1
|
Silva H, Daia AM. Exploring the Cardiovascular Potential of Artichoke-A Comprehensive Review. BIOLOGY 2025; 14:397. [PMID: 40282262 PMCID: PMC12024969 DOI: 10.3390/biology14040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Cardiovascular disease remains a leading cause of morbidity and mortality worldwide, requiring both pharmacological and lifestyle-based preventive strategies. Artichoke (Cynara cardunculus L. var. scolymus) has gained attention for its health benefits, including choleretic and lipid-lowering activities. However, its cardiovascular effects remain underdiscussed. This paper provides a critical review of the current literature on the cardiovascular effects of artichoke, with a focus on its underlying mechanisms of action and clinical efficacy. Experimental studies assessing artichoke's effects on endothelial function, vascular smooth muscle relaxation, and modulation of the renin-angiotensin-aldosterone axis were assessed. Additionally, clinical studies, systematic reviews, and meta-analyses investigating its antihypertensive effects were reviewed. Artichoke and its bioactive components, particularly flavonoids and caffeoylquinic acids, enhance endothelial-dependent and -independent vasorelaxation and inhibit angiotensin-converting enzyme activity. Although clinical studies indicate improvements in flow-mediated dilation, they report only modest reductions in blood pressure, with high variability in formulations, dosages, and patient populations. While artichoke supplementation may support blood pressure regulation and endothelial health, current evidence suggests it should be considered an adjunct rather than a replacement for conventional antihypertensive therapy. Standardized formulations and well-controlled clinical studies will be required to clarify its therapeutic role.
Collapse
Affiliation(s)
- Henrique Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Biophysics and Biomedical Engineering Institute (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Avina Mahendra Daia
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
2
|
Ciobârcă D, Cătoi AF, Gavrilaș L, Banc R, Miere D, Filip L. Natural Bioactive Compounds in the Management of Type 2 Diabetes and Metabolic (Dysfunction)-Associated Steatotic Liver Disease. Pharmaceuticals (Basel) 2025; 18:279. [PMID: 40006091 PMCID: PMC11859434 DOI: 10.3390/ph18020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Type 2 diabetes (T2D) and metabolic (dysfunction)-associated steatotic liver disease (MASLD) affect a growing number of individuals worldwide. T2D and MASLD often coexist and substantially elevate the risk of adverse hepatic and cardiovascular clinical outcomes. Several common pathogenetic mechanisms are responsible for T2D and MASLD onset and progression, including insulin resistance, oxidative stress, and low-grade inflammation, among others. The latter can also be induced by gut microbiota and its derived metabolites. Natural bioactive compounds (NBCs) have been reported for their therapeutic potential in both T2D and MASLD. A large amount of evidence obtained from clinical trials suggests that compounds like berberine, curcumin, soluble fibers, and omega-3 fatty acids exhibit significant hypoglycemic, hypolipidemic, and hepatoprotective activity in humans and may be employed as adjunct therapy in T2D and MASLD management. In this review, the role of the most studied NBCs in the management of T2D and MASLD is discussed, emphasizing recent clinical evidence supporting these compounds' efficacy and safety. Also, prebiotics that act against metabolic dysfunction by modulating gut microbiota are evaluated.
Collapse
Affiliation(s)
- Daniela Ciobârcă
- Department 2, Faculty of Nursing and Health Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania; (D.C.); (L.G.)
| | - Adriana Florinela Cătoi
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2-4 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Laura Gavrilaș
- Department 2, Faculty of Nursing and Health Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania; (D.C.); (L.G.)
| | - Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.); (L.F.)
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.); (L.F.)
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.); (L.F.)
- Academy of Romanian Scientists (AOSR), 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
3
|
Ramos-Lopez O. Personalizing Dietary Polyphenols for Health Maintenance and Disease Management: A Nutrigenetic Approach. Curr Nutr Rep 2025; 14:29. [PMID: 39907890 DOI: 10.1007/s13668-025-00620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE OF THE REVIEW This literature review provides examples of the influence of certain genetic variants on health outcomes after dietary polyphenol consumption or supplementation. Available evidence is organized according to the major classes of polyphenols (flavonoids, phenolic acids, stilbenes, lignans, and tannins) and their derived subgroups. RECENT FINDINGS Nutrigenetic studies have identified mainly single nucleotide polymorphisms located within genes involved in the biotransformation of phenolic acids, stilbenes, lignans and several flavonoid molecules. These genetic variants may affect polyphenol metabolism rates and related predisposition to chronic non-communicable diseases. Moreover, differential cardiometabolic outcomes upon polyphenol supplementation as dietary sources or nutraceuticals have been modulated by specific genotypes. Although current evidence is still limited, growing gene-polyphenol interactions are contributing to systematically elucidate the biological functions of polyphenols; determine individual risk phenotypes to specific diseases or particular responses upon polyphenol exposure; and facilitate the prescription of personalized genotype-based doses of dietary polyphenols to optimize related health benefits. Additionally, the integration of genetics with other omics insights (epigenomics, transcriptomics, metagenomics, and metabolomics) trough biological systems and high-dimensional data analyses and interpretation may provide a more comprehensive understanding of polyphenol metabolism for precision nutrition applications in health and disease.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Universidad 14418, UABC, Parque Internacional Industrial Tijuana, Tijuana, BC, 22390, México.
| |
Collapse
|
4
|
González-Quijano GK, León-Reyes G, Rosado EL, Martínez JA, de Luis DA, Ramos-Lopez O, Tejero ME. Effect of Genotype on the Response to Diet in Cardiovascular Disease-A Scoping Review. Healthcare (Basel) 2024; 12:2292. [PMID: 39595489 PMCID: PMC11593456 DOI: 10.3390/healthcare12222292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nutrigenetics investigates the role of genetic variants that contribute to the inter-individual variation in response to food intake. Risk factors for cardiovascular disease (CVD) are influenced by the complex interplay of genetic and environmental factors, including the diet. The aim of this scoping review is to analyze the literature on the effect of genotypes on the response to dietary interventions for the treatment of CVD risk factors. METHODS A literature search was conducted in MEDLINE to identify published articles fulfilling the inclusion criteria. Studies published in English between 2014 and 2024 were selected. Data were extracted according to the population, intervention, comparison, and outcome (PICO) format. RESULTS Forty-eight studies met the inclusion criteria. The studies differed in design, intervention characteristics, tested genotypes, and ancestry. The most frequently analyzed variants were single-nucleotide polymorphisms (SNPs) in genes associated with lipid metabolism, inflammation, and energy balance, among others. The interventions tested the effects of different dietary patterns, diets modified in macronutrient content and types of fat, natural and processed foods, nutraceuticals, and nutrient supplements. Common APOE variants were the most analyzed genotypes showing significant interactions with different dietary interventions affecting blood lipids. Other genotypes found in pathways involving folic acid, lipid metabolism and transport have shown interactions with diverse dietary components across studies. CONCLUSIONS Gene-diet interactions are observed in multiple dietary interventions. Replication of findings of nutrigenetic studies is required across different populations. The response to dietary treatments modifies CVD-related risk factors and shows variation associated with genotypes.
Collapse
Affiliation(s)
- Génesis K. González-Quijano
- Laboratory of Nutrigenetics and Nutrigenomics, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, CDMX, Mexico; (G.K.G.-Q.); (G.L.-R.)
- Consejo Nacional de Humanidades, Ciencia y Tecnología-Instituto Nacional de Medicina Genómica (CONAHCYT-INMEGEN), National Council for Humanities, Science and Technology, Mexico City 03940, CDMX, Mexico
| | - Guadalupe León-Reyes
- Laboratory of Nutrigenetics and Nutrigenomics, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, CDMX, Mexico; (G.K.G.-Q.); (G.L.-R.)
| | - Eliane Lopes Rosado
- Nutrition and Dietetics Department, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, 373 Carlos Chagas Filho Avenue, Sector J, 2nd Floor, University City, Rio de Janeiro 21941-902, Brazil;
| | - J. Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain;
- Centro de Medicina y Endocrinología, Universidad de Valladolid, 47011 Valladolid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel A. de Luis
- Center of Investigation of Endocrinology and Nutrition, Department of Endocrinology and Investigation, Medicine School, Hospital Clinico Universitario, University of Valladolid, 47011 Valladolid, Spain;
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, BC, Mexico
| | - María Elizabeth Tejero
- Laboratory of Nutrigenetics and Nutrigenomics, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, CDMX, Mexico; (G.K.G.-Q.); (G.L.-R.)
| |
Collapse
|
5
|
Buzzanca C, Di Stefano V, D'Amico A, Gallina A, Melilli MG. A systematic review on Cynara cardunculus L.: bioactive compounds, nutritional properties and food-industry applications of a sustainable food. Nat Prod Res 2024:1-20. [PMID: 39488850 DOI: 10.1080/14786419.2024.2423046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The cardoon (Cynara cardunculus L.), is a perennial plant belonging to the Asteraceae family, and its cultivated species are widely used in the Mediterranean diet. This review provides an overview of cardoons' chemical composition, bioactive properties and multiple industrial and food applications. Thanks to its nutritional composition, the use of cardoon has increased in food, cosmetic and industrial sectors, such as the energy industry or in the production of paper pulp or bio-packaging. An application in the food industry has involved using of cardoon as a vegetable coagulant for gourmet cheeses-making, as the flowers are rich in aspartic proteases. Cardoon by-products are also rich in bioactive compounds with important health benefits. Most of these nutritional activities are due to the presence of phenolic compounds, minerals, inulin, fibre and sesquiterpene lactones with interesting antioxidant and antimicrobial, anti-inflammatory, anti-tumour, lipid-lowering, cytotoxic and anti-diabetic activities.
Collapse
Affiliation(s)
- Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Angela D'Amico
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Alessandro Gallina
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy
| | - Maria Grazia Melilli
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy
| |
Collapse
|
6
|
Porro C, Benameur T, Cianciulli A, Vacca M, Chiarini M, De Angelis M, Panaro MA. Functional and Therapeutic Potential of Cynara scolymus in Health Benefits. Nutrients 2024; 16:872. [PMID: 38542782 PMCID: PMC10974306 DOI: 10.3390/nu16060872] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 01/03/2025] Open
Abstract
Dietary supplements enriched with bioactive compounds represent a promising approach to influence physiological processes and enhance longevity and overall health. Cynara cardunculus var. scolymus serves as a functional food supplement with a high concentration of bioactive compounds, which offers various health-promoting benefits. Several chronic diseases have metabolic, genetic, or inflammatory origins, which are frequently interconnected. Pharmacological treatments, although effective, often result in undesirable side effects. In this context, preventive approaches are gaining increased attention. Recent literature indicates that the consumption of bioactive compounds in the diet can positively influence the organism's biological functions. Polyphenols, well-known for their health benefits, are widely recognized as valuable compounds in preventing/combating various pathologies related to lifestyle, metabolism, and aging. The C. scolymus belonging to the Asteraceae family, is widely used in the food and herbal medicine fields for its beneficial properties. Although the inflorescences (capitula) of the artichoke are used for food and culinary purposes, preparations based on artichoke leaves can be used as an active ingredient in herbal medicines. Cynara scolymus shows potential benefits in different domains. Its nutritional value and health benefits make it a promising candidate for improving overall well-being. C. scolymus exhibits anti-inflammatory, antioxidant, liver-protective, bile-expelling, antimicrobial, and lipid-lowering neuroprotective properties. Different studies demonstrate that oxidative stress is the leading cause of the onset and progression of major human health disorders such as cardiovascular, neurological, metabolic, and cancer diseases. The large amount of polyphenol found in C. scolymus has an antioxidant activity, enabling it to neutralize free radicals, preventing cellular damage. This reduces the subsequent risk of developing conditions such as cancer, diabetes, and cardiovascular diseases. Additionally, these polyphenols demonstrate anti-inflammatory activity, which is closely associated with their antioxidant properties. As a result, C. scolymus has the potential to contribute to the treatment of chronic diseases, including intestinal disorders, cardiovascular diseases, and neurodegenerative pathologies. The current review discussed the nutritional profiles, potential benefits, and pharmacological effects of C. scolymus.
Collapse
Affiliation(s)
- Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy;
| | - Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70125 Bari, Italy; (M.V.); (M.D.A.)
| | - Margherita Chiarini
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70125 Bari, Italy; (M.V.); (M.D.A.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70125 Bari, Italy; (M.V.); (M.D.A.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy;
| |
Collapse
|
7
|
Olas B. An Overview of the Versatility of the Parts of the Globe Artichoke ( Cynara scolymus L.), Its By-Products and Dietary Supplements. Nutrients 2024; 16:599. [PMID: 38474726 DOI: 10.3390/nu16050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Cynara scolymus, also known as the globe artichoke or artichoke, is grown as a food, mainly in the Mediterranean, Canary Islands, and Egypt, as well as in Asia and South America. It has also been associated with various health benefits and is used in plant-based dietary supplements and herbal infusions. Its edible parts, consisting of the head or capitula, flower, and leaves, have shown various biological activities, including anti-cancer, hepatoprotective and antimicrobial potential. The leaves are mainly used in infusions and extracts for their health-promoting properties, although all their edible parts may also be consumed as fresh, frozen, or canned foods. However, its primary health-promoting activity is associated with its antioxidant potential, which has been linked to its chemical composition, particularly its phenolic compounds (representing 96 mg of gallic acid equivalent per 100 g of raw plant material) and dietary fiber. The main phenolic compounds in the heads and leaves are caffeic acid derivatives, while the flavonoids luteolin and apigenin (both present as glucosides and rutinosides) have also been identified. In addition, heat-treated artichokes (i.e., boiled, steamed or fried), their extracts, and waste from artichoke processing also have antioxidant activity. The present paper reviews the current literature concerning the biological properties of different parts of C. scolymus, its by-products and dietary supplements, as well as their chemical content and toxicity. The literature was obtained by a search of PubMed/Medline, Google Scholar, Web of Knowledge, ScienceDirect, and Scopus, with extra papers being identified by manually reviewing the references.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
8
|
Mohanta YK, Mishra AK, Nongbet A, Chakrabartty I, Mahanta S, Sarma B, Panda J, Panda SK. Potential use of the Asteraceae family as a cure for diabetes: A review of ethnopharmacology to modern day drug and nutraceuticals developments. Front Pharmacol 2023; 14:1153600. [PMID: 37608892 PMCID: PMC10441548 DOI: 10.3389/fphar.2023.1153600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/29/2023] [Indexed: 08/24/2023] Open
Abstract
The diabetes-associated mortality rate is increasing annually, along with the severity of its accompanying disorders that impair human health. Worldwide, several medicinal plants are frequently urged for the management of diabetes. Reports are available on the use of medicinal plants by traditional healers for their blood-sugar-lowering effects, along with scientific evidence to support such claims. The Asteraceae family is one of the most diverse flowering plants, with about 1,690 genera and 32,000 species. Since ancient times, people have consumed various herbs of the Asteraceae family as food and employed them as medicine. Despite the wide variety of members within the family, most of them are rich in naturally occurring polysaccharides that possess potent prebiotic effects, which trigger their use as potential nutraceuticals. This review provides detailed information on the reported Asteraceae plants traditionally used as antidiabetic agents, with a major focus on the plants of this family that are known to exert antioxidant, hepatoprotective, vasodilation, and wound healing effects, which further action for the prevention of major diseases like cardiovascular disease (CVD), liver cirrhosis, and diabetes mellitus (DM). Moreover, this review highlights the potential of Asteraceae plants to counteract diabetic conditions when used as food and nutraceuticals. The information documented in this review article can serve as a pioneer for developing research initiatives directed at the exploration of Asteraceae and, at the forefront, the development of a botanical drug for the treatment of DM.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, kelambakkam, Tamil Nadu, India
| | | | - Amilia Nongbet
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ishani Chakrabartty
- Learning and Development Solutions, Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | - Saurov Mahanta
- Guwahati Centre, National Institute of Electronics and Information Technology (NIELIT), Guwahati, Assam, India
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji, Assam, India
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Sujogya Kumar Panda
- Center of Environment Climate Change and Public Health, RUSA 2.0, Utkal University, Bhubaneswar, Odisha, India
| |
Collapse
|
9
|
Hosseinpour-Niazi S, Mirmiran P, Hosseini S, Hadaegh F, Ainy E, Daneshpour MS, Azizi F. Effect of TCF7L2 on the relationship between lifestyle factors and glycemic parameters: a systematic review. Nutr J 2022; 21:59. [PMID: 36155628 PMCID: PMC9511734 DOI: 10.1186/s12937-022-00813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/14/2022] [Indexed: 11/12/2022] Open
Abstract
Background Among candidate genes related to type 2 diabetes (T2DM), one of the strongest genes is Transcription factor 7 like 2 (TCF7L2), regarding the Genome-Wide Association Studies. We aimed to conduct a systematic review of the literature on the modification effect of TCF7L2 on the relation between glycemic parameters and lifestyle factors. Methods A systematic literature search was done for relevant publications using electronic databases, including PubMed, EMBASE, Scopus, and Web of Science, from January 1, 2000, to November 2, 2021. Results Thirty-eight studies (16 observational studies, six meal test trials, and 16 randomized controlled trials (RCTs)) were included. Most observational studies had been conducted on participants with non-diabetes showing that TCF7L2 modified the association between diet (fatty acids and fiber) and insulin resistance. In addition, findings from meal test trials showed that, compared to non-risk-allele carriers, consumption of meals with different percentages of total dietary fat in healthy risk-allele carriers increased glucose concentrations and impaired insulin sensitivity. However, ten RCTs, with intervention periods of less than ten weeks and more than one year, showed that TCF7L2 did not modify glycemic parameters in response to a dietary intervention involving different macronutrients. However, two weight loss dietary RCTs with more than 1-year duration showed that serum glucose and insulin levels decreased and insulin resistance improved in non-risk allele subjects with overweight/obesity. Regarding artichoke extract supplementation (ALE), two RCTs observed that ALE supplementation significantly decreased insulin concentration and improved insulin resistance in the TT genotype of the rs7903146 variant of TCF7L2. In addition, four studies suggested that physical activity levels and smoking status modified the association between TCF7L2 and glycemic parameters. However, three studies observed no effect of TCF7L2 on glycemic parameters in participants with different levels of physical activity and smoking status. Conclusion The modification effects of TCF7L2 on the relation between the lifestyle factors (diet, physical activity, and smoking status) and glycemic parameters were contradictory. PROSPERO registration number CRD42020196327 Supplementary Information The online version contains supplementary material available at 10.1186/s12937-022-00813-w.
Collapse
Affiliation(s)
- Somayeh Hosseinpour-Niazi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shabnam Hosseini
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Ainy
- Department of Vice Chancellor Research Affairs, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Amini MR, Sheikhhossein F, Alvani M, Shoura SMS, Sohrabnavi A, Heidarian E, Hekmatdoost A. Anti-hypertensive Effects of Artichoke Supplementation in Adults: A Systematic Review and Dose-response Meta-analysis of Randomized Controlled Trials. Clin Nutr Res 2022; 11:214-227. [PMID: 35949557 PMCID: PMC9348915 DOI: 10.7762/cnr.2022.11.3.214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Despite controversies, no earlier study has systematically summarized findings from earlier studies on the effect of artichoke supplementation on blood pressure. Therefore, current systematic review and meta-analysis was done on the effect of artichoke supplementation on systolic blood pressure (SBP) and diastolic blood pressure (DBP) in adults. Five databases were searched from inception to January 2022 using relevant keywords. All randomized clinical trials investigating the impact of oral artichoke supplementation on any of the blood pressure parameters including SBP or/and DBP were included. Out of 1,507 citations, 7 trials that enrolled 472 subjects were included. Artichoke supplementation resulted in significant reduction in SBP (weighted mean difference [WMD], -2.01 mmHg; 95% confidence interval [CI], -3.78, -0.24; p = 0.026) and DBP (WMD, -1.45 mmHg; 95% CI, -2.81, -0.08; p = 0.038). Greater effects on SBP were detected in trials using ≤ 500 mg artichoke, lasted > 8 weeks, participants aged < 50 years' old and sample size ≤ 70. There was also a similar impact of artichoke on DBP. However, significant non-linear associations were found between artichoke supplementation dosage and study duration with both SBP (for dosage: pnon-linearity = 0.002, for duration: pnon-linearity = 0.016) and DBP (for dosage: pnon-linearity = 0.005, for duration: pnon-linearity = 0.003). We found a significant reduction in both SBP and DBP following artichoke supplementation in adults. It could be proposed as a hypotensive supplement in hypertension management.
Collapse
Affiliation(s)
- Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Mohsen Alvani
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | | | - Asma Sohrabnavi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| | - Ehsan Heidarian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition & Dietetics, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| |
Collapse
|
11
|
Amini MR, Sheikhhossein F, Talebyan A, Bazshahi E, Djafari F, Hekmatdoost A. Effects of Artichoke Supplementation on Liver Enzymes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin Nutr Res 2022; 11:228-239. [PMID: 35949559 PMCID: PMC9348909 DOI: 10.7762/cnr.2022.11.3.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Studies examining the effect of artichoke on liver enzymes have reported inconsistent results. This systematic review and meta-analysis aimed to assess the effects of artichoke administration on the liver enzymes. PubMed, Embase, the Cochrane Library, and Scopus databases were searched for articles published up to January 2022. Standardized mean difference (Hedges' g) were analyzed using a random-effects model. Heterogeneity, publication bias, and sensitivity analysis were assessed for the liver enzymes. Pooled analysis of seven randomized controlled trials (RCTs) suggested that the artichoke administration has an effect on both alanine aminotransferase (ALT) (Hedges' g, -1.08; 95% confidence interval [CI], -1.76 to -0.40; p = 0.002), and aspartate aminotransferase (AST) (Hedges' g, -1.02; 95% CI, -1.76 to -0.28; p = 0.007). Greater effects on ALT were detected in trials that lasted ≤8 weeks. Also, greater effects on AST were detected in trials using > 500 mg artichoke. Overall, this meta-analysis demonstrated artichoke supplementation decreased ALT and AST.
Collapse
Affiliation(s)
- Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Alireza Talebyan
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Elham Bazshahi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Farhang Djafari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition & Dietetics, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| |
Collapse
|
12
|
Protective Effect of Butanolic Fraction of Delphinium brunonianum on Fructose-Mediated Metabolic Alterations in Rats. Metabolites 2022; 12:metabo12060481. [PMID: 35736413 PMCID: PMC9227329 DOI: 10.3390/metabo12060481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/15/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023] Open
Abstract
The present study was conducted with an intent to evaluate the protective effect of butanolic fraction of Delphinium brunonianum on fructose mediated metabolic abnormalities in rats. Rats in all groups except control group were fed on 10% fructose for 6 weeks; however, rats in the treated group also received butanolic fraction for the last 3 weeks, along with the fructose. Moreover, phytoconstituents present in butanolic fraction were analyzed using LC-MS. All doses of butanolic fraction profoundly reduce the fructose-induced blood pressure, sympathetic over-activity, and weight gain. Furthermore, butanolic fraction prominently reduces the glucose intolerance and hyperinsulinemia in fructose-fed rats. On treatment with butanolic fraction, oxidative enzymes and the functionality of the aorta was also restored. Phytochemical analysis revealed the presence of several active constituents including bergenin, scopolin, rutinoside, kaempferol, coumaric acid, apigenin, and gingerol. In conclusion, butanolic fraction of Delphinium brunonianum has the potential to prevent and recover the fructose-induced metabolic perturbations.
Collapse
|
13
|
Celepli S, Çolak B, Celepli P, Bigat İ, Batur HG, Soysal F, Karakurt S, Hücümenoğlu S, Kismet K, Şahin M. Artichoke for biochemistry, histology, and gene expression in obstructive jaundice. REVISTA DA ASSOCIAÇÃO MÉDICA BRASILEIRA 2022; 68:647-652. [DOI: 10.1590/1806-9282.20220001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | - İrem Bigat
- TOBB University of Economics & Technology, Turkey
| | | | | | | | | | | | | |
Collapse
|
14
|
Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders. Foods 2022; 11:foods11030336. [PMID: 35159487 PMCID: PMC8915173 DOI: 10.3390/foods11030336] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Cardoon (Cynara cardunculus L.) is a Mediterranean plant and member of the Asteraceae family that includes three botanical taxa, the wild perennial cardoon (C. cardunculus L. var. sylvestris (Lamk) Fiori), globe artichoke (C. cardunculus L. var. scolymus L. Fiori), and domesticated cardoon (C. cardunculus L. var. altilis DC.). Cardoon has been widely used in the Mediterranean diet and folk medicine since ancient times. Today, cardoon is recognized as a plant with great industrial potential and is considered as a functional food, with important nutritional value, being an interesting source of bioactive compounds, such as phenolics, minerals, inulin, fiber, and sesquiterpene lactones. These bioactive compounds have been vastly described in the literature, exhibiting a wide range of beneficial effects, such as antimicrobial, anti-inflammatory, anticancer, antioxidant, lipid-lowering, cytotoxic, antidiabetic, antihemorrhoidal, cardiotonic, and choleretic activity. In this review, an overview of the cardoon nutritional and phytochemical composition, as well as its biological potential, is provided, highlighting the main therapeutic effects of the different parts of the cardoon plant on metabolic disorders, specifically associated with hepatoprotective, hypolipidemic, and antidiabetic activity.
Collapse
|
15
|
Artichoke and Bergamot Phytosome Alliance: A Randomized Double Blind Clinical Trial in Mild Hypercholesterolemia. Nutrients 2021; 14:nu14010108. [PMID: 35010984 PMCID: PMC8746931 DOI: 10.3390/nu14010108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/01/2023] Open
Abstract
Botanicals are natural alternatives to pharmacological therapies that aim at reducing hypercholesterolemia. In this context, despite bergamot being effective in modulating lipid profile, some subjects failed to achieve a satisfactory response to supplementation. The aim of this study was to evaluate whether the association of 600 mg of bergamot phytosome® (from Citrus Bergamia Risso) and 100 mg of artichoke leaf standardized dry extract (from Cynara cardunculus L.) can be an alternative in patients with mild hypercholesterolemia who are poor responders to bergamot in a 2-month randomized placebo-controlled trial. Sixty overweight adults were randomized into two groups: 30 were supplemented and 30 received a placebo. The metabolic parameters and DXA body composition were evaluated at the start, after 30 and 60 days. Between the two groups, total and LDL cholesterol in the supplemented group (compared to placebo) showed significant decreases overtime. A significant reduction of waist circumference and visceral adipose tissue (VAT) was recorded in the supplemented group (compared to placebo), even in subjects who did not follow a low-calorie diet. In conclusion, the synergism between Citrus Bergamia polyphenols and Cynara cardunculus extracts may be an effective option and may potentially broaden the therapeutic role of botanicals in dyslipidemic patients.
Collapse
|
16
|
Abdel-Moneim A, Ahmed OM, Abd El-Twab SM, Zaky MY, Bakry LN. Prophylactic effects of Cynara scolymus L. leaf and flower hydroethanolic extracts against diethylnitrosamine/acetylaminoflourene-induced lung cancer in Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43515-43527. [PMID: 33834342 DOI: 10.1007/s11356-021-13391-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/08/2021] [Indexed: 05/26/2023]
Abstract
The study examines the prophylactic action of artichoke leaf hydroethanolic extract (ALE) and artichoke flower head hydroethanolic extract (AFE) against diethylnitrosamine (DEN)/acetylaminofluorene (AAF)-induced lung cancer in Wistar rats. To chemically induce lung cancer, DEN was injected intraperitoneally twice a week for a fortnight at a dose of 150 mg/kg body weight (b.w.), followed by oral supplementation of AAF four times a week for 3 weeks at a dose of 20 mg/kg b.w. The DEN/AAF-administered rats were orally supplemented with ALE or AFE at a dose of 100 mg/kg b.w. for 17 weeks starting from the 1st week of DEN injection to the 17th week of the experiment. The lung cancerous injuries resulting from DEN/AAF-administration were significantly improved by the treatment with ALE and AFE as observed in histological examination. In addition, there was a significant reduction in lung lipid peroxidation, with resultant elevation in antioxidant enzymatic activity of glutathione-S-transferase, glutathione peroxidase, glutathione reductase, and superoxide dismutase as well as glutathione content in DEN/AAF-supplemented rats treated with ALE and AFE as compared to DEN/AAF-administered control. The lung tumor suppressor protein (p53) and B-cell lymphoma-2 (Bcl-2) mRNA expression significantly increased in the rats treated with ALE and AFE. In conclusion, the finding showed that ALE and AFE produced anti-cancer prophylactic effects against DEN/AAF-induced lung cancer in rats via suppression of oxidative stress and improved apoptotic signal induction.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Salah Salem St, 62511, Beni-Suef, Egypt.
| | - Osama M Ahmed
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Salah Salem St, 62511, Beni-Suef, Egypt
| | - Sanaa M Abd El-Twab
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Salah Salem St, 62511, Beni-Suef, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Salah Salem St, 62511, Beni-Suef, Egypt
| | - Lamiaa N Bakry
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Salah Salem St, 62511, Beni-Suef, Egypt
| |
Collapse
|
17
|
Metabolic and Anti-Inflammatory Protective Properties of Human Enriched Serum Following Artichoke Leaf Extract Absorption: Results from an Innovative Ex Vivo Clinical Trial. Nutrients 2021; 13:nu13082653. [PMID: 34444810 PMCID: PMC8398945 DOI: 10.3390/nu13082653] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
The aging of our population is accompanied by an increased prevalence of chronic diseases. Among those, liver, joint and adipose tissue-related pathologies have a major socio-economic impact. They share common origins as they result from a dysregulation of the inflammatory and metabolic status. Plant-derived nutrients and especially polyphenols, exert a large range of beneficial effects in the prevention of chronic diseases but require clinically validated approaches for optimized care management. In this study, we designed an innovative clinical approach considering the metabolites produced by the digestive tract following the ingestion of an artichoke leaf extract. Human serum, enriched with metabolites deriving from the extract, was collected and incubated with human hepatocytes, human primary chondrocytes and adipocytes to determine the biological activity of the extract. Changes in cellular behavior demonstrated that the artichoke leaf extract protects hepatocytes from lipotoxic stress, prevents adipocytes differentiation and hyperplasia, and exerts chondroprotective properties in an inflammatory context. These data validate the beneficial health properties of an artichoke leaf extract at the clinical level and provide both insights and further evidence that plant-derived nutrients and especially polyphenols from artichoke may represent a relevant alternative for nutritional strategies addressing chronic disease issues.
Collapse
|
18
|
Chávez-Castillo M, Nuñez V, Rojas M, Ortega Á, Durán P, Pirela D, Marquina M, Cano C, Chacín M, Velasco M, Rojas-Quintero J, Bermúdez V. Exploring Phytotherapeutic Alternatives for Obesity, Insulin Resistance and Diabetes Mellitus. Curr Pharm Des 2021; 26:4430-4443. [PMID: 32611293 DOI: 10.2174/1381612826666200701205132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022]
Abstract
At present, the pathologic spectrum of obesity-insulin resistance (IR)-diabetes mellitus (DM) represents not only a pressing matter in public health but also a paramount object of study in biomedical research, as they constitute major risk factors for cardiovascular disease (CVD), and other chronic non-communicable diseases (NCD). Phytotherapy, the use of medicinal herbs (MH) with treatment purposes, offers a wide array of opportunities for innovation in the management of these disorders; mainly as pharmacological research on small molecules accumulates. Several MH has displayed varied mechanisms of action relevant to the pathogenesis of obesity, IR and DM, including immunological and endocrine modulation, reduction of inflammation and oxidative stress (OS), regulation of appetite, thermogenesis and energy homeostasis, sensitisation to insulin function and potentiation of insulin release, among many others. However, the clinical correlates of these molecular phenomena remain relatively uncertain, with only a handful of MH boasting convincing clinical evidence in this regard. This review comprises an exploration of currently available preclinical and clinical research on the role of MH in the management of obesity, IR, and DM.
Collapse
Affiliation(s)
- Mervin Chávez-Castillo
- Psychiatric Hospital of Maracaibo, Maracaibo, Venezuela,Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Victoria Nuñez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Daniela Pirela
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María Marquina
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Clinical Pharmacology Unit, José María Vargas School of Medicine, Central University of Venezuela, Caracas-Venezuela
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
19
|
Cortés-Martín A, Iglesias-Aguirre CE, Meoro A, Selma MV, Espín JC. Pharmacological Therapy Determines the Gut Microbiota Modulation by a Pomegranate Extract Nutraceutical in Metabolic Syndrome: A Randomized Clinical Trial. Mol Nutr Food Res 2021; 65:e2001048. [PMID: 33458928 DOI: 10.1002/mnfr.202001048] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Indexed: 12/13/2022]
Abstract
SCOPE Poly-pharmacological therapy shapes the gut microbiota (GM) in metabolic syndrome (MetS) patients. The effects of polyphenols in poly-medicated MetS patients are unknown. METHODS AND RESULTS A randomized, placebo-controlled, double-blinded, and crossover trial in poly-medicated MetS patients (n=50) explored whether the effects of a pomegranate extract nutraceutical (PE, 320 mg phenolics/day for 1 month) are affected by the drug therapy. Considering the lipid-lowering (LL-), anti-hypertensive (HP-) and(or) anti-diabetic (AD-) treatments: GM (16S rRNA sequencing), short-chain fatty acids, 40 inflammatory-metabolic and endotoxemia-related biomarkers, associations between biomarkers and GM with 53 cardiometabolic dysfunctions-related single-nucleotide polymorphisms (SNPs), and urolithin metabotypes (UMs) influence are evaluated. Representative SNPs-GM associations after PE include Lactococcus and ClostridiumXIVa with rs5443-GNB3 (G-protein-β-polypeptide-3) and ClostridiumXIVa with rs7903146-TCF7L2 (transcription-factor-7-like-2) and rs1137101-LEPR (leptin-receptor). PE decreases sICAM-1 in LL-patients and the lipopolysaccharide-binding protein in all the patients. PE does not affect the other patients' markers as a group or stratifying by UMs. After PE, Lactococcus increases in AD-, LL-, and HP-patients, Bifidobacterium increases in LL- and AD-, while Clostridium XIVa decreases in non-LL- and non-HP-patients. CONCLUSION The prebiotic effect of PE depends on the medication, mainly on HP-treatments. Targeting GM can complement MetS therapy, but the patients' drug therapy should be considered individually.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Carlos Eduardo Iglesias-Aguirre
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Amparo Meoro
- Service of Endocrinology, Reina Sofía University Hospital, Avda. Intendente Jorge Palacios s/n, Murcia, 30003, Spain
| | - María Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|
20
|
Moradi M, Sohrabi G, Golbidi M, Yarmohammadi S, Hemati N, Campbell MS, Moradi S, Kermani MAH, Farzaei MH. Effects of artichoke on blood pressure: A systematic review and meta-analysis. Complement Ther Med 2021; 57:102668. [PMID: 33465383 DOI: 10.1016/j.ctim.2021.102668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/02/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Clinical trials considering the effects of artichoke supplementation on blood pressure have yielded different and contradictory outcomes. Thus, a systematic review and meta-analysis were performed to assess effects of artichoke administration on blood pressure. METHODS Related studies were detected by searching the Cochrane Library, PubMed, Embase and Scopus databases up to 15 March 2020. Weighted Mean Differences (WMD) were pooled using a random-effects model. Heterogeneity, sensitivity analyses, and publication bias were evaluated using standard methods. RESULTS Pooled analysis of eight randomized controlled trials revealed that artichoke supplementation did not have an effect on systolic blood pressure (SBP), (WMD: -0.77 mmHg, 95 % CI: -2.76 to 1.22) or diastolic blood pressure (DBP) (WMD: -0.11 mmHg, 95 % CI: -1.72 to 1.50) when compared to the placebo group. However, subgroup analyses based on health status suggested that artichoke administration among hypertensive patients may significantly reduce SBP (WMD: -3.19 mmHg, 95 % CI: -3.32 to -3.06) and DBP (WMD: -2.33 mmHg, 95 % CI: -2.23 to -2.43), but no such reduction was found in NAFLD patients. Furthermore, our results indicated that artichoke supplementation for 12 weeks led to a significantly decreased DBP (WMD: -2.33 mmHg, 95 % CI: -2.43 to -2.23), but 8 weeks of intervention did not (WMD: 0.80 mmHg, 95 % CI: -1.06 to 2.66). CONCLUSION Artichoke supplementation may potentially lead to SBP and DBP reduction in hypertensive patients. In addition, artichoke supplementation for 12 weeks may significantly improve DBP.
Collapse
Affiliation(s)
- Mozhgan Moradi
- Internal Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazale Sohrabi
- General Practitioner, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojgan Golbidi
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samira Yarmohammadi
- Internal Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Niloofar Hemati
- Internal Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marilyn S Campbell
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
| | - Sajjad Moradi
- Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
21
|
Rondanelli M, Riva A, Petrangolini G, Allegrini P, Bernardinelli L, Fazia T, Peroni G, Gasparri C, Nichetti M, Faliva MA, Naso M, Perna S. The Metabolic Effects of Cynara Supplementation in Overweight and Obese Class I Subjects with Newly Detected Impaired Fasting Glycemia: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Nutrients 2020; 12:nu12113298. [PMID: 33126534 PMCID: PMC7693737 DOI: 10.3390/nu12113298] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Impaired fasting glucose (IFG) is a condition that precedes diabetes and increases the risk of developing it. Studies support the hypoglycemic effect of Cynarascolymus (Cs) extracts due to the content of chlorogenic acid, which is a potent inhibitor of glucose 6-phosphate translocase and of dicaffeoylquinic acid derivatives that modulate the activity of alpha-glucosidase. Given this background, we investigated whether a new highly standardized Cs extract could improve glycemic control, insulin sensitivity and other metabolic parameters (total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C) Triglycerides, Apolipo protein B (ApoB), Apolipo protein A (ApoA), waist circumference, visceral adipose tissue (VAT) by dual-energy X-ray absorptiometry (DXA) in overweight subjects with newly diagnosed IFG. Fifty-four subjects (females/males 26/28, mean ± SD age 51.5 ± 6.2) were randomly assigned to the supplemented group (n = 27) and placebo (n = 27). After multiple testing correction, statistically significant interactions between time and group were observed for the primary endpoint glycemia (β = 0.36, p < 0.0001) and for the secondary endpoints HDL (β = −0.10, p < 0.0001), total cholesterol/HDL (β = 0.27, p < 0.0001), LDL (β = 0.15, p = 0.005), LDL/HDL (β = 0.23, p = 0.001), insulin (β = 1.28, p = 0.04), glycated hemoglobin (β = 0.21, p = 0.0002), A1c-derived average glucose (β = 0.34, p = 0.0002), ApoB (β = 6.00, p = 0.01), ApoA (β = −4.50, p = 0.04), ApoB/ApoA (β = 0.08, p = 0.003), waist circumference (β = 1.89, p = 0.05), VATβ = 222.37, p = 0.005). In conclusion, these results confirm that Cs supplementation has a significant effect on metabolic parameters in IFG patients.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Unit of Human and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Antonella Riva
- Research and Development Unit, Indena, 20139 Milan, Italy; (A.R.); (G.P.); (P.A.)
| | | | - Pietro Allegrini
- Research and Development Unit, Indena, 20139 Milan, Italy; (A.R.); (G.P.); (P.A.)
| | - Luisa Bernardinelli
- Department of Brain and Behavioral Science, University of Pavia, 27100 Pavia, Italy; (L.B.); (T.F.)
| | - Teresa Fazia
- Department of Brain and Behavioral Science, University of Pavia, 27100 Pavia, Italy; (L.B.); (T.F.)
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (C.G.); (M.N.); (M.A.F.); (M.N.)
- Correspondence: ; Tel.: +39-0382381739
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (C.G.); (M.N.); (M.A.F.); (M.N.)
| | - Mara Nichetti
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (C.G.); (M.N.); (M.A.F.); (M.N.)
| | - Milena Anna Faliva
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (C.G.); (M.N.); (M.A.F.); (M.N.)
| | - Maurizio Naso
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (C.G.); (M.N.); (M.A.F.); (M.N.)
| | - Simone Perna
- Department of Biology, Sakhir Campus, College of Science, University of Bahrain, Sakheer P.O. Box 32038, Bahrain;
| |
Collapse
|
22
|
Jalili C, Moradi S, Babaei A, Boozari B, Asbaghi O, Lazaridi AV, Hojjati Kermani MA, Miraghajani M. Effects of Cynara scolymus L. on glycemic indices:A systematic review and meta-analysis of randomized clinical trials. Complement Ther Med 2020; 52:102496. [PMID: 32951745 DOI: 10.1016/j.ctim.2020.102496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/29/2020] [Accepted: 06/26/2020] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVES Cynara scolymus L. (common artichoke) and its products have been considered as potential phytotherapeutic agents for various conditions, such as cardiovascular, hepatic and gastric diseases, among others. Until now, the effects of artichoke and artichoke products administration on glycemic indices have not been sufficiently appraised. The present study evaluated the effects of artichoke and artichoke products administration on the glycemic indices. METHODS Clinical trials were identified in the Cochrane Library, PubMed, Embase and Scopus databases; to infinity until 15 March 2020. Weighted mean differences (WMD) were pooled using a random-effects model. Heterogeneity, sensitivity analysis and publication bias were reported using standard methods. RESULTS Pooled analysis of nine Randomized controlled trials (RCTs), demonstrated that the administration of artichoke and artichoke products led to a significant reduced fasting blood sugar (FBS) (WMD: -5.28 mg/dl, 95 % CI: -8.95, -1.61; p = 0.005). However, other glycemic indeces including fasting insulin (WMD: -0.45 μIU/dL, 95 % CI: -1.14, 0.25; p = 0.20), HOMA-IR (MD: -0.25, 95 % CI: -0.57, 0.07; p = 0.12) or Hemoglobin A1c (HbA1c) (WMD: -0.09, 95 % CI: -0.20, 0.02; p = 0.09) did not alter after the administration of artichoke and artichoke products. A subgroup analysis comparing the kind of intervention, revealed that just the supplementation of artichoke and artichoke products, in a noco-supplementation form, was efficacy for the reduction of Homeostatic model assessment of insulin resistance (HOMA-IR) (WMD: -0.52, 95 % CI: -0.85, -0.19; p = 0.002). CONCLUSIONS The supplementation of artichoke and artichoke products can significantly reduce the FBS concentrations in humans. Moreover, these outcomes suggested that just the supplementation of artichoke and artichoke products is more effective in the reduction of HOMA-IR levels than the co-supplementation form. However, additional clinical trials with longer study periods are necessitated to obtain a robust conclusion for producing new guidelines as part of a healthy diet.
Collapse
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajjad Moradi
- Halal Research Center of IRI, FDA, Tehran, Iran; Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Atefeh Babaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behnoosh Boozari
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Anastasia-Viktoria Lazaridi
- The Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Miraghajani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; The Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom.
| |
Collapse
|
23
|
Nouri Z, Hajialyani M, Izadi Z, Bahramsoltani R, Farzaei MH, Abdollahi M. Nanophytomedicines for the Prevention of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Front Bioeng Biotechnol 2020; 8:425. [PMID: 32478050 PMCID: PMC7240035 DOI: 10.3389/fbioe.2020.00425] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome includes a series of metabolic abnormalities that leads to diabetes mellitus and cardiovascular diseases. Plant extracts, due to their unique advantages like anti-inflammatory, antioxidant, and insulin sensitizing properties, are interesting therapeutic options to manage MetS; however, the poor solubility and low bioavailability of lipophilic bioactive components in the herbal extracts are two critical challenges. Nano-scale delivery systems are suitable to improve delivery of herbal extracts. This review, for the first time, focuses on nanoformulations of herbal extracts in MetS and related complications. Included studies showed that several forms of nano drug delivery systems such as nanoemulsions, solid lipid nanoparticles, nanobiocomposites, and green-synthesized silver, gold, and zinc oxide nanoparticles have been developed using herbal extracts. It was shown that the method of preparation and related parameters such as temperature and type of polymer are important factors affecting physicochemical stability and therapeutic activity of the final product. Many of these formulations could successfully decrease the lipid profile, inflammation, oxidative damage, and insulin resistance in in vitro and in vivo models of MetS-related complications. Further studies are still needed to confirm the safety and efficacy of these novel herbal formulations for clinical application.
Collapse
Affiliation(s)
- Zeinab Nouri
- Students Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Hajialyani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Rezazadeh K, Ebrahimi-Mameghani M. Artichoke leaf extract and use in metabolic syndrome as an antioxidant. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Rezazadeh K, Asghari-Jafarabadi M, Ebrahimi-Mameghani M. The interaction of FTO-rs9939609 polymorphism with artichoke leaf extract effects on cardiometabolic risk factors in hypertriglyceridemia: A randomized clinical trial. ADVANCES IN INTEGRATIVE MEDICINE 2019. [DOI: 10.1016/j.aimed.2018.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Li J, Bai L, Wei F, Zhao J, Wang D, Xiao Y, Yan W, Wei J. Therapeutic Mechanisms of Herbal Medicines Against Insulin Resistance: A Review. Front Pharmacol 2019; 10:661. [PMID: 31258478 PMCID: PMC6587894 DOI: 10.3389/fphar.2019.00661] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance is a condition in which insulin sensitivity is reduced and the insulin signaling pathway is impaired. Although often expressed as an increase in insulin concentration, the disease is characterized by a decrease in insulin action. This increased workload of the pancreas and the consequent decompensation are not only the main mechanisms for the development of type 2 diabetes (T2D), but also exacerbate the damage of metabolic diseases, including obesity, nonalcoholic fatty liver disease, polycystic ovary syndrome, metabolic syndrome, and others. Many clinical trials have suggested the potential role of herbs in the treatment of insulin resistance, although most of the clinical trials included in this review have certain flaws and bias risks in their methodological design, including the generation of randomization, the concealment of allocation, blinding, and inadequate reporting of sample size estimates. These studies involve not only the single-flavored herbs, but also herbal formulas, extracts, and active ingredients. Numerous of in vitro and in vivo studies have pointed out that the role of herbal medicine in improving insulin resistance is related to interventions in various aspects of the insulin signaling pathway. The targets involved in these studies include insulin receptor substrate, phosphatidylinositol 3-kinase, glucose transporter, AMP-activated protein kinase, glycogen synthase kinase 3, mitogen-activated protein kinases, c-Jun-N-terminal kinase, nuclear factor-kappaB, protein tyrosine phosphatase 1B, nuclear factor-E2-related factor 2, and peroxisome proliferator-activated receptors. Improved insulin sensitivity upon treatment with herbal medicine provides considerable prospects for treating insulin resistance. This article reviews studies of the target mechanisms of herbal treatments for insulin resistance.
Collapse
Affiliation(s)
- Jun Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Litao Bai
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Danwei Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yao Xiao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weitian Yan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Salekzamani S, Ebrahimi-Mameghani M, Rezazadeh K. The antioxidant activity of artichoke (Cynara scolymus): A systematic review and meta-analysis of animal studies. Phytother Res 2018; 33:55-71. [PMID: 30345589 DOI: 10.1002/ptr.6213] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/06/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022]
Abstract
Current evidence has shown antioxidant activity of artichoke as a potent source of antioxidant compounds. However, it seems that the antioxidant activity of artichoke has not yet been reviewed. Therefore, the present study was designed to perform a systematic review of human studies, animal models, and in vitro systems and to conduct a meta-analysis of animal studies on the antioxidant effects of artichoke. We searched four electronic databases till April 2018 using relevant keywords. All English language articles were assessed. For animal studies, standardized mean difference was pooled using a random effects model. The included studies were evaluated for eligibility and risk of bias. Thirty-nine articles (two human, 23 animal, and 14 in vitro studies) were reviewed. The results of in vitro systems supported the antioxidant effect of artichoke, whereas limited clinical trials indicated no change or a slight improvement of antioxidant status. Finding of animal studies indicated that artichoke extract supplementation increased superoxide dismutase, catalase, glutathione, and glutathione peroxidase level in liver, as well as, decreased malondialdehyde level in liver and plasma of animals with induced disease significantly compared with comparison group. This meta-analysis provided convincing evidence for antioxidant activity of artichoke in animals.
Collapse
Affiliation(s)
- Shabnam Salekzamani
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khatereh Rezazadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|