1
|
Zhang K, Jagannath C. Crosstalk between metabolism and epigenetics during macrophage polarization. Epigenetics Chromatin 2025; 18:16. [PMID: 40156046 PMCID: PMC11954343 DOI: 10.1186/s13072-025-00575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/17/2025] [Indexed: 04/01/2025] Open
Abstract
Macrophage polarization is a dynamic process driven by a complex interplay of cytokine signaling, metabolism, and epigenetic modifications mediated by pathogens. Upon encountering specific environmental cues, monocytes differentiate into macrophages, adopting either a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype, depending on the cytokines present. M1 macrophages are induced by interferon-gamma (IFN-γ) and are characterized by their reliance on glycolysis and their role in host defense. In contrast, M2 macrophages, stimulated by interleukin-4 (IL-4) and interleukin-13 (IL-13), favor oxidative phosphorylation and participate in tissue repair and anti-inflammatory responses. Metabolism is tightly linked to epigenetic regulation, because key metabolic intermediates such as acetyl-coenzyme A (CoA), α-ketoglutarate (α-KG), S-adenosylmethionine (SAM), and nicotinamide adenine dinucleotide (NAD+) serve as cofactors for chromatin-modifying enzymes, which in turn, directly influences histone acetylation, methylation, RNA/DNA methylation, and protein arginine methylation. These epigenetic modifications control gene expression by regulating chromatin accessibility, thereby modulating macrophage function and polarization. Histone acetylation generally promotes a more open chromatin structure conducive to gene activation, while histone methylation can either activate or repress gene expression depending on the specific residue and its methylation state. Crosstalk between histone modifications, such as acetylation and methylation, further fine-tunes macrophage phenotypes by regulating transcriptional networks in response to metabolic cues. While arginine methylation primarily functions in epigenetics by regulating gene expression through protein modifications, the degradation of methylated proteins releases arginine derivatives like asymmetric dimethylarginine (ADMA), which contribute directly to arginine metabolism-a key factor in macrophage polarization. This review explores the intricate relationships between metabolism and epigenetic regulation during macrophage polarization. A better understanding of this crosstalk will likely generate novel therapeutic insights for manipulating macrophage phenotypes during infections like tuberculosis and inflammatory diseases such as diabetes.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, School of Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Lv X, Deng X, Lai R, Liu S, Zou Z, Wan R, Dai X, Luo Y, Li Y. Association between niacin intake and osteoarthritis in the US population based on NHANES 1999-2018. Sci Rep 2025; 15:6470. [PMID: 39987357 PMCID: PMC11846844 DOI: 10.1038/s41598-025-91063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
The relationship between niacin and osteoarthritis (OA) is not clear. Using a retrospective cohort study from the National Health and Nutrition Examination Survey (NHANES), this study aimed to investigate the association between niacin intake and osteoarthritis. This study conducted a cross-sectional analysis using data from the National Health and Nutrition Examination Survey 1999-2018 to investigate the association between niacin intake and osteoarthritis. The association between niacin and osteoarthritis was assessed using univariate and multivariate weighted logistic regression models and restricted cubic spline curves (RCS). Nonlinear correlation is analyzed by fitting smooth curve. In this study, 30,620 participants were examined, with 1,864 individuals diagnosed with osteoarthritis, resulting in a prevalence of 5.74%. Utilizing multivariate weighted logistic regression, a consistent inverse relationship between Niacin and osteoarthritis was observed (OR = 0.99, 95% CI: 0.98-0.99, P = 0.003). When Niacin was treated as a categorical variable, the highest Niacin quartile (Q4) exhibited a 33% reduced risk of osteoarthritis compared to the lowest quartile (Q1) (OR = 0.67, 95% CI: 0.53-0.83, P = 0.0004). The restricted cubic spline analysis revealed a non-linear association between Niacin and osteoarthritis risk (non-linear P = 0.022), with 33.53 as the inflection point. Subgroup analyses further highlighted a stronger inverse relationship between Niacin and osteoarthritis in Non - Hispanic Black and other Race patients. The results showed a negative linear relationship between niacin intake and OA risk. By increasing the intake of niacin-rich foods, the risk of osteoarthritis can be reduced, providing ideas for the prevention and treatment of osteoarthritis. Further future studies are recommended to validate our findings.
Collapse
Affiliation(s)
- Xiaofeng Lv
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xinmin Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Rui Lai
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shanshan Liu
- Sichuan Integrative Medicine Hospital, Chengdu, Chengdu, 610041, Sichuan, China
| | - Zihao Zou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Renhong Wan
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xuechun Dai
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yalan Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ying Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
3
|
Xie P, Ommati MM, Chen D, Chen W, Han L, Zhao X, Wang H, Xu S, Sun P. Hepatotoxic effects of environmentally relevant concentrations of polystyrene microplastics on senescent Zebrafish (Danio rerio): Patterns of stress response and metabolomic alterations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107252. [PMID: 39847840 DOI: 10.1016/j.aquatox.2025.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
The hepatotoxicity of microplastics (MPs) has garnered increasing attention, but their effects on elderly organisms remain inadequately characterized, particularly concerning hepatic stress response patterns in environmental conditions. In this study, a 10-day exposure period of elderly zebrafish to polystyrene microplastics (PS-MPs, 1 µm) was conducted, with exposure concentrations set at 5.6 × 10-7 µg/L, 5.6 × 10-4 µg/L, and 5.6 × 10-1 µg/L. PS-MPs-induced toxicity varied with concentration: superoxide dismutase (SOD), complement 3 (C3), and complement 4 (C4) initially decreased before rising; 8‑hydroxy-2-deoxyguanosine (8-OhdG), interleukin-6 (IL-6), and interleukin-8 (IL-8) increased at high concentrations. Additionally, catalase (CAT) activity and thiobarbituric acid reactive substances (TBARS) contents rose with concentration. The aged zebrafish liver exhibited differentiation driven by responsiveness; low levels cause homeostatic disruption, and high levels induce genotoxicity and immune activation. LC-MS identified twelve crucial metabolites involved in 18 metabolic pathways, including amino acids (L-tyrosine, l-arginine), lipids (phospholipids, 12(S)-leukotriene B4 and triglycerides), and N-acetylneuraminic acid, related to energy, immunity, and neurological health. Overall, elderly zebrafish exhibited clear dose-dependent thresholds and distinct physiological stress responses under varying concentrations of PS-MPs. These findings reveal how PS-MP exposure can affect physiological health and metabolism, offering critical insights into the ecological risks faced by aging organisms.
Collapse
Affiliation(s)
- Pengfei Xie
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Mohammad Mehdi Ommati
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Deshan Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Weijun Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Lei Han
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Xinquan Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, China
| | - Hongwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Ping Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| |
Collapse
|
4
|
Zhang J, Li M, Wang X, Wang T, Tian W, Xu H. Association between dietary niacin intake and abdominal aortic calcification among the US adults: the NHANES 2013-2014. Front Nutr 2024; 11:1459894. [PMID: 39668898 PMCID: PMC11634585 DOI: 10.3389/fnut.2024.1459894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Background Abdominal aortic calcification (AAC) serves as a reliable predictor of future cardiovascular incidents. This study investigated the association between dietary niacin intake and AAC in US adults. Methods In this study, we conducted a cross-sectional study of 2,238 individuals aged 40 years and older using data from the National Health and Nutrition Examination Survey (NHANES) 2013-2014. AAC was evaluated using the Kauppila scoring system through dual-energy X-ray absorptiometry. Daily niacin intake was calculated by averaging the two dietary recalls and classified in tertiles for analysis. In this study, multiple regression analyses and smoothed curve fitting were used to examine the relationship between dietary niacin intake and AAC, subgroup analyses and interaction tests were used to assess the stability of this relationship across different segments of the population, and forest plots were used to present the results. In addition, we validated the predictive performance of dietary niacin intake on the risk of severe AAC through Receiver Operating Characteristic (ROC) curve analysis. Results Among 2,238 participants aged >40 years, the results showed that the higher dietary niacin intake group was associated with lower AAC score (β = -0.02, 95% CI: -0.04 - -0.01), and a lower risk of severe AAC (OR = 0.97, 95% CI: 0.96-0.99). In the fully adjusted model, the higher tertile group was associated with lower AAC score (β = -0.37, 95% CI: -0.73 - -0.02; P for trend = 0.0461) and a lower risk of severe AAC (OR = 0.60, 95% CI: 0.38-0.93; P for trend = 0.0234). The relationship between dietary niacin intake and AAC differed significantly between diabetic and non-diabetic population. The ROC curve analysis revealed that the area under the curve (AUC) for predicting severe AAC risk based on dietary niacin intake was 0.862, indicating good predictive performance. Conclusion Higher dietary niacin intake group was associated with lower AAC score and a lower risk of severe AAC. Our findings suggest that dietary niacin intake has the potential to offer benefits in preventing AAC in the general population.
Collapse
Affiliation(s)
- Jiqian Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongxin Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wende Tian
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Torrecillas-Lopez M, Rivero-Pino F, Trigo P, Toscano-Sanchez R, Gonzalez-de la Rosa T, Villanueva A, Millan-Linares MC, Montserrat-de la Paz S, Claro-Cala CM. Immunomodulatory properties of hempseed oligopeptides in an LRRK2-associated Parkinson's disease animal model. Food Funct 2024; 15:11115-11128. [PMID: 39435853 DOI: 10.1039/d4fo03167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with genetic factors like mutations in the LRRK2 gene being a key cause of late-onset autosomal dominant parkinsonism. Nutritional strategies, such as using bioactive peptides with anti-inflammatory properties from sources like hemp protein, are gaining interest as an alternative to pharmacological therapies. In this study, we used an LRRK2-associated PD mouse model to test the efficacy of a hempseed protein hydrolysate (HPH60A + 15F) with antioxidant and anti-inflammatory properties. Mice were given HPH60A + 15F (10 mg kg-1 day-1) orally for 7 days. After treatment, brain tissue and macrophages were analyzed to assess neuroinflammation markers. Additionally, the neuroavailable peptidome was characterized using an in vitro model simulating the intestinal and blood-brain barriers. The oral treatment has been shown to reduce protein aggregates of α-syn, CD68, iNOS, and COX2 in the brain. The treatment also significantly lowered TNF-α gene expression in the striatum, with a notable reduction in the gene expression of other pro-inflammatory cytokines in bone marrow-derived macrophages (BMDMs), such as IL-1β or IL-6. The peptide TVTAMNVVYALK was proposed as a potential highly active peptide, able to exert anti-inflammatory effects in the brain. The results have shown that HPH60A + 15F is capable of alleviating neuroinflammation by reducing the expression of pro-inflammatory cytokines, which could have promising effects in PD.
Collapse
Affiliation(s)
- Maria Torrecillas-Lopez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- European Food Safety Authority, Nutrition and Food Innovation Unit, Novel Foods Team, Parma, Italy
| | - Paula Trigo
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, Universidad de Sevilla, Av Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Rocio Toscano-Sanchez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
| | - Teresa Gonzalez-de la Rosa
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| | - Alvaro Villanueva
- Department of Food and Health, Instituto de la Grasa (IG-CSIC), C\Utrera Km 1, Campus Universitario Pablo de Olavide, Building 46, Seville, 41013, Spain
| | - M Carmen Millan-Linares
- Department of Food and Health, Instituto de la Grasa (IG-CSIC), C\Utrera Km 1, Campus Universitario Pablo de Olavide, Building 46, Seville, 41013, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| | - Carmen M Claro-Cala
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, Universidad de Sevilla, Av Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| |
Collapse
|
6
|
Zhou H, Wu C, Jin Y, Wu O, Chen L, Guo Z, Wang X, Chen Q, Kwan KYH, Li YM, Xia D, Chen T, Wu A. Role of oxidative stress in mitochondrial dysfunction and their implications in intervertebral disc degeneration: Mechanisms and therapeutic strategies. J Orthop Translat 2024; 49:181-206. [PMID: 39483126 PMCID: PMC11526088 DOI: 10.1016/j.jot.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is widely recognized as one of the leading causes of low back pain. Intervertebral disc cells are the main components of the intervertebral disc (IVD), and their functions include synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the IVD. In addition, IVD cells are involved in several physiological processes. They help maintain nutrient metabolism balance in the IVD. They also have antioxidant and anti-inflammatory effects. Because of these roles, IVD cells are crucial in IVDD. When IVD cells are subjected to oxidative stress, mitochondria may become damaged, affecting normal cell function and accelerating degenerative changes. Mitochondria are the energy source of the cell and regulate important intracellular processes. As a key site for redox reactions, excessive oxidative stress and reactive oxygen species can damage mitochondria, leading to inflammation, DNA damage, and apoptosis, thus accelerating disc degeneration. Aim of review Describes the core knowledge of IVDD and oxidative stress. Comprehensively examines the complex relationship and potential mechanistic pathways between oxidative stress, mitochondrial dysfunction and IVDD. Highlights potential therapeutic targets and frontier therapeutic concepts. Draws researchers' attention and discussion on the future research of all three. Key scientific concepts of review Origin, development and consequences of IVDD, molecular mechanisms of oxidative stress acting on mitochondria, mechanisms of oxidative stress damage to IVD cells, therapeutic potential of targeting mitochondria to alleviate oxidative stress in IVDD. The translational potential of this article Targeted therapeutic strategies for oxidative stress and mitochondrial dysfunction are particularly critical in the treatment of IVDD. Using antioxidants and specific mitochondrial therapeutic agents can help reduce symptoms and pain. This approach is expected to significantly improve the quality of life for patients. Individualized therapeutic approaches, on the other hand, are based on an in-depth assessment of the patient's degree of oxidative stress and mitochondrial functional status to develop a targeted treatment plan for more precise and effective IVDD management. Additionally, we suggest preventive measures like customized lifestyle changes and medications. These are based on understanding how IVDD develops. The aim is to slow down the disease and reduce the chances of it coming back. Actively promoting clinical trials and evaluating the safety and efficacy of new therapies helps translate cutting-edge treatment concepts into clinical practice. These measures not only improve patient outcomes and quality of life but also reduce the consumption of healthcare resources and the socio-economic burden, thus having a positive impact on the advancement of the IVDD treatment field.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Chenyu Wu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Qizhu Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, China
| | - Yan Michael Li
- Minimally Invasive Brain and Spine Institute, Upstate Medical University 475 Irving Ave, #402 Syracuse, NY, 13210, USA
| | - Dongdong Xia
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
7
|
Wogram E, Sümpelmann F, Dong W, Rawat E, Fernández Maestre I, Fu D, Braswell B, Khalil A, Buescher JM, Mittler G, Borner GHH, Vlachos A, Tholen S, Schilling O, Bell GW, Rambold AS, Akhtar A, Schnell O, Beck J, Abu-Remaileh M, Prinz M, Jaenisch R. Rapid phagosome isolation enables unbiased multiomic analysis of human microglial phagosomes. Immunity 2024; 57:2216-2231.e11. [PMID: 39151426 DOI: 10.1016/j.immuni.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/25/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
Microglia are the resident macrophages of the central nervous system (CNS). Their phagocytic activity is central during brain development and homeostasis-and in a plethora of brain pathologies. However, little is known about the composition, dynamics, and function of human microglial phagosomes under homeostatic and pathological conditions. Here, we developed a method for rapid isolation of pure and intact phagosomes from human pluripotent stem cell-derived microglia under various in vitro conditions, and from human brain biopsies, for unbiased multiomic analysis. Phagosome profiling revealed that microglial phagosomes were equipped to sense minute changes in their environment and were highly dynamic. We detected proteins involved in synapse homeostasis, or implicated in brain pathologies, and identified the phagosome as the site where quinolinic acid was stored and metabolized for de novo nicotinamide adenine dinucleotide (NAD+) generation in the cytoplasm. Our findings highlight the central role of phagosomes in microglial functioning in the healthy and diseased brain.
Collapse
Affiliation(s)
- Emile Wogram
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Felix Sümpelmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Eshaan Rawat
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | | | - Dongdong Fu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brandyn Braswell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Andrew Khalil
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; The Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA 02134, USA
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan Tholen
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
8
|
Lun H, Li P, Li J, Liu F. The effect of intestinal flora metabolites on macrophage polarization. Heliyon 2024; 10:e35755. [PMID: 39170251 PMCID: PMC11337042 DOI: 10.1016/j.heliyon.2024.e35755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Intestinal flora metabolites played a crucial role in immunomodulation by influencing host immune responses through various pathways. Macrophages, as a type of innate immune cell, were essential in chemotaxis, phagocytosis, inflammatory responses, and microbial elimination. Different macrophage phenotypes had distinct biological functions, regulated by diverse factors and mechanisms. Advances in intestinal flora sequencing and metabolomics have enhanced understanding of how intestinal flora metabolites affect macrophage phenotypes and functions. These metabolites had varying effects on macrophage polarization and different mechanisms of influence. This study summarized the impact of gut microbiota metabolites on macrophage phenotype and function, along with the underlying mechanisms associated with different metabolites produced by intestinal flora.
Collapse
Affiliation(s)
- Hengzhong Lun
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fenfen Liu
- Department of Nephrology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| |
Collapse
|
9
|
Krogstad KC, Fehn JF, Mamedova LK, Bernard MP, Bradford BJ. Effects of rumen-protected niacin on inflammatory response to repeated intramammary lipopolysaccharide challenges. J Dairy Sci 2024:S0022-0302(24)00927-5. [PMID: 38876216 DOI: 10.3168/jds.2024-24974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024]
Abstract
Nutritional strategies that improve an animal's resilience to various challenges may improve animal health and welfare. One such nutrient is niacin which has reduced inflammation in mice, humans, and swine; however, niacin's anti-inflammatory effects have not been investigated in cattle. Our objective was to determine whether rumen-protected niacin (RPN) alters lactating dairy cows' inflammatory response to intramammary lipopolysaccharide (LPS) challenges, whether RPN resulted in any carry-over effects, and whether repeated LPS challenges result in signs of immune tolerance or innate immune training. Twenty healthy, late-lactation Holstein cows (232 ± 65 d in milk; 39 ± 5.8 kg/d of milk) were enrolled in a randomized complete block experiment which lasted 70 d. Cows received 26 g/d of RPN or no top-dress (CON) for the first 42 d of the experiment. During the final milking of d 27 and 55, cows were challenged in their rear-right mammary gland (RR) with 100 µg of LPS suspended in 5 mL of phosphate buffered saline. Milk yield, milk conductivity, and feed intake were measured daily. Milk composition was measured on d 14, 23, 24, 30, 37, 45, and 52. Blood samples were collected at 0, 8, 12, 24, 48, 72, 96, and 120 h after each LPS challenge, whereas RR quarter milk samples were collected at 0, 8, 16, 24, 48, 72, 96, 120, 144, and 168 h after each LPS challenge. Body temperature was measured continuously during each challenge with an intravaginal thermometer. Linear mixed models with repeated measures were used to analyze the results. Before LPS challenge, RPN did not affect feed intake or milk production, but it reduced SCS (1.24 ± 0.41 vs. 0.05 ± 0.45). After challenge, RPN did not affect feed intake, milk production, milk composition, SCS, body temperature, plasma glucose, or plasma insulin concentrations. Our results suggest RPN reduced peak plasma haptoglobin and lipopolysaccharide binding protein (LBP) during the 1st LPS challenge. Plasma haptoglobin tended to be less after the 2nd challenge for cows previously supplemented RPN while LBP was similar for each treatment group after the 2nd challenge. The 2nd LPS challenge resulted in decreased plasma haptoglobin compared with the 1st LPS challenge, suggestive of tolerance but it also induced a greater peak SCS than the 1st LPS challenge. Our results suggest that repeated LPS challenges promote a systemic tolerance but heightened local response to LPS-induced mastitis. Feeding RPN reduced SCS before challenge and reduced plasma acute phase proteins after challenge suggesting that RPN may reduce systemic inflammation without altering the local inflammatory responses.
Collapse
Affiliation(s)
- K C Krogstad
- Department of Animal Science, Michigan State University, East Lansing 48824; Department of Animal Science, The Ohio State University, Wooster, OH 44691 USA.
| | - J F Fehn
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - L K Mamedova
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - M P Bernard
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, 48824 USA; Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824 USA
| | - B J Bradford
- Department of Animal Science, Michigan State University, East Lansing 48824
| |
Collapse
|
10
|
Odorskaya MV, Mavletova DA, Nesterov AA, Tikhonova OV, Soloveva NA, Reznikova DA, Galanova OO, Vatlin AA, Slynko NM, Vasilieva AR, Peltek SE, Danilenko VN. The use of omics technologies in creating LBP and postbiotics based on the Limosilactobacillus fermentum U-21. Front Microbiol 2024; 15:1416688. [PMID: 38919499 PMCID: PMC11197932 DOI: 10.3389/fmicb.2024.1416688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
In recent years, there has been an increasing tendency to create drugs based on certain commensal bacteria of the human microbiota and their ingredients, primarily focusing on live biotherapeutics (LBPs) and postbiotics. The creation of such drugs, termed pharmacobiotics, necessitates an understanding of their mechanisms of action and the identification of pharmacologically active ingredients that determine their target properties. Typically, these are complexes of biologically active substances synthesized by specific strains, promoted as LBPs or postbiotics (including vesicles): proteins, enzymes, low molecular weight metabolites, small RNAs, etc. This study employs omics technologies, including genomics, proteomics, and metabolomics, to explore the potential of Limosilactobacillus fermentum U-21 for innovative LBP and postbiotic formulations targeting neuroinflammatory processes. Proteomic techniques identified and quantified proteins expressed by L. fermentum U-21, highlighting their functional attributes and potential applications. Key identified proteins include ATP-dependent Clp protease (ClpL), chaperone protein DnaK, protein GrpE, thioredoxin reductase, LysM peptidoglycan-binding domain-containing protein, and NlpC/P60 domain-containing protein, which have roles in disaggregase, antioxidant, and immunomodulatory activities. Metabolomic analysis provided insights into small-molecule metabolites produced during fermentation, revealing compounds with anti-neuroinflammatory activity. Significant metabolites produced by L. fermentum U-21 include GABA (γ-aminobutyric acid), niacin, aucubin, and scyllo-inositol. GABA was found to stabilize neuronal activity, potentially counteracting neurodegenerative processes. Niacin, essential for optimal nervous system function, was detected in vesicles and culture fluid, and it modulates cytokine production, maintaining immune homeostasis. Aucubin, an iridoid glycoside usually secreted by plants, was identified as having antioxidant properties, addressing issues of bioavailability for therapeutic use. Scyllo-inositol, identified in vesicles, acts as a chemical chaperone, reducing abnormal protein clumps linked to neurodegenerative diseases. These findings demonstrate the capability of L. fermentum U-21 to produce bioactive substances that could be harnessed in the development of pharmacobiotics for neurodegenerative diseases, contributing to their immunomodulatory, anti-neuroinflammatory, and neuromodulatory activities. Data of the HPLC-MS/MS analysis are available via ProteomeXchange with identifier PXD050857.
Collapse
Affiliation(s)
- Maya V. Odorskaya
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Dilara A. Mavletova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Andrey A. Nesterov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Institute of Environmental Engineering, RUDN University, Moscow, Russia
| | | | | | - Diana A. Reznikova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Olesya O. Galanova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksey A. Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Nikolai M. Slynko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Asya R. Vasilieva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey E. Peltek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valery N. Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
| |
Collapse
|
11
|
周 豪, 陈 涛, 吴 爱. [Effects of Oxidative Stress on Mitochondrial Functions and Intervertebral Disc Cells]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:249-255. [PMID: 38645848 PMCID: PMC11026887 DOI: 10.12182/20240360201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 04/23/2024]
Abstract
Intervertebral disc degeneration is widely recognized as one of the main causes of lower back pain. Intervertebral disc cells are the primary cellular components of the discs, responsible for synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the discs. Additionally, intervertebral disc cells are involved in maintaining the nutritional and metabolic balance, as well as exerting antioxidant and anti-inflammatory effects within the intervertebral discs. Consequently, intervertebral disc cells play a crucial role in the process of disc degeneration. When these cells are exposed to oxidative stress, mitochondria can be damaged, which may disrupt normal cellular function and accelerate degenerative changes. Mitochondria serve as the powerhouse of cells, being the primary energy-producing organelles that control a number of vital processes, such as cell death. On the other hand, mitochondrial dysfunction may be associated with various degenerative pathophysiological conditions. Moreover, mitochondria are the key site for oxidation-reduction reactions. Excessive oxidative stress and reactive oxygen species can negatively impact on mitochondrial function, potentially leading to mitochondrial damage and impaired functionality. These factors, in turn, triggers inflammatory responses, mitochondrial DNA damage, and cell apoptosis, playing a significant role in the pathological processes of intervertebral disc cell degeneration. This review is focused on exploring the impact of oxidative stress and reactive oxygen species on mitochondria and the crucial roles played by oxidative stress and reactive oxygen species in the pathological processes of intervertebral disc cells. In addition, we discussed current cutting-edge treatments and introduced the use of mitochondrial antioxidants and protectants as a potential method to slow down oxidative stress in the treatment of disc degeneration.
Collapse
Affiliation(s)
- 豪 周
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - 涛 陈
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - 爱悯 吴
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
12
|
Li WW, Ren KL, Yu J, Guo HS, Liu BH, Sun Y. Association of dietary niacin intake with the prevalence and incidence of chronic obstructive pulmonary disease. Sci Rep 2024; 14:2863. [PMID: 38311664 PMCID: PMC10838909 DOI: 10.1038/s41598-024-53387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Evidence regarding the association between dietary niacin intake and chronic obstructive pulmonary disease (COPD) is limited. Our study investigates the relationship between dietary niacin intake and the prevalance and incidence of COPD in the adult population of the United States, using data from the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2018. Data on niacin intake were extracted through dietary intake interviews. COPD diagnoses were based on lung function, medical history, and medication usage. We analyzed the association between niacin consumption and COPD using multiple logistic regression and restricted cubic spline models. The study included 7055 adult participants, divided into COPD (n = 243; 3.44%) and non-COPD (n = 6812; 96.56%) groups. Those with COPD had lower average niacin intake (21.39 ± 0.62 mg/day) compared to the non-COPD group (25.29 ± 0.23 mg/day, p < 0.001). In the adjusted multivariable model, the odds ratios (OR) and 95% confidence intervals (CI) for COPD in the highest versus lowest quartile of dietary niacin intake were 0.55 (0.33 to 0.89, P for trend = 0.009). Subgroup analysis, after adjustment for various variables, revealed no significant interaction effects. Dietary niacin intake was inversely associated with COPD prevalence in US adults. Participants with the highest dietary niacin intake demonstrated the lowest odds of COPD. The potential of dietary niacin supplementation as a strategy to mitigate COPD warrants further investigation.
Collapse
Affiliation(s)
- Wen-Wen Li
- Dongying People's Hospital, Shandong, Dongying, China
| | - Kun-Lun Ren
- Dongying People's Hospital, Shandong, Dongying, China
| | - Jia Yu
- Dongying People's Hospital, Shandong, Dongying, China
| | - Hai-Sheng Guo
- Dongying People's Hospital, Shandong, Dongying, China
| | - Ben-Hong Liu
- Dongying People's Hospital, Shandong, Dongying, China.
| | - Yang Sun
- Dongying People's Hospital, Shandong, Dongying, China.
| |
Collapse
|
13
|
Zheng Z, Luo H, Xue Q. Association between niacin intake and knee osteoarthritis pain and function: a longitudinal cohort study. Clin Rheumatol 2024; 43:753-764. [PMID: 38180674 DOI: 10.1007/s10067-023-06860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND This research investigates the relationship between niacin intake and knee osteoarthritis (OA) severity, focusing on pain and functional ability due to niacin's role as a NAD(P)+ precursor, promoting cellular energy, and offering anti-inflammatory, analgesic, and antioxidant effects. METHODS The population-based Osteoarthritis Initiative (OAI) cohort with radiographically confirmed knee OA was analyzed through a Food Frequency Questionnaire determining niacin intake and scores from the Knee Injury and Osteoarthritis Outcome Score (KOOS) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), using generalized additive mixed models. RESULTS A significant correlation was pinpointed in 2375 OA patients (1001 men and 1374 women; 55.96% aged between 45 and 65 and 44.04% aged ≥65) between niacin intake and reduced knee pain and functional degrees after a 48-month follow-up, evident in improved KOOS and WOMAC scores (P < 0.05). The fully adjusted models estimated a decrease of 0.26 points for every additional 1 unit of Ln-niacin intake of daily niacin intake on the WOMAC pain subscale, 0.83 points on the WOMAC function subscale, and an increase of 1.71 and 1.58 on the KOOS pain and quality of life score. Strikingly, subgroups including middle-aged individuals, women, white race, obese individuals, and those with specific dietary habits showed a more substantial improvement with increased niacin. CONCLUSION The association between increased niacin intake and reduced pain and function scores, as well improved quality of life in knee OA patients, is significant. Certain cohorts, according to a stratified analysis, could see more considerable benefits with increased niacin consumption. HIGHLIGHTS • Increased niacin intake is linked to reduced knee pain and better function in OA patients. • Specific subgroups, such as middle-aged individuals, women, and those with certain dietary habits, benefit more from increased niacin consumption. • Niacin shows promise for enhancing the quality of life in knee OA patients by reducing pain and improving function.
Collapse
Affiliation(s)
- Zitian Zheng
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 Da Hua Road, DongDan, Beijing, 100730, P.R. China
- Peking University Fifth School of Clinical Medicine, Beijing, P.R. China
| | - Huanhuan Luo
- Department of Nursing, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, P.R. China
- Graduate School of Peking Union Medical College, Beijing, P.R. China
| | - Qingyun Xue
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 Da Hua Road, DongDan, Beijing, 100730, P.R. China.
- Peking University Fifth School of Clinical Medicine, Beijing, P.R. China.
- Graduate School of Peking Union Medical College, Beijing, P.R. China.
| |
Collapse
|
14
|
Rastegari B, Ghamar Talepoor A, Khosropanah S, Doroudchi M. In Vitro Targeted Delivery of Simvastatin and Niacin to Macrophages Using Mannan-Grafted Magnetite Nanoparticles. ACS OMEGA 2024; 9:658-674. [PMID: 38222576 PMCID: PMC10785661 DOI: 10.1021/acsomega.3c06389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Atherosclerosis, a leading cause of mortality worldwide, involves various subsets of macrophages that contribute to its initiation and progression. Current treatment approaches focus on systemic, long-term administration of cholesterol-lowering antioxidants such as statins and certain vitamins, which unfortunately come with prolonged side effects. To overcome these drawbacks, a mannose-containing magnetic nanoparticle (NP) is introduced as a drug delivery system to specifically target macrophages in vitro using simvastatin or niacin and a combinational therapy approach that reduces local inflammation while avoiding unwanted side effects. The synthesized NPs exhibited superparamagnetic behavior, neutrally charged thin coating with a hydrodynamic size of 77.23 ± 13.90 nm, and a metallic core ranging from 15 to 25 nm. Efficient loading of niacin (87.21%) and simvastatin (75.36%) on the NPs was achieved at respective weights of 20.13 and 5.03 (w/w). In the presence of a mannan hydrolyzing enzyme, 79.51% of simvastatin and 67.23% of niacin were released from the NPs within 90 min, with a leakage rate below 19.22%. Additionally, the coated NPs showed no destructive effect on J774A macrophages up to a concentration of 200 μg/mL. Simvastatin-loaded NPs exhibited a minimal increase in IL-6 expression. The low dosage of simvastatin decreased both IL-6 and ARG1 expressions, while niacin and combined simvastatin/niacin increased the level of ARG1 expression significantly. Toxicity evaluations on human umbilical vein endothelial cells and murine liver cells revealed that free simvastatin administration caused significant toxicity, whereas the encapsulated forms of simvastatin, niacin, and a combination of simvastatin/niacin at equivalent concentrations exhibited no significant toxicity. Hence, the controlled release of the encapsulated form of simvastatin and niacin resulted in the effective modulation of macrophage polarization. The delivery system showed suitability for targeting macrophages to atherosclerotic plaque.
Collapse
Affiliation(s)
- Banafsheh Rastegari
- Diagnostic
Laboratory Sciences and Technology Research Center, School of Paramedical
Sciences, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
- Department
of Immunology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Atefe Ghamar Talepoor
- Department
of Immunology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
- Immunology
Center for Excellence, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Shahdad Khosropanah
- Department
of Cardiology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Mehrnoosh Doroudchi
- Department
of Immunology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
- Immunology
Center for Excellence, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| |
Collapse
|
15
|
Kuang H, Yang Y, Luo H, Lv X. The impact of three carbapenems at a single-day dose on intestinal colonization resistance against carbapenem-resistant Klebsiella pneumoniae. mSphere 2023; 8:e0047923. [PMID: 38009993 PMCID: PMC10732052 DOI: 10.1128/msphere.00479-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE The intestinal colonization of carbapenem-resistant Klebsiella pneumoniae (CRKP) is an important source of clinical infection. Our research showed that even single-day dose use of carbapenems caused CRKP colonization and continuous bacterial shedding, which reminds clinical doctors to prescribe carbapenems cautiously. Whenever possible, ertapenem should be the preferred choice over other carbapenems especially when the identified or highly suspected pathogens can be effectively targeted by ertapenem.
Collapse
Affiliation(s)
- Huan Kuang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yongqiang Yang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Huan Luo
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoju Lv
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| |
Collapse
|
16
|
Martin BR, Woodruff J. Management of a Patient With Premenstrual Syndrome Using Acupuncture, Supplements, and Meditation: A Case Report. J Chiropr Med 2023; 22:222-229. [PMID: 37644997 PMCID: PMC10461168 DOI: 10.1016/j.jcm.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 08/31/2023] Open
Abstract
Objective The purpose of this case report was to describe a multimodal approach for the treatment of premenstrual syndrome (PMS). Clinical Features A 36-year-old nulliparous woman presented to a free clinic for veterans and their spouses. She received a PMS diagnosis at age 18. She was previously prescribed hormonal birth control and nonsteroidal anti-inflammatory drugs, which minimally affected her condition. She stopped using conventional medicine therapies at age 27. Laboratory results showed that her progesterone was below 0.5 ng/mL. Her symptom score was 50 out of 60 on the Treatment Strategies for PMS assessment tool. During her menses, she experienced low back pain and stiffness, bloating, swelling, weight gain, breast tenderness, swelling, and pain, and she felt overwhelmed and stressed. Intervention and Outcome Traditional Chinese medicine acupuncture was administered in conjunction with 100 mg of coenzyme Q10 (ubiquinol) and a B-100 complex once a day and 400 mg of magnesium citrate, 1000 mg of flaxseed oil (Linum usitatissimum), and 1000 mg of turmeric (Curcuma longa) twice a day. Five days before the onset of her menstrual period, she was to ingest a B-100 complex twice a day and 400 mg of magnesium citrate, 1000 mg of flaxseed oil, and 1000 mg of turmeric 3 times a day. Mindfulness meditation was encouraged twice a day for 10 minutes to reduce stress. After 12 treatments over 3 months, her symptom score decreased to 18 out of 60 and remained below 20 for an additional 32 weeks. Conclusion This patient with PMS symptoms positively responded to a multimodal approach using traditional Chinese medicine-style acupuncture, dietary supplements, and mindfulness meditation.
Collapse
Affiliation(s)
- Brett R. Martin
- Basic Science Department, National University of Health Sciences, Pinellas Park, Florida
| | - Jade Woodruff
- Basic Science Department, National University of Health Sciences, Pinellas Park, Florida
| |
Collapse
|
17
|
Song L, Li H, Fu X, Cen M, Wu J. Association of the Oxidative Balance Score and Cognitive Function and the Mediating Role of Oxidative Stress: Evidence from the National Health and Nutrition Examination Survey (NHANES) 2011-2014. J Nutr 2023; 153:1974-1983. [PMID: 37187352 DOI: 10.1016/j.tjnut.2023.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Oxidative stress is possibly related to cognitive function decline. The oxidative balance score (OBS) that combines pro- and antioxidant components from diet and lifestyle has been reported to be associated with age-related diseases. OBJECTIVES We aimed to investigate the association between OBS and cognitive function in older adults and explore whether oxidative stress mediated this relationship. METHODS A total of 1745 adults aged ≥60 y were included in the National Health and Nutrition Examination Survey (NHANES) 2011-2014. Cognitive function was measured using 4 tests: the immediate recall test, delayed recall test, animal fluency test (AFT), and digital symbol substitution test (DSST). Weighted multivariate linear regression and restricted cubic splines (RCS) analyses were used to evaluate the association between OBS and cognitive function, and mediation analysis was used to test the indirect effect of oxidative stress indicators on the association. RESULTS The OBS was positively associated with AFT, DSST, and global cognitive function in older adults, and the beta estimates (95% CI) were 0.015 (0.008, 0.034), 0.009 (0.002, 0.025), and 0.030 (0.024, 0.074), moreover, RCS results suggested an approximately linear dose-response relationship between the OBS and these 3 tests. The highest quartiles of these 3 tests were also significantly correlated with OBS. Albumin, uric acid, and serum 25(OH)D concentrations were significant mediators of the relationship between OBS and cognitive function, and the overall mediation effect proportion was 36% when included in 1 model. CONCLUSIONS OBS was positively correlated with cognitive function in older adults, and albumin, uric acid, and serum 25(OH)D concentrations could be the driving mediators of the association. The findings emphasize the importance of a healthy, antioxidant diet and lifestyle that contribute to cognitive function. J Nutr 20xx;x:xx.
Collapse
Affiliation(s)
- Lingling Song
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiru Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xihang Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manqiu Cen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Hemp Protein Hydrolysates Modulate Inflammasome-Related Genes in Microglial Cells. BIOLOGY 2022; 12:biology12010049. [PMID: 36671742 PMCID: PMC9855956 DOI: 10.3390/biology12010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
A prolonged inflammatory response can lead to the development of neurodegenerative diseases such as Alzheimer's disease. Enzymatic hydrolysis is a sustainable way to increase the value of protein sources by obtaining peptides that can exert bioactivity. Hemp (Cannabis sativa L.) protein hydrolysates have been proven to exert anti-inflammatory activity. In this study, two hemp protein hydrolysate (HPHs), obtained with Alcalase as sole catalyst, or with Alcalase followed by Flavourzyme, were evaluated as inflammatory mediators (TNFα, IL-1β, IL-6, and IL-10), microglial polarization markers (Ccr7, iNos, Arg1, and Ym1), and genes related to inflammasome activation (Nlrp3, Asc, Casp1, and Il18), employing the lipopolysaccharide (LPS)-induced neuroinflammation model in murine BV-2 microglial cells. A significant decrease of the expression of proinflammatory genes (e.g., Tnfα, Ccr7, inos, and Nlrp3, among others) and increase of the expression anti-inflammatory cytokines in microglial cells was observed after treatment with the test HPHs. This result in the cell model suggests a polarization toward an anti-inflammatory M2 phenotype. Our results show that the evaluated HPHs show potential neuroprotective activity in microglial cells via the inflammasome.
Collapse
|
19
|
Zhou J, Yang R, Sun Y, Luo F, Zhang J, Ma H, Guan M. HClO-triggered interventional probe enabled early detection and intervention of atherosclerosis. Analyst 2022; 148:163-174. [PMID: 36464987 DOI: 10.1039/d2an01374f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of early atherosclerosis (AS). Targeting foam cell formation can be a promising approach for the early detection and prevention of AS. However, only a few studies have actually examined foam cells in vivo, and most methods combined nanotechnology with angiography, which is complex and could cause further damage to the endothelium. Herein, based on methylene blue, a biosafe NIR dye approved by the FDA, an interventional probe (HMB-NA@Mp) triggered by hypochlorous acid (HClO) was designed for imaging foam cells easily, safely, and effectively in the early stage of AS. Here, encapsulation of the probe by foam cells targeted platelet membrane (Mp) increased probe targeting and reduced toxicity. Cell and animal experimental results showed that the probe could accumulate at the lesion site and significantly enhance fluorescence in the early AS model group. Remarkably, at the same time, it could also release the metabolite niacin, which played a role in inhibiting atherosclerosis. Thus, HMB-NA@Mp is expected to be a powerful means for the early detection and timely intervention of early AS in the absence of clinical symptoms.
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ruhe Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yiwen Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Fusui Luo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jin Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Huili Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Min Guan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
20
|
Villanueva-Lazo A, Montserrat-de la Paz S, Grao-Cruces E, Pedroche J, Toscano R, Millan F, Millan-Linares MC. Antioxidant and Immunomodulatory Properties of Chia Protein Hydrolysates in Primary Human Monocyte-Macrophage Plasticity. Foods 2022; 11:foods11050623. [PMID: 35267256 PMCID: PMC8909891 DOI: 10.3390/foods11050623] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Chia (Salvia hispanica L.) seed has high potential in the development of functional food due to its protein content with a special amino acid profile. Among the hematopoietic-derived cells, monocytes are endowed with high plasticity, responsible for their pro- and anti-inflammatory function in M1 and M2 phenotype polarization, respectively. Indeed, monocytes are involved in several oxidative- and inflammatory-associated disorders such as cancer, obesity, and cardiovascular and neurodegenerative diseases. This study was designed to investigate the role of chia protein hydrolysates (CPHs) in primary human monocyte–macrophage plasticity response using biochemical, RT-qPCR, and ELISA assays. Our results showed that CPHs reduce ROS and nitrite output, as pro-inflammatory cytokine secretion, and enhance the expression and release of anti-inflammatory cytokines. In addition, CPHs reverse LPS-associated M1 polarization into M2. These findings open new opportunities for developing nutritional strategies with chia as a dietary source of biopeptides to prevent the development and progression of oxidative- and inflammatory-related diseases.
Collapse
Affiliation(s)
- Alvaro Villanueva-Lazo
- Plant Protein Group, Department of Food and Health, Instituto de la Grasa-CSIC, Carretera de Utrera Km 1, Campus Universitario Pablo de Olavide, Edificio 46, 41013 Seville, Spain; (A.V.-L.); (J.P.); (F.M.)
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain; (E.G.-C.); (R.T.); (M.C.M.-L.)
- Correspondence:
| | - Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain; (E.G.-C.); (R.T.); (M.C.M.-L.)
| | - Justo Pedroche
- Plant Protein Group, Department of Food and Health, Instituto de la Grasa-CSIC, Carretera de Utrera Km 1, Campus Universitario Pablo de Olavide, Edificio 46, 41013 Seville, Spain; (A.V.-L.); (J.P.); (F.M.)
| | - Rocio Toscano
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain; (E.G.-C.); (R.T.); (M.C.M.-L.)
| | - Francisco Millan
- Plant Protein Group, Department of Food and Health, Instituto de la Grasa-CSIC, Carretera de Utrera Km 1, Campus Universitario Pablo de Olavide, Edificio 46, 41013 Seville, Spain; (A.V.-L.); (J.P.); (F.M.)
| | - Maria C. Millan-Linares
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain; (E.G.-C.); (R.T.); (M.C.M.-L.)
| |
Collapse
|
21
|
Xu W, Meng Z, Deng J, Sun X, Liu T, Tang Y, Zhang Z, Liu Y, Zhu W. Metabonomic identification of serum biomarkers related to heat stress tolerance of sheep. Anim Sci J 2022; 93:e13792. [PMID: 36477978 DOI: 10.1111/asj.13792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022]
Abstract
Heat stress is considered as a limiting factor for sheep production; it is necessary to screen for sheep breeds with heat tolerance. This study was to compare the serum metabolomes of Hu sheep and Dorper sheep and identify potential biomarkers related to heat stress. The results revealed that the respiratory rate, heart rate, and rectal temperature of Dorper sheep were significantly higher than those of Hu sheep. Compared to Dorper sheep, the serum activities of total antioxidant capacity and glutathione peroxidase in Hu sheep were significantly higher, while the concentration of malondialdehyde was lower. Metabolomics analysis identified 107 differential serum metabolites. The pathways enriched from the altered serum metabolites between the two breeds were mainly involved in protein metabolism, carbohydrate metabolism, and lipid metabolism. The levels of antioxidant- and energy-related metabolites were higher in the serum of Hu sheep than that of Dorper sheep; however, the levels of lipid catabolism- and inflammation-related were higher in the serum of Dorper sheep. The results indicate that Hu sheep had better heat stress resistance capability than Dorper sheep. Moreover, high levels of metabolites in the serum of Hu sheep are potential biomarkers for heat stress tolerance, including l-methionine, s-adenosylmethionine, and nicotinuric acid.
Collapse
Affiliation(s)
- Wei Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhu Meng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jian Deng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xinyang Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tianwei Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yingying Tang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yan Liu
- Agricultural and Rural Bureau of Helan County, Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Wen Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
22
|
Multimodal Care for Headaches, Lumbopelvic Pain, and Dysmenorrhea in a Woman With Endometriosis: A Case Report. J Chiropr Med 2022; 20:148-157. [DOI: 10.1016/j.jcm.2021.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 01/12/2023] Open
|
23
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
24
|
Caffaratti C, Plazy C, Mery G, Tidjani AR, Fiorini F, Thiroux S, Toussaint B, Hannani D, Le Gouellec A. What We Know So Far about the Metabolite-Mediated Microbiota-Intestinal Immunity Dialogue and How to Hear the Sound of This Crosstalk. Metabolites 2021; 11:406. [PMID: 34205653 PMCID: PMC8234899 DOI: 10.3390/metabo11060406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Trillions of microorganisms, termed the "microbiota", reside in the mammalian gastrointestinal tract, and collectively participate in regulating the host phenotype. It is now clear that the gut microbiota, metabolites, and intestinal immune function are correlated, and that alterations of the complex and dynamic host-microbiota interactions can have deep consequences for host health. However, the mechanisms by which the immune system regulates the microbiota and by which the microbiota shapes host immunity are still not fully understood. This article discusses the contribution of metabolites in the crosstalk between gut microbiota and immune cells. The identification of key metabolites having a causal effect on immune responses and of the mechanisms involved can contribute to a deeper insight into host-microorganism relationships. This will allow a better understanding of the correlation between dysbiosis, microbial-based dysmetabolism, and pathogenesis, thus creating opportunities to develop microbiota-based therapeutics to improve human health. In particular, we systematically review the role of soluble and membrane-bound microbial metabolites in modulating host immunity in the gut, and of immune cells-derived metabolites affecting the microbiota, while discussing evidence of the bidirectional impact of this crosstalk. Furthermore, we discuss the potential strategies to hear the sound of such metabolite-mediated crosstalk.
Collapse
Affiliation(s)
- Clément Caffaratti
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Caroline Plazy
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Geoffroy Mery
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Department of Infectiology-Pneumology, CHU Grenoble-Alpes, 38000 Grenoble, France
| | - Abdoul-Razak Tidjani
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Federica Fiorini
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Sarah Thiroux
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Bertrand Toussaint
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Dalil Hannani
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Audrey Le Gouellec
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| |
Collapse
|
25
|
Nuzzo A, Saha S, Berg E, Jayawickreme C, Tocker J, Brown JR. Expanding the drug discovery space with predicted metabolite-target interactions. Commun Biol 2021; 4:288. [PMID: 33674782 PMCID: PMC7935942 DOI: 10.1038/s42003-021-01822-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolites produced in the human gut are known modulators of host immunity. However, large-scale identification of metabolite-host receptor interactions remains a daunting challenge. Here, we employed computational approaches to identify 983 potential metabolite-target interactions using the Inflammatory Bowel Disease (IBD) cohort dataset of the Human Microbiome Project 2 (HMP2). Using a consensus of multiple machine learning methods, we ranked metabolites based on importance to IBD, followed by virtual ligand-based screening to identify possible human targets and adding evidence from compound assay, differential gene expression, pathway enrichment, and genome-wide association studies. We confirmed known metabolite-target pairs such as nicotinic acid-GPR109a or linoleoyl ethanolamide-GPR119 and inferred interactions of interest including oleanolic acid-GABRG2 and alpha-CEHC-THRB. Eleven metabolites were tested for bioactivity in vitro using human primary cell-types. By expanding the universe of possible microbial metabolite-host protein interactions, we provide multiple drug targets for potential immune-therapies.
Collapse
Affiliation(s)
- Andrea Nuzzo
- GlaxoSmithKline Pharma R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426-0989, USA.
| | - Somdutta Saha
- GlaxoSmithKline Pharma R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426-0989, USA
- EMD Serono Research & Development Institute, Inc. 45A Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Ellen Berg
- Eurofins Discovery, 111 Anza Boulevard, Burlingame, CA, 94010, USA
| | - Channa Jayawickreme
- GlaxoSmithKline Pharma R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426-0989, USA
| | - Joel Tocker
- GlaxoSmithKline Pharma R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426-0989, USA
| | - James R Brown
- GlaxoSmithKline Pharma R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426-0989, USA.
- Kaleido Biosciences, Inc. 65 Hayden Avenue, Lexington, MA, 02421, USA.
| |
Collapse
|
26
|
García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, Coca S, Guijarro LG, García-Honduvilla N, Asúnsolo A, Sanchez-Trujillo L, Lahera G, Bujan J, Monserrat J, Álvarez-Mon M, Álvarez-Mon MA, Ortega MA. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 2021; 13:699. [PMID: 33671569 PMCID: PMC7927055 DOI: 10.3390/nu13020699] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The most prevalent diseases of our time, non-communicable diseases (NCDs) (including obesity, type 2 diabetes, cardiovascular diseases and some types of cancer) are rising worldwide. All of them share the condition of an "inflammatory disorder", with impaired immune functions frequently caused or accompanied by alterations in gut microbiota. These multifactorial maladies also have in common malnutrition related to physiopathology. In this context, diet is the greatest modulator of immune system-microbiota crosstalk, and much interest, and new challenges, are arising in the area of precision nutrition as a way towards treatment and prevention. It is a fact that the westernized diet (WD) is partly responsible for the increased prevalence of NCDs, negatively affecting both gut microbiota and the immune system. Conversely, other nutritional approaches, such as Mediterranean diet (MD), positively influence immune system and gut microbiota, and is proposed not only as a potential tool in the clinical management of different disease conditions, but also for prevention and health promotion globally. Thus, the purpose of this review is to determine the regulatory role of nutritional components of WD and MD in the gut microbiota and immune system interplay, in order to understand, and create awareness of, the influence of diet over both key components.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Alejandro J. Castellanos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Fernando Noguerales-Fraguas
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Department of General Surgery, Príncipe de Asturias Hospital, 28806 Alcalá de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Angel Asúnsolo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
| | - Lara Sanchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Service of Pediatric, Hospital Universitario Principe de Asturias, Alcalá de Henares,28806 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain;
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain;
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Department of Psychiatry and Medical Psychology, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain;
| |
Collapse
|
27
|
Ashokcoomar S, Loots DT, Beukes D, van Reenen M, Pillay B, Pillay M. M. tuberculosis curli pili (MTP) is associated with alterations in carbon, fatty acid and amino acid metabolism in a THP-1 macrophage infection model. Microb Pathog 2021; 154:104806. [PMID: 33610716 DOI: 10.1016/j.micpath.2021.104806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022]
Abstract
The initial host-pathogen interaction is crucial for the establishment of infection. An improved understanding of the pathophysiology of Mycobacterium tuberculosis (M. tuberculosis) during macrophage infection can aid the development of intervention therapeutics against tuberculosis. M. tuberculosis curli pili (MTP) is a surface located adhesin, involved in the first point-of-contact between pathogen and host. This study aimed to better understand the role of MTP in modulating the intertwined metabolic pathways of M. tuberculosis and its THP-1 macrophage host. Metabolites were extracted from pelleted wet cell mass of THP-1 macrophages infected with M. tuberculosis wild-type V9124 (WT), Δmtp-deletion mutant and the mtp-complemented strains, respectively, via a whole metabolome extraction method using a 1:3:1 ratio of chloroform:methanol:water. Metabolites were detected by two-dimensional gas chromatography time-of-flight mass spectrometry. Significant metabolites were determined through univariate and multivariate statistical tests and online pathway databases. Relative to the WT, a total of nine and ten metabolites were significantly different in the Δmtp and complement strains, respectively. All nine significant metabolites were found in elevated levels in the Δmtp relative to the WT. Additionally, of the ten significant metabolites, eight were detected in lower levels and two were detected in higher levels in the complement relative to the WT. The absence of the MTP adhesin resulted in reduced virulence of M. tuberculosis leading to alterations in metabolites involved in carbon, fatty acid and amino acid metabolism during macrophage infection, suggesting that MTP plays an important role in the modulation of host metabolic activity. These findings support the prominent role of the MTP adhesin as a virulence factor as well as a promising biomarker for possible diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Shinese Ashokcoomar
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st Floor Doris Duke Medical Research Institute, Congella, Private Bag 7, Durban, 4013, South Africa.
| | - Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, Private Bag X6001, Box 269, 2531, South Africa.
| | - Derylize Beukes
- Human Metabolomics, North-West University, Potchefstroom, Private Bag X6001, Box 269, 2531, South Africa.
| | - Mari van Reenen
- Human Metabolomics, North-West University, Potchefstroom, Private Bag X6001, Box 269, 2531, South Africa.
| | - Balakrishna Pillay
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban. 4000, South Africa.
| | - Manormoney Pillay
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st Floor Doris Duke Medical Research Institute, Congella, Private Bag 7, Durban, 4013, South Africa.
| |
Collapse
|
28
|
Modulatory Effect of Nicotinic Acid on the Metabolism of Caco-2 Cells Exposed to IL-1β and LPS. Metabolites 2020; 10:metabo10050204. [PMID: 32429415 PMCID: PMC7281454 DOI: 10.3390/metabo10050204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are the most common gastrointestinal inflammatory pathologies. Previous work evidenced a lower content of nicotinic acid (NA) in feces of IBD patients compared to healthy subjects. In the present study, we aimed to understand the effects of NA on intestinal inflammation, as several studies reported its possible beneficial effect, and investigate its influence on inflammation-driven metabolism. NA was tested on a Caco-2 in-vitro model in which inflammation was induced with interleukin-1β (IL-1β) and lipopolysaccharide (LPS), two mayor proinflammatory compounds produced in IBD, that stimulate the production of cytokines, such as interleukin 8. A metabolomics approach, with gas chromatography–mass spectrometry (GC-MS) and nuclear proton magnetic resonance (1H-NMR), was applied to study the metabolic changes. The results showed that NA significantly reduced the level of IL-8 produced in both LPS and IL-1β stimulated cells, confirming the anti-inflammatory effect of NA also on intestinal inflammation. Moreover, it was demonstrated that NA treatment had a restoring effect on several metabolites whose levels were modified by treatments with IL-1β or LPS. This study points out a possible use of NA as anti-inflammatory compound and might be considered as a promising starting point in understanding the beneficial effect of NA in IBD.
Collapse
|
29
|
Lemus-Conejo A, Millan-Linares MDC, Toscano R, Millan F, Pedroche J, Muriana FJG, Montserrat-de la Paz S. GPETAFLR, a peptide from Lupinus angustifolius L. prevents inflammation in microglial cells and confers neuroprotection in brain. Nutr Neurosci 2020; 25:472-484. [DOI: 10.1080/1028415x.2020.1763058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ana Lemus-Conejo
- Plant Protein Group, Instituto de la Grasa, CSIC, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, Seville, Spain
| | | | - Rocio Toscano
- Plant Protein Group, Instituto de la Grasa, CSIC, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Francisco Millan
- Plant Protein Group, Instituto de la Grasa, CSIC, Seville, Spain
| | - Justo Pedroche
- Plant Protein Group, Instituto de la Grasa, CSIC, Seville, Spain
| | | | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
30
|
Rodriguez-Martin NM, Toscano R, Villanueva A, Pedroche J, Millan F, Montserrat-de la Paz S, Millan-Linares MC. Neuroprotective protein hydrolysates from hemp (Cannabis sativa L.) seeds. Food Funct 2020; 10:6732-6739. [PMID: 31576391 DOI: 10.1039/c9fo01904a] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hemp (Cannabis sativa L.) seeds are well known for their potential use as a source of nutrients, fiber, and bioactive compounds. A hemp protein isolate, prepared from defatted hemp flour, was hydrolyzed by alcalase and flavourzyme under specific conditions. The resulting hydrolysates were evaluated for the selection of potentially bioactive hemp protein hydrolysates (HPHs) owing to their DPPH scavenging and ferric reducing antioxidant power activity. In vitro cell-free experiments led to the identification of two bioactive HPHs, HPH20A and HPH60A + 15AF, which were used at 50 and 100 μg mL-1 on BV-2 microglial cells in order to evaluate the anti-neuroinflammatory activities. Our results showed that HPH20A and HPH60A + 15AF down-regulated TNF-α, IL-1β, and IL-6 mRNA transcriptional levels in LPS-stimulated BV-2 microglial cells. In addition, HPH20A and HPH60A + 15AF up-regulated the gene expression of anti-inflammatory cytokine IL-10. This study suggests for the first time that HPHs may improve the neuroinflammatory and inflammatory states, supporting the nutraceutical value of hemp seeds.
Collapse
Affiliation(s)
- Noelia M Rodriguez-Martin
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain.
| | | | | | | | | | | | | |
Collapse
|
31
|
Zakeri Siavashani A, Mohammadi J, Maniura-Weber K, Senturk B, Nourmohammadi J, Sadeghi B, Huber L, Rottmar M. Silk based scaffolds with immunomodulatory capacity: anti-inflammatory effects of nicotinic acid. Biomater Sci 2020; 8:148-162. [DOI: 10.1039/c9bm00814d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we show that 3D silk scaffolds loaded with nicotinic acid have great potential for tissue engineering due to their excellent cytocompatibility and ability to decrease the expression of proinflammatory markers in a concentration dependent manner.
Collapse
Affiliation(s)
| | - Javad Mohammadi
- Faculty of New Sciences and Technologies
- University of Tehran
- Tehran
- Iran
| | - Katharina Maniura-Weber
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Biointerfaces
- St.Gallen
- Switzerland
| | - Berna Senturk
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Biointerfaces
- St.Gallen
- Switzerland
| | | | - Behnam Sadeghi
- Translational Cell therapy Research (TCR)
- Department of CLINTEC
- Karolinska Institutet
- Stockholm
- Sweden
| | - Lukas Huber
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Laboratory for Building Energy Materials and Components
- Dübendorf
- Switzerland
| | - Markus Rottmar
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Biointerfaces
- St.Gallen
- Switzerland
| |
Collapse
|
32
|
Montserrat-de la Paz S, Lemus-Conejo A, Toscano R, Pedroche J, Millan F, Millan-Linares MC. GPETAFLR, an octapeptide isolated from Lupinus angustifolius L. protein hydrolysate, promotes the skewing to the M2 phenotype in human primary monocytes. Food Funct 2019; 10:3303-3311. [PMID: 31094410 DOI: 10.1039/c9fo00115h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present study aimed to test the mechanisms by which GPETAFLR, released from the enzymatic hydrolysis of lupine protein, may modulate the inflammatory response and plasticity in human primary monocytes. Human circulating monocytes and mature macrophages were used to analyze the effects of GPETAFLR on plasticity and inflammatory response using biochemical, flow cytometry, quantitative real-time PCR, and ELISA assays. GPETAFLR skewed the monocyte plasticity towards the anti-inflammatory non-classical CD14+CD16++ monocyte subset and reduced the inflammatory competence of LPS-treated human monocytes diminishing IL-1β, IL-6, and TNF-α and increasing IL-10 production and gene expression. Results showed that GPETAFLR decreased the frequency of the LPS-induced activated monocyte population (CD14++CD16-), diminished monocyte activation involved down-regulation of CCR2 mRNA expression and protein expression, and decreased gene expression of the LPS-induced chemoattractant mediator CCL2. Our findings imply a new understanding of the mechanisms by which GPETAFLR favor a continuous and gradual plasticity process in the human monocyte/macrophage system and offer novel benefits derived from the consumption of Lupinus angustifolius L. in the prevention of inflammatory-related diseases.
Collapse
Affiliation(s)
- Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology. School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Montserrat-de la Paz S, Naranjo MC, Millan-Linares MC, Lopez S, Abia R, Biessen EAL, Muriana FJG, Bermudez B. Monounsaturated Fatty Acids in a High-Fat Diet and Niacin Protect from White Fat Dysfunction in the Metabolic Syndrome. Mol Nutr Food Res 2019; 63:e1900425. [PMID: 31343843 DOI: 10.1002/mnfr.201900425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/26/2019] [Indexed: 12/14/2022]
Abstract
SCOPE Obesity is a principal causative factor of metabolic syndrome. Niacin potently regulates lipid metabolism. Replacement of saturated fatty acids by MUFAs or inclusion of omega-3 long-chain PUFAs in the diet improves plasma lipid levels. However, the potential benefits of niacin in combination with MUFAs or omega-3 long-chain PUFAs against white adipose tissue (WAT) dysfunction in the high fat diet (HFD)-induced metabolic syndrome are unknown. METHODS AND RESULTS Male Lepob/ob LDLR-/- mice are fed a chow diet or HFDs based on milk cream (21% kcal), olive oil (21% kcal), or olive oil (20% kcal) plus 1% kcal from eicosapentaenoic and docosahexaenoic acids, including immediate-release niacin (1% w/v) in drinking water, for 8 weeks. Mice are then phenotyped. Dietary MUFAs are identified as positive regulators of adipose NAD+ signaling pathways by triggering NAD+ biosynthesis via the salvage pathway. This coexists with overexpression of genes involved in recognition of NAD+ and fatty acids, a surrounding lipid environment dominated by exogenous oleic acid and an alternatively activated macrophage profile, which culminate in a healthy expansion of WAT and improvement of several hallmarks that typify the metabolic syndrome. CONCLUSION Niacin in combination with dietary MUFAs can favor WAT homeostasis in the development of HFD-induced obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Sergio Montserrat-de la Paz
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain.,Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009, Seville, Spain
| | - Maria C Naranjo
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain
| | | | - Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain.,Department of Cell Biology, School of Biology, University of Seville, 41012, Seville, Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain
| | - Erik A L Biessen
- Experimental Vascular Pathology Group, Cardiovascular Research Institute of Maastricht (CARIM), University of Maastricht, 6200, Maastricht, The Netherlands
| | - Francisco J G Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain
| | - Beatriz Bermudez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain.,Department of Cell Biology, School of Biology, University of Seville, 41012, Seville, Spain
| |
Collapse
|
34
|
Millan-Linares MC, Toscano R, Lemus-Conejo A, Martin ME, Pedroche J, Millan F, Montserrat-de la Paz S. GPETAFLR, a biopeptide from Lupinus angustifolius L., protects against oxidative and inflammatory damage in retinal pigment epithelium cells. J Food Biochem 2019; 43:e12995. [PMID: 31659814 DOI: 10.1111/jfbc.12995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 01/23/2023]
Abstract
GPETAFLR, an octapeptide released from the enzymatic hydrolysis of lupine (Lupinus angustifolius L.) protein, has demonstrated anti-inflammatory effect in myeloid lineage. This work aims to evaluate in retinal pigment epithelium (RPE) cells the protective role of GPETAFLR on both oxidative and inflammatory markers known to be involved in age-related macular degeneration (AMD). In comparison with stimulated control cells, GPETAFLR increased glutathione production and diminished the secretion and gene expression of VEFG, IL-1β, IL-6, IFNγ, and TNF-α, as well as reactive oxygen species, and nitrite output. Our findings reveal that GPETAFLR, a novel plant peptide, is able to protect against RPE oxidative stress and inflammation. Taken together, these results strongly support innovative nutritional strategies considering Lupinus angustifolius L. as source of proteins to prevent the onset and progression of AMD. PRACTICAL APPLICATIONS: We reveal a novel nutraceutical impact of GPETAFLR peptide in human RPE cells to prevent oxidative and inflammatory mediators. Our results support that the intake of Lupine angustifolius L., proposed to be a reservoir of GPETAFLR, could lessen the functional decay of RPE cells, leading therefore to a slowdown of the progress of AMD during age. Not only this work, but also future simple clinical studies should raise new nutritional strategies focused on understanding the etiological role of the foods, nutrition, and metabolism in the pathogenesis of ocular disorders.
Collapse
Affiliation(s)
| | - Rocio Toscano
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain.,Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| | - Ana Lemus-Conejo
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain.,Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, Seville, Spain
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain
| | - Francisco Millan
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
35
|
Markovics A, Tóth KF, Sós KE, Magi J, Gyöngyösi A, Benyó Z, Zouboulis CC, Bíró T, Oláh A. Nicotinic acid suppresses sebaceous lipogenesis of human sebocytes via activating hydroxycarboxylic acid receptor 2 (HCA 2 ). J Cell Mol Med 2019; 23:6203-6214. [PMID: 31273921 PMCID: PMC6714165 DOI: 10.1111/jcmm.14505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/25/2019] [Accepted: 06/01/2019] [Indexed: 12/25/2022] Open
Abstract
Nicotinic acid (NA) activates hydroxycarboxylic acid receptor 2 (HCA2), and it is widely used in treating dyslipidaemias. Since its side effects include skin dryness, whereas its deficiency can be accompanied by dyssebacia, characterized by sebaceous gland enlargement, we asked if HCA2 is expressed on human sebocytes, and if NA influences sebocyte functions. By using human immortalized SZ95 sebocytes, we found that non‐cytotoxic (≤100 μmol/L; MTT‐assay) concentrations of NA had no effect on the homeostatic sebaceous lipogenesis (SLG; Nile Red), but normalized excessive, acne‐mimicking SLG induced by several lipogenic agents (arachidonic acid, anandamide, linoleic acid + testosterone; Nile Red; 48‐hr treatments). Moreover, it exerted significant anti‐proliferative actions (CyQUANT‐assay), and increased [Ca2+]IC (Fluo‐4 AM‐based Ca2+‐measurement). Although NA did not prevent the lipopolysaccharide‐induced pro‐inflammatory response (up‐regulation [Q‐PCR] and release [ELISA] of several pro‐inflammatory cytokines) of the sebocytes, collectively, these data support the concept that NA may be effective in suppressing sebum production in vivo. While exploring the mechanism of the sebostatic actions, we found that sebocytes express HCA2 (Q‐PCR, immunofluorescent labelling), siRNA‐mediated silencing of which prevented the NA‐induced Ca2+‐signal and the lipostatic action. Collectively, our data introduce NA, and HCA2 activators in general, as novel, potent and most likely safe sebostatic agents, with possible anti‐acne potential.
Collapse
Affiliation(s)
- Arnold Markovics
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kinga Fanni Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Eszter Sós
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - József Magi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienn Gyöngyösi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Benyó
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Tamás Bíró
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,HCEMM Ltd., Szeged, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
36
|
Martin ME, Millan-Linares MC, Naranjo MC, Toscano R, Abia R, Muriana FJG, Bermudez B, Montserrat-de la Paz S. Minor compounds from virgin olive oil attenuate LPS-induced inflammation via visfatin-related gene modulation on primary human monocytes. J Food Biochem 2019; 43:e12941. [PMID: 31368572 DOI: 10.1111/jfbc.12941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 01/27/2023]
Abstract
We have analyzed the effects of minor compounds found in the unsaponifiable fraction (UF) and in the phenolic fraction (PF) of virgin olive oil (VOO) on LPS-induced inflammatory response via visfatin modulation in human monocytes. For this purpose, monocytes were incubated with UF and PF at different concentrations and the pro-inflammatory stimulus LPS for 24 hr; squalene (SQ) and hydroxytyrosol (HTyr), the main components in UF and PF, respectively, were also used. The relative expression of both pro-inflammatory and anti-inflammatory genes, as well as other genes related to the NAD+-biosynthetic pathway was evaluated by RT-qPCR; and the secretion of some of these markers was assessed by ELISA procedures. We found that UF, SQ, PF, and HTyr prevented from LPS-induced dysfunctional gene expression and secretion via visfatin-related gene modulation in human monocytes. These findings unveil a potential beneficial role for minor compounds of VOO in the prevention of inflammatory-disorders. PRACTICAL APPLICATION: In this project, potential health benefits of VOO micronutrients (unsaponifiable and phenolic compounds) were confirmed through anti-inflammatory assays. Our results reveal new interesting researching goals concerning nutrition by considering the role of bioactive VOO compounds in the prevention and progress of diseases related to inflammation.
Collapse
Affiliation(s)
- Maria E Martin
- Faculty of Biology, Department of Cell Biology, Universidad de Sevilla, Seville, Spain
| | - Maria C Millan-Linares
- Cell Biology Unit, Instituto de la Grasa, CSIC, Seville, Spain.,Instituto de la Grasa, CSIC, Seville, Spain
| | | | - Rocío Toscano
- Instituto de la Grasa, CSIC, Seville, Spain.,Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| | - Rocio Abia
- Instituto de la Grasa, CSIC, Seville, Spain
| | | | - Beatriz Bermudez
- Faculty of Biology, Department of Cell Biology, Universidad de Sevilla, Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
37
|
Petin K, Weiss R, Müller G, Garten A, Grahnert A, Sack U, Hauschildt S. NAD metabolites interfere with proliferation and functional properties of THP-1 cells. Innate Immun 2019; 25:280-293. [PMID: 31053044 PMCID: PMC6830904 DOI: 10.1177/1753425919844587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Over the past few years the NAD-related compounds nicotinamide (NAM),
nicotinamide riboside (NR) and 1-methylnicotinamide (MNA) have been established
as important molecules in signalling pathways that contribute to metabolic
functions of many cells, including those of the immune system. Among immune
cells, monocytes/macrophages, which are the major players of inflammatory
processes, are especially susceptible to the anti-inflammatory action of NAM.
Here we asked whether NAM and the two other compounds have the potential to
regulate differentiation and LPS-induced biological answers of the monocytic
cell line THP-1. We show that treatment of THP-1 cells with NAM, NR and MNA
resulted in growth retardation accompanied by enrichment of cells in the
G0/G1-phase independent of p21 and p53. NAM and NR caused an increase in
intracellular NAD concentrations and SIRT1 and PARP1 mRNA expression was found
to be enhanced. The compounds failed to up-regulate the expression of the cell
surface differentiation markers CD38, CD11b and CD14. They modulated the
reactive oxygen species production and primed the cells to respond less
effectively to the LPS induced TNF-α production. Our data show that the NAD
metabolites interfere with early events associated with differentiation of THP-1
cells along the monocytic path and that they affect LPS-induced biological
responses of the cell line.
Collapse
Affiliation(s)
- Katharina Petin
- 1 Institute of Clinical Immunology, Leipzig University, Germany
| | - Ronald Weiss
- 1 Institute of Clinical Immunology, Leipzig University, Germany
| | - Gerd Müller
- 2 Department of Molecular Oncology, Leipzig University, Germany
| | - Antje Garten
- 3 Centre for Paediatric Research Leipzig (CPL), Leipzig University, Germany.,4 Institute of Metabolism and Systems Research, University of Birmingham, UK
| | - Anja Grahnert
- 1 Institute of Clinical Immunology, Leipzig University, Germany
| | - Ulrich Sack
- 1 Institute of Clinical Immunology, Leipzig University, Germany
| | | |
Collapse
|
38
|
Yanfei Wang, Hu J, Zhao X, Liu X, Chen Z, Liu Z, Yang L, Zhu L, Sha Z. Phase Diagram of the Nicotinic Acid + Ammonium Sulfate + Water System. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s003602441813037x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Imaruoka K, Oe Y, Fushima T, Sato E, Sekimoto A, Sato H, Sugawara J, Ito S, Takahashi N. Nicotinamide alleviates kidney injury and pregnancy outcomes in lupus-prone MRL/lpr mice treated with lipopolysaccharide. Biochem Biophys Res Commun 2019; 510:587-593. [PMID: 30739788 DOI: 10.1016/j.bbrc.2019.01.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) increases the risk of preterm birth and preeclampsia (PE). The flares of SLE during pregnancy or after delivery are also problematic. We have previously demonstrated that nicotinamide (NAM), a non-teratogenic amide of vitamin B3, reduces inflammation and oxidative stress and improves PE-like phenotype and pregnancy outcomes in the mouse models of PE. The present study aimed to establish a model to investigate the pregnancy outcomes and flares of SLE in pregnant mice with SLE and to examine whether NAM is beneficial to pregnant mice with SLE. We used pregnant and non-pregnant lupus-prone MRL/lpr mice treated with or without a Toll-like receptor (TLR) ligand lipopolysaccharide (LPS) because TLR4 signaling reportedly exacerbates SLE and pregnancy; MRL/+ mice were used as controls. Blood pressure (BP) and urinary albumin excretion were increased only in the pregnant MRL/lpr-LPS mice. LPS together with pregnancy exacerbated glomerulonephritis, and the most severe inflammation was observed in the kidneys of the pregnant MRL/lpr-LPS mice. The shortening of pregnancy periods, increase in fetal demise percentage, and reduction in fetal weight were observed only in the pregnant MRL/lpr-LPS mice. NAM improved BP and kidney injury, prolonged pregnancy periods, and improved fetal growth in the pregnant MRL/lpr-LPS mice. The results suggest that SLE patients are prone to develop poor pregnancy outcome, and likely develop severe nephropathy and kidney inflammation. NAM may be a novel therapeutic option that improves kidney injury and pregnancy outcomes, thereby benefiting pregnant patients with SLE.
Collapse
Affiliation(s)
- Kenta Imaruoka
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Yuji Oe
- Division of Feto-Maternal Medical Science, Department of Community Medical Support, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8574, Japan; Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Tomofumi Fushima
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, 980-8578, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Akiyo Sekimoto
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, 980-8578, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hiroshi Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, 980-8578, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Junichi Sugawara
- Division of Feto-Maternal Medical Science, Department of Community Medical Support, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8574, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai, 980-8578, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| |
Collapse
|
40
|
Rasoulian B, Almasi A, Hoveizi E, Bagher Z, Hayat P, Joghataei MT, Rezayat SM, Tavakol S. Strong binding active constituents of phytochemical to BMPR1A promote bone regeneration: In vitro, in silico docking, and in vivo studies. J Cell Physiol 2019; 234:14246-14258. [PMID: 30656682 DOI: 10.1002/jcp.28121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/11/2018] [Indexed: 11/08/2022]
Abstract
Two of the most problematic orthopedic and neurosurgeon visits are associated with spine and craniofacial fractures. Therefore, more attention needs to be paid to finding a medicine to repair these fractures. Amongst the most mysterious herbs, Aloe vera stands out. In the present study, the ameliorating function of A. vera on osteogenesis was studied in vitro and in vivo. Osteoblast-like cells were exposed to A. vera, followed by analysis of cell viability, lactate dehydrogenase release, and intracellular reactive oxygen species (ROS) production. The results showed an enhanced cell biocompatibility in a dose-dependent manner due to attenuated intracellular ROS production. Furthermore, a docking study indicated that the strong affinity of A. vera constituents to type I bone morphogenic protein receptor (BMPR1A) without the involvement of the BMPR1A chain B. The induction of osteogenesis prompts extracellular calcium deposition by osteoblasts, which affirms successful in vitro bone regeneration. However, injection of A. vera in rats with critical size calvarial defects induced Runx2, alkaline phosphatase (ALP), OCN, and BMP2 genes overexpression, which led to the formation of victorious bone with enhanced bone density and ALP activity. It is worthy to note that Aloin has the highest affinity to BMPR1A, whereas there are no reports regarding the impact of Aloenin, Aloesin, and γ-sitosterol on osteogenesis. Furthermore, some of them have antitumor potency, and it might be proposed that they are considered as a bone substitute in the osteotomy site of osteosarcoma with the aim of bone recovery and suppression of osteosarcoma. The whole consequences of this investigation manifests the plausibility of using A. vera as an antioxidant and osteoconductive substitute.
Collapse
Affiliation(s)
- Bita Rasoulian
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Almasi
- Department of Medical Nanotechnology, Pharmaceutical Sciences Branch, Islamic Azad University Pharmaceutical Sciences Branch, Tehran, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zohre Bagher
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Hayat
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
GPETAFLR, a novel bioactive peptide from Lupinus angustifolius L. protein hydrolysate, reduces osteoclastogenesis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
42
|
Bühler S, Frahm J, Liermann W, Tienken R, Kersten S, Meyer U, Huber K, Dänicke S. Effects of energy supply and nicotinic acid supplementation on phagocytosis and ROS production of blood immune cells of periparturient primi- and pluriparous dairy cows. Res Vet Sci 2018; 116:62-71. [DOI: 10.1016/j.rvsc.2017.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/31/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023]
|
43
|
Montserrat-de la Paz S, Bermudez B, Cardelo MP, Lopez S, Abia R, Muriana FJG. Olive oil and postprandial hyperlipidemia: implications for atherosclerosis and metabolic syndrome. Food Funct 2018; 7:4734-4744. [PMID: 27885367 DOI: 10.1039/c6fo01422d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Olive oil is the primary source of fat in the Mediterranean diet, which is associated with a significant improvement in health status, as measured by reduced mortality from several chronic diseases. The current pandemic of obesity, metabolic syndrome, and type 2 diabetes is intimately associated with an atherogenic dyslipidemic phenotype. The core components of the dyslipidemia of the metabolic syndrome, which most likely initiate atherosclerosis, are the "lipid triad" consisting of high plasma triglycerides, low levels of high-density lipoproteins, and a preponderance of small, dense low-density lipoproteins at fasting. However, postprandial (non-fasting) TGs (postprandial hyperlipidemia) are also recognized as an important component for atherosclerosis. Herein, the purpose of this review was to provide an update on the effects and mechanisms related to olive oil on postprandial hyperlipidemia and its implications for the onset and progression of atherosclerosis and metabolic syndrome.
Collapse
Affiliation(s)
- Sergio Montserrat-de la Paz
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain.
| | - Beatriz Bermudez
- Department of Cell Biology, Faculty of Biology, University of Seville. C/ Professor Garcia Gonzalez s/n, 41012 Seville, Spain
| | - Magdalena P Cardelo
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain.
| | - Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain.
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain.
| | - Francisco J G Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain.
| |
Collapse
|
44
|
Sen U, Shenoy P S, Bose B. Opposing effects of low versus high concentrations of water soluble vitamins/dietary ingredients Vitamin C and niacin on colon cancer stem cells (CSCs). Cell Biol Int 2017; 41:1127-1145. [DOI: 10.1002/cbin.10830] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/26/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Utsav Sen
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya University; University Road; Mangalore 575018 Karnataka India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya University; University Road; Mangalore 575018 Karnataka India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya University; University Road; Mangalore 575018 Karnataka India
| |
Collapse
|
45
|
Jung J, Kim LJ, Wang X, Wu Q, Sanvoranart T, Hubert CG, Prager BC, Wallace LC, Jin X, Mack SC, Rich JN. Nicotinamide metabolism regulates glioblastoma stem cell maintenance. JCI Insight 2017; 2:90019. [PMID: 28515364 DOI: 10.1172/jci.insight.90019] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/18/2017] [Indexed: 12/29/2022] Open
Abstract
Metabolic dysregulation promotes cancer growth through not only energy production, but also epigenetic reprogramming. Here, we report that a critical node in methyl donor metabolism, nicotinamide N-methyltransferase (NNMT), ranked among the most consistently overexpressed metabolism genes in glioblastoma relative to normal brain. NNMT was preferentially expressed by mesenchymal glioblastoma stem cells (GSCs). NNMT depletes S-adenosyl methionine (SAM), a methyl donor generated from methionine. GSCs contained lower levels of methionine, SAM, and nicotinamide, but they contained higher levels of oxidized nicotinamide adenine dinucleotide (NAD+) than differentiated tumor cells. In concordance with the poor prognosis associated with DNA hypomethylation in glioblastoma, depletion of methionine, a key upstream methyl group donor, shifted tumors toward a mesenchymal phenotype and accelerated tumor growth. Targeting NNMT expression reduced cellular proliferation, self-renewal, and in vivo tumor growth of mesenchymal GSCs. Supporting a mechanistic link between NNMT and DNA methylation, targeting NNMT reduced methyl donor availability, methionine levels, and unmethylated cytosine, with increased levels of DNA methyltransferases, DNMT1 and DNMT3A. Supporting the clinical significance of these findings, NNMT portended poor prognosis for glioblastoma patients. Collectively, our findings support NNMT as a GSC-specific therapeutic target in glioblastoma by disrupting oncogenic DNA hypomethylation.
Collapse
Affiliation(s)
- Jinkyu Jung
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Leo Jy Kim
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine.,Medical Scientist Training Program, School of Medicine.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiuxing Wang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tanwarat Sanvoranart
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher G Hubert
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Briana C Prager
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine.,Medical Scientist Training Program, School of Medicine.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lisa C Wallace
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xun Jin
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stephen C Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine
| |
Collapse
|
46
|
Hill LJ, Williams AC. Meat Intake and the Dose of Vitamin B 3 - Nicotinamide: Cause of the Causes of Disease Transitions, Health Divides, and Health Futures? Int J Tryptophan Res 2017; 10:1178646917704662. [PMID: 28579801 PMCID: PMC5419340 DOI: 10.1177/1178646917704662] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 12/26/2022] Open
Abstract
Meat and vitamin B3 - nicotinamide - intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by 'welcoming' gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive 'meat transitions'. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic 'old friends' compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress.
Collapse
Affiliation(s)
- Lisa J Hill
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
47
|
Williams AC, Hill LJ. Meat and Nicotinamide: A Causal Role in Human Evolution, History, and Demographics. Int J Tryptophan Res 2017; 10:1178646917704661. [PMID: 28579800 PMCID: PMC5417583 DOI: 10.1177/1178646917704661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 01/15/2023] Open
Abstract
Hunting for meat was a critical step in all animal and human evolution. A key brain-trophic element in meat is vitamin B3 / nicotinamide. The supply of meat and nicotinamide steadily increased from the Cambrian origin of animal predators ratcheting ever larger brains. This culminated in the 3-million-year evolution of Homo sapiens and our overall demographic success. We view human evolution, recent history, and agricultural and demographic transitions in the light of meat and nicotinamide intake. A biochemical and immunological switch is highlighted that affects fertility in the 'de novo' tryptophan-to-kynurenine-nicotinamide 'immune tolerance' pathway. Longevity relates to nicotinamide adenine dinucleotide consumer pathways. High meat intake correlates with moderate fertility, high intelligence, good health, and longevity with consequent population stability, whereas low meat/high cereal intake (short of starvation) correlates with high fertility, disease, and population booms and busts. Too high a meat intake and fertility falls below replacement levels. Reducing variances in meat consumption might help stabilise population growth and improve human capital.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
48
|
Montserrat-de la Paz S, Rodriguez D, Cardelo MP, Naranjo MC, Bermudez B, Abia R, Muriana FJ, Lopez S. The effects of exogenous fatty acids and niacin on human monocyte-macrophage plasticity. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201600824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/24/2022]
Affiliation(s)
| | - Dolores Rodriguez
- Laboratory of Cellular and Molecular Nutrition; Instituto de la Grasa; Seville Spain
| | - Magdalena P. Cardelo
- Laboratory of Cellular and Molecular Nutrition; Instituto de la Grasa; Seville Spain
| | - Maria C. Naranjo
- Laboratory of Cellular and Molecular Nutrition; Instituto de la Grasa; Seville Spain
| | - Beatriz Bermudez
- Department of Cell Biology; School of Biology; University of Seville; Seville Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition; Instituto de la Grasa; Seville Spain
| | | | - Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition; Instituto de la Grasa; Seville Spain
| |
Collapse
|
49
|
Naranjo MC, Bermudez B, Garcia I, Lopez S, Abia R, Muriana FJG, Montserrat-de la Paz S. Dietary fatty acids on aortic root calcification in mice with metabolic syndrome. Food Funct 2017; 8:1468-1474. [DOI: 10.1039/c7fo00143f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolic syndrome (MetS) is associated with obesity, dyslipidemia, type 2 diabetes, and chronic low-grade inflammation.
Collapse
Affiliation(s)
- Maria C. Naranjo
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | - Beatriz Bermudez
- Department of Cell Biology
- Faculty of Biology
- University of Seville
- 41012 Seville
- Spain
| | - Indara Garcia
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | - Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | | | | |
Collapse
|