1
|
Villavicencio CJG, Silva BDC, Matara A, Ptasinska S. Exploring pH Dynamics in Amino Acid Solutions Under Low-Temperature Plasma Exposure. Molecules 2024; 29:5889. [PMID: 39769978 PMCID: PMC11679283 DOI: 10.3390/molecules29245889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Low-temperature plasma (LTP) offers a promising alternative for cancer therapy, as it targets malignant cells selectively while minimizing damage to healthy tissues. Upon interaction with an aqueous solution, LTP generates reactive oxygen and nitrogen species and thereby influences the solution's pH, which is a crucial factor in cancer proliferation and response to treatment. This study investigated the effects of LTP on the pH of aqueous solutions, with a focus on the effect of LTP parameters such as voltage, frequency, and irradiation time. In addition, it explored the influence of solution composition, specifically the presence of the amino acids, glycine and serine, on pH changes; these amino acids are known to play significant roles in cancer proliferation. Our results indicated that LTP induces acidification in deionized water, in which the extent of acidification increased proportionally with plasma parameters. In glycine-containing solutions, pH changes were concentration-dependent, whereas serine-containing solutions maintained a constant pH across all tested concentrations. To investigate potential changes to the structural properties of glycine and serine exposed to LTP that could be responsible for different pH responses, we analyzed the samples using FTIR spectroscopy. A significant decrease in absorbance was observed for solutions with low concentrations of amino acids, suggesting their degradation.
Collapse
Affiliation(s)
- Cecilia Julieta Garcia Villavicencio
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA; (C.J.G.V.); (B.d.C.S.); (A.M.)
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Beatriz de Campos Silva
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA; (C.J.G.V.); (B.d.C.S.); (A.M.)
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Anesu Matara
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA; (C.J.G.V.); (B.d.C.S.); (A.M.)
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sylwia Ptasinska
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA; (C.J.G.V.); (B.d.C.S.); (A.M.)
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
2
|
Liu Q, Zhang S, Qu X, Xing Y, Xiao Z, Fan S, Zhu J, Huang M, Bi H. A novel strategy based on the dielectric barrier discharge plasma for rapid elimination of the carryover associated with μPESI-MS/MS system. J Pharm Anal 2024; 14:101017. [PMID: 39759972 PMCID: PMC11697052 DOI: 10.1016/j.jpha.2024.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 01/07/2025] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Qian Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong RangerBio Technologies Co., Ltd., Dongguan, Guangdong, 523000, China
| | - Simin Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiangyang Qu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yunhui Xing
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhenwei Xiao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Janshon Zhu
- Guangdong RangerBio Technologies Co., Ltd., Dongguan, Guangdong, 523000, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
3
|
Samee W, Matra K, Lakkham N, Dongkaew B, Sumkhum P, Sangwang W, Nupangtha W, Promping J. Electrical breakdown in liquid-phase processing on an enhancement of 7-hydroxymitragynine conversion from mitragynine in Mitragyna speciose (Kratom). Heliyon 2024; 10:e36676. [PMID: 39296046 PMCID: PMC11408824 DOI: 10.1016/j.heliyon.2024.e36676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
This study investigates the impact of the Electrical Breakdown in Liquid-phase (EBL) process on alkaloid transformation in Mitragyna speciose (Kratom) leaves, focusing on the conversion of mitragynine (MG) to 7-hydroxy mitragynine (7-OH-MG) by using advanced oxidation processes (AOPs). A novel reactor has been developed to enhance plasma exposure to Kratom leaf powdered solutions during the EBL process. Two distinct electrical voltage characteristics, half-positive and negative half-waves, have been utilized for the EBL, with an output voltage of 4.57 kVpeak at a no-load condition and a frequency of 50 Hz. The experimental findings demonstrate a time-dependent enhancement in the transformation process. The highest yield of 7-OH-MG, reaching 2,485 ± 134 μg/g of dried Kratom leaves weight, has been attained with the EBL processing generated by positive half-wave voltage after 20 min of EBL exposure. Notably, the EBL processing generated by positive half-wave voltage has outperformed the one generated by negative half-wave voltage by a significant factor of 2.01.
Collapse
Affiliation(s)
- Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok, 26120, Thailand
| | - Khanit Matra
- Department of Electrical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok, 26120, Thailand
| | - Nattawut Lakkham
- Department of Electrical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok, 26120, Thailand
| | - Beelawan Dongkaew
- Department of Electrical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok, 26120, Thailand
| | - Passakorn Sumkhum
- Department of Electrical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok, 26120, Thailand
| | - Wutthichok Sangwang
- Thailand Institute of Nuclear Technology (Public Organization), Ongkharak, Nakhon Nayok, 26120, Thailand
| | - Wasin Nupangtha
- Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, Nan Campus, Nan 55000, Thailand
| | - Jiraporn Promping
- Thailand Institute of Nuclear Technology (Public Organization), Ongkharak, Nakhon Nayok, 26120, Thailand
| |
Collapse
|
4
|
Zhu J, Liu Q, Chen Y, Zhang J, Xu Q, Wu Z. Synergistic effects of plasma-activated medium in combination with Baicalin against neuronal damage. Heliyon 2024; 10:e36079. [PMID: 39224291 PMCID: PMC11366879 DOI: 10.1016/j.heliyon.2024.e36079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Neurodegenerative disorders are chronic conditions that progressively damage and destroy parts of the nervous system, and are currently considered permanent and incurable. Alternative strategies capable of effectively healing neuronal damage have been actively pursued. Here, we report the neuroprotective effects of baicalin (BA) combined with plasma-activated medium (PAM) against glutamate-induced excitotoxicity in SH-SY5Y cells. Through in vitro assays, the cell viability, inflammation, apoptosis, and oxidative stress were evaluated. The co-application of BA and PAM significantly enhanced cell viability, reduced pro-inflammatory markers (TNF-α and NF-κB), decreased apoptotic proteins (Bax and Caspase-3) and boosted antioxidative defenses (increased SOD activity and lowered ROS levels). This study confirms the potential of combining BA with PAM as an effective therapeutic strategy for mitigating the effects of excitotoxicity. PAM is a promising adjunct and potential drug delivery method in neuroprotective therapy, providing a new avenue for developing treatments for diseases characterized by neuronal damage.
Collapse
Affiliation(s)
- Jiwen Zhu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qi Liu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yan Chen
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - JiaMing Zhang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qinghua Xu
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, Anhui, 230061, China
| | - Zhengwei Wu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
5
|
Rahman MM, Islam A, Mamun MA, Afroz MS, Nabi MM, Sakamoto T, Sato T, Kahyo T, Takahashi Y, Okino A, Setou M. Low-Temperature Plasma Pretreatment Enhanced Cholesterol Detection in Brain by Desorption Electrospray Ionization-Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1227-1236. [PMID: 38778699 DOI: 10.1021/jasms.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cholesterol is a primary lipid molecule in the brain that contains one-fourth of the total body cholesterol. Abnormal cholesterol homeostasis is associated with neurodegenerative disorders. Mass spectrometry imaging (MSI) technique is a powerful tool for studying lipidomics and metabolomics. Among the MSI techniques, desorption electrospray ionization-MSI (DESI-MSI) has been used advantageously to study brain lipidomics due to its soft and ambient ionization nature. However, brain cholesterol is poorly ionized. To this end, we have developed a new method for detecting brain cholesterol by DESI-MSI using low-temperature plasma (LTP) pretreatment as an ionization enhancement. In this method, the brain sections were treated with LTP for 1 and 2 min prior to DESI-MSI analyses. Interestingly, the MS signal intensity of cholesterol (at m/z 369.35 [M + H - H2O]+) was more than 2-fold higher in the 1 min LTP-treated brain section compared to the untreated section. In addition, we detected cholesterol, more specifically excluding isomers by targeted-DESI-MSI in multiple reaction monitoring (MRM) mode and similar results were observed: the signal intensity of each cholesterol transition (m/z 369.4 → 95.1, 109.1, 135.1, 147.1, and 161.1) was increased by more than 2-fold due to 1 min LTP treatment. Cholesterol showed characteristic distributions in the fiber tract region, including the corpus callosum and anterior commissure, anterior part of the brain where LTP markedly (p < 0.001) enhanced the cholesterol intensity. In addition, the distributions of some unknown analytes were exclusively detected in the LTP-treated section. Our study revealed LTP pretreatment as a potential strategy to ionize molecules that show poor ionization efficiency in the MSI technique.
Collapse
Affiliation(s)
- Md Muedur Rahman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Md Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mst Sayela Afroz
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Md Mahamodun Nabi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Quantum Imaging Laboratory, International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Akitoshi Okino
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, J2-32, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
6
|
Winiecki M, Stepczyńska M, Moraczewski K, Skowronski L, Trzcinski M, Rerek T, Malinowski R. Effect of Low-Temperature Oxygen Plasma Treatment of Titanium Alloy Surface on Tannic Acid Coating Deposition. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1065. [PMID: 38473537 DOI: 10.3390/ma17051065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
In this study, the effect of low-temperature oxygen plasma treatment with various powers of a titanium alloy surface on the structural and morphological properties of a substrate and the deposition of a tannic acid coating was investigated. The surface characteristics of the titanium alloy were evaluated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle measurements. Following this, the tannic acid coatings were deposited on the titanium alloy substrates and the structural and morphological properties of the tannic acid coatings deposited were subject to characterization by XPS, SEM, and spectroscopic ellipsometry (SE) measurements. The results show that the low-temperature oxygen plasma treatment of titanium alloys leads to the formation of titanium dioxides that contain -OH groups on the surface being accompanied by a reduction in carbon, which imparts hydrophilicity to the titanium substrate, and the effect increases with the applied plasma power. The performed titanium alloy substrate modification translates into the quality of the deposited tannic acid coating standing out by higher uniformity of the coating, lower number of defects indicating delamination or incomplete bonding of the coating with the substrate, lower number of cracks, thinner cracks, and higher thickness of the tannic acid coatings compared to the non-treated titanium alloy substrate. A similar effect is observed as the applied plasma power increases.
Collapse
Affiliation(s)
- Mariusz Winiecki
- Department of Constructional Materials and Biomaterials, Faculty of Materials Engineering, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Magdalena Stepczyńska
- Department of Polymer Materials Engineering, Faculty of Materials Engineering, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Krzysztof Moraczewski
- Department of Polymer Materials Engineering, Faculty of Materials Engineering, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Lukasz Skowronski
- Division of Surface Science, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Marek Trzcinski
- Division of Surface Science, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Tomasz Rerek
- Division of Surface Science, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Rafał Malinowski
- Łukasiewicz Research Network-Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Torun, Poland
| |
Collapse
|
7
|
Farag OF, Kotb OM, Ghazaly ME, El-Sayed NM. Response of the modified GAFCHROMIC EBT2 radiochromic film to DC glow discharge plasma. Sci Rep 2024; 14:2262. [PMID: 38279004 PMCID: PMC10817983 DOI: 10.1038/s41598-024-52628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 01/28/2024] Open
Abstract
The response of the modified GAFCHROMIC EBT2 radiochromic film to DC Oxygen glow discharge plasma was investigated using a flatbed scanner and an UV-Vis spectrophotometer. The film was modified by removing the polyester overlaminate, adhesive, and topcoat layers with a total thickness of 80 µm, and is now referred to as EBT2-M. The EBT2-M films were exposed to DC Oxygen plasma for different durations: 0, 0.5, 1, 2, 3, 4, 7, and 10 min. The exposed films exhibit coloration homogeneity with an average variation of (1.6 ± 0.3) × 10-4 pixel values/µm, irrespective of the applied exposure time. The pixel values of the red-and-green channels and weighted grayscale images decreased exponentially with different sensitivity amounts to [Formula: see text] 39.67, 49.69, and 42.11 min-1, respectively, as the exposure time increased. The two absorption peaks at 580 ± 4 nm and 632 ± 4 nm in the UV-Vis absorption spectra of the exposed GAFCHROMIC EBT2-M radiochromic films are increasing with increasing exposure time up to 4 min, thereafter saturated for prolonged exposure time. The integrated absorbance in the range from 400 to 700 nm is linearly correlated with the exposure time. The indirect and direct optical energy band gaps and Urbach energy of the modified GAFCHROMIC EBT2 film are weakly correlated with the exposure time. These findings suggest the utilization of the modified GAFCHROMIC EBT2 radiochromic film as a novel and simple technique for plasma diagnostics.
Collapse
Affiliation(s)
- Omar F Farag
- Department of Physics, Faculty of Science, Zagazig University, PO 44519, Zagazig, Egypt
| | - Omar M Kotb
- Department of Physics, Faculty of Science, Zagazig University, PO 44519, Zagazig, Egypt.
| | - M El Ghazaly
- Department of Physics, Faculty of Science, Zagazig University, PO 44519, Zagazig, Egypt
| | - Naglaa M El-Sayed
- Department of Physics, Faculty of Science, Zagazig University, PO 44519, Zagazig, Egypt
| |
Collapse
|
8
|
Karthik C, Sarngadharan SC, Thomas V. Low-Temperature Plasma Techniques in Biomedical Applications and Therapeutics: An Overview. Int J Mol Sci 2023; 25:524. [PMID: 38203693 PMCID: PMC10779006 DOI: 10.3390/ijms25010524] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Plasma, the fourth fundamental state of matter, comprises charged species and electrons, and it is a fascinating medium that is spread over the entire visible universe. In addition to that, plasma can be generated artificially under appropriate laboratory techniques. Artificially generated thermal or hot plasma has applications in heavy and electronic industries; however, the non-thermal (cold atmospheric or low temperature) plasma finds its applications mainly in biomedicals and therapeutics. One of the important characteristics of LTP is that the constituent particles in the plasma stream can often maintain an overall temperature of nearly room temperature, even though the thermal parameters of the free electrons go up to 1 to 10 keV. The presence of reactive chemical species at ambient temperature and atmospheric pressure makes LTP a bio-tolerant tool in biomedical applications with many advantages over conventional techniques. This review presents some of the important biomedical applications of cold-atmospheric plasma (CAP) or low-temperature plasma (LTP) in modern medicine, showcasing its effect in antimicrobial therapy, cancer treatment, drug/gene delivery, tissue engineering, implant modifications, interaction with biomolecules, etc., and overviews some present challenges in the field of plasma medicine.
Collapse
Affiliation(s)
- Chandrima Karthik
- Department of Materials & Mechanical Engineering, University of Alabama at Birmingham, 1150 10th Avenue South, Birmingham, AL 35205, USA;
| | | | - Vinoy Thomas
- Department of Materials & Mechanical Engineering, University of Alabama at Birmingham, 1150 10th Avenue South, Birmingham, AL 35205, USA;
| |
Collapse
|
9
|
Chen F, He H, Wang L, Yang X, Gao J, Wang J, Zhang S, Huang S, Yang C. Toxicity study of rats treated by plasma-activated solution. Heliyon 2023; 9:e23116. [PMID: 38144323 PMCID: PMC10746464 DOI: 10.1016/j.heliyon.2023.e23116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Background Cold atmospheric plasma (CAP) is an effective treatment for various skin diseases. Plasma-activated solution (PAS) is an indirect method of CAP treatment that produces biological effects similar to those of direct treatment with plasma devices. The anticancer and bacteriostatic effects of PAS have been demonstrated in vitro experiments; however, on the basis of the lack of toxicological studies on PAS, its effects on living mammals when administered by subcutaneous injection is poorly known. Purpose The purpose of this study was to evaluate the effects of PAS on local skin tissue cells, blood system, heart, liver, lungs, kidneys and other vital organs of the rat when injected subcutaneously. Methods PAS was prepared by CAP irradiation of phosphate-buffered saline (PBS). PBS and different PBS groups (CAP irradiation for 1, 3, or 5 min) were injected subcutaneously once every 48 h. The rats were euthanized immediately after 10 cycles of therapy. Results No adverse effects were observed during the entire period of the experiment. Histopathological examination of organs and tissues revealed no structural changes. Moreover, no obvious structural changes were observed in skin tissue. DNA damage and cancerous proliferative changes were not detected in skin tissue treated with PAS. Subsequently, RNA sequencing and western blotting were performed. The results showed that PAS increased the expression of growth factors like transforming growth factor beta (TGF-β) and vascular endothelial growth factor A (VEGFA). These results might be directly linked to the role of PAS in stimulating TGF-β receptor signaling pathway and angiogenesis. Conclusion The results showed that multiple subcutaneous injections of PAS did not show significant toxic side effects on local skin tissues and some vital organs in rats, providing a scientific basis to support the future treatment of skin diseases with PAS.
Collapse
Affiliation(s)
- Fanfan Chen
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, Anhui, PR China
| | - Houyu He
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, Anhui, PR China
| | - Liyun Wang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, Anhui, PR China
| | - Xingyu Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, Anhui, PR China
| | - Jing Gao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, Anhui, PR China
| | - Jingwen Wang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, Anhui, PR China
| | - Shengquan Zhang
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, Anhui, PR China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Shenghai Huang
- Department of Microbiology, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Chunjun Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, Anhui, PR China
| |
Collapse
|
10
|
Gherabli A, Grimi N, Lemaire J, Vorobiev E, Lebovka N. Extraction of Valuable Biomolecules from the Microalga Haematococcus pluvialis Assisted by Electrotechnologies. Molecules 2023; 28:2089. [PMID: 36903334 PMCID: PMC10004699 DOI: 10.3390/molecules28052089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The freshwater microalga Haematococcus pluvialis is well known as the cell factory for natural astaxanthin, which composes up to 4-7% of its total dry weight. The bioaccumulation of astaxanthin in H. pluvialis cysts seems to be a very complex process that depends on different stress conditions during its cultivation. The red cysts of H. pluvialis develop thick and rigid cell walls under stress growing conditions. Thus, the biomolecule extraction requires general cell disruption technologies to reach a high recovery rate. This short review provides an analysis of the different steps in H. pluvialis's up and downstream processing including cultivation and harvesting of biomass, cell disruption, extraction and purification techniques. Useful information on the structure of H. pluvialis's cells, biomolecular composition and properties and the bioactivity of astaxanthin is collected. Special emphasis is given to the recent progress in application of different electrotechnologies during the growth stages and for assistance of the recovery of different biomolecules from H. pluvialis.
Collapse
Affiliation(s)
- Adila Gherabli
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110 Pomacle, France
| | - Nabil Grimi
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
| | - Julien Lemaire
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110 Pomacle, France
| | - Eugène Vorobiev
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
| | - Nikolai Lebovka
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
- Laboratory of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, 03142 Kyiv, Ukraine
| |
Collapse
|
11
|
Zhang H, Cheng X, Guo J, Cai J, Ni X. Mechanical Properties of Calcium Aluminate Cement Reinforced with Plasma-Treated Basalt Fibers for In Situ Combustion. ACS OMEGA 2023; 8:1864-1875. [PMID: 36687025 PMCID: PMC9850753 DOI: 10.1021/acsomega.2c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Brittleness and poor tensile/flexural properties restrict the application of calcium aluminate cement (CAC) in oil and gas wells. Reinforcing CAC with fibers is an effective method for improving its strength and toughness and overcoming the shortcomings of its mechanical properties. In this article, as an auxiliary cementing material, slag does not affect the thickening time of CAC. After adding slag, the cement slurry meets the thickening time during cementing construction, and basalt fiber is selected as the toughening material. The enhancement effect of basalt fiber on the mechanical properties of CAC slag composites is studied, including the evaluation of the macroscopic mechanical properties and microstructure at a high temperature (500 °C). The optimum composition of basalt and fiber-reinforced CAC was determined. Basalt fibers were added to CAC at different contents of 0, 0.1, 0.2, 0.3, 0.4, and 0.5% based on the weight of the cement. All the results showed that the introduction of basalt fibers could significantly enhance the strength of the cement at high temperatures. Compared with the control samples, an additional increase in the compressive and tensile strengths of the samples of 35.1 and 85.2%, respectively, was achieved at high temperature with approximately 0.4% fiber content. Plasma treatment further improved the reinforcing effect of the basalt fibers, where the high-temperature compressive and tensile strengths of the samples increased from 28.88 and 1.52 to 35.23 and 1.87 MPa, respectively, an increase of 21.98 and 20.6%, respectively, compared with the untreated basalt fibers. When the cement paste is cured by simulated curing for 28 d, the high-temperature compressive strength and tensile strength with plasma modification increased from 28.26 and 1.5 to 29.1 and 2.15 MPa, respectively, an increase of 3.0 and 43.3%, respectively. The structure of the formed hydrates was studied using scanning electron microscopy. Furthermore, toughening of the basalt fiber-reinforced CAC-based composites resulted mainly from crack bridging and fiber pull-out.
Collapse
Affiliation(s)
- Hua Zhang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Xiaowei Cheng
- School
of New Energy and Materials, Southwest Petroleum
University, Chengdu 610500, China
- State
Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
| | - Jintang Guo
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jingxuan Cai
- School
of New Energy and Materials, Southwest Petroleum
University, Chengdu 610500, China
- State
Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
| | - Xiucheng Ni
- School
of New Energy and Materials, Southwest Petroleum
University, Chengdu 610500, China
- State
Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
12
|
Bouza M, García-Martínez J, Gilbert-López B, Brandt S, García-Reyes JF, Molina-Díaz A, Franzke J. Dielectric Barrier Discharge Ionization Mechanisms: Polycyclic Aromatic Hydrocarbons as a Case of Study. Anal Chem 2023; 95:854-861. [PMID: 36538370 PMCID: PMC9850405 DOI: 10.1021/acs.analchem.2c03279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Dielectric barrier discharge ionization (DBDI) is a versatile tool for small-molecule mass spectrometry applications, helping cover from polar to low polar molecules. However, the plasma gas-phase interactions are highly complex and have been scarcely investigated. The ionization mechanisms of plasmas have long been assumed to be somewhat similar to atmospheric pressure chemical ionization (APCI). Here, we evaluated the ionization mechanisms of a two-ring DBDI ion source, using different discharge gases to analyze vaporized liquid samples. Polycyclic aromatic hydrocarbons (PAHs) were used as model analytes to assess the mechanisms' dominance: protonation, [M + H]+, or radical ion species formation, [M]·+. In the present work, two different ionization trends were observed for APCI and DBDI during the PAH analysis; the compounds with proton affinities (PA) over 856 kJ/mol were detected as [M + H]+ when APCI was used as ionization source. Meanwhile, independently of the PA, DBDI showed the prevalence of charge exchange reactions. The addition of dopants in the gas-phase region shifted the ionization mechanisms toward charge exchange reactions, facilitating the formation of [M]·+ ion species, showing anisole a significant boost of the PAH radical ion species signals, over nine times for Ar-Prop-DBDI analysis. The presence of high-energy metastable atoms (e.g., HeM) with high ionization potentials (IE = 19.80 eV) did not show boosted PAH abundances or extensive molecule fragmentation. Moreover, other species in the plasma jet region with closer and more appropriate IE, such as N2 B3Πg excited molecules, are likely responsible for PAH Penning ionization.
Collapse
Affiliation(s)
- Marcos Bouza
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071Jaén, Spain
| | - Julio García-Martínez
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071Jaén, Spain
| | - Bienvenida Gilbert-López
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071Jaén, Spain
| | - Sebastian Brandt
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139Dortmund, Germany
| | - Juan F. García-Reyes
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071Jaén, Spain
| | - Joachim Franzke
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139Dortmund, Germany
| |
Collapse
|
13
|
Soni V, Adhikari M, Lin L, Sherman JH, Keidar M. Theranostic Potential of Adaptive Cold Atmospheric Plasma with Temozolomide to Checkmate Glioblastoma: An In Vitro Study. Cancers (Basel) 2022; 14:cancers14133116. [PMID: 35804888 PMCID: PMC9264842 DOI: 10.3390/cancers14133116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is an aggressive form of brain cancer. Here, we present a combination therapy of cold atmospheric plasma (CAP) and temozolomide (TMZ) to treat GBM in vitro. We analyze the effects of the co-treatment in two GBM (TMZ-resistant and -sensitive) cell lines. The aim of this study is mainly to sensitize these cells using CAP so that they respond well to TMZ. We further found that the removal of cell culture media after CAP treatment does not affect the sensitivity of CAP to cancer cells but enhances the effects of TMZ. However, it was observed in our study that keeping the CAP-treated media for a shorter time did not significantly inhibit T98G cells. Interestingly, keeping the same plasma-treated media for a longer duration resulted in a decrease in cell viability. On the contrary, TMZ-sensitive cell A172 responded well to the co-treatment. This could be a potential reason for the sensitization of the combination therapy. Abstract Cold atmospheric plasma (CAP) has been used for the treatment of various cancers. The anti-cancer properties of CAP are mainly due to the reactive species generated from it. Here, we analyze the efficacy of CAP in combination with temozolomide (TMZ) in two different human glioblastoma cell lines, T98G and A172, in vitro using various conditions. We also establish an optimized dose of the co-treatment to study potential sensitization in TMZ-resistant cells. The removal of cell culture media after CAP treatment did not affect the sensitivity of CAP to cancer cells. However, keeping the CAP-treated media for a shorter time helped in the slight proliferation of T98G cells, while keeping the same media for longer durations resulted in a decrease in its survivability. This could be a potential reason for the sensitization of the cells in combination treatment. Co-treatment effectively increased the lactate dehydrogenase (LDH) activity, indicating cytotoxicity. Furthermore, apoptosis and caspase-3 activity also significantly increased in both cell lines, implying the anticancer nature of the combination. The microscopic analysis of the cells post-treatment indicated nuclear fragmentation, and caspase activity demonstrated apoptosis. Therefore, a combination treatment of CAP and TMZ may be a potent therapeutic modality to treat glioblastoma. This could also indicate that a pre-treatment with CAP causes the cells to be more sensitive to chemotherapy treatment.
Collapse
Affiliation(s)
- Vikas Soni
- Micro-Propulsion and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, The George Washington University, Science and Engineering Hall, 800 22nd Street, NW, Washington, DC 20052, USA; (M.A.); (L.L.)
- Correspondence: (V.S.); (M.K.); Tel.: +1-202-994-6929 (M.K.)
| | - Manish Adhikari
- Micro-Propulsion and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, The George Washington University, Science and Engineering Hall, 800 22nd Street, NW, Washington, DC 20052, USA; (M.A.); (L.L.)
| | - Li Lin
- Micro-Propulsion and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, The George Washington University, Science and Engineering Hall, 800 22nd Street, NW, Washington, DC 20052, USA; (M.A.); (L.L.)
| | - Jonathan H. Sherman
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, 880 N Tennessee Avenue, Suite 104, Martinsburg, WV 25401, USA;
| | - Michael Keidar
- Micro-Propulsion and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, The George Washington University, Science and Engineering Hall, 800 22nd Street, NW, Washington, DC 20052, USA; (M.A.); (L.L.)
- Correspondence: (V.S.); (M.K.); Tel.: +1-202-994-6929 (M.K.)
| |
Collapse
|
14
|
Kim S, Kim CH. Applications of Plasma-Activated Liquid in the Medical Field. Biomedicines 2021; 9:biomedicines9111700. [PMID: 34829929 PMCID: PMC8615748 DOI: 10.3390/biomedicines9111700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
Much progress has been made since plasma was discovered in the early 1900s. The first form of plasma was thermal type, which was limited for medical use due to potential thermal damage on living cells. In the late 1900s, with the development of a nonthermal atmospheric plasma called cold plasma, profound clinical research began and ‘plasma medicine’ became a new area in the academic field. Plasma began to be used mainly for environmental problems, such as water purification and wastewater treatment, and subsequent research on plasma and liquid interaction led to the birth of ‘plasma-activated liquid’ (PAL). PAL is currently used in the fields of environment, food, agriculture, nanoparticle synthesis, analytical chemistry, and sterilization. In the medical field, PAL usage can be expanded for accessing places where direct application of plasma is difficult. In this review, recent studies with PAL will be introduced to inform researchers of the application plan and possibility of PAL in the medical field.
Collapse
Affiliation(s)
- Sungryeal Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea;
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea;
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence:
| |
Collapse
|
15
|
Jin T, Zhou Z, Zhou J, Ouyang W, Wu Z. The Potential Effects of Dielectric Barrier Discharge Plasma on the Extraction Efficiency of Bioactive Compounds in Radix Paeoniae Alba. Front Nutr 2021; 8:735742. [PMID: 34765630 PMCID: PMC8576355 DOI: 10.3389/fnut.2021.735742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Radix paeoniae alba (RPA) is a kind of herbal medicine of traditional Chinese medicine (TCM) that is widely used for the treatment of liver diseases and rheumatoid arthritis in clinical practice. As a result of the low extraction efficiency of RPA by the conventional method, many patients are given high dosages. In this study, four exposure doses of dielectric barrier discharge (DBD) plasma (0, 60, 120, and 180 s) were applied to modify the extraction efficiency of paeoniflorin, benzoylpaeoniflorin, tannic acid, gallic acid, 2′-hydroxy-4′-methoxyacetophenone, and polysaccharide in RPA. Finally, the application of plasma for 180 s exhibited a 24.6% and 12.0% (p < 0.001) increase of tannic acid and polysaccharide contents, however, a 2.1% (p < 0.05) and 5.4% (p < 0.001) reduction of paeoniflorin and gallic acid composition, respectively, and no significant difference (p > 0.05) in results obtained from benzoylpaeoniflorin and 2′-hydroxy-4′-methoxyacetophenone contents. Our results of scanning electron microscopy (SEM), automatic specific surface area and pore analyzer, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) indicated that DBD plasma can etch the surface and undergo graft polymerization by reactive species thereby changing the water/oil holding capacity and eventually changing the extraction efficiency of bioactive compounds in RPA. Overall, our observations provide a scientific foundation for modifying the extraction efficiency of bioactive ingredients related to the pharmacological activities of RPA.
Collapse
Affiliation(s)
- Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | | | - Jian Zhou
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Wenchong Ouyang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China.,Key Laboratory of Geospace Environment, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|