1
|
Fu Y, Gou W, Zhong H, Tian Y, Zhao H, Liang X, Shuai M, Zhuo LB, Jiang Z, Tang J, Ordovas JM, Chen YM, Zheng JS. Diet-gut microbiome interaction and its impact on host blood glucose homeostasis: a series of nutritional n-of-1 trials. EBioMedicine 2025; 111:105483. [PMID: 39647263 PMCID: PMC11667054 DOI: 10.1016/j.ebiom.2024.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND The interplay between diet and gut microbiome substantially influences host metabolism, but uncertainties remain regarding their relationships tailored for each subject given the huge inter-individual variability. Here we aim to investigate diet-gut microbiome interaction at single-subject resolution and explore its effects on blood glucose homeostasis. METHODS We conducted a series of nutritional n-of-1 trials (NCT04125602), in which 30 participants were assigned high-carbohydrate (HC) and low-carbohydrate (LC) diets in a randomized sequence across 3 pair of cross-over periods lasting 72 days. We used shotgun metagenomic sequencing and continuous glucose monitoring systems to profile the gut microbiome and blood glucose, respectively. An independent cohort of 1219 participants with available metagenomics data are included as a validation cohort. FINDINGS We demonstrated that the gut microbiome exhibited both intra-individually dynamic and inter-individually personalized signatures during the interventions. At the single-subject resolution, we observed person-specific response patterns of gut microbiota to interventional diets. Furthermore, we discovered a personal gut microbial signature represented by a carb-sensitivity score, which was closely correlated with glycemic phenotypes during the HC intervention, but not LC intervention. We validate the role of this score in the validation cohort and find that it reflects host glycemic sensitivity to the personal gut microbiota profile when sensing the dietary carbohydrate inputs. INTERPRETATION Our finding suggests that the HC diet modulates gut microbiota in a person-specific manner and facilitates the connection between gut microbiota and glycemic sensitivity. This study represents a new paradigm for investigating the diet-microbiome interaction in the context of precision nutrition. FUNDING This work was supported by the National Key R&D Program of China, National Natural Science Foundation of China and Zhejiang Provincial Natural Science Foundation of China.
Collapse
Affiliation(s)
- Yuanqing Fu
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, China
| | - Wanglong Gou
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, China
| | - Haili Zhong
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yunyi Tian
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, China
| | - Hui Zhao
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, China
| | - Xinxiu Liang
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, China
| | - Menglei Shuai
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, China
| | - Lai-Bao Zhuo
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zengliang Jiang
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jun Tang
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; Nutritional Genomics and Epigenomics Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| | - Ju-Sheng Zheng
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
2
|
Yang Y, Fan G, Lan J, Li X, Li X, Liu R. Polysaccharide-mediated modulation of gut microbiota in the treatment of liver diseases: Promising approach with significant challenges. Int J Biol Macromol 2024:135566. [PMID: 39270901 DOI: 10.1016/j.ijbiomac.2024.135566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Liver disease represents a significant global health burden, with an increasing prevalence and a lack of efficient treatment options. The microbiota-gut-liver axis involves bidirectional communication between liver function and intestinal microorganisms. A balanced gut flora protects intestinal homeostasis, while imbalances contribute to the development of liver diseases. Distinct alterations in the structure of gut flora during illness are crucial in the management of various liver diseases. Polysaccharides derived from herbal products, fungi, and other sources have been identified to possess diverse biological activities and are well-tolerated in the treatment of liver diseases. This review provides updates on the therapeutic effects of polysaccharides on liver diseases, including fatty liver diseases, acute liver injuries and liver cancers. It also summarizes advancements in understanding the mechanisms involved, particularly from the perspective of gut microbiota and metabolites, by highlighting the changes in the composition of potentially beneficial and harmful bacteria and their correlation with the therapeutic effects of polysaccharides. Additionally, by exploring the structure-activity relationship, our review provides valuable insights for the structural modification of polysaccharides and expanding their applications. In conclusion, this review offers theoretical support and novel perspectives on developing polysaccharides-based therapeutic approaches for the treatment of liver diseases.
Collapse
Affiliation(s)
- Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Jianhang Lan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China.
| |
Collapse
|
3
|
Lee H, Yang X, Jin PR, Won KJ, Kim CH, Jeong H. The Discovery of Gut Microbial Metabolites as Modulators of Host Susceptibility to Acetaminophen-Induced Hepatotoxicity. Drug Metab Dispos 2024; 52:754-764. [PMID: 38302428 PMCID: PMC11257691 DOI: 10.1124/dmd.123.001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
The mammalian gut microbiota plays diverse and essential roles in modulating host physiology. Key mediators determining the outcome of the microbiota-host interactions are the small molecule metabolites produced by the gut microbiota. The liver is a major organ exposed to gut microbial metabolites, and it serves as the nexus for maintaining healthy interactions between the gut microbiota and the host. At the same time, the liver is the primary target of potentially harmful gut microbial metabolites. In this review, we provide an up-to-date list of gut microbial metabolites that have been identified to either increase or decrease host susceptibility to acetaminophen (APAP)-induced liver injury. The signaling pathways and molecular factors involved in the progression of APAP-induced hepatotoxicity are well-established, and we propose that the mouse model of APAP-induced hepatotoxicity serves as a model system for uncovering gut microbial metabolites with previously unknown functions. Furthermore, we envision that gut microbial metabolites identified to alter APAP-induced hepatotoxicity likely have broader implications in other liver diseases. SIGNIFICANCE STATEMENT: This review provides an overview of the role of the gut microbiota in modulating the host susceptibility to acetaminophen (APAP)-induced liver injury. It focuses on the roles of gut bacterial small molecule metabolites as mediators of the interaction between the gut microbiota and the liver. It also illustrates the utility of APAP-induced liver injury as a model to identify gut microbial metabolites with biological function.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Xiaotong Yang
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Pei-Ru Jin
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Kyoung-Jae Won
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Chang H Kim
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Hyunyoung Jeong
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| |
Collapse
|
4
|
Chen P, Hu T, Zheng Z, Garfield RE, Yang J. The cervicovaginal metabolome in women with favorable induction cervix and those unfavorable for induction when delivering at term. Heliyon 2024; 10:e34166. [PMID: 39071700 PMCID: PMC11279265 DOI: 10.1016/j.heliyon.2024.e34166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Background Cervical ripening is crucial for induction. However, its influencing factors, mechanistic understanding, and effective risk stratification are still challenging. Recent research suggested that microorganisms and their metabolites in vaginal spaces correlate to preterm birth. However, it remains unclear whether the cervicovaginal metabolome is related to the natural physiological process of cervical maturation. Objective We aimed to analyze the cervicovaginal metabolome in women with favorable induction cervix and those unfavorable for induction when delivering at term. Study design Cervicovaginal swabs were collected between 40 and 41 weeks gestation from the following 2 different groups of patients: Ripe group (n = 25) which was favorable for the induction cervix and Unripe group which was unfavorable for the induction cervix (n = 25). Samples were tested using untargeted metabolomics analysis and analyzed by a bioinformatics platform. The correlation analysis between the metabolome and the previously acquired microbiome was also performed. Results A total of 629 metabolites were identified in cervicovaginal fluid. The cervicovaginal metabolome was significantly different between the women with the ripe cervix and those with the unripe cervix, especially within each stratum of the same CST. Metabolites within the amino acid, carbohydrate, and dipeptide pathways may play a role in this distinction. Thirty-four metabolites were significantly upregulated, and the remaining fourteen were significantly downregulated in the Unripe group with an unripe cervix unfavorable for induction. Statistical modeling identified Arachidonic Acid and Nicotinate associated with the risk of cervical maturation disorder (AUC 0.87) in negative ion mode. A combination of Choline and d-Mannose identified a risk of cervical maturation disorder (AUC 0.80) in positive ion mode, improved by Lactobacillus relative abundance (AUC 0.89). Conclusion These data suggested that the cervicovaginal space was metabolically active during pregnancy and significantly altered among the women with the mature and immature cervix. Combining the genera-level phylotypes and metabolites could build better cervix maturity prediction models. By using cervicovaginal fluid samples, we demonstrated the potential of multi-data type integration for developing composite models toward understanding the contribution of the vaginal environment to the remodeling of cervix during term pregnancy.
Collapse
Affiliation(s)
- Ping Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Tingting Hu
- Guangzhou Laboratory, Bioland, Guangzhou, Guangdong, China
| | - Zheng Zheng
- Guangzhou Women and Children's Medical Center, China
| | - Robert E. Garfield
- Department of Obstetrics and Gynecology, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
| | - Jinying Yang
- Department of Obstetrics, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, 518172, China
| |
Collapse
|
5
|
Huang Y, Zhang Y, Wu K, Tan X, Lan T, Wang G. Role of Gut Microecology in the Pathogenesis of Drug-Induced Liver Injury and Emerging Therapeutic Strategies. Molecules 2024; 29:2663. [PMID: 38893536 PMCID: PMC11173750 DOI: 10.3390/molecules29112663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Drug-induced liver injury (DILI) is a common clinical pharmacogenic disease. In the United States and Europe, DILI is the most common cause of acute liver failure. Drugs can cause hepatic damage either directly through inherent hepatotoxic properties or indirectly by inducing oxidative stress, immune responses, and inflammatory processes. These pathways can culminate in hepatocyte necrosis. The role of the gut microecology in human health and diseases is well recognized. Recent studies have revealed that the imbalance in the gut microecology is closely related to the occurrence and development of DILI. The gut microecology plays an important role in liver injury caused by different drugs. Recent research has revealed significant changes in the composition, relative abundance, and distribution of gut microbiota in both patients and animal models with DILI. Imbalance in the gut microecology causes intestinal barrier destruction and microorganism translocation; the alteration in microbial metabolites may initiate or aggravate DILI, and regulation and control of intestinal microbiota can effectively mitigate drug-induced liver injury. In this paper, we provide an overview on the present knowledge of the mechanisms by which DILI occurs, the common drugs that cause DILI, the gut microbiota and gut barrier composition, and the effects of the gut microbiota and gut barrier on DILI, emphasizing the contribution of the gut microecology to DILI.
Collapse
Affiliation(s)
- Yuqiao Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kaireng Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinxin Tan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Guixiang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
6
|
Li G, Hou Y, Zhang C, Zhou X, Bao F, Yang Y, Chen L, Yu D. Interplay Between Drug-Induced Liver Injury and Gut Microbiota: A Comprehensive Overview. Cell Mol Gastroenterol Hepatol 2024; 18:101355. [PMID: 38729523 PMCID: PMC11260867 DOI: 10.1016/j.jcmgh.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Drug-induced liver injury is a prevalent severe adverse event in clinical settings, leading to increased medical burdens for patients and presenting challenges for the development and commercialization of novel pharmaceuticals. Research has revealed a close association between gut microbiota and drug-induced liver injury in recent years. However, there has yet to be a consensus on the specific mechanism by which gut microbiota is involved in drug-induced liver injury. Gut microbiota may contribute to drug-induced liver injury by increasing intestinal permeability, disrupting intestinal metabolite homeostasis, and promoting inflammation and oxidative stress. Alterations in gut microbiota were found in drug-induced liver injury caused by antibiotics, psychotropic drugs, acetaminophen, antituberculosis drugs, and antithyroid drugs. Specific gut microbiota and their abundance are associated closely with the severity of drug-induced liver injury. Therefore, gut microbiota is expected to be a new target for the treatment of drug-induced liver injury. This review focuses on the association of gut microbiota with common hepatotoxic drugs and the potential mechanisms by which gut microbiota may contribute to the pathogenesis of drug-induced liver injury, providing a more comprehensive reference for the interaction between drug-induced liver injury and gut microbiota.
Collapse
Affiliation(s)
- Guolin Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifu Hou
- Department of Organ Transplantation, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province and Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Changji Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Furong Bao
- Department of Nursing, Guanghan People's Hospital, Guanghan, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Lu Chen
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Department of Organ Transplantation, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Chen P. Targeting gut microbiota to counteract acetaminophen-induced acute liver injury. Trends Microbiol 2024; 32:419-421. [PMID: 38472076 DOI: 10.1016/j.tim.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Acetaminophen (N-acetyl-p-aminophenol; APAP) overdose-induced acute liver injury (AILI) is a huge threat to public health worldwide. Recent research clearly shows that the intestinal microbiota (IM) is a key modulator in AILI. Herein, I discuss the latest findings on how the IM regulates AILI and the potential interventions to combat AILI by targeting the IM.
Collapse
Affiliation(s)
- Peng Chen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Zhang CW, Zou YF, Zou Y, JiZe XP, Li CY, Fu YP, Huang C, Li LX, Yin ZQ, Wu FM, Rise F, Inngjerdingen KT, Zhang SQ, Zhao XH, Song X, Zhou X, Ye G, Tian ML. Ultrasonic-assisted extraction of polysaccharide from Paeoniae Radix alba: Extraction optimization, structural characterization and antioxidant mechanism in vitro. Int J Biol Macromol 2024; 268:131816. [PMID: 38677682 DOI: 10.1016/j.ijbiomac.2024.131816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Paeoniae Radix alba is used in Traditional Chinese Medicine for the treatment of gastrointestinal disorders, immunomodulatory, cancer, and other diseases. In the current study, the yield of Paeoniae Radix alba polysaccharide (PRP) was significantly increased with optimal ultrasound-assisted extraction compared to hot water extraction. Further, an acidic polysaccharide (PRP-AP) was isolated from PRP after chromatographic separation and was characterized as a typical pectic polysaccharide with side chains of arabinogalactans types I and II. Moreover, it showed antioxidant effects on LPS-induced damage on IPEC-J2 cells determined by qRT-PCR and ELISA, including decreasing the pro-inflammatory factors' expressions and increasing the antioxidant enzymes activities, which was shown to be related to the Nrf2/Keap1 pathway modulated by PRP-AP. The metabolites change (such as itaconate, cholesterol sulfate, etc.) detected by untargeted metabolomic analysis in cells was also shown to be modulated by PRP-AP, and these metabolites were further utilized and protected cells damaged by LPS. These results revealed the cellular active mechanism of the macromolecular PRP-AP on protecting cells, and supported the hypothesis that PRP-AP has strong benefits as an alternative dietary supplement for the prevention of intestinal oxidative stress by modulating cellular metabolism.
Collapse
Affiliation(s)
- Chao-Wen Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - Yun Zou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Ping JiZe
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Kari Tvete Inngjerdingen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Sha-Qiu Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
9
|
Lv L, Ren S, Jiang H, Yan R, Chen W, Yan R, Dong J, Shao L, Yu Y. The oral administration of Lacticaseibacillus casei Shirota alleviates acetaminophen-induced liver injury through accelerated acetaminophen metabolism via the liver-gut axis in mice. mSphere 2024; 9:e0067223. [PMID: 38193757 PMCID: PMC10826347 DOI: 10.1128/msphere.00672-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024] Open
Abstract
Acetaminophen is a widely used antipyretic and analgesic drug, and its overdose is the leading cause of drug-induced acute liver failure. This study aimed to investigate the effect and mechanism of Lacticaseibacillus casei Shirota (LcS), an extensively used and highly studied probiotic, on acetaminophen-induced acute liver injury. C57BL/6 mice were gavaged with LcS suspension or saline once daily for 7 days before acute liver injury was induced via intraperitoneal injection of 300 mg/kg acetaminophen. The results showed that LcS significantly decreased acetaminophen-induced liver and ileum injury, as demonstrated by reductions in the increases in aspartate aminotransferase, total bile acids, total bilirubin, indirect bilirubin, and hepatic cell necrosis. Moreover, LcS alleviated acetaminophen-induced intestinal mucosal permeability, decreased serum IL-1α and lipopolysaccharide levels, and elevated serum eosinophil chemokine (eotaxin) and hepatic glutathione levels. Furthermore, analysis of the gut microbiota and metabolome showed that LcS reduced the acetaminophen-enriched levels of Cyanobacteria, Oxyphotobacteria, long-chain fatty acids, cholesterol, and sugars in the gut. Additionally, the transcriptomic and proteomic results showed that LcS mitigated the decrease in metabolic and immune pathways as well as glutathione formation during acetaminophen-induced acute liver injury. This is the first study showing that pretreatment with LcS alleviates acetaminophen-enriched acute liver injury, and it provides a reference for the application of LcS.IMPORTANCEAcetaminophen is the most frequently used antipyretic analgesic worldwide. As a result, overdoses easily occur and lead to drug-induced acute liver injury, which quickly progresses to liver failure with a mortality of 60%-80% if not corrected in time. The current emergency treatment for overused acetaminophen needs to be administered within 8 hours to avoid liver injury or even liver failure. Therefore, developing preventive strategies for liver injury during planned acetaminophen medication is particularly important, preferably nonpharmacological methods. Lacticaseibacillus casei Shirota (LcS) is a famous probiotic that has been used for many years. Our study found that LcS significantly alleviated acetaminophen-induced acute liver injury, especially acetaminophen-induced liver injury toward fulminant hepatic failure. Here, we elucidated the function and potential mechanisms of LcS in alleviating acetaminophen-induced acute liver injury, hoping it will provide preventive strategies to people during acetaminophen treatment.
Collapse
Affiliation(s)
- Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Siqi Ren
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Wenyi Chen
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruiyi Yan
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jinming Dong
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Shao
- The Affiliated Hospital of Hangzhou Normal University, Institute of Translational Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ying Yu
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Chu HK, Ai Y, Cheng ZL, Yang L, Hou XH. Contribution of gut microbiota to drug-induced liver injury. Hepatobiliary Pancreat Dis Int 2023; 22:458-465. [PMID: 37365109 DOI: 10.1016/j.hbpd.2023.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Drug-induced liver injury (DILI) is caused by various drugs with complex pathogenesis, and diverse clinical and pathological phenotypes. Drugs damage the liver directly through drug hepatotoxicity, or indirectly through drug-mediated oxidative stress, immune injury and inflammatory insult, which eventually lead to hepatocyte necrosis. Recent studies have found that the composition, relative content and distribution of gut microbiota in patients and animal models of DILI have changed significantly. It has been confirmed that gut microbial dysbiosis brings about intestinal barrier destruction and microorganisms translocation, and the alteration of microbial metabolites may cause or aggravate DILI. In addition, antibiotics, probiotics, and fecal microbiota transplantation are all emerging as prospective therapeutic methods for DILI by regulating the gut microbiota. In this review, we discussed how the altered gut microbiota participates in DILI.
Collapse
Affiliation(s)
- Hui-Kuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Ai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zi-Lu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Hua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
11
|
Cortés-Espinar AJ, Ibarz-Blanch N, Soliz-Rueda JR, Bonafos B, Feillet-Coudray C, Casas F, Bravo FI, Calvo E, Ávila-Román J, Mulero M. Rhythm and ROS: Hepatic Chronotherapeutic Features of Grape Seed Proanthocyanidin Extract Treatment in Cafeteria Diet-Fed Rats. Antioxidants (Basel) 2023; 12:1606. [PMID: 37627601 PMCID: PMC10452039 DOI: 10.3390/antiox12081606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Polyphenols play a key role in the modulation of circadian rhythms, while the cafeteria diet (CAF) is able to perturb the hepatic biological rhythm and induce important ROS production. Consequently, we aimed to elucidate whether grape seed proanthocyanidin extract (GSPE) administration recovers the CAF-induced hepatic antioxidant (AOX) misalignment and characterize the chronotherapeutic properties of GSPE. For this purpose, Fischer 344 rats were fed a standard diet (STD) or a CAF and concomitantly treated with GSPE at two time-points (ZT0 vs. ZT12). Animals were euthanized every 6 h and the diurnal rhythms of hepatic ROS-related biomarkers, hepatic metabolites, and AOX gene expression were examined. Interestingly, GSPE treatment was able to recover the diurnal rhythm lost due to the CAF. Moreover, GSPE treatment also increased the acrophase of Sod1, as well as bringing the peak closer to that of the STD group. GSPE also corrected some hepatic metabolites altered by the CAF. Importantly, the differences observed at ZT0 vs. ZT12 due to the time of GSPE administration highlight a chronotherapeutic profile on the proanthocyanin effect. Finally, GSPE could also reduce diet-induced hepatic oxidative stress not only by its ROS-scavenging properties but also by retraining the circadian rhythm of AOX enzymes.
Collapse
Affiliation(s)
- Antonio J. Cortés-Espinar
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Néstor Ibarz-Blanch
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Jorge R. Soliz-Rueda
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Béatrice Bonafos
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Christine Feillet-Coudray
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - François Casas
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Enrique Calvo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Javier Ávila-Román
- Molecular and Applied Pharmacology Group (FARMOLAP), Department of Pharmacology, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| |
Collapse
|
12
|
Pang H, Hu Z. Metabolomics in drug research and development: The recent advances in technologies and applications. Acta Pharm Sin B 2023; 13:3238-3251. [PMID: 37655318 PMCID: PMC10465962 DOI: 10.1016/j.apsb.2023.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 09/02/2023] Open
Abstract
Emerging evidence has demonstrated the vital role of metabolism in various diseases or disorders. Metabolomics provides a comprehensive understanding of metabolism in biological systems. With advanced analytical techniques, metabolomics exhibits unprecedented significant value in basic drug research, including understanding disease mechanisms, identifying drug targets, and elucidating the mode of action of drugs. More importantly, metabolomics greatly accelerates the drug development process by predicting pharmacokinetics, pharmacodynamics, and drug response. In addition, metabolomics facilitates the exploration of drug repurposing and drug-drug interactions, as well as the development of personalized treatment strategies. Here, we briefly review the recent advances in technologies in metabolomics and update our knowledge of the applications of metabolomics in drug research and development.
Collapse
Affiliation(s)
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
2 Hydroxybutyric Acid-Producing Bacteria in Gut Microbiome and Fusobacterium nucleatum Regulates 2 Hydroxybutyric Acid Level In Vivo. Metabolites 2023; 13:metabo13030451. [PMID: 36984891 PMCID: PMC10059959 DOI: 10.3390/metabo13030451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
2-hydroxybutyric acid (2HB) serves as an important regulatory factor in a variety of diseases. The circulating level of 2HB in serum is significantly higher in multiple diseases, such as cancer and type 2 diabetes (T2D). However, there is currently no systematic study on 2HB-producing bacteria that demonstrates whether gut bacteria contribute to the circulating 2HB pool. To address this question, we used BLASTP to reveal the taxonomic profiling of 2HB-producing bacteria in the human microbiome, which are mainly distributed in the phylum Proteobacteria and Firmicutes. In vitro experiments showed that most gut bacteria (21/32) have at least one path to produce 2HB, which includes Aspartic acid, methionine, threonine, and 2-aminobutyric acid. Particularly, Fusobacterium nucleatum has the strongest ability to synthesize 2HB, which is sufficient to alter colon 2HB concentration in mice. Nevertheless, neither antibiotic (ABX) nor Fusobacterium nucleatum gavage significantly affected mouse serum 2HB levels during the time course of this study. Taken together, our study presents the profiles of 2HB-producing bacteria and demonstrates that gut microbiota was a major contributor to 2HB concentration in the intestinal lumen but a relatively minor contributor to serum 2HB concentration.
Collapse
|
14
|
Yang G, Jena PK, Hu Y, Sheng L, Chen SY, Slupsky CM, Davis R, Tepper CG, Wan YJY. The essential roles of FXR in diet and age influenced metabolic changes and liver disease development: a multi-omics study. Biomark Res 2023; 11:20. [PMID: 36803569 PMCID: PMC9938992 DOI: 10.1186/s40364-023-00458-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/24/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Aging and diet are risks for metabolic diseases. Bile acid receptor farnesoid X receptor (FXR) knockout (KO) mice develop metabolic liver diseases that progress into cancer as they age, which is accelerated by Western diet (WD) intake. The current study uncovers the molecular signatures for diet and age-linked metabolic liver disease development in an FXR-dependent manner. METHODS Wild-type (WT) and FXR KO male mice, either on a healthy control diet (CD) or a WD, were euthanized at the ages of 5, 10, or 15 months. Hepatic transcriptomics, liver, serum, and urine metabolomics as well as microbiota were profiled. RESULTS WD intake facilitated hepatic aging in WT mice. In an FXR-dependent manner, increased inflammation and reduced oxidative phosphorylation were the primary pathways affected by WD and aging. FXR has a role in modulating inflammation and B cell-mediated humoral immunity which was enhanced by aging. Moreover, FXR dictated neuron differentiation, muscle contraction, and cytoskeleton organization in addition to metabolism. There were 654 transcripts commonly altered by diets, ages, and FXR KO, and 76 of them were differentially expressed in human hepatocellular carcinoma (HCC) and healthy livers. Urine metabolites differentiated dietary effects in both genotypes, and serum metabolites clearly separated ages irrespective of diets. Aging and FXR KO commonly affected amino acid metabolism and TCA cycle. Moreover, FXR is essential for colonization of age-related gut microbes. Integrated analyses uncovered metabolites and bacteria linked with hepatic transcripts affected by WD intake, aging, and FXR KO as well as related to HCC patient survival. CONCLUSION FXR is a target to prevent diet or age-associated metabolic disease. The uncovered metabolites and microbes can be diagnostic markers for metabolic disease.
Collapse
Affiliation(s)
- Guiyan Yang
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA 95817 USA
| | - Prasant K. Jena
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA 95817 USA
| | - Ying Hu
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA 95817 USA
| | - Lili Sheng
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA 95817 USA
| | - Shin-Yu Chen
- grid.27860.3b0000 0004 1936 9684Department of Nutrition, University of California, Davis, CA USA
| | - Carolyn M. Slupsky
- grid.27860.3b0000 0004 1936 9684Department of Nutrition, University of California, Davis, CA USA
| | - Ryan Davis
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA 95817 USA
| | - Clifford G. Tepper
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA.
| |
Collapse
|
15
|
Jeon HJ, You SH, Nam EH, Truong VL, Bang JH, Bae YJ, Rarison RHG, Kim SK, Jeong WS, Jung YH, Shin M. Red ginseng dietary fiber promotes probiotic properties of Lactiplantibacillus plantarum and alters bacterial metabolism. Front Microbiol 2023; 14:1139386. [PMID: 36950168 PMCID: PMC10025373 DOI: 10.3389/fmicb.2023.1139386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Korean red ginseng has been widely used as an herbal medicine. Red ginseng dietary fiber (RGDF) is a residue of the processed ginseng product but still contains bioactive constituents that can be applied as prebiotics. In this study, we evaluated changes on fermentation profiles and probiotic properties of strains that belong to family Lactobacillaceae with RGDF supplementation. Metabolomic analyses were performed to understand specific mechanisms on the metabolic alteration by RGDF and to discover novel bioactive compounds secreted by the RGDF-supplemented probiotic strain. RGDF supplementation promoted short-chain fatty acid (SCFA) production, carbon source utilization, and gut epithelial adhesion of Lactiplantibacillus plantarum and inhibited attachment of enteropathogens. Intracellular and extracellular metabolome analyses revealed that RGDF induced metabolic alteration, especially associated with central carbon metabolism, and produced RGDF-specific metabolites secreted by L. plantarum, respectively. Specifically, L. plantarum showed decreases in intracellular metabolites of oleic acid, nicotinic acid, uracil, and glyceric acid, while extracellular secretion of several metabolites including oleic acid, 2-hydroxybutanoic acid, hexanol, and butyl acetate increased. RGDF supplementation had distinct effects on L. plantarum metabolism compared with fructooligosaccharide supplementation. These findings present potential applications of RGDF as prebiotics and bioactive compounds produced by RGDF-supplemented L. plantarum as novel postbiotic metabolites for human disease prevention and treatment.
Collapse
Affiliation(s)
- Hyeon Ji Jeon
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Hwan You
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Eoun Ho Nam
- Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea
- Department of Biomedical Sciences, Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
| | - Van-Long Truong
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Hong Bang
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yeon-Ji Bae
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Razanamanana H. G. Rarison
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Kyu Kim
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Woo-Sik Jeong
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Young Hoon Jung
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- *Correspondence: Young Hoon Jung,
| | - Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea
- Department of Biomedical Sciences, Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
- Minhye Shin,
| |
Collapse
|
16
|
Fu L, Qian Y, Shang Z, Sun X, Kong X, Gao Y. Antibiotics enhancing drug-induced liver injury assessed for causality using Roussel Uclaf Causality Assessment Method: Emerging role of gut microbiota dysbiosis. Front Med (Lausanne) 2022; 9:972518. [PMID: 36160154 PMCID: PMC9500153 DOI: 10.3389/fmed.2022.972518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Drug-induced liver injury (DILI) is a disease that remains difficult to predict and prevent from a clinical perspective, as its occurrence is hard to fully explain by the traditional mechanisms. In recent years, the risk of the DILI for microbiota dysbiosis has been recognized as a multifactorial process. Amoxicillin-clavulanate is the most commonly implicated drug in DILI worldwide with high causality gradings based on the use of RUCAM in different populations. Antibiotics directly affect the structure and diversity of gut microbiota (GM) and changes in metabolites. The depletion of probiotics after antibiotics interference can reduce the efficacy of hepatoprotective agents, also manifesting as liver injury. Follow-up with liver function examination is essential during the administration of drugs that affect intestinal microorganisms and their metabolic activities, such as antibiotics, especially in patients on a high-fat diet. In the meantime, altering the GM to reconstruct the hepatotoxicity of drugs by exhausting harmful bacteria and supplementing with probiotics/prebiotics are potential therapeutic approaches. This review will provide an overview of the current evidence between gut microbiota and DILI events, and discuss the potential mechanisms of gut microbiota-mediated drug interactions. Finally, this review also provides insights into the "double-edged sword" effect of antibiotics treatment against DILI and the potential prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Lihong Fu
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
- Institute of Infection Diseases, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yihan Qian
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Zhi Shang
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Xuehua Sun
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital, Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
- Institute of Infection Diseases, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| |
Collapse
|
17
|
Xu B, Hao K, Chen X, Wu E, Nie D, Zhang G, Si H. Broussonetia papyrifera Polysaccharide Alleviated Acetaminophen-Induced Liver Injury by Regulating the Intestinal Flora. Nutrients 2022; 14:nu14132636. [PMID: 35807816 PMCID: PMC9268590 DOI: 10.3390/nu14132636] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Liver injury caused by an overdose of acetaminophen (APAP) is a major public health problem. This study aimed to evaluate the effects of Broussonetia papyrifera polysaccharide (BPP) on liver injury and intestinal flora induced by APAP. The results showed that BPP could protect against APAP-induced liver injury, alleviate liver apoptosis, improve antioxidant capacity and enhance the liver’s detoxification ability to APAP. At the same time, BPP improved the intestinal flora disorder caused by APAP. More importantly, we found that the hepatoprotective effect of BPP disappeared after the depletion of gut microbiota in mice. Further, we reconstructed the intestinal flora structure of mice through fecal microbiota transplantation and found that the symptoms of APAP—induced liver injury were effectively alleviated. Overall, BPP was a potential hepatoprotective drug that could protect against APAP-induced liver injury and might be mediated by intestinal flora.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongbin Si
- Correspondence: ; Tel.: +86-136-8771-1878
| |
Collapse
|
18
|
Dewanjee S, Dua TK, Paul P, Dey A, Vallamkondu J, Samanta S, Kandimalla R, De Feo V. Probiotics: Evolving as a Potential Therapeutic Option against Acetaminophen-Induced Hepatotoxicity. Biomedicines 2022; 10:1498. [PMID: 35884803 PMCID: PMC9312935 DOI: 10.3390/biomedicines10071498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Acetaminophen (APAP) is the most common prescription medicine around the world for the treatment of pain and fever and is considered to be a safe drug at its therapeutic dose. However, a single overdose or frequent use of APAP can cause severe acute liver injury. APAP hepatotoxicity is a prevalent cause of acute liver disease around the world and the lack of suitable treatment makes it a serious problem. In recent years, there has been a surge in interest in using probiotics and probiotic-derived products, known as postbiotics, as health and disease negotiators. A growing body of evidence revealed that they can be equally effective against APAP hepatotoxicity. Different probiotic bacteria were found to be pre-clinically effective against APAP hepatotoxicity. Different postbiotics have also shown exciting results in preclinical models of APAP hepatotoxicity. This review summarized the protective roles and mechanisms of the different probiotic bacteria and postbiotics against APAP hepatotoxicity, with critical discussion. A brief discussion on potential novel probiotics and postbiotics for oxidative liver injury was also included. This review was written in an attempt to pique the interest of researchers in developing a safe therapeutic option against oxidative liver damage using probiotics and/or postbiotics as dietary supplements.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun K. Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur 734013, India; (T.K.D.); (P.P.)
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur 734013, India; (T.K.D.); (P.P.)
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | | | - Sonalinandini Samanta
- Department of Dermatology (Skin & Venereology), Employee’s State Insurance Corporation Medical College & Hospital, Patna 801103, India;
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India;
- Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology, Tarnaka 500007, India
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
19
|
Chen T, Li R, Chen P. Gut Microbiota and Chemical-Induced Acute Liver Injury. Front Physiol 2021; 12:688780. [PMID: 34122150 PMCID: PMC8187901 DOI: 10.3389/fphys.2021.688780] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Drug overdose or chemical exposures are the main causes of acute liver injury (ALI). Severe liver injury can develop into liver failure that is an important cause of liver-related mortality in intensive care units in most countries. Pharmacological studies have utilized a variety of comprehensive chemical induction models that recapitulate the natural pathogenesis of acute liver injury. Their mechanism is always based on redox imbalance-induced direct hepatotoxicity and massive hepatocyte cell death, which can trigger immune cell activation and recruitment to the liver. However, the pathogenesis of these models has not been fully stated. Many studies showed that gut microbiota plays a crucial role in chemical-induced liver injury. Hepatotoxicity is likely induced by imbalanced microbiota homeostasis, gut mucosal barrier damage, systemic immune activation, microbial-associated molecular patterns, and bacterial metabolites. Meanwhile, many preclinical studies have shown that supplementation with probiotics can improve chemical-induced liver injury. In this review, we highlight the pathogenesis of gut microorganisms in chemical-induced acute liver injury animal models and explore the protective mechanism of exogenous microbial supplements on acute liver injury.
Collapse
Affiliation(s)
- Tao Chen
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China.,Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|