1
|
Schimek A, Ng J, Will F, Hubbuch J. Mechanistic modeling of the elution behavior and convective entrapment of vesicular stomatitis virus on an ion exchange chromatography monolith. J Chromatogr A 2025; 1748:465832. [PMID: 40073642 DOI: 10.1016/j.chroma.2025.465832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Developing a downstream purification process for replication-competent enveloped virus particles presents a significant challenge. This is largely due to the highly complex particle structures, as well as complexities of emerging purification modalities for such virus particles. In this study, an unexpected fluid-dynamic effect was observed during the elution of enveloped virus particles from an ion exchange chromatography monolith. This effect led to peak tailing and the separation of virus particle subpopulations. Upon considering possible causes, convective entrapment was identified as a plausible explanation. To investigate this effect, a mechanistic modeling approach representing the electrostatic resin interactions and the convective entrapment effect was implemented. The introduced Langmuir approximation of the convective entrapment showed good alignment with reference data from experiments. The model reproduced the retention effect, and furthermore suggested two virus particle populations due to the stronger retention effect on the tailing subpopulation caused by convective entrapment.
Collapse
Affiliation(s)
- Adrian Schimek
- ViraTherapeutics GmbH, Bundesstraße 27, 6063 Rum, Austria
| | - Judy Ng
- ViraTherapeutics GmbH, Bundesstraße 27, 6063 Rum, Austria.
| | - Federico Will
- Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Str. 65, 88397 Biberach, Germany
| | - Jürgen Hubbuch
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV Biomolecular Separation Engineering, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| |
Collapse
|
2
|
Ye J, Zheng T, Xiao Q, Yang Q, Weng H, Ru Y, Zhuang X, Xiao A. A novel core-shell microsphere with hydrophobic and gel chromatography functions enhances protein purification. Int J Biol Macromol 2025; 308:142630. [PMID: 40158581 DOI: 10.1016/j.ijbiomac.2025.142630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
The spatial configuration and bonding conditions of polysaccharide microspheres make it difficult to distinguish molecules with similar hydrophobic properties in practical applications. Fortunately, medium modification offers more flexible chromatography conditions and higher selectivity, providing new solutions for complex purification environments. We synthesized hydrophobic composite core-shell agarose microspheres equipped with hydrophobic ligands and investigated the effects of hydrophobic ligand coupling on the morphology, particle size, pressure resistance, functional group change and protein adsorption capacity of microspheres. On this basis, the protein adsorption kinetics indicated that the best coupling temperature and time of phenyl and butyl were 40 °C, 8 h and 20 °C, 16 h, respectively. When the concentration of (NH4)2SO4 salt in the mobile phase is 2 M, and the pH is 7.0, the dynamic adsorption capacity of the medium for BSA reaches 12.6 mg/mL. The separation, purification efficiency, and resolution of these microspheres in a crude enzyme solution containing flavin monooxygenase improved significantly, demonstrating the practical implications and potential applications of this research. Overall, our findings reveal that this natural polysaccharide core-shell medium increases the modifiable sites of ligands, and can modify ligands in both the inner and outer layers, exhibiting its potential application in biomolecular separation.
Collapse
Affiliation(s)
- Jinming Ye
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Taiwei Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Qiuming Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Huifen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Yi Ru
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Xiaoyan Zhuang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| |
Collapse
|
3
|
Goodarzi MM, Jalalirad R. Clear insight into complex multimodal resins and impurities to overcome recombinant protein purification challenges: A review. Biotechnol Bioeng 2025; 122:5-29. [PMID: 39290077 DOI: 10.1002/bit.28846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Increasing attention has been paid to the purity of therapeutic proteins imposing extensive costs and challenges to the downstream processing of biopharmaceuticals. One of the efforts, that has been exerted to overcome such limitations, was developing multimodal or mixed-mode chromatography (MMC) resins for launching selective, orthogonal, non-affinity purification platforms. Despite relatively extensive usage of MMC resins, their real potential and fulfillment have not been extensively reviewed yet. In this work, the explanation of practical and key aspects of downstream processing of recombinant proteins with or without MMC resins was debated, as being useful for further purification process development. This review has been written as a step-by-step guide to deconvolute both inherent protein purification and MMC complexities. Here, after complete elucidation of the potential of MMC resins, the effects of frequently used additives (mobile phase modifiers) and their possible interactions during the purification process, the critical characteristics of common product-related impurities (e.g., aggregates, charge variants, fragments), host-related impurities (e.g., host cell protein and DNA) and process related impurities (e.g., endotoxin, and viruses) with solved or unsolved challenges of traditional and MMC resins have been discussed. Such collective experiences which are reported in this study could be considered as an applied guide for developing successful downstream processing in challenging conditions by providing a clear insight into complex MMC resins and impurities.
Collapse
Affiliation(s)
- Maryam Moazami Goodarzi
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
| | - Reza Jalalirad
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
| |
Collapse
|
4
|
Mayer V, Steiner F, Jungbauer A, Pereira Aguilar P. Highly pure measles virus generated by combination of salt-active nuclease treatment and heparin affinity chromatography. J Chromatogr A 2024; 1738:465470. [PMID: 39488125 DOI: 10.1016/j.chroma.2024.465470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Highly purified virus preparations are essential for accurate activity and potency determination. This requires simple and efficient purification methods, especially in the early stages of research and development. While heparin affinity chromatography has been already successfully used for the purification of several enveloped viruses and virus-like particles, we extended its use to purification of very sensitive measles virus. The performance of heparin and heparin-like affinity chromatography was evaluated for the purification of recombinant measles virus, a large and labile enveloped virus used as vaccine or cancer therapy. Since DNA, particularly in the form of chromatin is a critical impurity in enveloped virus preparations, the effect of integration of an endonuclease (Benzonase® or M-SAN) treatment prior to chromatography was also investigated. Both, Capto™ DeVirS (heparin-like) and Capto™ Heparin were able to capture measles viruses directly from clarified cell culture supernatant. Despite capturing 100 % of infectious measles virus, low recovery (8 %) was observed for Capto™ DeVirS. For Capto™ Heparin recoveries up to 85 % were observed. The combination of M-SAN with Capto™ Heparin enabled the production of highly purified measles virus with a yield of 62 % and a final purity of 10.2 ng dsDNA per dose (1 × 105), outperforming the processes without endonuclease treatment with a yield of 18 %, and a purity of 66.7 ng dsDNA/dose or using Benzonase® with a yield of 38 % and a purity of 21.2 ng dsDNA/dose. As the developed method is simple and scalable it could also be integrated in a downstream process train for measles virus manufacturing.
Collapse
Affiliation(s)
- Viktoria Mayer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria; Institute of Bioprocess Science and Engineering (IBSE), BOKU University, Vienna, Austria
| | - Florian Steiner
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Alois Jungbauer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria; Institute of Bioprocess Science and Engineering (IBSE), BOKU University, Vienna, Austria.
| | - Patricia Pereira Aguilar
- Austrian Centre of Industrial Biotechnology, Vienna, Austria; Institute of Bioprocess Science and Engineering (IBSE), BOKU University, Vienna, Austria
| |
Collapse
|
5
|
Zhao H, Lin X, Wang L, Yang Y, Zhu H, Li Z, Su Z, Yu R, Zhang S. Pore-blocking steric mass-action model for adsorption of bioparticles. J Chromatogr A 2024; 1726:464968. [PMID: 38723492 DOI: 10.1016/j.chroma.2024.464968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/23/2024]
Abstract
The steric mass-action (SMA) model has been widely reported to describe the adsorption of proteins in different types of chromatographic adsorbents. Here in the present work, a pore-blocking steric mass-action model (PB-SMA) was developed for the adsorption of large-size bioparticles, which usually exhibit the unique pore-blocking characteristic on the adsorbent and thus lead to a fraction of ligands in the deep channels physically inaccessible to bioparticles adsorption, instead of being shielded due to steric hindrance by adsorbed bioparticles. This unique phenomenon was taken into account by introducing an additional parameter, Lin, which is defined as the inaccessible ligand densities in the physically blocked pore area, into the PB-SMA model. This fraction of ligand densities (Lin) will be deducted from the total ligand (Lt) for model development, thus the steric factor (σ) in the proposed PB-SMA will reflect the steric shielding effect on binding sites by adsorbed bioparticles more accurately than the conventional SMA model, which assumes that all ligands on the adsorbent have the same accessibility to the bioparticles. Based on a series of model assumptions, a PB-SMA model was firstly developed for inactivated foot-and-mouth disease virus (iFMDV) adsorption on immobilized metal affinity chromatography (IMAC) adsorbents. Model parameters for static adsorption including equilibrium constant (K), characteristic number of binding sites (n), and steric factor (σ) were determined. Compared with those derived from the conventional SMA model, the σ values derived from the PB-SMA model were dozens of times smaller and much closer to the theoretical maximum number of ligands shielded by a single adsorbed iFMDV, indicating the modified model was more accurate for bioparticles adsorption. The applicability of the PB-SMA model was further validated by the adsorption of hepatitis B surface antigen virus-like particles (HBsAg VLPs) on an ion exchange adsorbent with reasonably improved accuracy. Thus, it is considered that the PB-SMA model would be more accurate in describing the adsorption of bioparticles on different types of chromatographic adsorbents.
Collapse
Affiliation(s)
- Hanying Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuan Lin
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Liuyang Wang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanli Yang
- Tecon Pharmaceutical Co., Ltd., Suzhou, 215000, China
| | - Hongyu Zhu
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, 376-8515, Japan
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Rong Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
6
|
Shi W, Zhang TY, Fang CY, Zhang SQ, Li KB, Zhang XB, Han DM. Transforming waste into valuables: Preparation and evaluation of dual-ligand hydrophobic charge-induction chromatography using two poor performing ligands. J Chromatogr A 2024; 1726:464975. [PMID: 38735118 DOI: 10.1016/j.chroma.2024.464975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
In conventional chromatographic ligand screening, underperforming ligands are often dismissed. However, this practice may inadvertently overlook potential opportunities. This study aims to investigate whether these underperforming ligands can be repurposed as valuable assets. Hydrophobic charge-induction chromatography (HCIC) is chosen as the validation target for its potential as an innovative chromatographic mode. A novel dual-ligand approach is employed, combining two suboptimal ligands (5-Aminobenzimidazole and Tryptamine) to explore enhanced performance and optimization prospects. Various dual-ligand HCIC resins with different ligand densities were synthesized by adjusting the ligand ratio and concentration. The resins were characterized to assess appearance, functional groups, and pore features using SEM, FTIR, and ISEC techniques. Performance assessments were conducted using single-ligand mode resins as controls, evaluating the selectivity against human immunoglobulin G and human serum albumin. Static adsorption experiments were performed to understand pH and salt influence on adsorption. Breakthrough experiments were conducted to assess dynamic adsorption capacity of the novel resin. Finally, chromatographic separation using human serum was performed to evaluate the purity and yield of the resin. Results indicated that the dual-ligand HCIC resin designed for human antibodies demonstrates exceptional selectivity, surpassing not only single ligand states but also outperforming certain high-performing ligand types, particularly under specific salt and pH conditions. Ultimately, a high yield of 83.9 % and purity of 96.7 % were achieved in the separation of hIgG from human serum with the dual-ligand HCIC, significantly superior to the single-ligand resins. In conclusion, through rational design and proper operational conditions, the dual-ligand mode can revitalize underutilized ligands, potentially introducing novel and promising chromatographic modes.
Collapse
Affiliation(s)
- Wei Shi
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China; Taizhou Research Institute of Bio-Medical and Chemical Industry CO., LTD, Jiaojiang 318000, China
| | - Tian-Yi Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Chao-Ying Fang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Si-Qi Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Kai-Bin Li
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Xiao-Bin Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - De-Man Han
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China.
| |
Collapse
|
7
|
Bisen M, Kharga K, Mehta S, Jabi N, Kumar L. Bacteriophages in nature: recent advances in research tools and diverse environmental and biotechnological applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22199-22242. [PMID: 38411907 DOI: 10.1007/s11356-024-32535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Bacteriophages infect and replicate within bacteria and play a key role in the environment, particularly in microbial ecosystems and bacterial population dynamics. The increasing recognition of their significance stems from their wide array of environmental and biotechnological uses, which encompass the mounting issue of antimicrobial resistance (AMR). Beyond their therapeutic potential in combating antibiotic-resistant infections, bacteriophages also find vast applications such as water quality monitoring, bioremediation, and nutrient cycling within environmental sciences. Researchers are actively involved in isolating and characterizing bacteriophages from different natural sources to explore their applications. Gaining insights into key aspects such as the life cycle of bacteriophages, their host range, immune interactions, and physical stability is vital to enhance their application potential. The establishment of diverse phage libraries has become indispensable to facilitate their wide-ranging uses. Consequently, numerous protocols, ranging from traditional to cutting-edge techniques, have been developed for the isolation, detection, purification, and characterization of bacteriophages from diverse environmental sources. This review offers an exploration of tools, delves into the methods of isolation, characterization, and the extensive environmental applications of bacteriophages, particularly in areas like water quality assessment, the food sector, therapeutic interventions, and the phage therapy in various infections and diseases.
Collapse
Affiliation(s)
- Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sakshi Mehta
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Nashra Jabi
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Himachal Pradesh, Solan, 173229, India.
| |
Collapse
|
8
|
Tatli O, Oz Y, Dingiloglu B, Yalcinkaya D, Basturk E, Korkmaz M, Akbulut L, Hatipoglu D, Kirmacoglu C, Akgun B, Turk K, Pinar O, Sariyar Akbulut B, Atabay Z, Tahir Turanli E, Kazan D, Dinler Doganay G. A two-step purification platform for efficient removal of Fab-related impurities: A case study for Ranibizumab. Heliyon 2023; 9:e21001. [PMID: 38027967 PMCID: PMC10651443 DOI: 10.1016/j.heliyon.2023.e21001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Antibodies (mAbs) and antibody fragments (Fabs) constitute one of the largest and most rapidly expanding groups of protein pharmaceuticals. In particular, antibody fragments have certain advantages over mAbs in some therapeutic settings. However, due to their greater chemical diversity, they are more challenging to purify for large-scale production using a standard purification platform. Besides, the removal of Fab-related byproducts poses a difficult purification challenge. Alternative Fab purification platforms could expedite their commercialization and reduce the cost and time invested. Accordingly, we employed a strong cation exchanger using a pH-based, highly linear gradient elution mode following Protein L affinity purification and developed a robust two-step purification platform for an antibody fragment. The optimized pH gradient elution conditions were determined on the basis of purity level, yield, and the abundance of Fab-related impurities, particularly free light chain. The purified Fab molecule Ranibizumab possessed a high degree of similarity to its originator Lucentis. The developed purification platform highly intensified the process and provided successful clearance of formulated Fab- and process-related impurities (∼98 %) with an overall process recovery of 50 % and, thus, might be a new option for Fab purification for both academic and industrial purposes.
Collapse
Affiliation(s)
- Ozge Tatli
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Yagmur Oz
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Baran Dingiloglu
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Duygu Yalcinkaya
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Ezgi Basturk
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Melis Korkmaz
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Latif Akbulut
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Derya Hatipoglu
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Cansin Kirmacoglu
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Buse Akgun
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Kubra Turk
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Orkun Pinar
- Department of Bioengineering, Faculty of Engineering, Marmara University, Turkey
| | | | | | - Eda Tahir Turanli
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Dilek Kazan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Turkey
| | - Gizem Dinler Doganay
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Istanbul Technical University, Turkey
| |
Collapse
|
9
|
Kilgore R, Minzoni A, Shastry S, Smith W, Barbieri E, Wu Y, LeBarre JP, Chu W, O'Brien J, Menegatti S. The downstream bioprocess toolbox for therapeutic viral vectors. J Chromatogr A 2023; 1709:464337. [PMID: 37722177 DOI: 10.1016/j.chroma.2023.464337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Abstract
Viral vectors are poised to acquire a prominent position in modern medicine and biotechnology owing to their role as delivery agents for gene therapies, oncolytic agents, vaccine platforms, and a gateway to engineer cell therapies as well as plants and animals for sustainable agriculture. The success of viral vectors will critically depend on the availability of flexible and affordable biomanufacturing strategies that can meet the growing demand by clinics and biotech companies worldwide. In this context, a key role will be played by downstream process technology: while initially adapted from protein purification media, the purification toolbox for viral vectors is currently undergoing a rapid expansion to fit the unique biomolecular characteristics of these products. Innovation efforts are articulated on two fronts, namely (i) the discovery of affinity ligands that target adeno-associated virus, lentivirus, adenovirus, etc.; (ii) the development of adsorbents with innovative morphologies, such as membranes and 3D printed monoliths, that fit the size of viral vectors. Complementing these efforts are the design of novel process layouts that capitalize on novel ligands and adsorbents to ensure high yield and purity of the product while safeguarding its therapeutic efficacy and safety; and a growing panel of analytical methods that monitor the complex array of critical quality attributes of viral vectors and correlate them to the purification strategies. To help explore this complex and evolving environment, this study presents a comprehensive overview of the downstream bioprocess toolbox for viral vectors established in the last decade, and discusses present efforts and future directions contributing to the success of this promising class of biological medicines.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Will Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Yuxuan Wu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Juliana O'Brien
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States; North Carolina Viral Vector Initiative in Research and Learning, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
10
|
Lothert K, Wolff MW. Affinity and Pseudo-Affinity Membrane Chromatography for Viral Vector and Vaccine Purifications: A Review. MEMBRANES 2023; 13:770. [PMID: 37755191 PMCID: PMC10537005 DOI: 10.3390/membranes13090770] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Several chromatographic approaches have been established over the last decades for the production of pharmaceutically relevant viruses. Due to the large size of these products compared to other biopharmaceuticals, e.g., proteins, convective flow media have proven to be superior to bead-based resins in terms of process productivity and column capacity. One representative of such convective flow materials is membranes, which can be modified to suit the particular operating principle and are also suitable for economical single-use applications. Among the different membrane variants, affinity surfaces allow for the most selective separation of the target molecule from other components in the feed solution, especially from host cell-derived DNA and proteins. A successful membrane affinity chromatography, however, requires the identification and implementation of ligands, which can be applied economically while at the same time being stable during the process and non-toxic in the case of any leaching. This review summarizes the current evaluation of membrane-based affinity purifications for viruses and virus-like particles, including traditional resin and monolith approaches and the advantages of membrane applications. An overview of potential affinity ligands is given, as well as considerations of suitable affinity platform technologies, e.g., for different virus serotypes, including a description of processes using pseudo-affinity matrices, such as sulfated cellulose membrane adsorbers.
Collapse
Affiliation(s)
| | - Michael W. Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Department Life Science Engineering, University of Applied Sciences Mittelhessen (THM), 35390 Giessen, Germany
| |
Collapse
|
11
|
Shi W, Zhu SN, Xu H, Li KB, Zhang SQ, Zhang TY, Fang CY, Zhang XB, Han DM. Simultaneous Recovery of Bovine Serum Albumin and Bovine Immunoglobulin G with Dual-Ligand Hydrophobic Charge-Induction Chromatography. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
Lachowicz D, Kmita A, Wirecka R, Berent K, Szuwarzyński M, Zapotoczny S, Pajdak A, Cios G, Mazur-Panasiuk N, Pyrc K, Bernasik A. Aerogels based on cationically modified chitosan and poly(vinyl alcohol) for efficient capturing of viruses. Carbohydr Polym 2023; 312:120756. [PMID: 37059523 DOI: 10.1016/j.carbpol.2023.120756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
In this study, we developed a new filtering bioaerogel based on linear polyvinyl alcohol (PVA) and the cationic derivative of chitosan (N-[(2-hydroxy-3-trimethylamine) propyl] chitosan chloride, HTCC) with a potential antiviral application. A strong intermolecular network architecture was formed thanks to the introduction of linear PVA chains, which can efficiently interpenetrate the glutaraldehyde(GA)-crosslinked HTCC chains. The morphology of the obtained structures was examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The aerogels and modified polymers' elemental composition (including the chemical environment) was determined using X-ray photoelectron spectroscopy (XPS). New aerogels with more than twice as much developed micro- and mesopore space and BET-specific surface area were obtained concerning the starting sample chitosan aerogel crosslinked by glutaraldehyde (Chit/GA). The results obtained from the XPS analysis showed the presence of cationic 3-trimethylammonium groups on the surface of the aerogel, which can interact with viral capsid proteins. No cytotoxic effect of HTCC/GA/PVA aerogel was also observed on fibroblast cells of the NIH3T3 line. Furthermore, the HTCC/GA/PVA aerogel has been shown that efficiently traps mouse hepatitis virus (MHV) from suspension. The presented concept of aerogel filters for virus capture based on modified chitosan and polyvinyl alcohol has a high application potential.
Collapse
|
13
|
Mi X, Wang SC, Winters MA, Carta G. Protein adsorption on core-shell resins for flow-through purifications: Effect of protein molecular size, shape, and salt concentration. Biotechnol Prog 2023; 39:e3300. [PMID: 36101005 DOI: 10.1002/btpr.3300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022]
Abstract
This work addresses the functional properties of the core-shell resins Capto Core 400 and 700 for a broad range of proteins spanning 66.5 to 660 kDa in molecular mass, including bovine serum albumin (BSA) in monomer and dimer form, fibronectin, thyroglobulin, and BSA conjugates with 10 and 30 kDa poly(ethylene glycol) chains. Negatively charged latex nanoparticles (NPs) with nominal diameters of 20, 40, and 100 nm are also studied as surrogates for bioparticles. Protein binding and its trends with respect to salt concentration depend on the protein size and are different for the two agarose-based multimodal resins. For the smaller proteins, the amount of protein bound over practical time scales is limited by the resin surface area and is larger for Capto Core 400 compared with Capto Core 700. For the larger proteins, diffusion is severely restricted in Capto Core 400, resulting in lower binding capacities than those observed for Capto Core 700 despite the larger surface area. Adding 500 mM NaCl reduces the local bound protein concentration and diffusional hindrance resulting in higher binding capacities for the large proteins in Capto Core 400 compared with low ionic strength conditions. The NPs are essentially completely excluded from the Capto Core 400 pores. However, 20 and 40 nm NPs bind significantly to Capto Core 700, further hindering protein diffusion. A model is provided to predict the dynamic binding capacities as a function of residence time.
Collapse
Affiliation(s)
- Xue Mi
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Sheng-Ching Wang
- Vaccine Process Research & Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Michael A Winters
- Vaccine Process Research & Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Giorgio Carta
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
Fan J, Barbieri E, Shastry S, Menegatti S, Boi C, Carbonell RG. Purification of Adeno-Associated Virus (AAV) Serotype 2 from Spodoptera frugiperda (Sf9) Lysate by Chromatographic Nonwoven Membranes. MEMBRANES 2022; 12:membranes12100944. [PMID: 36295703 PMCID: PMC9606886 DOI: 10.3390/membranes12100944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/02/2023]
Abstract
The success of adeno-associated virus (AAV)-based therapeutics in gene therapy poses the need for rapid and efficient processes that can support the growing clinical demand. Nonwoven membranes represent an ideal tool for the future of virus purification: owing to their small fiber diameters and high porosity, they can operate at high flowrates while allowing full access to target viral particles without diffusional limitations. This study describes the development of nonwoven ion-exchange membrane adsorbents for the purification of AAV2 from an Sf9 cell lysate. A strong anion-exchange (AEX) membrane was developed by UV grafting glycidyl methacrylate on a polybutylene terephthalate nonwoven followed by functionalization with triethylamine (TEA), resulting in a quaternary amine ligand (AEX-TEA membrane). When operated in bind-and-elute mode at a pH higher than the pI of the capsids, this membrane exhibited a high AAV2 binding capacity (9.6 × 1013 vp·mL-1) at the residence time of 1 min, and outperformed commercial cast membranes by isolating AAV2 from an Sf9 lysate with high productivity (2.4 × 1013 capsids·mL-1·min-1) and logarithmic reduction value of host cell proteins (HCP LRV ~ 1.8). An iminodiacetic acid cation-exchange nonwoven (CEX-IDA membrane) was also prepared and utilized at a pH lower than the pI of capsids to purify AAV2 in a bind-and-elute mode, affording high capsid recovery and impurity removal by eluting with a salt gradient. To further increase purity, the CEX-IDA and AEX-TEA membranes were utilized in series to purify the AAV2 from the Sf9 cell lysate. This membrane-based chromatography process also achieved excellent DNA clearance and a recovery of infectivity higher that that reported using ion-exchange resin chromatography.
Collapse
Affiliation(s)
- Jinxin Fan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Shriarjun Shastry
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
| | - Cristiana Boi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
- Department of Civil, Chemical Environmental and Materials Engineering, DICAM, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Ruben G. Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
- National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), Newark, DE 19711, USA
| |
Collapse
|
15
|
Yang M, Tao L, Kang XR, Li LF, Zhao CC, Wang ZL, Sheng J, Tian Y. Recent developments in Moringa oleifera Lam. polysaccharides: A review of the relationship between extraction methods, structural characteristics and functional activities. Food Chem X 2022; 14:100322. [PMID: 35571331 PMCID: PMC9092490 DOI: 10.1016/j.fochx.2022.100322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/28/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Moringa oleifera Lam. (M. oleifera Lam) is a perennial tropical deciduous tree that belongs to the Moringaceae family. Polysaccharides are one of the major bioactive compounds in M. oleifera Lam and show immunomodulatory, anticancer, antioxidant, intestinal health protection and antidiabetic activities. At present, the structure and functional activities of M. oleifera Lam polysaccharides (MOPs) have been widespread, but the research data are relatively scattered. Moreover, the relationship between the structure and biological activities of MOPs has not been summarized. In this review, the current research on the extraction, purification, structural characteristics and biological activities of polysaccharides from different sources of M. oleifera Lam were summarized, and the structural characteristics of purified polysaccharides were focused on this review. Meanwhile, the biological activities of MOPs were introduced, and some molecular mechanisms were listed. In addition, the relationship between the structure and biological activities of MOPs was discussed. Furthermore, new perspectives and some future research of M. oleifera Lam polysaccharides were proposed in this review.
Collapse
Key Words
- ABTS, 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)
- AKP, Alkaline phosphatase
- ALT, Alanine aminotransferase
- AST, Asparate aminotransferase
- Ara, Arabinose
- BUN, Blood urea nitrogen
- Bax, Bcl2-associated X protein
- Bcl-2, B-cell lymphoma
- Biological activities
- CCl4, Carbon tetrachloride
- COX-2, Cyclooxygenase-2
- Caspase-3, Cysteinyl aspartate specific proteinase 3
- Caspase-9, Cysteinyl aspartate specific proteinase 9
- DPPH, 2.2-diphenyl-picryl-hydrazyl radical
- EAE, Enzyme-assisted extraction
- FRAP, Ferric ion reducing antioxidant power
- FTIR, Fourier transform infrared spectroscopy
- Future trends
- GC, Gas chromatography
- GC–MS, Gas chromatography-mass spectrometry
- GSH-Px, Glutathione peroxidase
- Gal, Galactose
- Glc, Glucose
- HDL, High-density Lipoprotein
- HPGPC, High-performance gel permeation chromatography
- HPLC, High performance liquid chromatography
- HepG2, Human hepatocellular carcinoma cell line
- IL-10, Interleukin-10
- IL-1β, Interleukin 1β
- IL-2, Interleukin-2
- IL-6, Interleukin-6
- LDL, Low-density Lipoprotein
- LPS, Lipopolysaccharide
- M. oleifera Lam, Moringa oleifera Lam.
- MAE, Microwave-assisted extraction
- MDA, Malondialdehyde
- MOPs, Moringa oleifera Lam polysaccharides
- MS, Mass spectrometry
- MTT, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide
- MW, Molecular weight
- Man, Mannose
- Moringa oleifera Lam
- NF-κB, Nuclear factor kappa-B
- NK, Natural killer cell
- NMR, Nuclear magnetic resonance
- NO, Nitric oxide
- PLE, Pressurized liquid extraction
- Polysaccharides
- ROS, Reactive oxygen species
- Rha, Rhamnose
- SCFAs, Short-chain fatty acids
- SOD, Superoxide dismutase
- Structure characteristics
- Structure-biological relationship
- TC, Total Cholesterol
- TG, Triglycerides
- TNF-α, Tumour necrosis factor-α
- TOF, Time of flight
- UAE, Ultrasound-assisted extraction
- V/C, Ileum crypt and villus length
- WAE, Water-assisted extraction
- Xyl, Xylose
- iNOS, Inducible nitric oxide synthase
Collapse
Affiliation(s)
- Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xin-Rui Kang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Ling-Fei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Cun-Chao Zhao
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Zi-Lin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
16
|
Inline-tandem purification of viruses from cell lysate by agarose-based chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1192:123140. [DOI: 10.1016/j.jchromb.2022.123140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
|
17
|
Engineering His-Tagged Senecavirus A for One-Step Purification of Viral Antigens. Vaccines (Basel) 2022; 10:vaccines10020170. [PMID: 35214628 PMCID: PMC8880742 DOI: 10.3390/vaccines10020170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Senecavirus A (SVA) is a picornavirus that causes vesicular disease in swine, and the inactivated vaccine is used to prevent and control SVA infection. To develop a new chromatography strategy for the purification and concentration of SVA vaccine antigens, we inserted a 6×His-tag at the VP1 C-terminal of the SVA/HLJ/CHA/2016 in an infectious clone to rescue a His-tagged SVA. The constructed and rescued recombinant virus, named as rSVA-His, exhibited similar growth kinetics to that of its parental virus. In addition, the expression of a 6×His-tag on the surface of SVA showed genetic stability in cell passages in vitro, which allowed one-step purification of SVA antigens by Ni2+ affinity columns. Furthermore, the immunogenicity of the inactivated rSVA-His was evaluated by inoculating rabbits and detecting neutralizing antibodies. The animals receiving two doses of the inactivated rSVA-His emulsified with oil adjuvant developed a high titer of neutralizing antibodies, indicating that SVA VP1 is tolerant to His-tag insertion without detriment to its antigenicity. In summary, the constructed 6×His-tagged SVA may offer a feasible approach to the affinity purification and concentration of antigens in the process of SVA inactivated vaccine production.
Collapse
|
18
|
Santos GC, Martins LM, Bregadiolli BA, Moreno VF, Silva‐Filho LC, Silva BHST. Heterocyclic compounds as antiviral drugs: Synthesis, structure–activity relationship and traditional applications. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Vitor Fernandes Moreno
- School of Sciences, Department of Chemistry São Paulo State University (UNESP) Bauru Brazil
| | | | | |
Collapse
|
19
|
Highly Efficient Purification of Recombinant VSV-∆G-Spike Vaccine against SARS-CoV-2 by Flow-Through Chromatography. BIOTECH 2021; 10:biotech10040022. [PMID: 35822796 PMCID: PMC9245476 DOI: 10.3390/biotech10040022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/10/2023] Open
Abstract
This study reports a highly efficient, rapid one-step purification process for the production of the recombinant vesicular stomatitis virus-based vaccine, rVSV-∆G-spike (rVSV-S), recently developed by the Israel Institute for Biological Research (IIBR) for the prevention of COVID-19. Several purification strategies are evaluated using a variety of chromatography methods, including membrane adsorbers and packed-bed ion-exchange chromatography. Cell harvest is initially treated with endonuclease, clarified, and further concentrated by ultrafiltration before chromatography purification. The use of anion-exchange chromatography in all forms results in strong binding of the virus to the media, necessitating a high salt concentration for elution. The large virus and spike protein binds very strongly to the high surface area of the membrane adsorbents, resulting in poor virus recovery (<15%), while the use of packed-bed chromatography, where the surface area is smaller, achieves better recovery (up to 33%). Finally, a highly efficient chromatography purification process with CaptoTM Core 700 resin, which does not require binding and the elution of the virus, is described. rVSV-S cannot enter the inner pores of the resin and is collected in the flow-through eluent. Purification of the rVSV-S virus with CaptoTM Core 700 resulted in viral infectivity above 85% for this step, with the efficient removal of host cell proteins, consistent with regulatory requirements. Similar results were obtained without an initial ultrafiltration step.
Collapse
|
20
|
Begić M, Pečenković S, Gajdošik MŠ, Josić D, Müller E. Salt-tolerant cation exchanger-containing sulfate groups as a viable alternative for mixed-mode type and heparin-based affinity resins. Biotechnol J 2021; 16:e2100100. [PMID: 34347362 DOI: 10.1002/biot.202100100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
Ion-exchange chromatography is still one of the most popular protein separation techniques. Before chromatographic separation, the high salt concentration in various samples necessitates additional steps. Therefore, low salt tolerance of ion-exchange resins is a drawback that needs to be addressed. Herein, the differences in salt tolerance and hydrophobicity of strong cation-exchange TOYOPEARL resins of sulfonium and sulfate-types were investigated. Despite only a minor structural difference, differences in selectivity and salt tolerance between the sulfate and sulfonic groups were detected. In silico calculations were also carried out for model substances representing the sulfonium and sulfate groups, wherein significant differences in hydrophobicity was observed. These experiments confirmed the hypothesis that the salt tolerance, higher affinity, and selectivity for certain vitamin K dependent clotting factors are interrelated and dependent on the presence of the sulfate group. Separation of clotting factor IX from the prothrombin complex concentrate further to confirmed the affinity for these proteins. The results show that the use of only a resin with the sulfate ligand and not with the sulfonic acid ligand allows for a facile and rapid separation of clotting factor IX and other vitamin K dependent clotting factors.
Collapse
Affiliation(s)
- Marija Begić
- Faculty of Medicine, University Juraj Dobrila, Pula, Croatia
| | | | | | - Djuro Josić
- Faculty of Medicine, University Juraj Dobrila, Pula, Croatia.,Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
21
|
Eweida BY, El-Moghazy AY, Pandey PK, Amaly N. Fabrication and simulation studies of high-performance anionic sponge alginate beads for lysozyme separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Sellaoui L, Badawi M, Monari A, Tatarchuk T, Jemli S, Luiz Dotto G, Bonilla-Petriciolet A, Chen Z. Make it clean, make it safe: A review on virus elimination via adsorption. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 412:128682. [PMID: 33776550 PMCID: PMC7983426 DOI: 10.1016/j.cej.2021.128682] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 05/09/2023]
Abstract
Recently, the potential dangers of viral infection transmission through water and air have become the focus of worldwide attention, via the spread of COVID-19 pandemic. The occurrence of large-scale outbreaks of dangerous infections caused by unknown pathogens and the isolation of new pandemic strains require the development of improved methods of viruses' inactivation. Viruses are not stable self-sustaining living organisms and are rapidly inactivated on isolated surfaces. However, water resources and air can participate in the pathogens' diffusion, stabilization, and transmission. Viruses inactivation and elimination by adsorption are relevant since they can represent an effective and low-cost method to treat fluids, and hence limit the spread of pathogen agents. This review analyzed the interaction between viruses and carbon-based, oxide-based, porous materials and biological materials (e.g., sulfated polysaccharides and cyclodextrins). It will be shown that these adsorbents can play a relevant role in the viruses removal where water and air purification mostly occurring via electrostatic interactions. However, a clear systematic vision of the correlation between the surface potential and the adsorption capacity of the different filters is still lacking and should be provided to achieve a better comprehension of the global phenomenon. The rationalization of the adsorption capacity may be achieved through a proper physico-chemical characterization of new adsorbents, including molecular modeling and simulations, also considering the adsorption of virus-like particles on their surface. As a most timely perspective, the results on this review present potential solutions to investigate coronaviruses and specifically SARS-CoV-2, responsible of the COVID-19 pandemic, whose spread can be limited by the efficient disinfection and purification of closed-spaces air and urban waters.
Collapse
Affiliation(s)
- Lotfi Sellaoui
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques LPCT UMR CNRS 7019, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques LPCT UMR CNRS 7019, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Tetiana Tatarchuk
- Educational and Scientific Center of Materials Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, Tunisia
- Faculty of Sciences of Sfax, Biology Department, University of Sfax, Tunisia
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, 97105-900 Santa Maria, RS, Brazil
| | | | - Zhuqi Chen
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
23
|
B Carvalho S, Peixoto C, T Carrondo MJ, S Silva RJ. Downstream processing for influenza vaccines and candidates: An update. Biotechnol Bioeng 2021; 118:2845-2869. [PMID: 33913510 DOI: 10.1002/bit.27803] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Seasonal and pandemic influenza outbreaks present severe health and economic burdens. To overcome limitations on influenza vaccines' availability and effectiveness, researchers chase universal vaccines providing broad, long-lasting protection against multiple influenza subtypes, and including pandemic ones. Novel influenza vaccine designs are under development, in clinical trials, or reaching the market, namely inactivated, or live-attenuated virus, virus-like particles, or recombinant antigens, searching for improved effectiveness; all these bring downstream processing (DSP) new challenges. Having to deal with new influenza strains, including pandemics, requires shorter development time, driving the development of faster bioprocesses. To cope with better upstream processes, new regulatory demands for quality and safety, and cost reduction requirements, new unit operations and integrated processes are increasing DSP efficiency for novel vaccine formats. This review covers recent advances in DSP strategies of different influenza vaccine formats. Focus is given to the improvements on relevant state-of-the-art unit operations, from harvest and clarification to purification steps, ending with sterile filtration and formulation. The development of more efficient unit operations to cope with biophysical properties of the new candidates is discussed: emphasis is given to the design of new stationary phases, 3D printing approaches, and continuous processing tools, such as continuous chromatography. The impact of the production platforms and vaccine designs on the downstream operations for the different influenza vaccine formats approved for this season are highlighted.
Collapse
Affiliation(s)
- Sofia B Carvalho
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ricardo J S Silva
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
24
|
Cervantes-Avilés P, Moreno-Andrade I, Carrillo-Reyes J. Approaches applied to detect SARS-CoV-2 in wastewater and perspectives post-COVID-19. JOURNAL OF WATER PROCESS ENGINEERING 2021; 40:101947. [PMID: 35592728 PMCID: PMC7846222 DOI: 10.1016/j.jwpe.2021.101947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/16/2020] [Accepted: 01/26/2021] [Indexed: 05/03/2023]
Abstract
Currently, SARS-CoV-2 has been detected in the influent of wastewater treatment plants (WWTP), pumping stations, manholes, sewer networks and sludge of WWTP and facilities of countries as France, Spain, Italy, Netherlands, United States, Australia, Ecuador, Brazil and Japan. Although this virus has been detected in the wastewater streams, there is no robust method for its detection and quantification in wastewater. This review compiled and analyzed the virus concentration approaches applied to detect the SARS-CoV-2, besides to provide insights about the methodology for viral concentration, limit of detection, occurrence, persistence, and perspectives post-COVID-19 related with the implications of the virus presence in wastewater. The SARS-COV-2 detection in wastewater has been related to virus concentration methods, which present different recovery rates of the virus. The most used viral concentration methods have been the polyethylene glycol (PEG) for precipitation of viral material and the ultrafiltration at molecular weight level. After viral concentration, the detection and quantification of SARS-COV-2 in wastewater are mainly via quantitative reverse transcription polymerase chain reaction (RT-qPCR), which is the clinical assay adapted for environmental purposes. Although in some experiments the positive control during RT-qPCR is running a surrogated virus (e.g., Mengovirus or Dengue virus), RT-qPCR or reverse transcription droplet digital PCR (RT-ddPCR) targeting the gene encoding nucleocapsid (N1, N2 and N3) of SARS-COV-2 are highly recommended to calculate the limit of detection in wastewater samples. Current results suggest that a rigorous methodology to elucidate the positive cases in a region from genomic copies in wastewater is needed.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, Pue, CP 72453, Mexico
| | - Iván Moreno-Andrade
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Queretaro, CP 76230, Mexico
| | - Julián Carrillo-Reyes
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Queretaro, CP 76230, Mexico
| |
Collapse
|
25
|
Woolfork AG, Iftekhar S, Ovbude S, Suh K, Sharmeen S, Kyei I, Jones J, Hage DS. Recent Advances in Supramolecular Affinity Separations: Affinity Chromatography and Related Methods. ADVANCES IN CHROMATOGRAPHY 2021; 58:1-74. [PMID: 36186535 PMCID: PMC9520669 DOI: 10.1201/9781003223405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Affinity chromatography is a technique that uses a stationary phase based on the supramolecular interactions that occur in biological systems or mimics of these systems. This method has long been a popular tool for the isolation, measurement, and characterization of specific targets in complex samples. This review discusses the basic concepts of this method and examines recent developments in affinity chromatography and related supramolecular separation methods. Topics that are examined include advances that have occurred in the types of supports, approaches to immobilization, and binding agents that are employed in this method. New developments in the applications of affinity chromatography are also summarized, including an overview on the use of this method for biochemical purification, sample preparation or analysis, chiral separations, and biointeraction studies.
Collapse
Affiliation(s)
- Ashley G. Woolfork
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Sazia Iftekhar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Susan Ovbude
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Kyungah Suh
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Jacob Jones
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - David S. Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| |
Collapse
|
26
|
Moreira AS, Cavaco DG, Faria TQ, Alves PM, Carrondo MJT, Peixoto C. Advances in Lentivirus Purification. Biotechnol J 2020; 16:e2000019. [PMID: 33089626 DOI: 10.1002/biot.202000019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/15/2020] [Indexed: 12/20/2022]
Abstract
Lentiviral vectors (LVs) have been increasingly used as a tool for gene and cell therapies since they can stably integrate the genome in dividing and nondividing cells. LV production and purification processes have evolved substantially over the last decades. However, the increasing demands for higher quantities with more restrictive purity requirements are stimulating the development of novel materials and strategies to supply the market with LV in a cost-effective manner. A detailed review of each downstream process unit operation is performed, limitations, strengths, and potential outcomes being covered. Currently, the majority of large-scale LV manufacturing processes are still based on adherent cell culture, although it is known that the industry is migrating fast to suspension cultures. Regarding the purification strategy, it consists of batch chromatography and membrane technology. Nevertheless, new solutions are being created to improve the current production schemes and expand its clinical use.
Collapse
Affiliation(s)
- Ana Sofia Moreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - David Guia Cavaco
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Tiago Q Faria
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| |
Collapse
|
27
|
Liu ZH, Niu FJ, Xie YX, Xie SM, Liu YN, Yang YY, Zhou CZ, Wan XH. A review: Natural polysaccharides from medicinal plants and microorganisms and their anti-herpetic mechanism. Biomed Pharmacother 2020; 129:110469. [DOI: 10.1016/j.biopha.2020.110469] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
|
28
|
Meye Biyogo A, Hespel L, Humblot V, Lebrun L, Estour F. Cellulose fibers modification through metal-free click chemistry for the elaboration of versatile functional surfaces. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|