1
|
Yan K, Zhang RK, Wang JX, Chen HF, Zhang Y, Cheng F, Jiang Y, Wang M, Wu Z, Chen XG, Chen ZN, Li GJ, Yao XM. Using network pharmacology and molecular docking technology, proteomics and experiments were used to verify the effect of Yigu decoction (YGD) on the expression of key genes in osteoporotic mice. Ann Med 2025; 57:2449225. [PMID: 39749683 DOI: 10.1080/07853890.2024.2449225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Yigu decoction (YGD) is a traditional Chinese medicine prescription for the treatment of osteoporosis, although many clinical studies have confirmed its anti-OP effect, but the specific mechanism is still not completely clear. METHODS In this study, through the methods of network pharmacology and molecular docking, the material basis and action target of YGD in preventing and treating OP were analyzed, and the potential target and mechanism of YGD in preventing and treating OP were clarified by TMT quantitative protein and experiment. RESULTS Network pharmacology and molecular docking revealed that the active components of YGD were mainly stigmasterol and flavonoids. Molecular docking mainly studied the strong binding ability of stigmasterol to the target. Animal proteomics verified the related mechanism of YGD in preventing and treating OP. Based on the KEGG enrichment of network pharmacology and histology, our animal experiments in vivo verified that YGD may play a role in the treatment of OP by mediating hif1- α/vegf/glut1 signal pathway. CONCLUSIONS YGD prevention and treatment of OP may be achieved by interfering with multiple targets. This study confirmed that it may promote osteoblast proliferation and protect osteoblast function by up-regulating the expression of proteins related to HIF signal pathway.
Collapse
Affiliation(s)
- Kun Yan
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui-Kun Zhang
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia-Xin Wang
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hai-Feng Chen
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Feng Cheng
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Jiang
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Wang
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ziqi Wu
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao-Gang Chen
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Neng Chen
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gui-Jin Li
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin-Miao Yao
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Bertolucci V, Ninomiya AF, Longato GB, Kaneko LO, Nonose N, Scariot PPM, Messias LHD. Bioactive Compounds from Propolis on Bone Homeostasis: A Narrative Review. Antioxidants (Basel) 2025; 14:81. [PMID: 39857415 PMCID: PMC11762496 DOI: 10.3390/antiox14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
This narrative review explores the potential effects of Propolis and its bioactive compounds on bone health. Propolis, a resinous product collected by bees, is renowned for its antimicrobial, anti-inflammatory, and antioxidant properties. Recent research emphasizes its positive role in osteogenesis, primarily through the modulation of osteoclast and osteoblast activity via molecular pathways. Key mechanisms include reducing inflammatory cytokines, protecting against oxidative stress, and upregulating growth factor essential for bone formation. While compounds such as Caffeic Acid Phenethyl Ester, Apigenin, Quercetin, and Ferulic Acid have been well-documented, emerging evidence points to the significant roles of less-studied compounds like Pinocembrin, Kaempferol, p-Coumaric acid, and Galangin. This review synthesizes the current literature, focusing on the mechanisms by which these bioactive compounds influence osteogenesis. Firstly, it explores the techniques for characterizing bioactive compounds presented in propolis, the chemogeographic variations in its composition, and the effects of both crude extracts and isolated compounds on bone tissue, offering a comprehensive analysis of recent findings across different experimental models. Further, it discusses the effects of Propolis compounds on bone health. In summary, these compounds modulate signaling pathways, including nuclear factor kappa beta, wingless-related integration site, mitogen-activated protein kinase, vascular endothelial growth factor, and reactive oxygen species. These pathways influence the receptor activator of nuclear factor kappa-β/receptor activator of nuclear factor kappa-β ligand/osteoprotegerin system, fostering bone cell differentiation. This regulation mitigates excessive osteoclast formation, stimulates osteoblast activity, and ultimately contributes to the restoration of bone homeostasis by maintaining a balanced bone remodeling process.
Collapse
Affiliation(s)
- Vanessa Bertolucci
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - André Felipe Ninomiya
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Giovanna Barbarini Longato
- Research Laboratory in Molecular Pharmacology of Bioactive Compounds, São Francisco University, Bragança Paulista 12916-900, SP, Brazil;
| | - Luisa Oliveira Kaneko
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Nilson Nonose
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Pedro Paulo Menezes Scariot
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| |
Collapse
|
3
|
Sheng L, Gao F, Lan Z, Zong B, Wang Q. Isoquercitrin Loaded PEGylated Long Circulating Liposomes Improve Bone Mass and Reduce Oxidative Stress After Osteoporosis. AAPS PharmSciTech 2024; 26:5. [PMID: 39638918 DOI: 10.1208/s12249-024-02993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Osteoporosis has increasingly become a major public health concern because of its associated heightened risk of bone fragility and fractures. In order to avoid the adverse risk of hormone therapy, scientists have considered isoquercitrin (IQ) as a natural phytoestrogen to potentially prevent osteoporosis. However, IQ has poor solubility and bioavailability which culminates in rapid elimination of phytoestrogen. Herein, this study sought to solve limited applications of IQ by preparing IQ-loaded PEGylated long circulating liposomes (IQ-Lips) via thin-film hydration method. After appropriate characterization using zeta-potential, polydispersed index (PDI), particle size and entrapment efficiency (EE), IQ-Lips were applied to ovariectomized rat models to evaluate their effect on osteoporosis. The results showed that the prepared IQ-Lips exhibited smaller sized nanoparticles (125.35 ± 4.50 nm), excellent PDI (0.244 ± 0.001) and zeta-potential (-28.64 ± 0.71 mV) with stable property and higher EE (92.10 ± 0.32%). Importantly, administration of IQ-Lips through oral route increased aqueous solvability, bioavailability and circulation time of IQ. Moreover, the IQ-Lips could increase bone microstructural densities and bone mass, as well as reduce oxidative stress in ovariectomized rat models. Altogether, the IQ-Lips may serve as a novel avenue to potentially prolong the circulation of IQ in the body and improve the bioavailability of IQ for treatment of osteoporosis.
Collapse
Affiliation(s)
- Liangju Sheng
- Imaging Department of Jiangsu University School of Medicine, Zhenjiang, Jiangsu, China
| | - Fuping Gao
- Department of Pathology, Gaochun People's Hospital, Nanjing, 211300, China
| | - Zhe Lan
- Imaging Department of Jiangsu University School of Medicine, Zhenjiang, Jiangsu, China
| | - Bin Zong
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
4
|
Bonsignore G, Martinotti S, Ranzato E. Honey Bioactive Molecules: There Is a World Beyond the Sugars. BIOTECH 2024; 13:47. [PMID: 39584904 PMCID: PMC11587060 DOI: 10.3390/biotech13040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Honey's many bioactive compounds have been utilized historically to cure infectious diseases. Beneficial effects are its antiviral, antibacterial, anti-inflammatory, antioxidant, and immune-stimulating qualities. The bee species, geographic location, botanical origin, harvest season, processing, and storage conditions all affect honey's potential for therapeutic use. Honey contains a number of antioxidants and active compounds, such as polyphenols, which have been shown to have disease-preventive properties. Based on their origins, categories, and functions, the main polyphenols found in various honey varieties are examined in this review.
Collapse
|
5
|
Lorthongpanich C, Charoenwongpaiboon T, Septham P, Laowtammathron C, Srisook P, Kheolamai P, Manochantr S, Issaragrisil S. Effect of the polyphenol flavonoids fisetin and quercetin on the adipogenic differentiation of human mesenchymal stromal cells. Biosci Rep 2024; 44:BSR20240623. [PMID: 39364538 PMCID: PMC11499385 DOI: 10.1042/bsr20240623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
Fisetin and quercetin, polyphenol flavonoids, have been shown to have a wide range of beneficial pharmacological effects including anti-inflammatory, antioxidative, and anti-cancer. Our previous work shows that fisetin also affects the specification of the adipogenic-osteogenic lineage of human mesenchymal stem cells (hMSCs) by modulating the Hippo-YAP signaling pathway. Although quercetin has a structure similar to that of fisetin, its effects on the functional properties of hMSCs have not yet been investigated. The objective of the present study is to determine the effects of quercetin on the various properties of hMSCs, including proliferation, migration, and differentiation capacity toward adipogenic and osteogenic lineages. The results show that while fisetin increases hMSC adipogenic differentiation, quercetin inhibited adipogenic differentiation of hMSCs. The inhibition is mediated, at least in part, by the activation of hippo signaling and up-regulation of miR-27b, which inhibits the expression of genes involved in all critical steps of lipid droplet biogenesis, resulting in a decrease in the number of lipid droplets in hMSCs. It is possible that the lack of hydroxylation of the 5 position on the A ring of quercetin could be responsible for its different effect on the adipogenic-osteogenic lineage specification of hMSCs compared with fisetin. Molecular docking and molecular dynamics simulation suggested that fisetin and quercetin possibly bind to serine / threonine protein kinases 4 (STK4/MST1), which is an upstream kinase responsible for LATS phosphorylation. Taken together, our results demonstrate more insight into the mechanism underlying the role of flavonoid fisetin and quercetin in the regulation of adipogenesis.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Praphasri Septham
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chuti Laowtammathron
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pimonwan Srisook
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pakpoom Kheolamai
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Sirikul Manochantr
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Surapol Issaragrisil
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, Thailand
| |
Collapse
|
6
|
Chu Q, Jiang X, Xiao Y. Rebuilding the myocardial microenvironment to enhance mesenchymal stem cells-mediated regeneration in ischemic heart disease. Front Bioeng Biotechnol 2024; 12:1468833. [PMID: 39372432 PMCID: PMC11452912 DOI: 10.3389/fbioe.2024.1468833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are naturally-derived regenerative materials that exhibit significant potential in regenerative medicine. Previous studies have demonstrated that MSCs-based therapy can improve heart function in ischemia-injured hearts, offering an exciting therapeutic intervention for myocardial ischemic infarction, a leading cause of worldwide mortality and disability. However, the efficacy of MSCs-based therapies is significantly disturbed by the myocardial microenvironment, which undergoes substantial changes following ischemic injury. After the ischemic injury, blood vessels become obstructed and damaged, and cardiomyocytes experience ischemic conditions. This activates the hypoxia-induced factor 1 (HIF-1) pathway, leading to the rapid production of several cytokines and chemokines, including vascular endothelial growth factor (VEGF) and stromal-derived factor 1 (SDF-1), which are crucial for angiogenesis, cell migration, and tissue repair, but it is not sustainable. MSCs respond to these cytokines and chemokines by homing to the injured site and participating in myocardial regeneration. However, the deteriorated microenvironment in the injured myocardium poses challenges for cell survival, interacting with MSCs, and constraining their homing, retention, and migration capabilities, thereby limiting their regenerative potential. This review discusses how the deteriorated microenvironment negatively affects the ability of MSCs to promote myocardial regeneration. Recent studies have shown that optimizing the microenvironment through the promotion of angiogenesis can significantly enhance the efficacy of MSCs in treating myocardial infarction. This approach harnesses the full therapeutic potential of MSCs-based therapies for ischemic heart disease.
Collapse
Affiliation(s)
- Qing Chu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Xin Jiang
- Department of Laboratory Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Innovation Institute for Integration of Medicine and Engineering, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Ying Xiao
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Department of Postgraduate, Sichuan University West China Hospital, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Kim JG, Sharma AR, Lee YH, Chatterjee S, Choi YJ, Rajvansh R, Chakraborty C, Lee SS. Therapeutic Potential of Quercetin as an Antioxidant for Bone-Muscle-Tendon Regeneration and Aging. Aging Dis 2024; 16:1414-1437. [PMID: 39012676 PMCID: PMC12096925 DOI: 10.14336/ad.2024.0282] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Quercetin (QC), a naturally occurring bioflavonoid found in various fruits and vegetables, possesses many potential health benefits, primarily attributed to its robust antioxidant properties. The generation of oxidative stress in bone cells is a key modulator of their physiological behavior. Moreover, oxidative stress status influences the pathophysiology of mineralized tissues. Increasing scientific evidence demonstrates that manipulating the redox balance in bone cells might be an effective technique for developing bone disease therapies. The QC antioxidant abilities in skeletal muscle significantly enhance muscle regeneration and reduce muscle atrophy. In addition, QC has been shown to have protective effects against oxidative stress, inflammation, apoptosis, and matrix degradation in tendons, helping to maintain the structural integrity and functionality of tendons. Thus, the antioxidant properties of QC might be crucial for addressing age-related musculoskeletal disorders like osteoporosis, sarcopenia, and tendon-related inflammatory conditions. Understanding how QC influences redox signaling pathways involved in musculoskeletal disorders, including their effect on bone, muscle, and tendon differentiation, might provide insights into the diverse advantages of QC in promoting tissue regeneration and preventing cellular damage. Therefore, this study reviewed the intricate relationship among oxidative stress, inflammation, and tissue repair, affected by the antioxidative abilities of QC, in age-related musculoskeletal tissues to improve the overall health of bones, muscles, and tendons of the skeletal system. Also, reviewing the ongoing clinical trials of QC for musculoskeletal systems is encouraging. Given the positive effect of QC on musculoskeletal health, further scientific investigations and controlled human intervention studies are necessary to explore the therapeutic potential to its optimum strength.
Collapse
Affiliation(s)
- Jae Gyu Kim
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Yeon-Hee Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Srijan Chatterjee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Yean Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Korea.
| | - Roshani Rajvansh
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India.
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| |
Collapse
|
8
|
Huang X, Yang Q, Chang S, Liu Y, Wang X, Liu Z, Ren J. Potential osteoporosis-blocker Sparassis crispa polysaccharide: Isolation, purification and structure elucidation. Int J Biol Macromol 2024; 261:129879. [PMID: 38311133 DOI: 10.1016/j.ijbiomac.2024.129879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
This study aimed to investigate the structural characterization of water-soluble polysaccharides from Sparassis crispa and their effects on the proliferation and differentiation of mouse osteoblasts. Three fractions (F-1, F-2, and F-3) were obtained from crude polysaccharides by a DEAE-52 cellulose column. The main fraction (F-1) was further purified by polysaccharide gel purification systems to obtain purified water-soluble Sparassis crispa polysaccharide (SCPS). The chemical structure of SCPS was analyzed by gas chromatography, Fourier transform infrared spectroscopy, methylation analysis, and nuclear magnetic resonance spectroscopy. The monosaccharide compositional analysis revealed that SCPS consisted of fucose, arabinose, galactose, glucose, xylose, mannose, ribose, galacturonic acid, glucuronic acid, and mannuronic acid in a molar ratio of 17.37:1.94:25.52:30.83:1.14:0.30:4.98:2.87:2.65. Moreover, the backbone of SCPS was composed of →3)-β-d-Glcp-(1→4)-β-d-Glcp-(1→, with side chains attached to the backbone at the O-6 positions through the →3,6)-β-d-Glcp-(1→ linkage. The in vitro experiments were conducted to investigate the effects of SCPS on the proliferation and differentiation of mouse osteoblasts. The results showed that SCPS significantly enhanced the proliferation and differentiation of mouse osteoblasts, indicating their potential as a pharmaceutical agent for promoting osteoblast proliferation and differentiation.
Collapse
Affiliation(s)
- Xiaohui Huang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha, Hunan 410004, China; Edible Fungi Institute, Changsha, Hunan 410013, China
| | - Qiao Yang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha, Hunan 410004, China
| | - Songlin Chang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha, Hunan 410004, China
| | - Yingwei Liu
- Edible Fungi Institute, Changsha, Hunan 410013, China
| | - Xiaoyan Wang
- Edible Fungi Institute, Changsha, Hunan 410013, China
| | - Zhuxiang Liu
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China.
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha, Hunan 410004, China.
| |
Collapse
|
9
|
He Y, Zhang L, Chen X, Liu B, Shao X, Fang D, Lin J, Liu N, Lou Y, Qin J, Jiang Q, Guo B. Elimination of Senescent Osteocytes by Bone-Targeting Delivery of β-Galactose-Modified Maytansinoid Prevents Age-Related Bone Loss. Adv Healthc Mater 2024; 13:e2302972. [PMID: 38063283 DOI: 10.1002/adhm.202302972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/23/2023] [Indexed: 12/17/2023]
Abstract
The accumulation of senescent cells in bone during aging contributes to senile osteoporosis, and clearance of senescent cells by senolytics could effectively alleviate bone loss. However, the applications of senolytics are limited due to their potential toxicities. Herein, small extracellular vesicles (sEVs) have been modified by incorporating bone-targeting peptide, specifically (AspSerSer)6, to encapsulate galactose-modified Maytansinoids (DM1). These modified vesicles are referred to as (AspSerSer)6-sEVs/DM1-Gal, and they have been designed to specifically clear the senescent osteocytes in bone tissue. In addition, the elevated activity of lysosomal β-galactosidase in senescent osteocytes, but not normal cells in bone tissue, could break down DM1-Gal to release free DM1 for selective elimination of senescent osteocytes. Mechanically, DM1 could disrupt tubulin polymerization, subsequently inducing senescent osteocytes apoptosis. Further, administration of bone-targeting senolytics to aged mice could alleviate aged-related bone loss without non-obvious toxicity. Overall, this bone-targeting senolytics could act as a novel candidate for specific clearance of senescent osteocytes, ameliorating age-related bone loss, with a promising therapeutic potential for senile osteoporosis.
Collapse
Affiliation(s)
- Yi He
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Lei Zhang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Xiang Chen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Bin Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiaoyan Shao
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Depeng Fang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jiaquan Lin
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Na Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yabing Lou
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100069, P. R. China
| | - Jianghui Qin
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, Jiangsu, 210008, P. R. China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, Jiangsu, 210008, P. R. China
| | - Baosheng Guo
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, Jiangsu, 210008, P. R. China
| |
Collapse
|
10
|
Zhang YY, Xie N, Sun XD, Nice EC, Liou YC, Huang C, Zhu H, Shen Z. Insights and implications of sexual dimorphism in osteoporosis. Bone Res 2024; 12:8. [PMID: 38368422 PMCID: PMC10874461 DOI: 10.1038/s41413-023-00306-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024] Open
Abstract
Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
11
|
Chen Y, Gan W, Cheng Z, Zhang A, Shi P, Zhang Y. Plant molecules reinforce bone repair: Novel insights into phenol-modified bone tissue engineering scaffolds for the treatment of bone defects. Mater Today Bio 2024; 24:100920. [PMID: 38226013 PMCID: PMC10788623 DOI: 10.1016/j.mtbio.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Bone defects have become a major cause of disability and death. To overcome the limitations of natural bone implants, including donor shortages and immune rejection risks, bone tissue engineering (BTE) scaffolds have emerged as a promising therapy for bone defects. Despite possessing good biocompatibility, these metal, ceramic and polymer-based scaffolds are still challenged by the harsh conditions in bone defect sites. ROS accumulation, bacterial infection, excessive inflammation, compromised blood supply deficiency and tumor recurrence negatively impact bone tissue cells (BTCs) and hinder the osteointegration of BTE scaffolds. Phenolic compounds, derived from plants and fruits, have gained growing application in treating inflammatory, infectious and aging-related diseases due to their antioxidant ability conferred by phenolic hydroxyl groups. The prevalent interactions between phenols and functional groups also facilitate their utilization in fabricating scaffolds. Consequently, phenols are increasingly incorporated into BTE scaffolds to boost therapeutic efficacy in bone defect. This review demonstrated the effects of phenols on BTCs and bone defect microenvironment, summarized the intrinsic mechanisms, presented the advances in phenol-modified BTE scaffolds and analyzed their potential risks in practical applications. Overall, phenol-modified BTE scaffolds hold great potential for repairing bone defects, offering novel patterns for BTE scaffold construction and advancing traumatological medicine.
Collapse
Affiliation(s)
| | | | | | - Anran Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
12
|
Deng TT, Ding WY, Lu XX, Zhang QH, Du JX, Wang LJ, Yang MN, Yin Y, Liu FJ. Pharmacological and mechanistic aspects of quercetin in osteoporosis. Front Pharmacol 2024; 15:1338951. [PMID: 38333006 PMCID: PMC10851760 DOI: 10.3389/fphar.2024.1338951] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Osteoporosis (OP) is a bone disease associated with increasing age. Currently, the most common medications used to treat OP are anabolic agents, anti-resorptive agents, and medications with other mechanisms of action. However, many of these medications have unfavorable adverse effects or are not intended for long-term use, potentially exerting a severe negative impact on a patient's life and career and placing a heavy burden on families and society. There is an urgent need to find new drugs that can replace these and have fewer adverse effects. Quercetin (Que) is a common flavonol in nature. Numerous studies have examined the therapeutic applications of Que. However, a comprehensive review of the anti-osteoporotic effects of Que has not yet been conducted. This review aimed to describe the recent studies on the anti-osteoporotic effects of Que, including its biological, pharmacological, pharmacokinetic, and toxicological properties. The outcomes demonstrated that Que could enhance OP by increasing osteoblast differentiation and activity and reducing osteoclast differentiation and activity via the pathways of Wnt/β-catenin, BMP/SMAD/RUNX2, OPG/RANKL/RANK, ERK/JNK, oxidative stress, apoptosis, and transcription factors. Thus, Que is a promising novel drug for the treatment of OP.
Collapse
Affiliation(s)
- Ting-Ting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Yu Ding
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, China
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xi-Xue Lu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qing-Hao Zhang
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jin-Xin Du
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li-Juan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mei-Na Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Ying Yin
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fan-Jie Liu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
13
|
Du SY, Hu L, Zhou BH, Zhang Z, Li MC, Chang D, Xu CJ, Dou X. Sox6 impairs the adipogenic commitment of mesenchymal stem cells by targeting lysyl oxidase and preadipocyte factor 1. Biochem Biophys Res Commun 2023; 681:225-231. [PMID: 37783121 DOI: 10.1016/j.bbrc.2023.09.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
The commitment of mesenchymal stem cells (MSCs) to preadipocytes and the termination of differentiation to adipocytes are critical for maintaining systemic energy homeostasis. However, our knowledge of the molecular mechanisms governing the commitment of MSCs to preadipocytes and the subsequent termination of their differentiation into adipocytes remain limited. Additionally, the role of Sox6 sex-determining region Y (SRY)-box6 (Sox6), a transcription factor that regulates gene transcription, is reportedly involved in various cellular processes, including adipogenesis; however, its function in regulating preadipocyte development and the factors involved in the termination of adipogenic differentiation remain unexplored. Therefore, we investigated the role of Sox6 in regulating the differentiation of adipocytes by monitoring the effects of its overexpression in C3H10T1/2 cells (in vitro) and C57BL/6J mouse (in vivo) models of adipogenesis. We observed lower Sox6 expression in the adipose tissue of obese mice than that in control mice. Sox6 overexpression inhibited the differentiation of MSC by directly binding to the lysyl oxidase (Lox) and preadipocyte factor 1 (Pref1) promoters, which was potentiated by histone deacetylase-1(HDAC1). Our findings suggest that Sox6 is a key regulator of MSC commitment to adipocytes; therefore, targeting the Sox6-mediated regulation of this process could offer potential therapeutic avenues for addressing obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Shao-Yue Du
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China
| | - Liang Hu
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China
| | - Bing-He Zhou
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China
| | - Ze Zhang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China
| | - Ming-Chao Li
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China
| | - Dong Chang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China.
| | - Cong-Jian Xu
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China.
| | - Xin Dou
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 201399, China.
| |
Collapse
|
14
|
Xu J, Zhao B, Lin W, Liu Y, Zhang X, Wang Y, Zhang Y, Liu W, Seriwatanachai D, Yuan Q. Periplaneta americana extract promotes osteoblast differentiation of human alveolar bone marrow mesenchymal stem cells. Oral Dis 2023; 29:3540-3550. [PMID: 36516336 DOI: 10.1111/odi.14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES This study aims to investigate the effects of Traditional Chinese medicine, Periplaneta americana extract (PAE), on osteoblast differentiation of human alveolar bone marrow-derived mesenchymal stem cells (hABMMSCs). MATERIALS AND METHODS Human alveolar bone marrow-derived mesenchymal stem cells were treated with different concentrations of PAE. Cell Counting Kit-8 (CCK-8) assay and transwell migration assay were conducted to evaluate cell proliferation and migration, respectively. Alkaline phosphatase (ALP) staining, ALP activity assay, and Alizarin red S staining were performed to detect osteogenesis in hABMMSCs. In addition, real-time quantitative polymerase chain reaction (RT-qPCR) and western blot (WB) assay were performed to evaluate expression levels of osteogenic markers. Finally, RNA sequencing analysis and WB were carried out to elucidate the underlying mechanism. RESULTS A total of 0.1 mg/ml PAE promoted cell proliferation and migration. PAE also increased ALP activity and mineralized nodule formation of hABMMSCs. In addition, PAE upregulated the expression of osteogenesis-related genes (RUNX2, COL1A1, and BGLAP). RNA-sequencing analysis revealed that PAE activated the focal adhesion signaling pathway. Treatment with Defactinib, an inhibitor of FAK, attenuated the effects induced by PAE. CONCLUSIONS PAE could enhance osteoblast differentiation of hABMMSCs through focal adhesion signaling pathway, suggesting a therapeutic potential for the alveolar bone defect.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanjun Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Madani P, Hesaraki S, Saeedifar M, Ahmadi Nasab N. The controlled release, bioactivity and osteogenic gene expression of Quercetin-loaded gelatin/tragacanth/ nano-hydroxyapatite bone tissue engineering scaffold. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:217-242. [PMID: 35960146 DOI: 10.1080/09205063.2022.2113293] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, a Gelatin/Tragacanth/Nano-hydroxyapatite scaffold was fabricated via freeze-drying method. A highly porous scaffold with an average pore diameter of 142 µm and porosity of 86% was found by the micro-computed tomography. The mean compressive strength of the scaffold was about 1.5 MPa, a value in the range of the spongy bone. The scaffold lost 10 wt.% of its initial weight after 28 days soaking in PBS that shows a fair degradation rate for a bone tissue engineering scaffold. Apatite formation ability of the scaffold was confirmed via scanning electron microscopy, X-ray diffraction and Fourier transforming infrared spectroscopy, after 28 days soaking in simulated body fluid. The scaffold was able to deliver 93% of the loaded drug, Quercetin, during 120 h in phosphate-buffered solution, in a sustainable manner. The MTT assay using human bone mesenchymal stem cells showed 84% cell viability of the Quercetin-loaded scaffold. The expression of the osteogenic genes including Col I, Runx-2, BGLAP (gene of osteocalcin), bFGF, SP7 (gene of osterix) and SPP1 (gene of osteopontin) were all upregulated when Quercetin was loaded on the scaffold, which indicates the synergetic effect of the drug and the scaffold.
Collapse
Affiliation(s)
- Parisa Madani
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Saeed Hesaraki
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Maryam Saeedifar
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Navid Ahmadi Nasab
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
16
|
Zhang J, Liu Z, Luo Y, Li X, Huang G, Chen H, Li A, Qin S. The Role of Flavonoids in the Osteogenic Differentiation of Mesenchymal Stem Cells. Front Pharmacol 2022; 13:849513. [PMID: 35462886 PMCID: PMC9019748 DOI: 10.3389/fphar.2022.849513] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 01/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in developing bone tissue engineered constructs due to their osteogenic and chondrogenic differentiation potential. MSC-based tissue engineered constructs are generally considered a safe procedure, however, the long-term results obtained up to now are far from satisfactory. The main causes of these therapeutic limitations are inefficient homing, engraftment, and directional differentiation. Flavonoids are a secondary metabolite, widely existed in nature and have many biological activities. For a long time, researchers have confirmed the anti-osteoporosis effect of flavonoids through in vitro cell experiments, animal studies. In recent years the regulatory effects of flavonoids on mesenchymal stem cells (MSCs) differentiation have been received increasingly attention. Recent studies revealed flavonoids possess the ability to modulate self-renewal and differentiation potential of MSCs. In order to facilitate further research on MSCs osteogenic differentiation of flavonoids, we surveyed the literature published on the use of flavonoids in osteogenic differentiation of MSCs, and summarized their pharmacological activities as well as the underlying mechanisms, aimed to explore their promising therapeutic application in bone disorders and bone tissue engineered constructs.
Collapse
Affiliation(s)
- Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Yang Luo
- School of Physical Education, Southwest University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Guowei Huang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Huan Chen
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Shengnan Qin
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
He X, Liao Y, Liu J, Sun S. Research Progress of Natural Small-Molecule Compounds Related to Tumor Differentiation. Molecules 2022; 27:2128. [PMID: 35408534 PMCID: PMC9000768 DOI: 10.3390/molecules27072128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor differentiation is a therapeutic strategy aimed at reactivating the endogenous differentiation program of cancer cells and inducing cancer cells to mature and differentiate into other types of cells. It has been found that a variety of natural small-molecule drugs can induce tumor cell differentiation both in vitro and in vivo. Relevant molecules involved in the differentiation process may be potential therapeutic targets for tumor cells. Compared with synthetic drugs, natural small-molecule antitumor compounds have the characteristics of wide sources, structural diversity and low toxicity. In addition, natural drugs with structural modification and transformation have relatively concentrated targets and enhanced efficacy. Therefore, using natural small-molecule compounds to induce malignant cell differentiation represents a more targeted and potential low-toxicity means of tumor treatment. In this review, we focus on natural small-molecule compounds that induce differentiation of myeloid leukemia cells, osteoblasts and other malignant cells into functional cells by regulating signaling pathways and the expression of specific genes. We provide a reference for the subsequent development of natural small molecules for antitumor applications and promote the development of differentiation therapy.
Collapse
Affiliation(s)
- Xiaoli He
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yongkang Liao
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
18
|
Chen P, Hong W, Chen Z, Gordillo-Martinez F, Wang S, Fan H, Liu Y, Dai Y, Wang B, Jiang L, Yu H, He P. CCAAT/Enhancer-Binding Protein Alpha Is a Novel Regulator of Vascular Smooth Muscle Cell Osteochondrogenic Transition and Vascular Calcification. Front Physiol 2022; 13:755371. [PMID: 35295585 PMCID: PMC8918665 DOI: 10.3389/fphys.2022.755371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
AimsVascular calcification is a common clinical complication of chronic kidney disease (CKD), atherosclerosis (AS), and diabetes, which is associated with increased cardiovascular morbidity and mortality in patients. The transdifferentiation of vascular smooth muscle cells (VSMCs) to an osteochondrogenic phenotype is a crucial step during vascular calcification. The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) plays an important role in regulating cell proliferation and differentiation, but whether it regulates the calcification of arteries and VSMCs remains unclear. Therefore, this study aims to understand the role of C/EBPα in the regulation of vascular calcification.Methods and ResultsBoth mRNA and protein expression levels of C/EBPα were significantly increased in calcified arteries from mice treated with a high dose of vitamin D3 (vD3). Upregulation of C/EBPα was also observed in the high phosphate- and calcium-induced VSMC calcification process. The siRNA-mediated knockdown of C/EBPα significantly attenuated VSMC calcification in vitro. Moreover, C/EBPα depletion in VSMCs significantly reduced the mRNA expression of the osteochondrogenic genes, e.g., sex-determining region Y-box 9 (Sox9). C/EBPα overexpression can induce SOX9 overexpression. Similar changes in the protein expression of SOX9 were also observed in VSMCs after C/EBPα depletion or overexpression. In addition, silencing of Sox9 expression significantly inhibited the phosphate- and calcium-induced VSMC calcification in vitro.ConclusionFindings in this study indicate that C/EBPα is a key regulator of the osteochondrogenic transdifferentiation of VSMCs and vascular calcification, which may represent a novel therapeutic target for vascular calcification.
Collapse
Affiliation(s)
- Pengyuan Chen
- Department of Cardiology, Guangdong Provincial People’s Hospital’s Nanhai Hospital, The Second Hospital of Nanhai District Foshan City, Foshan, China
- Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wanzi Hong
- Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- School of Medicine, Guangdong Provincial People’s Hospital, South China University of Technology, Guangzhou, China
| | - Ziying Chen
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | | | - Siying Wang
- Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hualin Fan
- School of Medicine, Guangdong Provincial People’s Hospital, South China University of Technology, Guangzhou, China
| | - Yuanhui Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yining Dai
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Wang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lei Jiang
- School of Medicine, Guangdong Provincial People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Lei Jiang,
| | - Hongjiao Yu
- Department of Biochemistry and Molecular Biology, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- Hongjiao Yu,
| | - PengCheng He
- School of Medicine, Guangdong Provincial People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- PengCheng He,
| |
Collapse
|
19
|
Föger-Samwald U, Kerschan-Schindl K, Butylina M, Pietschmann P. Age Related Osteoporosis: Targeting Cellular Senescence. Int J Mol Sci 2022; 23:ijms23052701. [PMID: 35269841 PMCID: PMC8910503 DOI: 10.3390/ijms23052701] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Age-related chronic diseases are an enormous burden to modern societies worldwide. Among these, osteoporosis, a condition that predisposes individuals to an increased risk of fractures, substantially contributes to increased mortality and health-care costs in elderly. It is now well accepted that advanced chronical age is one of the main risk factors for chronical diseases. Hence, targeting fundamental aging mechanisms such as senescence has become a promising option in the treatment of these diseases. Moreover, for osteoporosis, the main pathophysiological concepts arise from menopause causing estrogen deficiency, and from aging. Here, we focus on recent advances in the understanding of senescence-related mechanisms contributing to age-related bone loss. Furthermore, treatment options for senile osteoporosis targeting senescent cells are reviewed.
Collapse
Affiliation(s)
- Ursula Föger-Samwald
- Medical Science and Human Medicine Study Programme, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
- Correspondence:
| | | | - Maria Butylina
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (M.B.); (P.P.)
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (M.B.); (P.P.)
| |
Collapse
|
20
|
Liu Y, Liu Q, Yin C, Li Y, Wu J, Chen Q, Yu H, Lu A, Guan D. Uncovering Hidden Mechanisms of Different Prescriptions Treatment for Osteoporosis via Novel Bioinformatics Model and Experiment Validation. Front Cell Dev Biol 2022; 10:831894. [PMID: 35211473 PMCID: PMC8861325 DOI: 10.3389/fcell.2022.831894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis (OP) is a systemic disease susceptible to fracture due to the decline of bone mineral density and bone mass, the destruction of bone tissue microstructure, and increased bone fragility. At present, the treatments of OP mainly include bisphosphonates, hormone therapy, and RANKL antibody therapy. However, these treatments have observable side effects and cannot fundamentally improve bone metabolism. Currently, the prescription of herbal medicine and their derived proprietary Chinese medicines are playing increasingly important roles in the treatment of OP due to their significant curative effects and few side effects. Among these prescriptions, Gushukang Granules (GSK), Xianling Gubao Capsules (XLGB), and Er-xian Decoction (EXD) are widely employed at the clinic on therapy of OP, which also is in line with the compatibility principle of “different treatments for the same disease” in herbal medicine. However, at present, the functional interpretation of “different treatments for the same disease” in herbal medicine still lacks systematic quantitative research, especially on the detection of key component groups and mechanisms. To solve this problem, we designed a new bioinformatics model based on random walk, optimized programming, and information gain to analyze the components and targets to figure out the Functional Response Motifs (FRMs) of different prescriptions for the therapy of OP. The distribution of high relevance score, the number of reported evidence, and coverage of enriched pathways were performed to verify the precision and reliability of FRMs. At the same time, the information gain and target influence of each component was calculated, and the key component groups in all FRMs of each prescription were screened to speculate the potential action mode of different prescriptions on the same disease. Results show that the relevance score and the number of reported evidence of high reliable genes in FRMs were higher than those of the pathogenic genes of OP. Furthermore, the gene enrichment pathways in FRMs could cover 79.6, 81, and 79.5% of the gene enrichment pathways in the component-target (C-T) network. Functional pathway enrichment analysis showed that GSK, XLGB, and EXD all treat OP through osteoclast differentiation (hsa04380), calcium signaling pathway (hsa04020), MAPK signaling pathway (hsa04010), and PI3K-Akt signaling pathway (hsa04151). Combined with experiments, the key component groups and the mechanism of “different treatments for the same disease” in the three prescriptions and proprietary Chinese medicines were verified. This study provides methodological references for the optimization and mechanism speculation of Chinese medicine prescriptions and proprietary Chinese medicines.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Chuanhui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Quanlin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Hailang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Sekaran S, Thangavelu L. Re-appraising the role of flavonols, flavones and flavonones on osteoblasts and osteoclasts- A review on its molecular mode of action. Chem Biol Interact 2022; 355:109831. [PMID: 35120918 DOI: 10.1016/j.cbi.2022.109831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/02/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
Bone disorders have become a global concern illustrated with decreased bone mineral density and disruption in microarchitecture of natural bone tissue organization. Natural compounds that promote bone health by augmenting osteoblast functions and suppressing osteoclast functions has gained much attention and offer greater therapeutic value compared to conventional therapies. Amongst several plant-based molecules, flavonoids act as a major combatant in promoting bone health through their multi-faceted biological activities such as antioxidant, anti-inflammatory, and osteogenic properties. They protect bone loss by regulating the signalling cascades involved in osteoblast and osteoclast functions. Flavonoids augment osteoblastogenesis and inhibits osteoclastogenesis through their modulation of various signalling pathways. This review discusses the role of various flavonoids and their molecular mechanisms involved in maintaining bone health by regulating osteoblast and osteoclast functions.
Collapse
Affiliation(s)
- Saravanan Sekaran
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| | - Lakshmi Thangavelu
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| |
Collapse
|
22
|
Casado-Díaz A, Rodríguez-Ramos Á, Torrecillas-Baena B, Dorado G, Quesada-Gómez JM, Gálvez-Moreno MÁ. Flavonoid Phloretin Inhibits Adipogenesis and Increases OPG Expression in Adipocytes Derived from Human Bone-Marrow Mesenchymal Stromal-Cells. Nutrients 2021; 13:4185. [PMID: 34836440 PMCID: PMC8623874 DOI: 10.3390/nu13114185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Phloretin (a flavonoid abundant in apple), has antioxidant, anti-inflammatory, and glucose-transporter inhibitory properties. Thus, it has interesting pharmacological and nutraceutical potential. Bone-marrow mesenchymal stem cells (MSC) have high differentiation capacity, being essential for maintaining homeostasis and regenerative capacity in the organism. Yet, they preferentially differentiate into adipocytes instead of osteoblasts with aging. This has a negative impact on bone turnover, remodeling, and formation. We have evaluated the effects of phloretin on human adipogenesis, analyzing MSC induced to differentiate into adipocytes. Expression of adipogenic genes, as well as genes encoding OPG and RANKL (involved in osteoclastogenesis), protein synthesis, lipid-droplets formation, and apoptosis, were studied. Results showed that 10 and 20 µM phloretin inhibited adipogenesis. This effect was mediated by increasing beta-catenin, as well as increasing apoptosis in adipocytes, at late stages of differentiation. In addition, this chemical increased OPG gene expression and OPG/RANKL ratio in adipocytes. These results suggest that this flavonoid (including phloretin-rich foods) has interesting potential for clinical and regenerative-medicine applications. Thus, such chemicals could be used to counteract obesity and prevent bone-marrow adiposity. That is particularly useful to protect bone mass and treat diseases like osteoporosis, which is an epidemic worldwide.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - Ángel Rodríguez-Ramos
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, 14071 Córdoba, Spain;
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| |
Collapse
|
23
|
Bian W, Xiao S, Yang L, Chen J, Deng S. Quercetin promotes bone marrow mesenchymal stem cell proliferation and osteogenic differentiation through the H19/miR-625-5p axis to activate the Wnt/β-catenin pathway. BMC Complement Med Ther 2021; 21:243. [PMID: 34592982 PMCID: PMC8485455 DOI: 10.1186/s12906-021-03418-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
Background Quercetin and H19 can promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). However, whether quercetin regulates H19 expression to promote osteogenic differentiation of BMSCs is unclear. Methods BMSC proliferation, matrix mineralization, and alkaline phosphatase (ALP) activity were assessed using the Cell Counting Kit-8, ALP assay kit, and alizarin red staining kit, respectively. Expression of H19, miR-625-5p, BMP-2, osteocalcin, and RUNX2 were measured by qRT-PCR; β-catenin protein level was measured by western blotting. Results Quercetin promoted BMSC proliferation, enhanced ALP activity, and upregulated the expression of BMP-2, osteocalcin, and RUNX2 mRNAs, suggesting that it promoted osteogenic differentiation of BMSCs. Moreover, quercetin increased H19 expression, while the effect of quercetin on BMSCs was reversed by silencing H19 expression. Additionally, miR-625-5p, interacted with H19, was downregulated during quercetin-induced BMSC osteogenic differentiation, which negatively correlated with H19 expression. Silencing miR-625-5p expression promoted BMSC proliferation and osteogenic differentiation, whereas miR-625-5p overexpression weakened the effect of quercetin on BMSCs. Finally, quercetin treatment or downregulation of miR-625-5p expression increased β-catenin protein level in BMSCs. Upregulation or downregulation of miR-625-5p or H19 expression, respectively, inhibited β-catenin protein level in quercetin treated-BMSCs. Conclusion H19 promotes, while miR-625-5p inhibits BMSC osteogenic differentiation. Quercetin activates the Wnt/β-catenin pathway and promotes BMSC osteogenic differentiation via the H19/miR-625-5p axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03418-8.
Collapse
Affiliation(s)
- Wei Bian
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China
| | - Shunqiang Xiao
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China
| | - Lei Yang
- Department of Geriatrics in Luohu Hospital of Traditional Chinese Medicine/Shenzhen Hospital of Shanghai University of traditional Chinese Medicine, Shenzhen, 518000, China
| | - Jun Chen
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China
| | - Shifang Deng
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China.
| |
Collapse
|
24
|
Rodríguez V, Rivoira M, Picotto G, de Barboza GD, Collin A, de Talamoni NT. Analysis of the molecular mechanisms by flavonoids with potential use for osteoporosis prevention or therapy. Curr Med Chem 2021; 29:2913-2936. [PMID: 34547992 DOI: 10.2174/0929867328666210921143644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoporosis is the most common skeletal disorder worldwide. Flavonoids have the potential to alleviate bone alterations in osteoporotic patients with the advantage of being safer and less expensive than the conventional therapies. OBJECTIVE The main objective is to analyze the molecular mechanisms triggered in bone by different subclasses of flavonoids. In addition, this review provides an up-to-date overview on the cellular and molecular aspects of osteoporotic bones versus healthy bones, and a brief description of some epidemiological studies indicating that flavonoids could be useful for osteoporosis treatment. METHODS The PubMed database was searched in the range of years 2001- 2021 using the keywords osteoporosis, flavonoids, and their subclasses such as flavones, flavonols, flavanols, isoflavones, flavanones and anthocyanins, focusing the data on the molecular mechanisms triggered in bone. RESULTS Although flavonoids comprise many compounds that differ in structure, their effects on bone loss in postmenopausal women or in ovariectomized-induced osteoporotic animals are quite similar. Most of them increase bone mineral density and bone strength, which occur through enhancement of osteoblastogenesis and osteoclast apoptosis, decrease in osteoclastogenesis as well as increase in neovascularization on the site of the osteoporotic fracture. CONCLUSION Several molecules of signaling pathways are involved in the effect of flavonoids on osteoporotic bone. Whether all flavonoids have a common mechanism or they act as ligands of estrogen receptors remain to be established. More clinical trials are necessary to know better their safety, efficacy, delivery and bioavailability in humans, as well as comparative studies with conventional therapies.
Collapse
Affiliation(s)
- Valeria Rodríguez
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - María Rivoira
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Gabriela Picotto
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Gabriela Díaz de Barboza
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Alejandro Collin
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| |
Collapse
|
25
|
Dal-Fabbro R, Cosme-Silva L, Rezende Silva Martins de Oliveira F, Capalbo LC, Plazza FA, Ervolino E, Cintra LTA, Gomes-Filho JE. Effect of red wine or its polyphenols on induced apical periodontitis in rats. Int Endod J 2021; 54:2276-2289. [PMID: 34534374 DOI: 10.1111/iej.13633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 01/25/2023]
Abstract
AIM To evaluate the effect of red wine consumption or its polyphenols on the inflammation/resorption processes associated with apical periodontitis in rats. METHODOLOGY Thirty-two three-month-old Wistar rats had apical periodontitis induced in four first molars and were then arranged into four groups: control (C)-rats with apical periodontitis; wine (W)-rats with apical periodontitis receiving 4.28 ml/kg of red wine; resveratrol+quercetin (R+Q)-rats with apical periodontitis receiving 4.28 ml/kg of a solution containing 1.00 mg/L of quercetin and 0.86 mg/L of resveratrol and alcohol (ALC)-rats with apical periodontitis receiving the alcoholic dose contained in the wine. The oral gavage treatments were administered daily, from day 0 to day 45. On the 15th day, apical periodontitis was induced, and on the 45th day, the animals were euthanized. Histological, immunohistochemical (RANKL, OPG, TRAP, IL-10, TNF-⍺ and IL-1β) and micro-computed tomography for bone resorption analysis were performed in the jaws. The Kruskal-Wallis with Dunn's test was performed for nonparametric data, and the anova with Tukey's test for parametric data, p < .05. RESULTS The median score of the inflammatory process was significantly lower in the R+Q group (1) compared to the C (2) (p = .0305) and ALC (3) (p = .0003) groups, and not different from the W (1.5) group. The immunolabeling for OPG was significantly higher in the R+Q group (p = .0054) compared to all groups; the same was observed for IL-10 (p = .0185), different from groups C and ALC. The R+Q group had the lowest TRAP cell count (p < .0001), followed by the W group, both inferior to C and ALC groups. The lowest bone resorption value was in the R+Q group (0.50mm3 ± 0.21mm3 ), significantly lower (p = .0292) than the C group (0.88mm3 ± 0.10mm3 ). The W group (0.60 mm3 ± 0.25 mm3 ) and R+Q group had less bone resorption compared to the ALC group (0.97 mm3 ± 0.22 mm3 ), p = .0297 and p = .0042, respectively. CONCLUSION Red wine administration to rats for 15 days before induction of apical periodontitis decreased inflammation, TRAP marking and periapical bone resorption compared to alcohol. Resveratrol-quercetin administration reduced the inflammatory process in apical periodontitis, periapical bone resorption, and altered the OPG, IL-10 and TRAP expression compared to C and ALC groups.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, Ann Arbor, Michigan, USA
| | - Leopoldo Cosme-Silva
- Department of Restorative Dentistry, School of Dentistry, Federal University of Alagoas (UFAL), Alagoas, Brazil
| | | | - Letícia Cabrera Capalbo
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Flávia Alfredo Plazza
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Edilson Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Luciano Tavares Angelo Cintra
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - João Eduardo Gomes-Filho
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
26
|
Wang B, Chen L, Xie J, Tang J, Hong C, Fang K, Jin C, Huang C, Xu T, Yang L. Coating Polyelectrolyte Multilayers Loaded with Quercetin on Titanium Surfaces by Layer-By-Layer Assembly Technique to Improve Surface Osteogenesis Under Osteoporotic Condition. J Biomed Nanotechnol 2021; 17:1392-1403. [PMID: 34446142 DOI: 10.1166/jbn.2021.3115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Titanium (Ti) and its alloy implants are widely used in the field of orthopedics, and osteoporosis is an important reason for implantation failure. This study aimed to establish a quercetin (QTN) controlled release system on the surface of titanium implants and to study its effects on osteogenesis and osseointegration on the surface of implants. Polyethylenimine (PEI) was first immobilized on a titanium substrate as the base layer, and then, hyaluronic acid/chitosan-quercetin (HA/CS-QTN) multilayer films were assembled on the PEI layer by a self-assembly technique. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and contact angle measurements were used to characterize and analyze the samples. The release characteristics of QTN were studied by release assays. The osteogenic ability of the samples was evaluated by experiments on an osteoporosis rat model and MC3T3-E1 cells. The FTIR, SEM, and contact angle measurements all showed that the PEI substrate layer and HA/CS-QTN multilayer film were successfully immobilized on the titanium matrix. The drug release test showed the successful establishment of a QTN controlled release system. The in vitro results showed that osteoblasts exhibited higher adhesion, proliferation and differentiation ability on the coated titanium matrix than on the pure titanium surface. In addition, the in vivo results showed that the HA/CS-QTN coating significantly increased the new bone mass around the implant. By depositing a PEI matrix layer and HA/CS-QTN multilayer films on titanium implants, a controlled release system of QTN was established, which improved implant surface osseointegration under osteoporotic conditions. This study proposes a new implant therapy strategy for patients with osteoporosis.
Collapse
Affiliation(s)
- Bingzhang Wang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Liang Chen
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Jun Xie
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Jiahao Tang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Chenxuan Hong
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Kanhao Fang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Chen Jin
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Chengbin Huang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Tianhao Xu
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Lei Yang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| |
Collapse
|
27
|
Abstract
Due to the ability to differentiate into variety of cell types, mesenchymal stem cells (MSCs) hold promise as source in cell-based therapy for treating injured tissue and degenerative diseases. The potential use of MSCs to replace or repair damaged tissues may depend on the efficient differentiation protocols to derive specialized cells without any negative side effects. Identification of appropriate cues that support the lineage-specific differentiation of stem cells is critical for tissue healing and cellular therapy. Recently, a number of stimuli have been utilized to direct the differentiation of stem cells. Biochemical stimuli such as small molecule, growth factor and miRNA have been traditionally used to regulate the fate of stem cells. In recent years, many studies have reported that biophysical stimuli including cyclic mechanical strain, fluid shear stress, microgravity, electrical stimulation, matrix stiffness and topography can also be sensed by stem cells through mechanical receptors, thus affecting the stem cell behaviors including their differentiation potential. In this paper, we review all the most recent literature on the application of biochemical and biophysical cues on regulating MSC differentiation. An extensive literature search was done using electronic database (Medline/Pubmed). Although there are still some challenges that need to be taken into consideration before translating these methods into clinics, biochemical and biophysical stimulation appears to be an attractive method to manipulate the lineage commitment of MSCs.
Collapse
|
28
|
Taurine Augments Telomerase Activity and Promotes Chondrogenesis in Dental Pulp Stem Cells. J Pers Med 2021; 11:jpm11060491. [PMID: 34072707 PMCID: PMC8228366 DOI: 10.3390/jpm11060491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Stem cell therapy has become an advanced and state-of-the-art procedure to regenerate lost tissues of the human body. Cartilage repair is a challenging task in which stem cells find potential application. One of the important biologic modifiers that can cause chondrogenic differentiation of stem cells is taurine. However, taurine has not been investigated for its effects on dental pulp derived stem cell (DPSC) chondrogenic differentiation. Objective: The objective of the study was to investigate if taurine administration to DPSCs heralds chondrogenic differentiation as ascertained by expression of SOX9, COL2A1, ACAN, ELN, and COMP. The study also investigated if the differentiated cells synthesized glycosaminoglycans, a marker of cartilage formation. The study also aimed to assess proliferative activity of the cells after taurine administration by measuring the hTERT gene and protein expression. Materials and methods: DPSCs were obtained from a molecular biology laboratory and characterization of stem cell markers was done by flow cytometry. The cells were subjected to a MTT assay using various concentrations of taurine. Following this, hTERT gene and protein estimation was done in the control, telomerase inhibitor treated DPSC (TI-III), 10 μM taurine treated DPSC, and TI-III + 10 μM taurine treated DPSCs. A polymerase chain reaction was done to assess gene expression of SOX9, COL2A1, ACAN, ELN, and COMP genes and glycosaminoglycans were estimated in control cells, Induced DPSCs, induced and TI-III treated DPSCs, and 10 μM taurine treated DPSCs. Results: DPSCs expressed CD73, CD90, and CD105 and did not express CD34, CD45, and HLA-DR, which demonstrated that they were mesenchymal stem cells. The MTT assay revealed that various concentrations of taurine did not affect the cell viability of DPSCs. A concentration of 10 μM of taurine was used for further assays. With regard to the hTERT gene and protein expression, the taurine treated cells expressed the highest levels that were statistically significant compared to the other groups. Taurine was also found to restore hTERT expression in telomerase inhibitor treated cells. With regard to chondrogenesis related genes, taurine administration significantly increased the expression of SOX9, COL2A1, ACAN, and ELN genes in DPSCs and caused a significant increase in glycosaminoglycan production by the cells. Conclusions: Taurine can be regarded a biologic modifier that can significantly augment chondrogenic differentiation of DPSCs and can find potential applications in regenerative medicine in the area of cartilage regeneration.
Collapse
|
29
|
Viability of Quercetin-Induced Dental Pulp Stem Cells in Forming Living Cellular Constructs for Soft Tissue Augmentation. J Pers Med 2021; 11:jpm11050430. [PMID: 34070084 PMCID: PMC8158115 DOI: 10.3390/jpm11050430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Autogenous gingival grafts used for root coverage or gingival augmentation procedures often result in donor site morbidity. Living cellular constructs as an exogenous alternative have been proven to be associated with lower morbidity. With the available background information, the present study aims to assess if quercetin-induced living cell constructs, derived from dental pulp stem cells, have the potential to be applied as a tool for soft tissue augmentation. The characterized dental pulp stem cells (positive for CD73, CD90, and negative for CD34, HLA-DR) were expanded in Dulbecco's Modified Eagle's medium (DMEM) supplemented with 10 mM quercetin. The handling properties of the quercetin-induced dental pulp stem cell constructs were assessed by visual, and tactile sensation. A microscopic characterization using hematoxylin and eosin staining, and qRT-PCR-based analysis for stemness-associated genes (OCT4, NANOG, SOX2, and cMyc) was also performed. Dental pulp stem cells without quercetin administration were used as the control. Dental pulp stem cell constructs induced by quercetin easily detached from the surface of the plate, whereas there was no formation in the control cells. It was also simple to transfer the induced cellular construct on the flattened surface. Microscopic characterization of the constructs showed cells embedded in a tissue matrix. Quercetin also increased the expression of stemness-related genes. The use of quercetin-induced DPSC living constructs for soft tissue augmentation could provide an alternative to autogenous soft tissue grafts to lower patient morbidity and improve esthetic outcomes.
Collapse
|
30
|
Raj Preeth D, Saravanan S, Shairam M, Selvakumar N, Selestin Raja I, Dhanasekaran A, Vimalraj S, Rajalakshmi S. Bioactive Zinc(II) complex incorporated PCL/gelatin electrospun nanofiber enhanced bone tissue regeneration. Eur J Pharm Sci 2021; 160:105768. [PMID: 33607242 DOI: 10.1016/j.ejps.2021.105768] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/25/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022]
Abstract
Bone tissue regeneration is augmented by biocompatible nanofiber scaffolds, that supports reliable and enhanced bone formation. Zinc is an essential mineral that is vital for routine skeletal growth and it emerges to be able to improve bone regeneration. Phytochemicals, particularly flavonoids have achieved prominent interest for their therapeutic ability, they have demonstrated promising effects on bone by encouraging osteoblastogenesis, which finally leads to bone formation. In this study, we have synthesized bioactive zinc(II) quercetin complex material and used for nanofibers scaffold fabrication to enhance bone tissue regeneration property. Two derivatives of zinc(II) quercetin complexes [(Zn(quercetin) (H2O)2) (Zn+Q), and Zn(quercetin)(phenanthroline) (Zn+Q(PHt)) have been synthesized and characterized using UV-Visible spectrophotometer and Fourier Transform-IR spectroscopy. The UV-Visible absorption and IR spectra prove the B-ring chelation of the flavonoid quercetin to zinc(II) rather C-ring chelation. The potential ability of the above synthesized metal complexes on osteogenesis and angiogenesis have been studied. Besides the bioactivity of the metal complexes, the control quercetin has also been examined. The chick embryo chorioallantoic membrane (CAM) assay demonstrated that the angiogenic parameters were increased by the (Zn+Q(PHt)) complex. Amongst, (Zn+Q(PHt)) complex showed significant activity and thereby this complex has been further examined for the bone tissue activity by incorporating the complex into a nanofiber through electrospinning method. At the molecular level, Runx2, mRNA and protein, ALP and type 1 collagen mRNAs, and osteoblast-specific microRNA, pre-mir-15b were examined using real time RT-PCR and Western blot assay. Histology studies showed that the (PCL/gelatin/Zn+Q(PHt)) was biocompatibility in-ovo. Overall, the present study showed that quercetin-zinc complex (Zn+Q(PHt)) incorporated into PCL/gelatin nanofiber can act as a pharmacological agent for treating bone associated defects and promote bone regeneration.
Collapse
Affiliation(s)
- Desingh Raj Preeth
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT, Campus, Chrompet, Chennai 600 044, India
| | - Sekaran Saravanan
- Centre for Nanotechnology & Advance Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Manickaraj Shairam
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT, Campus, Chrompet, Chennai 600 044, India
| | | | | | | | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Guindy, Chennai 600 025, India; Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India.
| | - Subramaniyam Rajalakshmi
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT, Campus, Chrompet, Chennai 600 044, India.
| |
Collapse
|
31
|
Zhang W, Jia L, Zhao B, Xiong Y, Wang YN, Liang J, Xu X. Quercetin reverses TNF‑α induced osteogenic damage to human periodontal ligament stem cells by suppressing the NF‑κB/NLRP3 inflammasome pathway. Int J Mol Med 2021; 47:39. [PMID: 33537804 PMCID: PMC7891819 DOI: 10.3892/ijmm.2021.4872] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
Quercetin (Quer) is a typical antioxidant flavonoid from plants that is involved in bone metabolism, as well as in the progression of inflammatory diseases. Elevated levels of tumor necrosis factor-α (TNF-α), a typical pro-inflammatory cytokine, can affect osteogenesis. In the present study, TNF-α was used to establish an in vitro model of periodontitis. The effects of Quer on, as well as its potential role in the osteogenic response of human periodontal ligament stem cells (hPDLSCs) under TNF-α-induced inflammatory conditions and the underlying mechanisms were then investigated. Within the appropriate concentration range, Quer did not exhibit any cytotoxicity. More importantly, Quer significantly attenuated the TNF-α induced the suppression of osteogenesis-related genes and proteins, alkaline phosphatase (ALP) activity and mineralized matrix in the hPDLSCs. These findings were associated with the fact that Quer inhibited the activation of the NF-κB signaling pathway, as well as the expression of NLRP3 inflammation-associated proteins in the inflammatory microenvironment. Moreover, the silencing of NLRP3 by small interfering RNA (siRNA) was found to protect the hPDLSCs against TNF-α-induced osteogenic damage, which was in accordance with the effects of Quer. On the whole, the present study demonstrates that Quer reduces the impaired osteogenesis of hPDLSCs under TNF-α-induced inflammatory conditions by inhibiting the NF-κB/NLRP3 inflammasome pathway. Thus, Quer may prove to be a potential remedy against periodontal bone defects.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Linglu Jia
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bin Zhao
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yixuan Xiong
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ya-Nan Wang
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jin Liang
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
32
|
Zhong Z, Li Y, Chen Y, Chen W, Li S, Lv X, Luo S. Predicting and Exploring the Mechanisms of Erzhi Pill in Prevention and Treatment of Osteoporosis Based on Network Pharmacology and Zebrafish Experiments. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:817-827. [PMID: 33658763 PMCID: PMC7917472 DOI: 10.2147/dddt.s293455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023]
Abstract
Background Erzhi Pill (EZP), a traditional Chinese medicine (TCM) prescription, has been widely applied to improve bone metabolism and treat osteoporosis (OP) in China. However, its effective constituents and mechanisms remain unclear. Methods By combining network pharmacology and zebrafish experiments, an integrative method was employed to address this problem. Firstly, the disease targets of OP were collected from two public gene databases. Secondly, the active compounds and drug targets of EZP were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP). Thirdly, a drug-target-disease interaction network was constructed, and the key active components were identified by analyzing the topological characteristics of the network. Finally, these predicted results were tested by zebrafish experiments and compared with those from the literature. Specifically, quercetin as an important representative active component of EZP was applied to wild type and transgenic zebrafish larvae to assess its effects on skull mineralization and osteoplastic differentiation. Results Our study identified 72 active compounds, 220 targets and 166 signaling pathways probably involved in the prevention and treatment of OP by EZP, wherein quercetin, apigenin, daidzein, luteolin, ursolic acid and kaempferol could be the key compounds, while PI3K-Akt signaling pathway, TNF signaling pathway and IL-17 signaling pathway could be the key signaling pathways. The experiments indicated that quercetin attenuated both the decrease of skull mineralization and the inhibition of skull osteoplastic differentiation in zebrafish larvae trigged by dexamethasone. Conclusion Our study not only investigated potentially effective constituents and mechanisms of EZP in the prevention and treatment of OP, but also provided a reference for the in-depth research, development and application of TCM.
Collapse
Affiliation(s)
- Zhiguo Zhong
- Traditional Chinese Medicine Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yuyun Li
- Department of Pharmacology, School of Pharmacy, Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, 523808, People’s Republic of China
| | - Yan Chen
- Department of Pharmacology, School of Pharmacy, Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, 523808, People’s Republic of China
| | - Wen Chen
- Department of Pharmacology, School of Pharmacy, Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Siyan Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Xiaohua Lv
- Department of Pharmacology, School of Pharmacy, Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Shiying Luo
- Department of Pharmacology, School of Pharmacy, Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Correspondence: Shiying Luo Department of Pharmacology, School of Pharmacy, Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, Zhanjiang, 524023, Guangdong, People’s Republic of ChinaTel +86 13763058766Fax +86 7592388588 Email
| |
Collapse
|
33
|
Oh JH, Karadeniz F, Seo Y, Kong CS. Effect of Quercetin 3- O-β-D-Galactopyranoside on the Adipogenic and Osteoblastogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2020; 21:ijms21218044. [PMID: 33126698 PMCID: PMC7663619 DOI: 10.3390/ijms21218044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Natural products, especially phenols, are promising therapeutic agents with beneficial effects against aging-related complications such as osteoporosis. This study aimed to investigate the effect of quercetin 3-O-β-D-galactopyranoside (Q3G), a glycoside of a common bioactive phytochemical quercetin, on osteogenic and adipogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). hBM-MSCs were induced to differentiate into osteoblasts and adipocytes in the presence or absence of Q3G and the differentiation markers were analyzed to observe the effect. Q3G treatment stimulated the osteoblastogenesis markers: cell proliferation, alkaline phosphatase (ALP) activity and extracellular mineralization. In addition, it upregulated the expression of RUNX2 and osteocalcin protein as osteoblastogenesis regulating transcription factors. Moreover, Q3G treatment increased the activation of osteoblastogenesis-related Wnt and bone morphogenetic protein (BMP) signaling displayed as elevated levels of phosphorylated β-catenin and Smad1/5 in nuclear fractions of osteo-induced hBM-MSCs. The presence of quercetin in adipo-induced hBM-MSC culture inhibited the adipogenic differentiation depicted as suppressed lipid accumulation and expression of adipogenesis markers such as PPARγ, SREBP1c and C/EBPα. In conclusion, Q3G supplementation stimulated osteoblast differentiation and inhibited adipocyte differentiation in hBM-MSCs via Wnt/BMP and PPARγ pathways, respectively. This study provided useful information of the therapeutic potential of Q3G against osteoporosis mediated via regulation of MSC differentiation.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; (J.H.O.); (F.K.)
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; (J.H.O.); (F.K.)
| | - Youngwan Seo
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 49112, Korea;
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; (J.H.O.); (F.K.)
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
- Correspondence: ; Tel.: +82-51-999-5429
| |
Collapse
|
34
|
Quercetin inhibits virulence properties of Porphyromas gingivalis in periodontal disease. Sci Rep 2020; 10:18313. [PMID: 33110205 PMCID: PMC7591570 DOI: 10.1038/s41598-020-74977-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Abstract
Porphyromonas gingivalis is a causative agent in the onset and progression of periodontal disease. This study aims to investigate the effects of quercetin, a natural plant product, on P. gingivalis virulence properties including gingipain, haemagglutinin and biofilm formation. Antimicrobial effects and morphological changes of quercetin on P. gingivalis were detected. The effects of quercetin on gingipains activities and hemolytic, hemagglutination activities were evaluated using chromogenic peptides and sheep erythrocytes. The biofilm biomass and metabolism with different concentrations of quercetin were assessed by the crystal violet and MTT assay. The structures and thickness of the biofilms were observed by confocal laser scanning microscopy. Bacterial cell surface properties including cell surface hydrophobicity and aggregation were also evaluated. The mRNA expression of virulence and iron/heme utilization was assessed using real time-PCR. Quercetin exhibited antimicrobial effects and damaged the cell structure. Quercetin can inhibit gingipains, hemolytic, hemagglutination activities and biofilm formation at sub-MIC concentrations. Molecular docking analysis further indicated that quercetin can interact with gingipains. The biofilm became sparser and thinner after quercetin treatment. Quercetin also modulate cell surface hydrophobicity and aggregation. Expression of the genes tested was down-regulated in the presence of quercetin. In conclusion, our study demonstrated that quercetin inhibited various virulence factors of P. gingivalis.
Collapse
|
35
|
Li X, Chen R, Lei X, Wang P, Zhu X, Zhang R, Yang L. Quercetin regulates ERα mediated differentiation of BMSCs through circular RNA. Gene 2020; 769:145172. [PMID: 33065239 DOI: 10.1016/j.gene.2020.145172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/04/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022]
Abstract
Circular RNA (circRNA) participates in regulation of gene transcription, while estrogen receptor alpha (ERα) and quercetin (QUE) positively regulate bone formation, but little is known about the correlation among circRNA, ERα and QUE. In this experiment, we created an ERα-deficient rBMSC model treated with QUE and evaluated the effects of ERα or QUE on rBMSCs, then analyzed differentially-expressed circRNAs by RNA-Seq and bioinformatics. The results showed that ERα deficiency constrained osteogenic differentiation and stimulated adipocytic differentiation of rBMSCs, while QUE abrogated those effects. We identified 136 differentially-expressed circRNAs in the Lv-shERα group and 120 differentially-expressed circRNAs in the Lv-shERα + QUE group. Thirty-two circRNAs retroregulated by ERα and QUE were involved in Rap1 and Wnt signaling, and four of them together sponged miR-326-5p, the target genes of which are osteogenic and adipogenic differentiation factors. Further study showed that over-expressed miR-326-5p could stimulate osteogenic differentiation, while attenuating adipogenic differentiation of rBMSCs. Therefore, we concluded that ERα and QUE might regulate the differentiation of rBMSCs through the circRNA-miR-326-5p-mRNA axis.
Collapse
Affiliation(s)
- Xiaoyun Li
- College of Traditional Chinese Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, PR China
| | - Rumeng Chen
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, PR China
| | - Xiaotong Lei
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, PR China
| | - Panpan Wang
- Department of the First Affiliated Hospital, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong 510630, PR China
| | - Xiaofeng Zhu
- College of Traditional Chinese Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, PR China; Department of the First Affiliated Hospital, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong 510630, PR China
| | - Ronghua Zhang
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, PR China.
| | - Li Yang
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, PR China.
| |
Collapse
|
36
|
Silver Fir ( Abies alba L.) Polyphenolic Extract Shows Beneficial Influence on Chondrogenesis In Vitro under Normal and Inflammatory Conditions. Molecules 2020; 25:molecules25204616. [PMID: 33050554 PMCID: PMC7587205 DOI: 10.3390/molecules25204616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
Several plant polyphenols have been shown to reduce osteoarthritis symptoms due to their antioxidant, anti-inflammatory and immunomodulatory properties. We investigated the effects of two different polyphenolic extracts (Belinal, Pycnogenol) and two different polyphenols (resveratrol, quercetin) on the chondrogenic potential of bone-derived mesenchymal stem/stromal cells (MSCs) from healthy donors and patients with osteoarthritis. Our main aim was to determine whether Belinal, a commercially available polyphenolic extract from silver fir (Abies alba L.) branches, has comparable chondrogenic potential with the other tested extract and the polyphenols under inflammatory and non-inflammatory conditions. In our study, Belinal promoted significantly greater chondrogenesis compared to the untreated (p = 0.0289) and resveratrol-treated (p = 0.0468) MSCs from patients with hip osteoarthritis under non-inflammatory conditions. Under inflammatory conditions, chondrogenesis was significantly enhanced for MSCs treated with Belinal compared to the control (p = 0.0483). The other extract and the polyphenols did not show any significant effects on chondrogenesis under non-inflammatory or inflammatory conditions. None of the tested extracts and polyphenols showed significant effects on chondrogenesis in healthy donors, under either non-inflammatory or inflammatory conditions. Our data show that Belinal can boost the chondrogenesis of MSCs derived from patients with osteoarthritis, under both non-inflammatory and inflammatory conditions.
Collapse
|
37
|
Quercetin as an Agent for Protecting the Bone: A Review of the Current Evidence. Int J Mol Sci 2020; 21:ijms21176448. [PMID: 32899435 PMCID: PMC7503351 DOI: 10.3390/ijms21176448] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023] Open
Abstract
Quercetin is a flavonoid abundantly found in fruits and vegetables. It possesses a wide spectrum of biological activities, thus suggesting a role in disease prevention and health promotion. The present review aimed to uncover the bone-sparing effects of quercetin and its mechanism of action. Animal studies have found that the action of quercetin on bone is largely protective, with a small number of studies reporting negative outcomes. Quercetin was shown to inhibit RANKL-mediated osteoclastogenesis, osteoblast apoptosis, oxidative stress and inflammatory response while promoting osteogenesis, angiogenesis, antioxidant expression, adipocyte apoptosis and osteoclast apoptosis. The possible underlying mechanisms involved are regulation of Wnt, NF-κB, Nrf2, SMAD-dependent, and intrinsic and extrinsic apoptotic pathways. On the other hand, quercetin was shown to exert complex and competing actions on the MAPK signalling pathway to orchestrate bone metabolism, resulting in both stimulatory and inhibitory effects on bone in parallel. The overall interaction is believed to result in a positive effect on bone. Considering the important contributions of quercetin in regulating bone homeostasis, it may be considered an economical and promising agent for improving bone health. The documented preclinical findings await further validation from human clinical trials.
Collapse
|
38
|
|
39
|
Salazar C, Yañez O, Elorza AA, Cortes N, García-Beltrán O, Tiznado W, Ruiz LM. Biosystem Analysis of the Hypoxia Inducible Domain Family Member 2A: Implications in Cancer Biology. Genes (Basel) 2020; 11:genes11020206. [PMID: 32085461 PMCID: PMC7074167 DOI: 10.3390/genes11020206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
The expression of HIGD2A is dependent on oxygen levels, glucose concentration, and cell cycle progression. This gene encodes for protein HIG2A, found in mitochondria and the nucleus, promoting cell survival in hypoxic conditions. The genomic location of HIGD2A is in chromosome 5q35.2, where several chromosomal abnormalities are related to numerous cancers. The analysis of high definition expression profiles of HIGD2A suggests a role for HIG2A in cancer biology. Accordingly, the research objective was to perform a molecular biosystem analysis of HIGD2A aiming to discover HIG2A implications in cancer biology. For this purpose, public databases such as SWISS-MODEL protein structure homology-modelling server, Catalogue of Somatic Mutations in Cancer (COSMIC), Gene Expression Omnibus (GEO), MethHC: a database of DNA methylation and gene expression in human cancer, and microRNA-target interactions database (miRTarBase) were accessed. We also evaluated, by using Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR), the expression of Higd2a gene in healthy bone marrow-liver-spleen tissues of mice after quercetin (50 mg/kg) treatment. Thus, among the structural features of HIG2A protein that may participate in HIG2A translocation to the nucleus are an importin α-dependent nuclear localization signal (NLS), a motif of DNA binding residues and a probable SUMOylating residue. HIGD2A gene is not implicated in cancer via mutation. In addition, DNA methylation and mRNA expression of HIGD2A gene present significant alterations in several cancers; HIGD2A gene showed significant higher expression in Diffuse Large B-cell Lymphoma (DLBCL). Hypoxic tissues characterize the “bone marrow-liver-spleen” DLBCL type. The relative quantification, by using qRT-PCR, showed that Higd2a expression is higher in bone marrow than in the liver or spleen. In addition, it was observed that quercetin modulated the expression of Higd2a gene in mice. As an assembly factor of mitochondrial respirasomes, HIG2A might be unexpectedly involved in the change of cellular energetics happening in cancer. As a result, it is worth continuing to explore the role of HIGD2A in cancer biology.
Collapse
Affiliation(s)
- Celia Salazar
- Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Osvaldo Yañez
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370251, Chile; (O.Y.); (W.T.)
| | - Alvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Natalie Cortes
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 calle 67, Ibagué 730002, Colombia; (N.C.); (O.G.-B.)
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 calle 67, Ibagué 730002, Colombia; (N.C.); (O.G.-B.)
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370251, Chile; (O.Y.); (W.T.)
| | - Lina María Ruiz
- Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
- Correspondence: ; Tel.: +56-2-2303-6662
| |
Collapse
|
40
|
Ge YW, Feng K, Liu XL, Zhu ZA, Chen HF, Chang YY, Sun ZY, Wang HW, Zhang JW, Yu DG, Mao YQ. Quercetin inhibits macrophage polarization through the p-38α/β signalling pathway and regulates OPG/RANKL balance in a mouse skull model. J Cell Mol Med 2020; 24:3203-3216. [PMID: 32053272 PMCID: PMC7077538 DOI: 10.1111/jcmm.14995] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/20/2019] [Accepted: 12/17/2019] [Indexed: 01/06/2023] Open
Abstract
Aseptic loosening caused by wear particles is a common complication after total hip arthroplasty. We investigated the effect of the quercetin on wear particle‐mediated macrophage polarization, inflammatory response and osteolysis. In vitro, we verified that Ti particles promoted the differentiation of RAW264.7 cells into M1 macrophages through p‐38α/β signalling pathway by using flow cytometry, immunofluorescence assay and small interfering p‐38α/β RNA. We used enzyme‐linked immunosorbent assays to confirm that the protein expression of M1 macrophages increased in the presence of Ti particles and that these pro‐inflammatory factors further regulated the imbalance of OPG/RANKL and promoted the differentiation of osteoclasts. However, this could be suppressed, and the protein expression of M2 macrophages was increased by the presence of the quercetin. In vivo, we revealed similar results in the mouse skull by μ‐CT, H&E staining, immunohistochemistry and immunofluorescence assay. We obtained samples from patients with osteolytic tissue. Immunofluorescence analysis indicated that most of the macrophages surrounding the wear particles were M1 macrophages and that pro‐inflammatory factors were released. Titanium particle‐mediated M1 macrophage polarization, which caused the release of pro‐inflammatory factors through the p‐38α/β signalling pathway, regulated OPG/RANKL balance. Macrophage polarization is expected to become a new clinical drug therapeutic target.
Collapse
Affiliation(s)
- Yu-Wei Ge
- Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shangai, China
| | - Kai Feng
- Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shangai, China.,Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao-Liang Liu
- Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shangai, China
| | - Zhen-An Zhu
- Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shangai, China
| | - Hong-Fang Chen
- Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shangai, China
| | - Yong-Yun Chang
- Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shangai, China
| | - Zhen-Yu Sun
- Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shangai, China
| | - Hao-Wei Wang
- Department of 2nd Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jing-Wei Zhang
- Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shangai, China
| | - De-Gang Yu
- Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shangai, China
| | - Yuan-Qing Mao
- Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shangai, China
| |
Collapse
|
41
|
Perdicaro DJ, Rodriguez Lanzi C, Gambarte Tudela J, Miatello RM, Oteiza PI, Vazquez Prieto MA. Quercetin attenuates adipose hypertrophy, in part through activation of adipogenesis in rats fed a high-fat diet. J Nutr Biochem 2020; 79:108352. [PMID: 32145471 DOI: 10.1016/j.jnutbio.2020.108352] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/22/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022]
Abstract
An impaired capacity of adipose tissue expansion leads to adipocyte hypertrophy, inflammation and insulin resistance (IR) under positive energy balance. We previously showed that a grape pomace extract, rich in flavonoids including quercetin (Q), attenuates adipose hypertrophy. This study investigated whether dietary Q supplementation promotes adipogenesis in the epididymal white adipose tissue (eWAT) of rats consuming a high-fat diet, characterizing key adipogenic regulators in 3T3-L1 pre-adipocytes. Consumption of a high-fat diet for 6 weeks caused IR, increased plasma TNFα concentrations, eWAT weight, adipocyte size and the eWAT/brown adipose tissue (BAT) ratio. These changes were accompanied by decreased levels of proteins involved in angiogenesis, VEGF-A and its receptor 2 (VEGF-R2), and of two central adipogenic regulators, i.e. PPARγ and C/EBPα, and proteins involved in mature adipocyte formation, i.e. fatty acid synthase (FAS) and adiponectin. Q significantly reduced adipocyte size and enhanced angiogenesis and adipogenesis without changes in eWAT weight and attenuated systemic IR and inflammation. In addition, high-fat diet consumption increased eWAT hypoxia inducible factor-1 alpha (HIF-1α) levels and those of proteins involved in adipose inflammation (TLR-4, CD68, MCP-1, JNK) and activation of endoplasmic reticulum (ER) stress, i.e. ATF-6 and XBP-1. Q mitigated all these events. Q and quercetin 3-glucoronide prevented TNFα-mediated downregulation of adipogenesis during 3T3-L1 pre-adipocytes early differentiation. Together, Q capacity to promote a healthy adipose expansion enhancing angiogenesis and adipogenesis may contribute to reduced adipose hypertrophy, inflammation and IR. Consumption of diets rich in Q could be useful to counteract the adverse effects of high-fat diet-induced adipose dysfunction.
Collapse
Affiliation(s)
- Diahann J Perdicaro
- Laboratorio de Nutrición y Fisiopatología de la Obesidad, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Cecilia Rodriguez Lanzi
- Laboratorio de Nutrición y Fisiopatología de la Obesidad, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Roberto M Miatello
- Laboratorio de Nutrición y Fisiopatología de la Obesidad, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Patricia I Oteiza
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, USA
| | - Marcela A Vazquez Prieto
- Laboratorio de Nutrición y Fisiopatología de la Obesidad, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
42
|
Modulation of Adipogenesis and Oxidative Status by Quercetin and Ochratoxin A: Positive or Negative Impact on Rat Adipocyte Metabolism? Molecules 2019; 24:molecules24203726. [PMID: 31623151 PMCID: PMC6832986 DOI: 10.3390/molecules24203726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Impaired adipose tissue function leads to the development of metabolic disorders. Reactive oxygen species play a key role in the regulation of adipogenesis and insulin-stimulated glucose uptake by adipocytes. Quercetin (QCT) regulates adipogenesis by affecting the redox state of preadipocytes. Ochratoxin A (OTA) is one of the most prevalent mycotoxins contaminating food. It has cytotoxic, genotoxic, pro-inflammatory, and anti-adipogenic effects. Antioxidants are believed to protect cells from the cytotoxicity and genotoxicity induced by OTA. The aim of this study was to investigate the effect of QCT and OTA application on preadipocyte differentiation, oxidative status, and adipocyte metabolism. (2) Methods: Primary rat preadipocytes were isolated from subcutaneous adipose tissue of Wistar rats. Gene expressions were determined by qPCR. Cell viability, reactive oxygen species (ROS) production, glucose uptake, and lipid accumulation were determined using commercially available kits. (3) Results: A dose-dependent inhibitory effect of QCT on adipogenic differentiation was observed, which was accompanied by a decrease in ROS production. Reduced ROS formation is closely related to impaired glucose uptake by adipocytes. (4) Conclusions: The results of this study indicate a key role of ROS in regulating adipogenesis and metabolic pathways, which is affected by the application of QCT and/or OTA.
Collapse
|
43
|
Boruczkowski D, Pujal JM, Zdolińska-Malinowska I. Autologous cord blood in children with cerebral palsy: a review. Int J Mol Sci 2019; 20:2433. [PMID: 31100943 PMCID: PMC6566649 DOI: 10.3390/ijms20102433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/11/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of this narrative review is to report on the current knowledge regarding the clinical use of umbilical cord blood (CB) based on articles from PubMed and clinical trials registered on ClinicalTrials.gov. An increasing amount of evidence suggests that CB may be used for both early diagnostics and treatment of cerebral palsy. The acidity of CB and its biochemical parameters, including dozens of cytokines, growth factors, and other metabolites (such as amino acids, acylcarnitines, phosphatidylcholines, succinate, glycerol, 3-hydroxybutyrate, and O-phosphocholine) are predictors of future neurodevelopment. In addition, several clinical studies confirmed the safety and efficacy of CB administration in both autologous and allogeneic models, including a meta-analysis of five clinical trials involving a total of 328 participants. Currently, nine clinical trials assessing the use of autologous umbilical CB in children diagnosed with hypoxic-ischemic encephalopathy or cerebral palsy are in progress. The total population assessed in these trials exceeds 2500 patients.
Collapse
Affiliation(s)
- Dariusz Boruczkowski
- Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Jana Pawła II 29, 00-867 Warsaw, Poland.
| | - Josep-Maria Pujal
- Sevibe Cells, Parc Científic i Tecnològic de la UdG, C/Pic de Peguera No. 11, 17003 Girona, Spain.
| | | |
Collapse
|
44
|
Carrasco-Pozo C, Cires MJ, Gotteland M. Quercetin and Epigallocatechin Gallate in the Prevention and Treatment of Obesity: From Molecular to Clinical Studies. J Med Food 2019; 22:753-770. [PMID: 31084513 DOI: 10.1089/jmf.2018.0193] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity is a worldwide epidemic, which is characterized by the excess accumulation of adipose tissue and to an extent that impairs both the physical and psychosocial health and well-being. There are several weight-loss strategies available, including dietary modification, pharmacotherapy, and bariatric surgery, but many are ineffective or not a long-term solution. Bioactive compounds present in medicinal plants and plant extracts, like polyphenols, constitute the oldest and most extensive form of alternative treatments for the prevention and management of obesity. Their consumption is currently increasing in the population due to the high cost, potential adverse effects, and limited benefits of the currently available pharmaceutical drugs. A great number of studies has explored how dietary polyphenols can interfere with the different mechanisms associated with obesity development. They suggest that these compounds can decrease energy and food intake, lipogenesis, and preadipocyte differentiation and proliferation, while increasing energy expenditure, lipolysis, and fat oxidation. Both quercetin, one of the most common dietary flavonols in the western diet, and epigallocatechin gallate (EGCG), the most abundant polyphenol in green tea, exhibit antiobesity effects in adipocyte cultures and animal models. However, the extrapolation of these potential benefits to obese humans remains unclear. Although quercetin supplementation does not seem to exert any beneficial effects on body weight, this polyphenol could prevent the obesity-associated mortality by reducing cardiovascular disease risk. An important consideration for the design of further trials is the occurrence of gene polymorphisms in key enzymes involved in flavanol metabolism, which determines a subject's sensitivity to catechins and seems, therefore, crucial for the success of the antiobesity intervention. Although the evidence supporting antiobesity effects is more consistent in EGCG than with quercetin studies, they could still be beneficial by reducing the cardiovascular risk of obese subjects, rather than inducing body weight loss.
Collapse
Affiliation(s)
- Catalina Carrasco-Pozo
- 1Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Chile.,2Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - María Jose Cires
- 1Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Chile
| | - Martin Gotteland
- 1Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Chile.,3Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|
45
|
Boudreau A, Poulev A, Ribnicky DM, Raskin I, Rathinasabapathy T, Richard AJ, Stephens JM. Distinct Fractions of an Artemisia scoparia Extract Contain Compounds With Novel Adipogenic Bioactivity. Front Nutr 2019; 6:18. [PMID: 30906741 PMCID: PMC6418310 DOI: 10.3389/fnut.2019.00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/11/2019] [Indexed: 12/19/2022] Open
Abstract
Adipocytes are important players in metabolic health and disease, and disruption of adipocyte development or function contributes to metabolic dysregulation. Hence, adipocytes are significant targets for therapeutic intervention in obesity and metabolic syndrome. Plants have long been sources for bioactive compounds and drugs. In previous studies, we screened botanical extracts for effects on adipogenesis in vitro and discovered that an ethanolic extract of Artemisia scoparia (SCO) could promote adipocyte differentiation. To follow up on these studies, we have used various separation methods to identify the compound(s) responsible for SCO's adipogenic properties. Fractions and subfractions of SCO were tested for effects on lipid accumulation and adipogenic gene expression in differentiating 3T3-L1 adipocytes. Fractions were also analyzed by Ultra Performance Liquid Chromatography- Mass Spectrometry (UPLC-MS), and resulting peaks were putatively identified through high resolution, high mass accuracy mass spectrometry, literature data, and available natural products databases. The inactive fractions contained mostly quercetin derivatives and chlorogenates, including chlorogenic acid and 3,5-dicaffeoylquinic acid, which had no effects on adipogenesis when tested individually, thus ruling them out as pro-adipogenic bioactives in SCO. Based on these studies we have putatively identified the principal constituents in SCO fractions and subfractions that promoted adipocyte development and fat cell gene expression as prenylated coumaric acids, coumarin monoterpene ethers, 6-demethoxycapillarisin and two polymethoxyflavones.
Collapse
Affiliation(s)
- Anik Boudreau
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Alexander Poulev
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, United States
| | - David M Ribnicky
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, United States
| | - Ilya Raskin
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, United States
| | | | - Allison J Richard
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA, United States.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
46
|
Li M, Zhang C, Li X, Lv Z, Chen Y, Zhao J. Isoquercitrin promotes the osteogenic differentiation of osteoblasts and BMSCs via the RUNX2 or BMP pathway. Connect Tissue Res 2019; 60:189-199. [PMID: 29852784 DOI: 10.1080/03008207.2018.1483358] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM Isoquercitrin is widely present in fruits, vegetables and medicinal herbs. As a natural phytoestrogen, isoquercitrin has been considered a possible osteoporosis prevention option to avoid the risk of hormone therapy. MATERIALS AND METHODS The cell proliferation of osteoblasts and bone mesenchymal stem cells (BMSCs) was examined by cell counting kit-8 (CCK-8). The osteogenic differentiation was evaluated by real-time qPCR, ALP staining and Alizarin Red S staining. Small interfering RNA (siRNA) was used to knockdown the expression of runt-related transcription factor 2 (RUNX2). RESULTS The cell proliferation of osteoblasts and BMSCs was promoted by isoquercitrin at low concentrations. High concentrations of isoquercitrin promoted the osteogenic differentiation via RUNX2 expression in osteoblasts and via the bone morphogenetic protein (BMP) pathway in BMSCs. Inhibition of RUNX2 expression in osteoblasts by siRNA or addition of noggin to the culture medium of BMSCs reduced the effects of osteogenic differentiation induced by isoquercitrin. CONCLUSIONS These data suggest that isoquercitrin is a natural potential osteoinductive compound and might be valuable for the prevention/treatment of bone disorders.
Collapse
Affiliation(s)
- Mei Li
- a Zhejiang Key Laboratory of Pathophysiology , Medical School of Ningbo University , Ningbo , People's Republic of China.,b Ningbo Institute of Medical Sciences , Ningbo , People's Republic of China
| | - Chi Zhang
- a Zhejiang Key Laboratory of Pathophysiology , Medical School of Ningbo University , Ningbo , People's Republic of China
| | - Xinhan Li
- a Zhejiang Key Laboratory of Pathophysiology , Medical School of Ningbo University , Ningbo , People's Republic of China
| | - Zeheng Lv
- a Zhejiang Key Laboratory of Pathophysiology , Medical School of Ningbo University , Ningbo , People's Republic of China
| | - Yao Chen
- a Zhejiang Key Laboratory of Pathophysiology , Medical School of Ningbo University , Ningbo , People's Republic of China
| | - Jiyuan Zhao
- a Zhejiang Key Laboratory of Pathophysiology , Medical School of Ningbo University , Ningbo , People's Republic of China
| |
Collapse
|
47
|
Zhang H, Zheng L, Yuan Z. Lycium barbarum
polysaccharides promoted proliferation and differentiation in osteoblasts. J Cell Biochem 2018; 120:5018-5023. [PMID: 30417412 DOI: 10.1002/jcb.27777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Huiying Zhang
- School of Health Science, Wuhan University Wuhan China
| | - Lei Zheng
- Department of Cardiovascular Medicine, Shanxi Dayi Hospital Taiyuan China
| | - Zhanpeng Yuan
- School of Health Science, Wuhan University Wuhan China
| |
Collapse
|
48
|
Pandey MK, Gupta SC, Karelia D, Gilhooley PJ, Shakibaei M, Aggarwal BB. Dietary nutraceuticals as backbone for bone health. Biotechnol Adv 2018; 36:1633-1648. [PMID: 29597029 DOI: 10.1016/j.biotechadv.2018.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
|
49
|
Lee H, Nguyen TT, Kim M, Jeong JH, Park JB. The effects of biodegradable poly(lactic-co-glycolic acid)-based microspheres loaded with quercetin on stemness, viability and osteogenic differentiation potential of stem cell spheroids. J Periodontal Res 2018; 53:801-815. [PMID: 29851068 DOI: 10.1111/jre.12569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Quercetin has been reported to exert many beneficial effects on the protection against various diseases, such as diabetes, cancer, and inflammation. The aim of this study is to evaluate the potential osteogenic differentiation ability of mesenchymal stem cells in the presence of quercetin. MATERIAL AND METHODS Quercetin-loaded poly(lactic-co-glycolic acid) microspheres were prepared using an electrospraying technique. Characterization of the microspheres was evaluated with a scanning electron microscope and release profile. Three-dimensional cell spheroids were fabricated using silicon elastomer-based concave microwells. Qualitative results of cellular viability were seen under a confocal microscope, and quantitative cellular viability was evaluated using the Cell Counting Kit-8 assay. The alkaline phosphatase activity and Alizarin Red S staining were performed. A quantitative real-time polymerase chain reaction and a western blot analysis were performed. RESULTS Spheroids were well formed irrespective of quercetin concentration. Most of the cells in spheroids emitted green fluorescence, and the morphology was round without significant changes. The application of quercetin-loaded microspheres produced a significant increase in the alkaline phosphatase activity. The real-time polymerase chain reaction results showed a significant increase in Runx2, and western blot results showed higher expression of Runx2 protein expression. CONCLUSION Biodegradable microspheres loaded with quercetin produced prolonged release profiles with increased mineralization. Microspheres loaded with quercetin can be used for the enhancement of osteoblastic differentiation in cell therapy.
Collapse
Affiliation(s)
- H Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - T T Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - M Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - J-H Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - J-B Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
50
|
Nguyen TT, Jeong J. Development of a single-jet electrospray method for producing quercetin-loaded poly (lactic-co-glycolic acid) microspheres with prolonged-release patterns. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|