligible. This pioneering project provides a starting point
for further research to provide needed guidance on use of medicinal plants
for headache.
Collapse
Affiliation(s)
- Elise Øien Sørnes
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ajay Risal
- Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Kavre, Nepal.,Kathmandu University School of Medical Sciences, Dhulikhel, Kavre, Nepal
| | - Kedar Manandhar
- Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Kavre, Nepal.,Kathmandu University School of Medical Sciences, Dhulikhel, Kavre, Nepal
| | - Hallie Thomas
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Timothy J Steiner
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Division of Brain Sciences, Imperial College London, London, UK
| | - Mattias Linde
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
36
|
Talebi M, İlgün S, Ebrahimi V, Talebi M, Farkhondeh T, Ebrahimi H, Samarghandian S. Zingiber officinale ameliorates Alzheimer's disease and Cognitive Impairments: Lessons from preclinical studies. Biomed Pharmacother 2021; 133:111088. [PMID: 33378982 DOI: 10.1016/j.biopha.2020.111088] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition mostly communal in people of advanced years accompanying various dysfunctionalities especially cognitive impairments. A number of cellular damages, such as amyloid-beta aggregation, tau protein hyperphosphorylation, some neurotransmitter imbalances, apoptosis, oxidative stress, and inflammatory responses are responsible for AD incidence. As a reason for inadequate efficacy, side effects, and pharmacokinetic problems of conventional drugs used for AD, the discovery of novel therapeutic agents with multi-targeted potential is desirable. Protective properties of phytochemicals combat numerous diseases and their vast acceptance and demand in human beings encouraged scientists to assess their effective activities. Zingiber officinale, gingerol, shogaol, and borneol were evaluated against memory impairments. Online databases including; Web of Science, Scopus, Embase, Pubmed, ProQuest, ScienceDirect, and Cochrane Library were searched until 3th February 2020. In vitro, in vivo, and clinical studies are included after screening their eligibility. Mostly interventive mechanisms such as; oxidative stress, neuroinflammation, and apoptosis are described. Correlation between the pathogenesis of AD and signaling pathways is explicated. Results and scores of cognition measurements are clarified due to in vivo studies and clinical trials. Some traditional aspects of consuming ginger in AD are also mentioned in the present review. In accumulation ginger and its components possess great potency for improving and abrogating memory dysfunctions but conducting further studies to evaluate their pharmacological and pharmaceutical aspects is required.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Vida Ebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Talebi
- Viatris Pharmaceuticals Inc., 3300 Research Plaza, San Antonio, TX, 78235, United States; Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, United States
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Hadi Ebrahimi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
37
|
Olanrewaju JA, Owolabi JO, Awodein IP, Enya JI, Adelodun ST, Olatunji SY, Fabiyi SO. Zingiber officinale Ethanolic Extract Attenuated Reserpine-Induced Depression-Like Condition and Associated Hippocampal Aberrations in Experimental Wistar Rats. J Exp Pharmacol 2020; 12:439-446. [PMID: 33173355 PMCID: PMC7646481 DOI: 10.2147/jep.s275260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Repeated and regimented treatment with reserpine causes depression-like condition characterized by persistent mood disorder, feelings of severe despondency and dejection, thus altering the hippocampal morphology. Our study compared a well-known antidepressant (fluoxetine), with the potential of Zingiber officinale to ameliorate reserpine-induced depression and the associated hippocampal cornu ammonis 1 (CA1) neuronal cell damage. METHODS Forty-eight male Wistar rats, weighing 130-160 g, were randomly assigned to 6 groups (n=8), housed in plastic cages under natural light and dark cycles at room temperature with access to feed and water ad libitum. Group-A (control) received distilled water. Group-B and Group-C orally received 400 mg/kg of Zingiber officinale and 10 mg/kg of fluoxetine, respectively, for 7 days, while Group-D intraperitoneally received 0.2 mg/kg of reserpine for 14 days. Group-E and Group-F intraperitoneally received 0.2 mg/kg of reserpine for 14 days followed by 400 mg/kg of Zingiber officinale and 10 mg/kg of fluoxetine respectively for 7 days. All animals were sacrificed by cervical dislocation at the end of experiment, and the brains hippocampi were dissected, excised and processed for various analyses including histology [H&E], histochemistry of GFAP expression by astrocytes and specific gene expressions including p53 gene, glutathione reductase (GSR), glutathione peroxidase and catalase (CAT). RESULTS Reserpine significantly depleted the expression of P53 and glutathione reductase (GSR) genes while significantly increasing the expression of glutathione peroxidase 1 (GPx-1) gene (P≤0.05). Also, a marked increase in the expression of catalase (CAT) gene was observed. Furthermore, histoarchitecture (photomicrographs) of hippocampus CA1 region showed disruption in the arrangement of pyramidal neurons and alterations in their morphologies when animals were treated with reserpine (Group D). There was also accompanying increased astrocyte densities within the CA1 region following reserpine treatment. These features indicated deleterious effects of reserpine. Both Zingiber officinale and fluoxetine treatments ameliorated these effects. CONCLUSION These findings showed structural and molecular alterations associated with reserpine-induced depression. Also, Zingiber officinale was effective to provide ameliorative and protective effects against the neurotoxic effects of reserpine in the hippocampus, making it a potential candidate for treating depression and its associated neurodegenerative diseases.
Collapse
Affiliation(s)
- John Afees Olanrewaju
- Department of Anatomy, Ben Carson School of Medicine, Babcock University, Ilishan-Remo, Ogun State, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Joshua Oladele Owolabi
- Department of Anatomy, Ben Carson School of Medicine, Babcock University, Ilishan-Remo, Ogun State, Nigeria
- Department of Anatomy, Division of Basic Medical Sciences, University of Global Health Equity, Butaro, Rwanda
| | - Ifedamola Patience Awodein
- Department of Anatomy, Ben Carson School of Medicine, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Joseph Igbo Enya
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Stephen Taiye Adelodun
- Department of Anatomy, Ben Carson School of Medicine, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Sunday Yinka Olatunji
- Department of Anatomy, Ben Carson School of Medicine, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Sunday Oluwaseyi Fabiyi
- Department of Anatomy, Ben Carson School of Medicine, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| |
Collapse
|
38
|
Li JM, Zhao Y, Sun Y, Kong LD. Potential effect of herbal antidepressants on cognitive deficit: Pharmacological activity and possible molecular mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112830. [PMID: 32259666 DOI: 10.1016/j.jep.2020.112830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cognitive symptom is a "core" symptom of major depressive disorder (MDD) patients with clear deficit in memory, social and occupational function, and may persist during the remitting phase. Therefore, the remission of cognitive symptom has been considered as one of the main objectives in the treatment of MDD. Herbal antidepressants have been used to treat MDD, and there has been great advances in the understanding of the ability of these herbs to improve cognitive deficit linked to brain injury and various diseases including depression, Alzheimer disease, diabetes and age-related disorders. This systematic review summarizes the evidence from preclinical studies and clinical trials of herbal antidepressants with positive effects on cognitive deficit. The potential mechanisms by which herbal antidepressants prevent cognitive deficit are also reviewed. This review will facilitate further research and applications. MATERIALS AND METHODS We conducted an open-ended, English restricted search of MEDLINE (PubMed), Web of Science and Scopus for all available articles published or online before 31 December 2019, using terms pertaining to medical herb/phytomedicine/phytochemical/Chinese medicine and depression/major depressive disorder/antidepressant and/or cognitive impairment/cognitive deficit/cognitive dysfunction. RESULTS 7 prescriptions, more than 30 individual herbs and 50 phytochemicals from China, Japan, Korea and India with positive effects on the depressive state and cognitive deficit are reviewed herein. The evidence from preclinical studies and clinical trials proves that these herbal antidepressants exhibit positive effects on one or more aspects of cognitive defect including spatial, episodic, aversive, and short- and long-term memory. The action mode of the improvement of cognitive deficit by these herbal antidepressants is mediated mainly through two pathways. One pathway is to promote hippocampal neurogenesis through activating brain derived neurotrophic factor-tropomyosin-related kinase B signaling. The other pathway is to prevent neuronal apoptosis through the inhibition of neuro-inflammation and neuro-oxidation. CONCLUSION These herbal antidepressants, having potential therapy for cognitive deficit, may prevent pathological processes of neurodegenerative diseases. Furthermore, these herbal medicines should provide a treasure trove, which will accelerate the development of new antidepressants that can effectively improve cognitive symptom in MDD. Studies on their molecular mechanisms may provide more potential targets and therapeutic approaches for new drug discovery.
Collapse
Affiliation(s)
- Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
39
|
Preparation of a Unique Bioavailable Bacoside Formulation (Cognique®) Using Polar-Nonpolar-Sandwich (PNS) Technology and Its Characterization, In Vitro Release Study, and Proposed Mechanism of Action. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Tramontin NDS, Luciano TF, Marques SDO, de Souza CT, Muller AP. Ginger and avocado as nutraceuticals for obesity and its comorbidities. Phytother Res 2020; 34:1282-1290. [PMID: 31989713 DOI: 10.1002/ptr.6619] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/19/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2023]
Abstract
Obesity is a worldwide epidemic and is one of the factors involved in the etiology of type 2 diabetes mellitus. Obesity induces low-grade inflammation and oxidative stress. The treatment for obesity involves changes in diet, physical activity, and even medication and surgery. Currently, the use of nutraceutical compounds is associated with health benefits. Ginger and avocado are used for many people all around the world; however, its effect as a nutraceutical compound is less known by the general population. For this reason, we searched information of the literature to point its effects on distinct mechanisms of defense against the obesity its comorbidities. The present review aimed showing that these nutraceuticals may be useful in obesity treatment. Reports have shown that ginger and avocado induce antioxidant and anti-inflammatory effects by improving enzymatic activity and modulating obesity-related impairments in the anti-inflammatory system in different tissues, without side effects. Furthermore, ginger and avocado were found to be effective in reversing the harmful effects of obesity on blood lipids. In conclusion, on the basis of the positive effects of ginger and avocado in in vitro, animal, and human studies, these nutraceuticals may be useful in obesity treatment.
Collapse
Affiliation(s)
| | - Thais F Luciano
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Claudio T de Souza
- Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Alexandre P Muller
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
41
|
Huh E, Choi JG, Noh D, Yoo HS, Ryu J, Kim NJ, Kim H, Oh MS. Ginger and 6-shogaol protect intestinal tight junction and enteric dopaminergic neurons against 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine in mice. Nutr Neurosci 2020; 23:455-464. [PMID: 30230979 DOI: 10.1080/1028415x.2018.1520477] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Ginger and its compound, 6-shogaol, have been known for improving gastrointestinal (GI) function and reducing inflammatory responses in GI tract. Recently, the treatment of GI dysfunction has been recognized as an important part of the management of neurodegenerative diseases, especially for Parkinson's disease (PD). In this study, we investigated whether ginger and 6-shogaol attenuate disruptions induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the intestinal barrier and the enteric dopaminergic neurons.Methods: C57BL/6J mice received MPTP (30 mg/kg) for 5 days to induce GI alterations. Ginger (30, 100, 300 mg/kg) and 6-shogaol (10 mg/kg) were treated by gavage feeding for 15 days including the period of MPTP injection.Results: Ginger and 6-shogaol protected intestinal tight junction proteins disrupted by MPTP in mouse colon. In addition, ginger and 6-shogaol suppressed the increase of inducible nitric oxide synthase, cyclooxygenase-2, TNF-α and IL-1β activated by macrophage. Moreover, ginger and 6-shogaol suppressed the MPTP-induced enteric dopaminergic neuronal damage via increasing the cell survival signaling pathway.Conclusion: These results indicate that ginger and 6-shogaol restore the disruption of intestinal integrity and enteric dopaminergic neurons in an MPTP-injected mouse PD model by inhibiting the processes of inflammation and apoptosis, suggesting that they may attenuate the GI dysfunction in PD patients.
Collapse
Affiliation(s)
- Eugene Huh
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jin Gyu Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dongjin Noh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyung-Seok Yoo
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jeewon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hocheol Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
42
|
Tripathi S, Verma A, Jha SK. Training on an Appetitive Trace-Conditioning Task Increases Adult Hippocampal Neurogenesis and the Expression of Arc, Erk and CREB Proteins in the Dorsal Hippocampus. Front Cell Neurosci 2020; 14:89. [PMID: 32362814 PMCID: PMC7181388 DOI: 10.3389/fncel.2020.00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) plays an essential role in hippocampal-dependent memory consolidation. Increased neurogenesis enhances learning, whereas its ablation causes memory impairment. In contrast, few reports suggest that neurogenesis reduces after learning. Although the interest in exploring the role of adult neurogenesis in learning has been growing, the evidence is still limited. The role of the trace- and delay-appetitive-conditioning on AHN and its underlying mechanism are not known. The consolidation of trace-conditioned memory requires the hippocampus, but delay-conditioning does not. Moreover, the dorsal hippocampus (DH) and ventral hippocampus (VH) may have a differential role in these two conditioning paradigms. Here, we have investigated the changes in: (A) hippocampal cell proliferation and their progression towards neuronal lineage; and (B) expression of Arc, Erk1, Erk2, and CREB proteins in the DH and VH after trace- and delay-conditioning in the rat. The number of newly generated cells significantly increased in the trace-conditioned but did not change in the delay-conditioned animals compared to the control group. Similarly, the expression of Arc protein significantly increased in the DH but not in the VH after trace-conditioning. Nonetheless, it remains unaltered in the delay-conditioned group. The expression of pErk1, pErk2, and pCREB also increased in the DH after trace-conditioning. Whereas, the expression of only pErk1 pErk2 and pCREB proteins increased in the VH after delay-conditioning. Our results suggest that appetitive trace-conditioning enhances AHN. The increased DH neuronal activation and pErk1, pErk2, and pCREB in the DH may be playing an essential role in learning-induced cell-proliferation after appetitive trace-conditioning.
Collapse
Affiliation(s)
- Shweta Tripathi
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Anita Verma
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Sushil K Jha
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
43
|
Antiamnesic effects of tofisopam against scopolamine-induced cognitive impairments in rats. Pharmacol Biochem Behav 2020; 190:172858. [PMID: 31981560 DOI: 10.1016/j.pbb.2020.172858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 01/19/2023]
Abstract
In this study, we investigated the potential therapeutic effects of tofisopam, a 2,3-benzodiazepine derivative anxiolytic, on cognitive deficits in rats with scopolamine-induced amnesia. Cognitive performance of the rats was investigated by using the Morris water maze and passive avoidance tests. Changes in motor activity were assessed by using the activity cage and Rota-rod tests and then morphological changes in the hippocampus were assessed via immunohistochemical stainings. The results indicated that scopolamine impaired learning and memory parameters in rats. Worsened cognitive performance, neuronal loss, and decreased hippocampal synaptophysin, Ki-67, and glial fibrillary acidic protein density were observed. Tofisopam administration at a dose of 50 mg/kg for seven days improved the impaired cognitive performance, enhanced the attenuated synaptic transmission in the hippocampus, increased proliferation in subgranular zones, and improved the decrease in astrocytes in amnesic rats. These findings point out the anti-amnesic effects of tofisopam with concomitant improvements in the hippocampal synaptogenesis, neurogenesis, and glial plasticity, for the first time. Presented beneficial effects of tofisopam on cognitive dysfunctions may have a notable clinical value considering the fact that one of the most important side effects of 1,4-benzodiazepines, which are classical anxiolytic drugs, is amnesia. However, these preclinical results need to be confirmed with further clinical studies, first.
Collapse
|
44
|
Simon A, Darcsi A, Kéry Á, Riethmüller E. Blood-brain barrier permeability study of ginger constituents. J Pharm Biomed Anal 2020; 177:112820. [PMID: 31476432 DOI: 10.1016/j.jpba.2019.112820] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
Abstract
Ginger, the rhizome of Zingiber officinale Roscoe is of great importance in the traditional medicine for the treatment of various diseases. More than 400 constituents have been reported in the plant, the most important ones being the gingerol and shogaol derivatives. Positive effects of ginger extracts and isolated [6]-gingerol have been proved in animal models of anxiety, Alzheimer's disease, Parkinson's disease and epilepsy. Taken in consideration these promising positive effects of ginger and its constituents in the central nervous system, the isolation of gingerol and shogaol derivatives ([6]-gingerol (1), [8]-gingerol (2), [10]-gingerol (3), [6]-shogaol (4), [10]-shogaol (5), 1-dehydro-[6]-gingerdione (6), 1-dehydro-[10]-gingerdione (7)) and investigation of their transcellular passive diffusion across the blood-brain barrier (BBB) were carried out. For this purpose, a Parallel Artificial Membrane Permeability Assay for the Blood-Brain Barrier (PAMPA-BBB) was chosen that had previously been validated for natural compounds. Based on our results, [6]-gingerol, [8]-gingerol and [6]-shogaol were found to be able to penetrate the BBB via passive diffusion, suggesting them to contribute to the positive effects of ginger extracts in the central nervous system.
Collapse
Affiliation(s)
- Alexandra Simon
- Department of Pharmacognosy, Semmelweis University, Budapest H-1085, Hungary
| | - András Darcsi
- Department of Pharmacognosy, Semmelweis University, Budapest H-1085, Hungary
| | - Ágnes Kéry
- Department of Pharmacognosy, Semmelweis University, Budapest H-1085, Hungary
| | - Eszter Riethmüller
- Department of Pharmacognosy, Semmelweis University, Budapest H-1085, Hungary.
| |
Collapse
|
45
|
Chen Y, Xie HQ, Sha R, Xu T, Zhang S, Fu H, Xia Y, Liu Y, Xu L, Zhao B. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and up-regulation of neurofilament expression in neuronal cells: Evaluation of AhR and MAPK pathways. ENVIRONMENT INTERNATIONAL 2020; 134:105193. [PMID: 31775093 DOI: 10.1016/j.envint.2019.105193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/25/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Dioxin exposure is reported to affect nervous system development and increase the risk of neurodegenerative diseases. Generally, dioxin exerts its neurotoxicity via aryl hydrocarbon receptor (AhR). Neurofilament (NF) light (NFL) protein is a biomarker for both neuronal differentiation and neurodegeneration and its expression is controlled by the mitogen-activated protein kinase (MAPK) pathway. However, the effects of dioxin on NFL expression and involved mechanisms are incompletely understood. We aimed to investigate the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on NFL expression and elucidate the underlining signaling pathways and their potential crosstalk, specifically between MAPK and AhR pathway. We employed primary cultured rat cortical neurons to evaluate the effect of TCDD exposure on NFL expression. We also used nerve growth factor (NGF)-treated PC12 cells with specific inhibitors to investigate the involvement of and potential crosstalk between the MAPK pathway and the AhR pathway in mediating the effects of TCDD on NFL expression. After TCDD exposure, NFL mRNA and protein levels were upregulated in cultured neurons. NFL protein was preferentially found in the cell body compared with neurites of the cultured neurons. In PC12 cells, TCDD enhanced both NGF-induced NFL expression and phosphorylation of ERK1/2 and p38. The addition of MAPK-pathway inhibitors (PD98059 and SB230580) partially blocked the TCDD-induced NFL upregulation. CH223191, an AhR antagonist, reversed the upregulation of NFL and phosphorylation of ERK1/2 and p38 induced by TCDD. This study demonstrated TCDD-induced upregulation of NFL in cultured neurons, with protein retained in the cell body. TCDD action was dependent on activation of AhR and MAPK, while crosstalk was found between these two signaling pathways.
Collapse
Affiliation(s)
- Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Songyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yingjie Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
46
|
Sub-Chronic Consumption of Dark Chocolate Enhances Cognitive Function and Releases Nerve Growth Factors: A Parallel-Group Randomized Trial. Nutrients 2019; 11:nu11112800. [PMID: 31744119 PMCID: PMC6893800 DOI: 10.3390/nu11112800] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/18/2023] Open
Abstract
Previous research has shown that habitual chocolate intake is related to cognitive performance and that frequent chocolate consumption is significantly associated with improved memory. However, little is known about the effects of the subchronic consumption of dark chocolate (DC) on cognitive function and neurotrophins. Eighteen healthy young subjects (both sexes; 20-31 years old) were randomly divided into two groups: a DC intake group (n = 10) and a cacao-free white chocolate (WC) intake group (n = 8). The subjects then consumed chocolate daily for 30 days. Blood samples were taken to measure plasma levels of theobromine (a methylxanthine most often present in DC), nerve growth factor (NGF), and brain-derived neurotrophic factor, and to analyze hemodynamic parameters. Cognitive function was assessed using a modified Stroop color word test and digital cancellation test. Prefrontal cerebral blood flow was measured during the tests. DC consumption increased the NGF and theobromine levels in plasma, enhancing cognitive function performance in both tests. Interestingly, the DC-mediated enhancement of cognitive function was observed three weeks after the end of chocolate intake. WC consumption did not affect NGF and theobromine levels or cognitive performance. These results suggest that DC consumption has beneficial effects on human health by enhancing cognitive function.
Collapse
|
47
|
Ju IG, Kim N, Choi JG, Lee JK, Oh MS. Cuscutae Japonicae Semen Ameliorates Memory Dysfunction by Rescuing Synaptic Damage in Alzheimer's Disease Models. Nutrients 2019; 11:nu11112591. [PMID: 31661844 PMCID: PMC6893468 DOI: 10.3390/nu11112591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly. It is characterized by the accumulation of amyloid-beta (Aβ) and progressive cognitive impairment. To alleviate the symptoms of AD, functional foods and nutrients have been used for centuries. In this study, we investigated whether Cuscutae Japonicae Semen (CJS), a medicinal food traditionally used in East Asia, has effects on memory improvement and synapse protection in AD. We orally administered CJS to 5x familiar AD (5xFAD) transgenic mice and performed the Morris water maze test. The results showed that CJS treatment ameliorated the decline of memory function. Then, we demonstrated that CJS attenuated the degeneration of pre- and post-synaptic proteins in the hippocampi of 5xFAD mice. To demonstrate the effects of CJS in vitro, we treated Aβ in primary neuronal culture with CJS and observed that CJS rescued the loss of functional synapses. The protective effects of CJS on the synapse were due to the inhibition of activated caspase-3 expression. Additionally, CJS inhibited the phosphorylation of glycogen synthase kinase-3β and tau proteins, which contribute to synaptic dysfunction. Taken together, our results suggest that CJS is efficient in alleviating memory loss by rescuing caspase-3-mediated synaptic damage in AD treatment.
Collapse
Affiliation(s)
- In Gyoung Ju
- Department of Life and Nanopharmaceutical Sciences, Graduate school, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate school, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Jin Gyu Choi
- BK21 PLUS Integrated Education and Research Center for Nature-inspired Drug Development Targeting Healthy Aging, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Jong Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate school, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
48
|
Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB. Bioactive Compounds and Bioactivities of Ginger ( Zingiber officinale Roscoe). Foods 2019; 8:E185. [PMID: 31151279 PMCID: PMC6616534 DOI: 10.3390/foods8060185] [Citation(s) in RCA: 476] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Ginger (Zingiber officinale Roscoe) is a common and widely used spice. It is rich in various chemical constituents, including phenolic compounds, terpenes, polysaccharides, lipids, organic acids, and raw fibers. The health benefits of ginger are mainly attributed to its phenolic compounds, such as gingerols and shogaols. Accumulated investigations have demonstrated that ginger possesses multiple biological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, neuroprotective, cardiovascular protective, respiratory protective, antiobesity, antidiabetic, antinausea, and antiemetic activities. In this review, we summarize current knowledge about the bioactive compounds and bioactivities of ginger, and the mechanisms of action are also discussed. We hope that this updated review paper will attract more attention to ginger and its further applications, including its potential to be developed into functional foods or nutraceuticals for the prevention and management of chronic diseases.
Collapse
Affiliation(s)
- Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Trust Beta
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
49
|
Flavonoids extracted from leaves of Diospyros kaki regulates RhoA activity to rescue synapse loss and reverse memory impairment in APP/PS1 mice. Neuroreport 2019; 29:564-569. [PMID: 29481523 DOI: 10.1097/wnr.0000000000000989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Synapse dysfunction is an early hallmark of Alzheimer's disease (AD), and was considered to be closely related to memory loss. The molecular mechanisms that trigger synapse loss and dysfunction remain poorly understood. Increasing evidence shows a link between Rho GTPases and synapse plasticity. Rho GTPases play a role in controlling synapse function by regulating actin cytoskeleton and dendritic spines. Observations have suggested that phytochemicals, such as flavonoids, alleviate cognition impairment in AD. However, to date, the link between the protective effect of flavonoids on AD and the activity of Rho GTPases remains uninvestigated. In this study, APP/PS1 mice were used as an AD model, and we found that synapse loss occurred in AD mice brain. Flavonoids extracted from leaves of Diospyros kaki (FLDK) were used to investigate whether its protective effects on synapse were related to Rho GTPases activity in AD mice. The Rho GTPases Activation Kit showed that Ras homologous member A (RhoA)-GTP was significantly higher and Ras-related C3 botulinum toxin substrate 1 (Rac1)-GTP was significantly lower in APP/PS1 mice than in normal mice, and RhoA-GTP activity was significantly inhibited by FLDK. We also found that FLDK improved learning and memory function, and antagonized the downregulation expressions of synapse-related proteins such as synaptophysin and drebrin. These findings suggest that FLDK is a potential therapeutic agent for AD, and modulation of Rho GTPases activity might contribute toward its protective effect.
Collapse
|
50
|
Alsherbiny MA, Abd-Elsalam WH, El Badawy SA, Taher E, Fares M, Torres A, Chang D, Li CG. Ameliorative and protective effects of ginger and its main constituents against natural, chemical and radiation-induced toxicities: A comprehensive review. Food Chem Toxicol 2019; 123:72-97. [PMID: 30352300 DOI: 10.1016/j.fct.2018.10.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
Fatal unintentional poisoning is widespread upon human exposure to toxic agents such as pesticides, heavy metals, environmental pollutants, bacterial and fungal toxins or even some medications and cosmetic products. In this regards, the application of the natural dietary agents as antidotes has engrossed a substantial attention. One of the ancient known traditional medicines and spices with an arsenal of metabolites of several reported health benefits is ginger. This extended literature review serves to demonstrate the protective effects and mechanisms of ginger and its phytochemicals against natural, chemical and radiation-induced toxicities. Collected data obtained from the in-vivo and in-vitro experimental studies in this overview detail the designation of the protective effects to ginger's antioxidant, anti-inflammatory, and anti-apoptotic properties. Ginger's armoury of phytochemicals exerted its protective function via different mechanisms and cell signalling pathways, including Nrf2/ARE, MAPK, NF-ƙB, Wnt/β-catenin, TGF-β1/Smad3, and ERK/CREB. The outcomes of this review could encourage further clinical trials of ginger applications in radiotherapy and chemotherapy regime for cancer treatments or its implementation to counteract the chemical toxicity induced by industrial pollutants, alcohol, smoking or administered drugs.
Collapse
Affiliation(s)
- Muhammad A Alsherbiny
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Wessam H Abd-Elsalam
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Ehab Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University (Assiut Branch), Egypt
| | - Mohamed Fares
- School of Chemistry, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Allan Torres
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia.
| |
Collapse
|