1
|
Sex differences in pain-related behaviors and clinical progression of disease in mouse models of colonic pain. Pain 2023; 164:197-215. [PMID: 35559931 PMCID: PMC9756435 DOI: 10.1097/j.pain.0000000000002683] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Previous studies have reported sex differences in patients with irritable bowel syndrome and inflammatory bowel disease, including differences in visceral pain perception. Despite this, sex differences in behavioral manifestations of visceral pain and underlying pathology of the gastrointestinal tract have been largely understudied in preclinical research. In this study, we evaluated potential sex differences in spontaneous nociceptive responses, referred abdominal hypersensitivity, disease progression, and bowel pathology in mouse models of acute and persistent colon inflammation. Our experiments show that females exhibit more nociceptive responses and referred abdominal hypersensitivity than males in the context of acute but not persistent colon inflammation. We further demonstrate that, after acute and persistent colon inflammation, pain-related behavioral responses in females and males are distinct, with increases in licking of the abdomen only observed in females and increases in abdominal contractions only seen in males. During persistent colon inflammation, males exhibit worse disease progression than females, which is manifested as worse physical appearance and higher weight loss. However, no measurable sex differences were observed in persistent inflammation-induced bowel pathology, stool consistency, or fecal blood. Overall, our findings demonstrate sex differences in pain-related behaviors and disease progression in the context of acute and persistent colon inflammation, highlighting the importance of considering sex as a biological variable in future mechanistic studies of visceral pain as well as in the development of diagnostics and therapeutic options for chronic gastrointestinal diseases.
Collapse
|
2
|
Dimian AF, Symons FJ. A systematic review of risk for the development and persistence of self-injurious behavior in intellectual and developmental disabilities. Clin Psychol Rev 2022; 94:102158. [PMID: 35580423 PMCID: PMC10229071 DOI: 10.1016/j.cpr.2022.102158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/13/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022]
Abstract
Self-injurious behavior (SIB) by individuals with intellectual and developmental disabilities including autism (I/DD) is among the most clinically disturbing, socially costly, and scientifically challenging behavior disorders. Forty years of clinical research has produced a knowledge base supporting idiographic behavioral assessment and treatment approaches. Despite the treatment progress, from a public health and population perspective, we argue it is less clear that we have reduced the disorder's burden. The developmental course of the disorder is mostly unknown and empirically informed population-level models of risk are absent. In this review, we systematically examined the published scientific literature specific to risk for SIB in the I/DD population. We reviewed study methodology in detail intentionally informed by an epidemiological perspective with a set of questions intended to test the quality of the inferences about risk. Results are discussed in terms of conceptual, methodological, and translational issues with respect to what needs to be done to create credible and useful clinical models for SIB risk in the I/DD population.
Collapse
Affiliation(s)
- Adele F Dimian
- Institute on Community Integration, University of Minnesota(,) Minneapolis, MN, USA.
| | - Frank J Symons
- Dept. of Educational Psychology, University of Minnesota(,) Minneapolis, MN, USA
| |
Collapse
|
3
|
Deng SY, Tang XC, Chang YC, Xu ZZ, Chen QY, Cao N, Kong LJY, Wang Y, Ma KT, Li L, Si JQ. Improving NKCC1 Function Increases the Excitability of DRG Neurons Exacerbating Pain Induced After TRPV1 Activation of Primary Sensory Neurons. Front Cell Neurosci 2021; 15:665596. [PMID: 34113239 PMCID: PMC8185156 DOI: 10.3389/fncel.2021.665596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background Our aim was to investigate the effects of the protein expression and the function of sodium, potassium, and chloride co-transporter (NKCC1) in the dorsal root ganglion (DRG) after activation of transient receptor potential vanilloid 1 receptor (TRPV1) in capsaicin-induced acute inflammatory pain and the possible mechanism of action. Methods Male Sprague–Dawley rats were randomly divided into control, capsaicin, and inhibitor groups. The expression and distribution of TRPV1 and NKCC1 in rat DRG were observed by immunofluorescence. Thermal radiation and acetone test were used to detect the pain threshold of heat and cold noxious stimulation in each group. The expressions of NKCC1 mRNA, NKCC1 protein, and p-NKCC1 in the DRG were detected by PCR and western blotting (WB). Patch clamp and chloride fluorescent probe were used to observe the changes of GABA activation current and intracellular chloride concentration. After intrathecal injection of protein kinase C (PKC) inhibitor (GF109203X) or MEK/extracellular signal-regulated kinase (ERK) inhibitor (U0126), the behavioral changes and the expression of NKCC1 and p-ERK protein in L4–6 DRG were observed. Result: TRPV1 and NKCC1 were co-expressed in the DRG. Compared with the control group, the immunofluorescence intensity of NKCC1 and p-NKCC1 in the capsaicin group was significantly higher, and the expression of NKCC1 in the nuclear membrane was significantly higher than that in the control group. The expression of NKCC1 mRNA and protein of NKCC1 and p-NKCC1 in the capsaicin group were higher than those in the control group. After capsaicin injection, GF109203X inhibited the protein expression of NKCC1 and p-ERK, while U0126 inhibited the protein expression of NKCC1. In the capsaicin group, paw withdrawal thermal latency (WTL) was decreased, while cold withdrawal latency (CWL) was prolonged. Bumetanide, GF109203X, or U0126 could reverse the effect. GABA activation current significantly increased in the DRG cells of the capsaicin group, which could be reversed by bumetanide. The concentration of chloride in the DRG cells of the capsaicin group increased, but decreased after bumetanide, GF109203X, and U0126 were administered. Conclusion Activation of TRPV1 by exogenous agonists can increase the expression and function of NKCC1 protein in DRG, which is mediated by activation of PKC/p-ERK signaling pathway. These results suggest that DRG NKCC1 may participate in the inflammatory pain induced by TRPV1.
Collapse
Affiliation(s)
- Shi-Yu Deng
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,Department of Anesthesia, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Xue-Chun Tang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Cardiology, First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Yue-Chen Chang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Medical Teaching Experimental Center, Shihezi University Medical College, Shihezi, China
| | - Zhen-Zhen Xu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin-Yi Chen
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,Department of Anesthesiology, Xiangyang Central Hospital, Xiangyang Central Hospital, China
| | - Nan Cao
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Liang-Jing-Yuan Kong
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yang Wang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ke-Tao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Li Li
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Physiology, Medical College of Jiaxing University, Jiaxing, China
| | - Jun-Qiang Si
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
4
|
Differential expression of Na +/K +/Cl - cotransporter 1 in neurons and glial cells within the superficial spinal dorsal horn of rodents. Sci Rep 2020; 10:11715. [PMID: 32678166 PMCID: PMC7367302 DOI: 10.1038/s41598-020-68638-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022] Open
Abstract
Although convincing experimental evidence indicates that Na+/K+/Cl- cotransporter 1 (NKCC1) is involved in spinal nociceptive information processing and in the generation of hyperalgesia and allodynia in chronic pain states, the cellular distribution of NKCC1 in the superficial spinal dorsal horn is still poorly understood. Because this important piece of knowledge is missing, the effect of NKCC1 on pain processing is still open to conflicting interpretations. In this study, to provide the missing experimental data, we investigated the cellular distribution of NKCC1 in the superficial spinal dorsal horn by immunohistochemical methods. We demonstrated for the first time that almost all spinal axon terminals of peptidergic nociceptive primary afferents express NKCC1. In contrast, virtually all spinal axon terminals of nonpeptidergic nociceptive primary afferents were negative for NKCC1. Data on the colocalization of NKCC1 with axonal and glial markers indicated that it is almost exclusively expressed by axon terminals and glial cells in laminae I-IIo. In lamina IIi, however, we observed a strong immunostaining for NKCC1 also in the dendrites and cell bodies of PV-containing inhibitory neurons and a weak staining in PKCγ-containing excitatory neurons. Our results facilitate further thinking about the role of NKCC1 in spinal pain processing.
Collapse
|
5
|
Electroacupuncture Improves IBS Visceral Hypersensitivity by Inhibiting the Activation of Astrocytes in the Medial Thalamus and Anterior Cingulate Cortex. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2562979. [PMID: 32617101 PMCID: PMC7306073 DOI: 10.1155/2020/2562979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/02/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Objective To explore whether the effect of electroacupuncture (EA) on visceral hypersensitivity (VH) in rats with irritable bowel syndrome (IBS) is related to the changes of astrocyte activation in the medial thalamus (MT) and anterior cingulate cortex (ACC). Method Male Sprague-Dawley rats were randomly divided into the normal control (NC) group, model control (MC) group, electroacupuncture (EA) group, and fluorocitrate (FCA) group. A model of visceral hypersensitivity was established by neonatal colorectal irritation. In the EA group, needles were inserted into the skin at the Tianshu (ST25) and Shangjuxu (ST37) acupoints, once a day for 7 days. The FCA group received intrathecal injection of FCA on the 1st, 4th, and 7th days. Visceral hypersensitivity was evaluated by the abdominal withdrawal reflex (AWR), and glial fibrillary acidic protein (GFAP) mRNA and protein levels in the MT and ACC were detected by real-time PCR, immunohistochemistry, and western blots. Results The AWR score in the MC group was significantly higher than in the NC group, and EA and FCA reduced the AWR score of VH rats. GFAP mRNA and protein levels in the MT and ACC of rats in the MC group were significantly increased compared with the NC group. After either electroacupuncture or fluorocitrate, GFAP mRNA and protein levels in the MT and ACC were both clearly reduced. Conclusion Electroacupuncture alleviates IBS visceral hypersensitivity by inhibiting the activation of astrocytes in the MT and ACC.
Collapse
|
6
|
Sandes SMS, Heimfarth L, Brito RG, Santos PL, Gouveia DN, Carvalho AMS, Quintans JSS, da Silva-Júnior EF, de Aquino TM, França PHB, de Araújo-Júnior JX, Albuquerque-Júnior RLC, Zengin G, Schmitt M, Bourguignon JJ, Quintans-Júnior LJ. Evidence for the involvement of TNF-α, IL-1β and IL-10 in the antinociceptive and anti-inflammatory effects of indole-3-guanylhydrazone hydrochloride, an aromatic aminoguanidine, in rodents. Chem Biol Interact 2018; 286:1-10. [PMID: 29499192 DOI: 10.1016/j.cbi.2018.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Indole-3-guanylhydrazone hydrochloride (LQM01) is a new derivative of aminoguanidine hydrochloride, an aromatic aminoguanidine. METHODS Mice were treated with LQM01 (5, 10, 25 or 50 mg/kg, i.p.), vehicle (0.9% saline i.p.) or a standard drug. The mice were subjected to carrageenan-induced pleurisy, abdominal writhing induced by acetic acid, the formalin test and the hot-plate test. The model of non-inflammatory chronic muscle pain induced by saline acid was also used. Mice from the chronic protocol were assessed for withdrawal threshold, muscle strength and motor coordination. LQM01 or vehicle treated mice were evaluated for Fos protein. RESULTS LQM01 inhibits TNF-α and IL-1β production, as well as leukocyte recruitment during inflammation process. The level of IL-10 in LQM01-treated mice increased in pleural fluid. In addition, LQM01 decreased the nociceptive behavior in the acetic acid induced writhing test, the formalin test (both phases) and increased latency time on the hot-plate. LQM01 treatment also decreased mechanical hyperalgesia in mice with chronic muscle pain, with no changes in muscle strength and motor coordination. LQM01 reduced the number of Fos positive cells in the superficial dorsal horn. This compound exhibited antioxidant properties in in vitro assays. CONCLUSIONS LQM01 has an outstanding anti-inflammatory and analgesic profile, probably mediated through a reduction in proinflammatory cytokines release, increase in IL-10 production and reduction in neuron activity in the dorsal horn of the spinal cord in mice. GENERAL SIGNIFICANCE Beneficial effects of LQM01 suggest that it has some important clinical features and can play a role in the management of 'dysfunctional pain' and inflammatory diseases.
Collapse
Affiliation(s)
- Silvia M S Sandes
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Renan G Brito
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Priscila L Santos
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Daniele N Gouveia
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Alexandra M S Carvalho
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Thiago M de Aquino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Paulo H B França
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - João X de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Martine Schmitt
- CNRS, University of Strasbourg, Laboratoire d'Innovation Thérapeutique, UMR 7200, Laboratory of Excellence Médalis, Faculté de Pharmacie, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Jean-Jacques Bourguignon
- CNRS, University of Strasbourg, Laboratoire d'Innovation Thérapeutique, UMR 7200, Laboratory of Excellence Médalis, Faculté de Pharmacie, 74, Route du Rhin, 67401, Illkirch Cedex, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
7
|
Ben-Ari Y. NKCC1 Chloride Importer Antagonists Attenuate Many Neurological and Psychiatric Disorders. Trends Neurosci 2017; 40:536-554. [PMID: 28818303 DOI: 10.1016/j.tins.2017.07.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 12/23/2022]
Abstract
In physiological conditions, adult neurons have low intracellular Cl- [(Cl-)I] levels underlying the γ-aminobutyric acid (GABA)ergic inhibitory drive. In contrast, neurons have high (Cl-)I levels and excitatory GABA actions in a wide range of pathological conditions including spinal cord lesions, chronic pain, brain trauma, cerebrovascular infarcts, autism, Rett and Down syndrome, various types of epilepsies, and other genetic or environmental insults. The diuretic highly specific NKCC1 chloride importer antagonist bumetanide (PubChem CID: 2461) efficiently restores low (Cl-)I levels and attenuates many disorders in experimental conditions and in some clinical trials. Here, I review the mechanisms of action, therapeutic effects, promises, and pitfalls of bumetanide.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- New INMED, Aix-Marseille University, Campus Scientifique de Luminy, Marseilles, France.
| |
Collapse
|
8
|
González-Cano R, Tejada MÁ, Artacho-Cordón A, Nieto FR, Entrena JM, Wood JN, Cendán CM. Effects of Tetrodotoxin in Mouse Models of Visceral Pain. Mar Drugs 2017; 15:E188. [PMID: 28635651 PMCID: PMC5484138 DOI: 10.3390/md15060188] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/07/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022] Open
Abstract
Visceral pain is very common and represents a major unmet clinical need for which current pharmacological treatments are often insufficient. Tetrodotoxin (TTX) is a potent neurotoxin that exerts analgesic actions in both humans and rodents under different somatic pain conditions, but its effect has been unexplored in visceral pain. Therefore, we tested the effects of systemic TTX in viscero-specific mouse models of chemical stimulation of the colon (intracolonic instillation of capsaicin and mustard oil) and intraperitoneal cyclophosphamide-induced cystitis. The subcutaneous administration of TTX dose-dependently inhibited the number of pain-related behaviors in all evaluated pain models and reversed the referred mechanical hyperalgesia (examined by stimulation of the abdomen with von Frey filaments) induced by capsaicin and cyclophosphamide, but not that induced by mustard oil. Morphine inhibited both pain responses and the referred mechanical hyperalgesia in all tests. Conditional nociceptor‑specific Nav1.7 knockout mice treated with TTX showed the same responses as littermate controls after the administration of the algogens. No motor incoordination after the administration of TTX was observed. These results suggest that blockade of TTX-sensitive sodium channels, but not Nav1.7 subtype alone, by systemic administration of TTX might be a potential therapeutic strategy for the treatment of visceral pain.
Collapse
Affiliation(s)
- Rafael González-Cano
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, Faculty of Medicine, University of Granada, 18016 Granada, Spain.
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain.
| | - Miguel Ángel Tejada
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, Faculty of Medicine, University of Granada, 18016 Granada, Spain.
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain.
| | - Antonia Artacho-Cordón
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, Faculty of Medicine, University of Granada, 18016 Granada, Spain.
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain.
| | - Francisco Rafael Nieto
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, Faculty of Medicine, University of Granada, 18016 Granada, Spain.
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain.
| | - José Manuel Entrena
- Animal Behavior Research Unit, Scientific Instrumentation Center, University of Granada, Armilla, 18100 Granada, Spain.
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.
| | - Cruz Miguel Cendán
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, Faculty of Medicine, University of Granada, 18016 Granada, Spain.
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain.
| |
Collapse
|
9
|
Symons FJ, Tervo RC, Barney CC, Damerow J, Selim M, McAdams B, Foster S, Crabb GW, Kennedy W. Peripheral Innervation in Children With Global Developmental Delay: Biomarker for Risk for Self-Injurious Behavior? J Child Neurol 2015; 30:1722-7. [PMID: 25918119 PMCID: PMC4610824 DOI: 10.1177/0883073815579704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/07/2015] [Indexed: 02/02/2023]
Abstract
The relation between somatosensory mechanisms and self-injury among children with neurologic impairments associated with developmental delay is not well understood. We evaluated the feasibility of procuring skin biopsies to examine epidermal nerve fiber density and reported self-injury. Following informed parental consent, epidermal skin biopsies were obtained from a distal leg site with no pre-existing skin damage from 11 children with global developmental delay (55% male; mean age = 36.8 months, 17-63 months). Visual microscopic examination and quantitative analyses showed extremely high epidermal nerve fiber density values for some children. Children with reported self-injury (5/11) had significantly (P < .02) greater density values (138.8, standard deviation = 45.5) than children without self-injury (80.5, standard deviation = 17.5). Results from this novel immunohistologic analysis of skin in very young children with neurodevelopmental delays suggest it may be a useful tool to study peripheral innervation as a possible sensory risk factor for self-injury.
Collapse
Affiliation(s)
- Frank J. Symons
- Department of Educational Psychology, 56 East River Road, University of Minnesota, Minneapolis, MN 55455
| | | | - Chantel C. Barney
- Gillette Children’s Specialty Healthcare, 200 University Ave E, St. Paul, MN 55101
| | - John Damerow
- Department of Educational Psychology, 56 East River Road, University of Minnesota, Minneapolis, MN 55455
| | - Mona Selim
- University of Minnesota, Peripheral Nerve Lab, MMC 187, 420 Delaware St. SE, Minneapolis MN 55455
| | - Brian McAdams
- University of Minnesota, Peripheral Nerve Lab, MMC 187, 420 Delaware St. SE, Minneapolis MN 55455
| | - Shawn Foster
- University of Minnesota, Peripheral Nerve Lab, MMC 187, 420 Delaware St. SE, Minneapolis MN 55455
| | - Gwen Wendelschafer Crabb
- University of Minnesota, Peripheral Nerve Lab, MMC 187, 420 Delaware St. SE, Minneapolis MN 55455
| | - William Kennedy
- University of Minnesota, Peripheral Nerve Lab, MMC 187, 420 Delaware St. SE, Minneapolis MN 55455
| |
Collapse
|
10
|
Drinovac V, Bach-Rojecky L, Babić A, Lacković Z. Antinociceptive effect of botulinum toxin type A on experimental abdominal pain. Eur J Pharmacol 2014; 745:190-5. [PMID: 25446429 DOI: 10.1016/j.ejphar.2014.10.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 02/08/2023]
Abstract
Visceral pain, especially in the abdominal region, represents one of the most common types of pain. Its chronic form is usually very hard to treat by conventional analgesic agents and adjuvants. We investigated the antinociceptive effect of botulinum toxin type A (BTX-A) in male Wistar rats in two models of visceral pain: peritonitis induced by intraperitoneal injection of 1% acetic acid and colitis induced by intracolonic instillation of 0.1% capsaicin. Pain was measured as the number of abdominal writhes. Additionally, referred mechanical sensitivity in the ventral abdominal area was evaluated by von Frey test and the extent of spinal c-Fos expression was immunohistochemically examined. BTX-A significantly reduced the number of abdominal writhes in both models of visceral pain after intrathecal application in a dose of 2 U/kg. In the experimental colitis model, BTX-A (2 U/kg) reduced both referred mechanical allodynia and c-Fos expression in the dorsal horn of the spinal cord (S2/S3 segments). In contrast to intrathecal administration, BTX-A (2 U/kg) administered into the cisterna magna had no effect on pain suggesting that the primary site of its action is a spinal cord.
Collapse
Affiliation(s)
- Višnja Drinovac
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Ana Babić
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Zdravko Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb Medical School, 10000 Zagreb, Croatia.
| |
Collapse
|
11
|
Guo D, Hu J. Spinal presynaptic inhibition in pain control. Neuroscience 2014; 283:95-106. [PMID: 25255936 DOI: 10.1016/j.neuroscience.2014.09.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/10/2014] [Accepted: 09/14/2014] [Indexed: 12/22/2022]
Abstract
The gate control theory proposed that the nociceptive sensory information transmitted to the brain relies on an interplay between the inputs from nociceptive and non-nociceptive primary afferent fibers. Both inputs are normally under strong inhibitory control in the spinal cord. Under healthy conditions, presynaptic inhibition activated by non-nociceptive fibers modulates the afferent input from nociceptive fibers onto spinal cord neurons, while postsynaptic inhibition controls the excitability of dorsal horn neurons, and silences the non-nociceptive information flow to nociceptive-specific (NS) projection neurons. However, under pathological conditions, this spinal inhibition may be altered and lead to chronic pain. This review summarizes our knowledge of presynaptic inhibition in pain control, with particular focus on how its alteration after nerve or tissue injury contributes to neuropathic or inflammatory pain syndromes, respectively.
Collapse
Affiliation(s)
- D Guo
- Centre for Integrative Neuroscience (CIN), Otfried-Mueller-Straße 25, 72076 Tuebingen, Germany
| | - J Hu
- Centre for Integrative Neuroscience (CIN), Otfried-Mueller-Straße 25, 72076 Tuebingen, Germany.
| |
Collapse
|