1
|
Zhao F, Li M, Luo M, Zhang M, Yuan Y, Niu H, Yue T. The dose-dependent mechanism behind the protective effect of lentinan against acute alcoholic liver injury via proliferating intestinal probiotics. Food Funct 2024; 15:10067-10087. [PMID: 39291630 DOI: 10.1039/d4fo02256d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Acute alcoholic liver injury (AALI) is a widespread disease that can develop into hepatitis, liver fibrosis, and cirrhosis. In severe cases, it can be life-threatening, while drug treatment presents various side effects. This study characterized the structure of natural lentinan (LNT) from the Qinba Mountain area and investigated the protective mechanism of different LNT doses (100 mg kg-1, 200 mg kg-1, and 400 mg kg-1) on AALI. The results showed that LNT was a glucose-dominated pyran polysaccharide with a triple-helical structure and a molecular weight (Mw) of 7.56 × 106 Da. An AALI mouse model showed that all the LNT doses protected liver function, reduced hepatic steatosis, alleviated oxidative stress and inflammatory response, and stimulated probiotic proliferation. Low-dose LNT increased anti-oxidant-associated beneficial bacteria, medium-dose LNT improved liver swelling and promoted anti-oxidant-associated probiotics, and high-dose LNT increased the probiotics that helped protect liver function and anti-oxidant and anti-inflammatory properties. All the LNT doses inhibited pathogenic growth, including Oscillospiraceae, Weeksellaceae, Streptococcaceae, Akkermansiaceae, Morganellaceae, and Proteus. These results indicated that the protective effect of LNT against AALI was mediated by the proliferation of various intestinal probiotics and was related to the consumption doses. These findings offer new strategies for comprehensively utilizing Lentinula edodes from the Qinba Mountain area and preventing AALI using natural food-based substances.
Collapse
Affiliation(s)
- Fangjia Zhao
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Min Li
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Mingyue Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Meng Zhang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Haili Niu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
2
|
Alniss HY, Al-Jubeh HM, Msallam YA, Siddiqui R, Makhlouf Z, Ravi A, Hamdy R, Soliman SSM, Khan NA. Structure-based drug design of DNA minor groove binders and evaluation of their antibacterial and anticancer properties. Eur J Med Chem 2024; 271:116440. [PMID: 38678825 DOI: 10.1016/j.ejmech.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Antimicrobial and chemotherapy resistance are escalating medical problem of paramount importance. Yet, research for novel antimicrobial and anticancer agents remains lagging behind. With their reported medical applications, DNA minor groove binders (MGBs) are worthy of exploration. In this study, the approach of structure-based drug design was implemented to generate 11 MGB compounds including a novel class of bioactive alkyne-linked MGBs. The NCI screening protocol was utilized to evaluate the antitumor activity of the target MGBs. Furthermore, a variety of bactericidal, cytopathogenicity, MIC90, and cytotoxicity assays were carried out using these MGBs against 6 medically relevant bacteria: Salmonella enterica, Escherichia coli, Serratia marcescens, Bacillus cereus, Streptococcus pneumoniae and Streptococcus pyogenes. Moreover, molecular docking, molecular dynamic simulations, DNA melting, and isothermal titration calorimetry (ITC) analyses were utilized to explore the binding mode and interactions between the most potent MGBs and the DNA duplex d(CGACTAGTCG)2. NCI results showed that alkyne-linked MGBs (26 & 28) displayed the most significant growth inhibition among the NCI-60 panel. In addition, compounds MGB3, MGB4, MGB28, and MGB32 showed significant bactericidal effects, inhibited B. cereus and S. enterica-mediated cytopathogenicity, and exhibited low cytotoxicity. MGB28 and MGB32 demonstrated significant inhibition of S. pyogenes, whereas MGB28 notably inhibited S. marcescens and all four minor groove binders significantly inhibited B. cereus. The ability of these compounds to bind with DNA and distort its groove dimensions provides the molecular basis for the allosteric perturbation of proteins-DNA interactions by MGBs. This study shed light on the mechanism of action of MGBs and revealed the important structural features for their antitumor and antibacterial activities, which are important to guide future development of MGB derivatives as novel antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Hasan Y Alniss
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, 27272, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| | - Hadeel M Al-Jubeh
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Yousef A Msallam
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, 27272, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh, EH14 4AS, United Kingdom; Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Zinb Makhlouf
- College of Medicine, Department of Clinical Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, 27272, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Naveed A Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey.
| |
Collapse
|
3
|
Calvo LN, Greenberg RG, Gray KD. Safety and Effectiveness of Probiotics in Preterm Infants with Necrotizing Enterocolitis. Neoreviews 2024; 25:e193-e206. [PMID: 38556491 DOI: 10.1542/neo.25-3-e193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Although necrotizing enterocolitis is a leading cause of morbidity and mortality among preterm infants, its underlying pathophysiology is not fully understood. Gut dysbiosis, an imbalance between commensal and pathogenic microbes, in the preterm infant is likely a major contributor to the development of necrotizing enterocolitis. In this review, we will discuss the increasing use of probiotics in the NICU, an intervention aimed to mitigate alterations in the gut microbiome. We will review the existing evidence regarding the safety and effectiveness of probiotics, and their potential to reduce rates of necrotizing enterocolitis in preterm infants.
Collapse
Affiliation(s)
- Laura N Calvo
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Rachel G Greenberg
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
- Duke Clinical Research Institute, Durham, NC
| | - Keyaria D Gray
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| |
Collapse
|
4
|
Calvo LN, Greenberg RG, Gray KD. Safety and Effectiveness of Probiotics in Preterm Infants with Necrotizing Enterocolitis. Neoreviews 2024; 25:e193-e206. [PMID: 38556499 DOI: 10.1542/neo.25-4-e193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Although necrotizing enterocolitis is a leading cause of morbidity and mortality among preterm infants, its underlying pathophysiology is not fully understood. Gut dysbiosis, an imbalance between commensal and pathogenic microbes, in the preterm infant is likely a major contributor to the development of necrotizing enterocolitis. In this review, we will discuss the increasing use of probiotics in the NICU, an intervention aimed to mitigate alterations in the gut microbiome. We will review the existing evidence regarding the safety and effectiveness of probiotics, and their potential to reduce rates of necrotizing enterocolitis in preterm infants.
Collapse
Affiliation(s)
- Laura N Calvo
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Rachel G Greenberg
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
- Duke Clinical Research Institute, Durham, NC
| | - Keyaria D Gray
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| |
Collapse
|
5
|
Konechnyi Y, Rumynska T, Yushyn I, Holota S, Turkina V, Ryviuk Rydel M, Sękowska A, Salyha Y, Korniychuk O, Lesyk R. A New 4-Thiazolidinone Derivative (Les-6490) as a Gut Microbiota Modulator: Antimicrobial and Prebiotic Perspectives. Antibiotics (Basel) 2024; 13:291. [PMID: 38666967 PMCID: PMC11047727 DOI: 10.3390/antibiotics13040291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
A novel 4-thiazolidinone derivative Les-6490 (pyrazol-4-thiazolidinone hybrid) was designed, synthesized, and characterized by spectral data. The compound was screened for its antimicrobial activity against some pathogenic bacteria and fungi and showed activity against Staphylococcus and Saccharomyces cerevisiae (the Minimum Inhibitory Concentration (MIC) 820 μM). The compound was studied in the rat adjuvant arthritis model (Freund's Adjuvant) in vivo. Parietal and fecal microbial composition using 16S rRNA metagenome sequences was checked. We employed a range of analytical techniques, including Taxonomic Profiling (Taxa Analysis), Diversity Metrics (Alpha and Beta Diversity Analysis), Multivariate Statistical Methods (Principal Coordinates Analysis, Principal Component Analysis, Non-Metric Multidimensional Scaling), Clustering Analysis (Unweighted Pair-group Method with Arithmetic Mean), and Comparative Statistical Approaches (Community Differences Analysis, Between Group Variation Analysis, Metastat Analysis). The compound significantly impacted an increasing level of anti-inflammatory microorganisms (Blautia, Faecalibacterium prausnitzii, Succivibrionaceae, and Coriobacteriales) relative recovery of fecal microbiota composition. Anti-Treponemal activity in vivo was also noted. The tested compound Les-6490 has potential prebiotic activity with an indirect anti-inflammatory effect.
Collapse
Affiliation(s)
- Yulian Konechnyi
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (T.R.); (O.K.)
| | - Tetyana Rumynska
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (T.R.); (O.K.)
- Institute of Animal Biology NAAS, Vasylya Stusa St., 38, 79034 Lviv, Ukraine;
| | - Ihor Yushyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (I.Y.); (S.H.)
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (I.Y.); (S.H.)
- Department of Organic and Pharmaceutical Chemistry, Lesya Ukrainka Volyn National University, 13 Volya Ave., 43025 Lutsk, Ukraine
| | - Vira Turkina
- Research Institute of Epidemiology and Hygiene, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine;
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine
| | - Mariana Ryviuk Rydel
- Department of Intellectual Property, Information and Corporate Law, Ivan Franko National University of Lviv, 1 Universytetska St., 79000 Lviv, Ukraine;
- Department of Scientific and Medical Information and Intellectual Property, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine
| | - Alicja Sękowska
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Maria Skłodowska-Curie St., 85-094 Bydgoszcz, Poland;
| | - Yuriy Salyha
- Institute of Animal Biology NAAS, Vasylya Stusa St., 38, 79034 Lviv, Ukraine;
| | - Olena Korniychuk
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (T.R.); (O.K.)
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (I.Y.); (S.H.)
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| |
Collapse
|
6
|
Ang JL, Athalye-Jape G, Rao S, Bulsara M, Patole S. Limosilactobacillus reuteri DSM 17938 as a probiotic in preterm infants: An updated systematic review with meta-analysis and trial sequential analysis. JPEN J Parenter Enteral Nutr 2023; 47:963-981. [PMID: 37742098 DOI: 10.1002/jpen.2564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Our previous strain-specific systematic review (SR) showed that Lactobacillus reuteri (LR) DSM 17938 reduces necrotizing enterocolitis (NEC), late-onset sepsis (LOS), and time to full feeds (TFF) in preterm infants. Considering progress in the field over the past 6 years, we aimed to update our SR. METHODS SR of randomized controlled trials (RCTs) and non-RCTs was conducted. MEDLINE, Embase, Emcare, Cochrane CENTRAL, and gray literature were searched in June 2023. Primary outcomes were TFF, NEC stage ≥II, LOS, and all-cause mortality. Meta-analysis was performed using random-effects model. Certainty of evidence (CoE) was summarized using Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) guidelines. Trial sequential analysis (TSA) was applied for outcome of NEC in RCTs. RESULTS Twelve RCTs (n = 2284) and four non-RCTs (n = 1616) were included. Six RCTs and three non-RCTs were new. Meta-analysis of RCTs showed LR significantly reduced TFF (mean difference, -2.70 [95% CI, -4.90 to -1.31] days; P = 0.0001), NEC stage ≥II (risk ratio [RR], 0.57 [95% CI, 0.37-0.87]; P = 0.009; eight RCTs), and LOS (RR, 0.72 [95% CI, 0.54-0.97]; P = 0.03); but not mortality (RR, 0.76 [95% CI, 0.54-1.06]; P = 0.10). TSA showed diversity-adjusted required information size (DARIS) as 3624 for NEC. Overall CoE was "very low." Meta-analysis of non-RCTs showed LR reduced NEC (odds ratio, 0.34 [95% CI, 0.15-0.77]; P = 0.01) but not LOS. LR had no adverse effects. CONCLUSIONS Very low CoE suggests that LR DSM 17938 may reduce NEC and LOS and shorten TFF in preterm infants. Additional RCTs are required to confirm our findings.
Collapse
Affiliation(s)
- Ju Li Ang
- Neonatal Directorate, King Edward Memorial Hospital for Women, Subiaco, Western Australia, Australia
| | - Gayatri Athalye-Jape
- Neonatal Directorate, King Edward Memorial Hospital for Women, Subiaco, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Shripada Rao
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Neonatal Directorate, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Max Bulsara
- Institute for Health Research, University of Notre Dame, Fremantle, Western Australia, Australia
| | - Sanjay Patole
- Neonatal Directorate, King Edward Memorial Hospital for Women, Subiaco, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Wala SJ, Sajankila N, Ragan MV, Duff AF, Wickham J, Volpe SG, Wang Y, Conces M, Dumbauld Z, Purayil N, Narayanan S, Rajab A, Mihi B, Bailey MT, Goodman SD, Besner GE. Superior performance of biofilm versus planktonic Limosilactobacillus reuteri in protection of the intestines and brain in a piglet model of necrotizing enterocolitis. Sci Rep 2023; 13:17740. [PMID: 37872187 PMCID: PMC10593788 DOI: 10.1038/s41598-023-44676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of gastrointestinal-related death in premature infants. Its etiology is multifactorial, with intestinal dysbiosis playing a major role. Probiotics are a logical preventative therapy for NEC, however their benefits have been inconsistent. We previously developed a novel probiotic delivery system in which planktonic (free-living) Limosilactobacillus reuteri (Lr) is incubated with biocompatible dextranomer microspheres (DM) loaded with maltose (Lr-DM-maltose) to induce biofilm formation. Here we have investigated the effects of Lr-DM-maltose in an enteral feed-only piglet model of NEC. We found a significant decrease in the incidence of Definitive NEC (D-NEC), death associated with D-NEC, and activated microglia in the brains of piglets treated with Lr-DM-maltose compared to non-treated piglets. Microbiome analyses using 16S rRNA sequencing of colonic contents revealed a significantly different microbial community composition between piglets treated with Lr-DM-maltose compared to non-treated piglets, with an increase in Lactobacillaceae and a decrease in Clostridiaceae in Lr-DM-maltose-treated piglets. Furthermore, there was a significant decrease in the incidence of D-NEC between piglets treated with Lr-DM-maltose compared to planktonic Lr. These findings validate our previous results in rodents, and support future clinical trials of Lr in its biofilm state for the prevention of NEC in premature neonates.
Collapse
Affiliation(s)
- Samantha J Wala
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Nitin Sajankila
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Mecklin V Ragan
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Audrey F Duff
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Joseph Wickham
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Samuel G Volpe
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Yijie Wang
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Miriam Conces
- Department of Pathology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Zachary Dumbauld
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Nanditha Purayil
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Siddharth Narayanan
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Adrian Rajab
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Belgacem Mihi
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michael T Bailey
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Gail E Besner
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| |
Collapse
|
8
|
Di Gesù CM, Matz LM, Fultz R, Bolding IJ, Buffington SA. Monospecies probiotic preparation and administration with downstream analysis of sex-specific effects on gut microbiome composition in mice. STAR Protoc 2023; 4:102386. [PMID: 37379217 PMCID: PMC10331592 DOI: 10.1016/j.xpro.2023.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Dysbiosis of the gut microbiome is implicated in the growing burden of non-communicable chronic diseases, including neurodevelopmental disorders, and both preclinical and clinical studies highlight the potential for precision probiotic therapies in their prevention and treatment. Here, we present an optimized protocol for the preparation and administration of Limosilactobacillus reuteri MM4-1A (ATCC-PTA-6475) to adolescent mice. We also describe steps for performing downstream analysis of metataxonomic sequencing data with careful assessment of sex-specific effects on microbiome composition and structure. For complete details on the use and execution of this protocol, please refer to Di Gesù et al.1.
Collapse
Affiliation(s)
- Claudia M Di Gesù
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Lisa M Matz
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Robert Fultz
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ian J Bolding
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Shelly A Buffington
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Microbiome Research, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
9
|
Won MM, Mladenov GD, Raymond SL, Khan FA, Radulescu A. What animal model should I use to study necrotizing enterocolitis? Semin Pediatr Surg 2023; 32:151313. [PMID: 37276781 DOI: 10.1016/j.sempedsurg.2023.151313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unfortunately, we are all too familiar with the statement: "Necrotizing enterocolitis remains the leading cause of gastrointestinal surgical emergency in preterm neonates". It's been five decades since the first animal models of necrotizing enterocolitis (NEC) were described. There remains much investigative work to be done on identifying various aspects of NEC, ranging from the underlying mechanisms to treatment modalities. Experimental NEC is mainly focused on a rat, mouse, and piglet models. Our aim is to not only highlight the pros and cons of these three main models, but to also present some of the less-used animal models that have contributed to the body of knowledge about NEC. Choosing an appropriate model is essential to conducting effective research and answering the questions asked. As such, this paper reviews some of the variations that come with each model.
Collapse
Affiliation(s)
- Mitchell M Won
- School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Georgi D Mladenov
- Division of Pediatric Surgery, Loma Linda University Children's Hospital, Loma Linda, CA, USA
| | - Steven L Raymond
- School of Medicine, Loma Linda University, Loma Linda, CA, USA; Division of Pediatric Surgery, Loma Linda University Children's Hospital, Loma Linda, CA, USA
| | - Faraz A Khan
- School of Medicine, Loma Linda University, Loma Linda, CA, USA; Division of Pediatric Surgery, Loma Linda University Children's Hospital, Loma Linda, CA, USA
| | - Andrei Radulescu
- School of Medicine, Loma Linda University, Loma Linda, CA, USA; Division of Pediatric Surgery, Loma Linda University Children's Hospital, Loma Linda, CA, USA.
| |
Collapse
|
10
|
Sajankila N, Wala SJ, Ragan MV, Volpe SG, Dumbauld Z, Purayil N, Mihi B, Besner GE. Current and future methods of probiotic therapy for necrotizing enterocolitis. Front Pediatr 2023; 11:1120459. [PMID: 36937955 PMCID: PMC10017871 DOI: 10.3389/fped.2023.1120459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a complex intestinal disease that primarily affects premature neonates. Given its significant mortality and morbidity, there is an urgent need to develop improved prophylactic measures against the disease. One potential preventative strategy for NEC is the use of probiotics. Although there has been significant interest for decades in probiotics in neonatal care, no clear guidelines exist regarding which probiotic to use or for which patients, and no FDA-approved products exist on the market for NEC. In addition, there is lack of agreement regarding the benefits of probiotics in neonates, as well as some concerns about the safety and efficacy of available products. We discuss currently available probiotics as well as next-generation probiotics and novel delivery strategies which may offer an avenue to capitalize on the benefits of probiotics, while minimizing the risks. Thus, probiotics may still prove to be an effective prevention strategy for NEC, although further product development and research is needed to support use in the preterm population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gail E. Besner
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
11
|
Yu Z, Chen J, Liu Y, Meng Q, Liu H, Yao Q, Song W, Ren X, Chen X. The role of potential probiotic strains Lactobacillus reuteri in various intestinal diseases: New roles for an old player. Front Microbiol 2023; 14:1095555. [PMID: 36819028 PMCID: PMC9932687 DOI: 10.3389/fmicb.2023.1095555] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Lactobacillus reuteri (L. reuteri), a type of Lactobacillus spp., is a gut symbiont that can colonize many mammals. Since it was first isolated in 1962, a multitude of research has been conducted to investigate its function and unique role in different diseases as an essential probiotic. Among these, the basic functions, beneficial effects, and underlying mechanisms of L. reuteri have been noticed and understood profoundly in intestinal diseases. The origins of L. reuteri strains are diverse, with humans, rats, and piglets being the most common. With numerous L. reuteri strains playing significant roles in different intestinal diseases, DSM 17938 is the most widely used in humans, especially in children. The mechanisms by which L. reuteri improves intestinal disorders include protecting the gut barrier, suppressing inflammation and the immune response, regulating the gut microbiota and its metabolism, and inhibiting oxidative stress. While a growing body of studies focused on L. reuteri, there are still many unknowns concerning its curative effects, clinical safety, and precise mechanisms. In this review, we initially interpreted the basic functions of L. reuteri and its related metabolites. Then, we comprehensively summarized its functions in different intestinal diseases, including inflammatory bowel disease, colorectal cancer, infection-associated bowel diseases, and pediatric intestinal disorders. We also highlighted some important molecules in relation to the underlying mechanisms. In conclusion, L. reuteri has the potential to exert a beneficial impact on intestinal diseases, which should be further explored to obtain better clinical application and therapeutic effects.
Collapse
Affiliation(s)
- Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Hang Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenxuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangfeng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China,*Correspondence: Xin Chen ✉
| |
Collapse
|
12
|
Sun MC, Hu ZY, Li DD, Chen YX, Xi JH, Zhao CH. Application of the Reuterin System as Food Preservative or Health-Promoting Agent: A Critical Review. Foods 2022; 11:foods11244000. [PMID: 36553742 PMCID: PMC9778575 DOI: 10.3390/foods11244000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The reuterin system is a complex multi-component antimicrobial system produced by Limosilactobacillus reuteri by metabolizing glycerol. The system mainly includes 3-hydroxypropionaldehyde (3-HPA, reuterin), 3-HPA dimer, 3-HPA hydrate, acrolein and 3-hydroxypropionic acid, and has great potential to be applied in the food and medical industries due to its functional versatility. It has been reported that the reuterin system possesses regulation of intestinal flora and anti-infection, anti-inflammatory and anti-cancer activities. Typically, the reuterin system exerts strong broad-spectrum antimicrobial properties. However, the antimicrobial mechanism of the reuterin system remains unclear, and its toxicity is still controversial. This paper presents an updated review on the biosynthesis, composition, biological production, antimicrobial mechanisms, stability, toxicity and potential applications of the reuterin system. Challenges and opportunities of the use of the reuterin system as a food preservative or health-promoting agent are also discussed. The present work will allow researchers to accelerate their studies toward solving critical challenges obstructing industrial applications of the reuterin system.
Collapse
Affiliation(s)
- Mao-Cheng Sun
- College of Plant Science, Jilin University, Changchun 130062, China
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Zi-Yi Hu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Dian-Dian Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu-Xin Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jing-Hui Xi
- College of Plant Science, Jilin University, Changchun 130062, China
- Correspondence: (J.-H.X.); (C.-H.Z.)
| | - Chang-Hui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Correspondence: (J.-H.X.); (C.-H.Z.)
| |
Collapse
|
13
|
Di Gesù CM, Matz LM, Bolding IJ, Fultz R, Hoffman KL, Marino Gammazza A, Petrosino JF, Buffington SA. Maternal gut microbiota mediate intergenerational effects of high-fat diet on descendant social behavior. Cell Rep 2022; 41:111461. [PMID: 36223744 PMCID: PMC9597666 DOI: 10.1016/j.celrep.2022.111461] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 12/11/2022] Open
Abstract
Dysbiosis of the maternal gut microbiome during pregnancy is associated with adverse neurodevelopmental outcomes. We previously showed that maternal high-fat diet (MHFD) in mice induces gut dysbiosis, social dysfunction, and underlying synaptic plasticity deficits in male offspring (F1). Here, we reason that, if HFD-mediated changes in maternal gut microbiota drive offspring social deficits, then MHFD-induced dysbiosis in F1 female MHFD offspring would likewise impair F2 social behavior. Metataxonomic sequencing reveals reduced microbial richness among female F1 MHFD offspring. Despite recovery of microbial richness among MHFD-descendant F2 mice, they display social dysfunction. Post-weaning Limosilactobacillus reuteri treatment increases the abundance of short-chain fatty acid-producing taxa and rescues MHFD-descendant F2 social deficits. L. reuteri exerts a sexually dimorphic impact on gut microbiota configuration, increasing discriminant taxa between female cohorts. Collectively, these results show multigenerational impacts of HFD-induced dysbiosis in the maternal lineage and highlight the potential of maternal microbiome-targeted interventions for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA,Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy,Current address: Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston,These authors contributed equally
| | - Lisa M. Matz
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA,These authors contributed equally
| | - Ian J. Bolding
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert Fultz
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kristi L. Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shelly A. Buffington
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Microbiome Research, The University of Texas Medical Branch, Galveston, TX 77555, USA,Lead contact,Correspondence:
| |
Collapse
|
14
|
Gao J, Sadiq FA, Zheng Y, Zhao J, He G, Sang Y. Biofilm-based delivery approaches and specific enrichment strategies of probiotics in the human gut. Gut Microbes 2022; 14:2126274. [PMID: 36175161 PMCID: PMC9542427 DOI: 10.1080/19490976.2022.2126274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The use of probiotics has been one of the effective strategies to restructure perturbed human gut microbiota following a disease or metabolic disorder. One of the biggest challenges associated with the use of probiotic-based gut modulation strategies is to keep the probiotic cells viable and stable during the gastrointestinal transit. Biofilm-based probiotics delivery approaches have emerged as fascinating modes of probiotic delivery in which probiotics show significantly greater tolerance and biotherapeutic potential, and interestingly probiotic biofilms can be developed on food-grade surfaces too, which is ideal for the growth and proliferation of bacterial cells for incorporation into food matrices. In addition, biofilms can be further encapsulated with food-grade materials or with bacterial self-produced biofilms. This review presents a newly emerging and unprecedently discussed techniques for the safe delivery of probiotics based on biofilms and further discusses newly emerging prebiotic materials which target specific gut microbiota groups for growth and proliferation.
Collapse
Affiliation(s)
- Jie Gao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Faizan Ahmed Sadiq
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Yixin Zheng
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jinrong Zhao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China,CONTACT Guoqing He College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yaxin Sang
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China,Yaxin Sang Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
15
|
Chang CM, Tsai MH, Liao WC, Yang PH, Li SW, Chu SM, Huang HR, Chiang MC, Hsu JF. Effects of Probiotics on Gut Microbiomes of Extremely Preterm Infants in the Neonatal Intensive Care Unit: A Prospective Cohort Study. Nutrients 2022; 14:3239. [PMID: 35956415 PMCID: PMC9370381 DOI: 10.3390/nu14153239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 01/04/2023] Open
Abstract
Background: Probiotics have been previously reported to reduce the incidence of necrotizing enterocolitis (NEC) in extremely preterm infants, but the mechanisms by which the probiotics work remain unknown. We aimed to investigate the effects of probiotics on the gut microbiota of extremely preterm infants. Methods: A prospective cohort study was conducted on 120 extremely preterm neonates (gestational age ≤ 28 weeks) between August 2019 and December 2021. All neonates were divided into the study (receiving probiotics) and the control (no probiotics) groups. Multivariate logistic regression analysis was performed to investigate the significantly different compositions of gut microbiota between these two groups. The effects of probiotics on the occurrence of NEC and late-onset sepsis were also investigated. Results: An increased abundance of Lactobacillus was noted in neonates who received the probiotics (AOR 4.33; 95% CI, 1.89-9.96, p = 0.009) when compared with the control group. Subjects in the probiotic group had significantly fewer days of total parenteral nutrition (median [interquartile range, IQR]) 29.0 (26.8-35.0) versus 35.5 (27.8-45.0), p = 0.004) than those in the control group. The probiotic group had a significantly lower rate of late-onset sepsis than the control group (47.1% versus 70.0%, p = 0.015), but the rate of NEC, duration of hospitalization and the final in-hospital mortality rates were comparable between these two groups. Conclusions: Probiotic supplementation of extremely preterm infants soon after the initiation of feeding increased the abundance of Lactobacillus. Probiotics may reduce the risk of late-onset sepsis, but further randomized controlled trials are warranted in the future.
Collapse
Affiliation(s)
- Ching-Min Chang
- Division of Pediatric Gastrointestinal Disease, Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
| | - Ming-Horng Tsai
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology and Pediatric Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin 638, Taiwan
| | - Wei-Chao Liao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 244, Taiwan
| | - Peng-Hong Yang
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology, Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Shiao-Wen Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 244, Taiwan
| | - Shih-Ming Chu
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 244, Taiwan
| | - Hsuan-Rong Huang
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 244, Taiwan
| | - Ming-Chou Chiang
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 244, Taiwan
| | - Jen-Fu Hsu
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 244, Taiwan
| |
Collapse
|
16
|
Ragan MV, Wala SJ, Goodman SD, Bailey MT, Besner GE. Next-Generation Probiotic Therapy to Protect the Intestines From Injury. Front Cell Infect Microbiol 2022; 12:863949. [PMID: 35837474 PMCID: PMC9273849 DOI: 10.3389/fcimb.2022.863949] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/25/2022] [Indexed: 12/20/2022] Open
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. Some strains of the probiotic Lactobacillus reuteri (L. reuteri) have both antimicrobial and anti-inflammatory properties that may be exploited for the treatment and prevention of different gastrointestinal diseases, including necrotizing enterocolitis (NEC) and Clostridioides difficile (C. difficile) infection. Our laboratory has developed a new delivery system for L. reuteri in which the probiotic is incubated with biocompatible, semipermeable, porous dextranomer microspheres (DM) that can be loaded with beneficial and diffusible cargo. L. reuteri can be induced to form a biofilm by incubating the bacteria on the surface of these microspheres, which enhances the efficacy of the probiotic. Loading the DM with sucrose or maltose induces L. reuteri to produce more biofilm, further increasing the efficacy of the probiotic. Using a rat model of NEC, L. reuteri administered in its biofilm state significantly increases animal survival, reduces the incidence of NEC, preserves gut barrier function, and decreases intestinal inflammation. In a murine model of Clostridiodes difficile infection, L. reuteri administered in its biofilm state decreases colitis when administered either before or after C. difficile induction, demonstrating both prophylactic and therapeutic efficacy. There are currently no FDA-approved probiotic preparations for human use. An FDA-approved phase I clinical trial of L. reuteri in its biofilm state in healthy adults is currently underway. The results of this trial will be used to support a phase 1 clinical trial in neonates, with the goal of utilizing L. reuteri in its biofilm state to prevent NEC in premature neonates in the future.
Collapse
Affiliation(s)
- Mecklin V. Ragan
- Center for Perinatal Research, Department of Pediatric Surgery, Columbus, OH, United States
| | - Samantha J. Wala
- Center for Perinatal Research, Department of Pediatric Surgery, Columbus, OH, United States
| | - Steven D. Goodman
- Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, United States
| | - Michael T. Bailey
- Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, United States
| | - Gail E. Besner
- Center for Perinatal Research, Department of Pediatric Surgery, Columbus, OH, United States
- *Correspondence: Gail E. Besner,
| |
Collapse
|