1
|
Pruckner F, Morelli L, Patwari P, Fabris M. Remodeling of the terpenoid metabolism during prolonged phosphate depletion in the marine diatom Phaeodactylum tricornutum. JOURNAL OF PHYCOLOGY 2025. [PMID: 40234016 DOI: 10.1111/jpy.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025]
Abstract
Terpenoids are a diverse class of naturally occurring organic compounds, which derive from five-carbon isoprene units and play crucial roles in physiology, ecological interactions such as defense mechanisms, or adaptation to environmental stresses. In Phaeodactylum tricornutum, some of the most important isoprenoids are sterols and pigments, derived from precursors of the cytosolic mevalonate and the plastidial methyl-erythritol 4-phosphate pathway, respectively. However, the regulation of isoprenoid metabolism in P. tricornutum has not yet been characterized, presenting a major gap in our understanding of its ecological functions and adaptations. By leveraging metabolic, photosynthetic, and transcriptomic analyses, we characterized the dynamic remodeling of the isoprenoid pathways during prolonged nutrient stress in wild-type diatoms. We observed the down-regulation of the methylerythritol 4-phosphate and pigment biosynthesis pathways and the upregulation of key genes in the mevalonate and sterol biosynthesis pathways. At the metabolite level, we observed an overall decrease in pigment and no changes in sterol levels. Using a genetically engineered diatom strain to produce a heterologous monoterpenoid to monitor the availability of one of the main terpenoid precursors, geranyl diphosphate (GPP), we suggest that cytosolic GPP pools increase during prolonged phosphate depletion. Our results have demonstrated how the biosynthesis of isoprenoid metabolites and the pools of prenyl phosphate are vastly remodeled during phosphate depletion. We anticipate that the knowledge generated in this study can serve as a foundation for understanding ecological responses and adaptations of diatoms to nutrient stress, contributing to our broader comprehension of marine ecosystem dynamics and design strategies for producing high-value compounds in diatoms.
Collapse
Affiliation(s)
- Florian Pruckner
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M, Denmark
| | - Luca Morelli
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M, Denmark
| | - Payal Patwari
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M, Denmark
| | - Michele Fabris
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M, Denmark
- SDU Climate Cluster, Faculty of Science, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
2
|
Jiang S, Lu H, Xie Y, Zhou T, Dai Z, Sun R, He L, Li C. Toxicity of microplastics and nano-plastics to coral-symbiotic alga (Dinophyceae Symbiodinium): Evidence from alga physiology, ultrastructure, OJIP kinetics and multi-omics. WATER RESEARCH 2025; 273:123002. [PMID: 39709880 DOI: 10.1016/j.watres.2024.123002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Corals are representative of typical symbiotic organisms. The coral-algal (Symbiodinium spp.) symbiosis drives the productivity of entire coral reefs. In recent years, microplastics (MPs) and nano-plastics (NPs) have been shown to disrupt this symbiosis, leading to coral bleaching. However, how MPs/NPs affect the Symbiodinium spp. is less thoroughly explored. In this work, Dinophyceae Symbiodinium was employed as a model to study the toxicity effects of MPs and NPs with different concentrations (covering environment-related concentration) toward algae in terms of cellular responses, ultrastructure, OJIP kinetics curve and multi-omics. MPs and NPs caused adverse effects on algae growth throughout whole growing phase, with only slight differences observed in the maximal inhibition ratio. In addition to cell surface shrinkage, holes and plate sutures shedding of algae, the presence of distorted thylakoids, plasmolysis and expanded vesicle volume were observed due to the oxidative stress and physical damage caused by MPs/NPs. The results of OJIP kinetics and JIP-test revealed that MPs/NPs-induced deactivation of oxygen-releasing complex (OEC) centers, reduced electron transfer (photosystem II, PSII), and inefficient energy conversion of antenna proteins were the primary factors for photosynthesis reduction. Weighted correlation network analysis (WGCNA) showed that the impairment of photosynthesis further induces metabolic disturbances, including reactive oxygen species (ROS) generation and nucleotide metabolism dysregulation, thereby exacerbating DNA damage in the algae. Proteomics further validate the accuracy of our results and underscore the significance of the phosphatidylinositol (PI) signaling system in algae responding to MP/NPs acclimation. Collectively, our findings provide comprehensive insights into the ecotoxicity of NPs/MPs on symbiotic algae.
Collapse
Affiliation(s)
- Shiqi Jiang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Huiting Lu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yingyin Xie
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Tingrui Zhou
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhenqing Dai
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Analytical and Testing Center for Ocean in Western of Guangdong Province, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Analytical and Testing Center for Ocean in Western of Guangdong Province, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lei He
- Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang, 524088, China; Analytical and Testing Center for Ocean in Western of Guangdong Province, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
3
|
Williams AM, Jackson PJ, Theg SM, Bricker TM, Hunter CN, Liu H. From cytoplasm to lumen-mapping the free pools of protein subunits of three photosynthetic complexes using quantitative mass spectrometry. FEBS Lett 2025. [PMID: 40077900 DOI: 10.1002/1873-3468.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
The phycobilisome (PBS) captures light energy and transfers it to photosystem I (PSI) and photosystem II (PSII). Which and how many copies of protein subunits in PBSs, PSI, and PSII remain unbound in thylakoids are unknown. Here, quantitative mass spectrometry (QMS) was used to quantify substantial pools of free extrinsic subunits of PSII and PSI. Interestingly, the membrane intrinsic PsaL is 3-fold higher than PsaA/B. This scenario complements the static structures of these complexes as revealed by X-ray crystallography and cryo-EM. The ratios of ApcG and photoprotective OCP over PBS indicate a pool of extra ApcG. The 2.5 ratio of CpcG-PBS over CpcL-PBS improves our understanding of these light-harvesting complexes involved in energy capture and photoprotection in cyanobacteria. Impact statement Our study presents the first quantitative inquiry of the free pools of proteins associated with the three major photosynthetic complexes in Synechocystis 6803. This study increases our understanding of the unbound thylakoid proteome, guiding future research into the functions of these proteins, which will facilitate efforts to enhance photosynthetic efficiency.
Collapse
Affiliation(s)
| | - Philip J Jackson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, UK
| | - Steven M Theg
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Terry M Bricker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - C Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, UK
| | - Haijun Liu
- Department of Biology, Saint Louis University, MO, USA
| |
Collapse
|
4
|
Zhao W, Sun X, Wu S, Wu S, Hu C, Huo H, Deng G, Sheng O, Bi F, He W, Dou T, Dong T, Li C, Liu S, Gao H, Li C, Yi G, Yang Q. MaGA20ox2f, an OsSD1 homolog, regulates flowering time and fruit yield in banana. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:12. [PMID: 39803631 PMCID: PMC11717755 DOI: 10.1007/s11032-024-01523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, Ma04g15900 and Ma08g32850, are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', OsSD1) in the banana genome. The expression of MaGA20ox2f is confined to leaves, peduncles, fruit peels, and pulp. Knockout of MaGA20ox2f by CRISPR/Cas9 led to late flowering and low-yielding phenotypes. The flowering time of ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines was delayed approximately by 61 and 58 days, respectively, while fruit yield decreased by 81.13% and 76.23% compared to wild type under normal conditions. The endogenous levels of downstream products of GA20 oxidase, GA15 and GA20, were significantly reduced in ∆MaGA20ox2f mutant shoots and fruits, but bioactive GA1 was only significantly reduced in the mutant fruits. Quantitative proteomics analysis identified 118 up-regulated proteins and 309 down-regulated proteins in both ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines, compared to wild type, with the down-regulated proteins primarily associated with photosynthesis, porphyrin and chlorophyll metabolism. The decreased chlorophyll contents in ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines corroborated the findings of the proteomics data. We propose that photosynthesis inhibition caused by lower chlorophyll contents in ΔMaGA20ox2f mutant leaves and GA1 deficiency in ΔMaGA20ox2f mutant fruits may be the two critical reasons contributing to the late flowering and low-yielding phenotypes of ΔMaGA20ox2f mutants. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01523-3.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xiaoxuan Sun
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300 Jiangsu China
| | - Shaoping Wu
- Life Sciences College, Zhaoqing University, Zhaoqing, 526061 Guangdong China
| | - Shuofan Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Chunhua Hu
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703 USA
| | - Guiming Deng
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Ou Sheng
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Fangcheng Bi
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Weidi He
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Tongxin Dou
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Tao Dong
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Chunyu Li
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Siwen Liu
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Huijun Gao
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Qiaosong Yang
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| |
Collapse
|
5
|
Zhou Y, Zhu Y, Wu F, Pan X, Li W, Han J. Transcriptomics revealed the key molecular mechanisms of ofloxacin-induced hormesis in Chlorella pyrenoidosa at environmentally relevant concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124887. [PMID: 39236839 DOI: 10.1016/j.envpol.2024.124887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Emerging pollutants such as antibiotics have aroused great concern in recent years. However, the knowledge of low concentration-induced hormesis was not well understood. This study evaluated and quantified hormetic effects of ofloxacin on Chlorella pyrenoidosa. LogNormal model predicted the maximal non-effect concentration was 0.13 mg/L and 2.96 mg/L at 3 and 21 d, respectively. The sensitive alterations in chlorophyll fluorescence suggested PSII was the main target. Transcriptomics revealed ofloxacin inhibited genes related to photosynthetic system while the cyclic electron around PSI decreased the pH value in stroma side and stimulated photoprotection via up-regulating psbS. The stimulation in citrate cycle pathway met the urgent requirements of energy for DNA replication and repair. In addition, the negative feedback of G3P in glycolysis pathway inhibited Calvin cycle. The degradation products illustrated the occurrence of multiple detoxification mechanisms such as demethylation and ring-opening. The mobilization of cytochrome P450 generated the constant detoxication of ofloxacin while glutathione was consumptively involved in biological binding. This study provided new insights into the molecular mechanisms of antibiotic-induced hormesis in microalgae.
Collapse
Affiliation(s)
- Yuhao Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu, 213032, China
| | - Yan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Feifan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Xiangjie Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China.
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu, 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China
| |
Collapse
|
6
|
Krysiak S, Burda K. The Effect of Removal of External Proteins PsbO, PsbP and PsbQ on Flash-Induced Molecular Oxygen Evolution and Its Biphasicity in Tobacco PSII. Curr Issues Mol Biol 2024; 46:7187-7218. [PMID: 39057069 PMCID: PMC11276211 DOI: 10.3390/cimb46070428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The oxygen evolution within photosystem II (PSII) is one of the most enigmatic processes occurring in nature. It is suggested that external proteins surrounding the oxygen-evolving complex (OEC) not only stabilize it and provide an appropriate ionic environment but also create water channels, which could be involved in triggering the ingress of water and the removal of O2 and protons outside the system. To investigate the influence of these proteins on the rate of oxygen release and the efficiency of OEC function, we developed a measurement protocol for the direct measurement of the kinetics of oxygen release from PSII using a Joliot-type electrode. PSII-enriched tobacco thylakoids were used in the experiments. The results revealed the existence of slow and fast modes of oxygen evolution. This observation is model-independent and requires no specific assumptions about the initial distribution of the OEC states. The gradual removal of exogenous proteins resulted in a slowdown of the rapid phase (~ms) of O2 release and its gradual disappearance while the slow phase (~tens of ms) accelerated. The role of external proteins in regulating the biphasicity and efficiency of oxygen release is discussed based on observed phenomena and current knowledge.
Collapse
Affiliation(s)
| | - Kvetoslava Burda
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
7
|
Mehra HS, Wang X, Russell BP, Kulkarni N, Ferrari N, Larson B, Vinyard DJ. Assembly and Repair of Photosystem II in Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:811. [PMID: 38592843 PMCID: PMC10975043 DOI: 10.3390/plants13060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Oxygenic photosynthetic organisms use Photosystem II (PSII) to oxidize water and reduce plastoquinone. Here, we review the mechanisms by which PSII is assembled and turned over in the model green alga Chlamydomonas reinhardtii. This species has been used to make key discoveries in PSII research due to its metabolic flexibility and amenability to genetic approaches. PSII subunits originate from both nuclear and chloroplastic gene products in Chlamydomonas. Nuclear-encoded PSII subunits are transported into the chloroplast and chloroplast-encoded PSII subunits are translated by a coordinated mechanism. Active PSII dimers are built from discrete reaction center complexes in a process facilitated by assembly factors. The phosphorylation of core subunits affects supercomplex formation and localization within the thylakoid network. Proteolysis primarily targets the D1 subunit, which when replaced, allows PSII to be reactivated and completes a repair cycle. While PSII has been extensively studied using Chlamydomonas as a model species, important questions remain about its assembly and repair which are presented here.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David J. Vinyard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (H.S.M.); (X.W.); (B.P.R.); (N.K.); (N.F.); (B.L.)
| |
Collapse
|
8
|
Hussein R, Ibrahim M, Bhowmick A, Simon PS, Bogacz I, Doyle MD, Dobbek H, Zouni A, Messinger J, Yachandra VK, Kern JF, Yano J. Evolutionary diversity of proton and water channels on the oxidizing side of photosystem II and their relevance to function. PHOTOSYNTHESIS RESEARCH 2023; 158:91-107. [PMID: 37266800 PMCID: PMC10684718 DOI: 10.1007/s11120-023-01018-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/29/2023] [Indexed: 06/03/2023]
Abstract
One of the reasons for the high efficiency and selectivity of biological catalysts arise from their ability to control the pathways of substrates and products using protein channels, and by modulating the transport in the channels using the interaction with the protein residues and the water/hydrogen-bonding network. This process is clearly demonstrated in Photosystem II (PS II), where its light-driven water oxidation reaction catalyzed by the Mn4CaO5 cluster occurs deep inside the protein complex and thus requires the transport of two water molecules to and four protons from the metal center to the bulk water. Based on the recent advances in structural studies of PS II from X-ray crystallography and cryo-electron microscopy, in this review we compare the channels that have been proposed to facilitate this mass transport in cyanobacteria, red and green algae, diatoms, and higher plants. The three major channels (O1, O4, and Cl1 channels) are present in all species investigated; however, some differences exist in the reported structures that arise from the different composition and arrangement of membrane extrinsic subunits between the species. Among the three channels, the Cl1 channel, including the proton gate, is the most conserved among all photosynthetic species. We also found at least one branch for the O1 channel in all organisms, extending all the way from Ca/O1 via the 'water wheel' to the lumen. However, the extending path after the water wheel varies between most species. The O4 channel is, like the Cl1 channel, highly conserved among all species while having different orientations at the end of the path near the bulk. The comparison suggests that the previously proposed functionality of the channels in T. vestitus (Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Hussein et al., Nat Commun 12:6531, 2021) is conserved through the species, i.e. the O1-like channel is used for substrate water intake, and the tighter Cl1 and O4 channels for proton release. The comparison does not eliminate the potential role of O4 channel as a water intake channel. However, the highly ordered hydrogen-bonded water wire connected to the Mn4CaO5 cluster via the O4 may strongly suggest that it functions in proton release, especially during the S0 → S1 transition (Saito et al., Nat Commun 6:8488, 2015; Kern et al., Nature 563:421-425, 2018; Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Sakashita et al., Phys Chem Chem Phys 22:15831-15841, 2020; Hussein et al., Nat Commun 12:6531, 2021).
Collapse
Affiliation(s)
- Rana Hussein
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany.
| | - Mohamed Ibrahim
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Philipp S Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Margaret D Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Holger Dobbek
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Athina Zouni
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, SE 75120, Uppsala, Sweden
- Department of Chemistry, Umeå University, SE 90187, Umeå, Sweden
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
9
|
Chai X, Zheng L, Liu J, Zhan J, Song L. Comparison of photosynthetic responses between haptophyte Phaeocystis globosa and diatom Skeletonema costatum under phosphorus limitation. Front Microbiol 2023; 14:1085176. [PMID: 36756351 PMCID: PMC9899818 DOI: 10.3389/fmicb.2023.1085176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
The diatom Skeletonema costatum and the haptophyte Phaeocystis globosa often form blooms in the coastal waters of the South China Sea. Skeletonema costatum commonly dominates in nutrient enrichment coastal waters, whereas P. globosa starts flourishing after the diatom blooms when phosphorus (P) is limited. Therefore, P limitation was proposed to be a critical factor affecting diatom-haptophyte transition. To elucidate the tolerance to P limitation in P. globosa compared with S. costatum, the effect of P limitation on their photosystem II (PSII) performance was investigated and their photosynthesis acclimation strategies in response to P limitation were evaluated. P limitation did not affect the growth of P. globosa over 7 days but decreased it for S. costatum. Correspondingly, the PSII activity of S. costatum was significantly inhibited by P limitation. The decline in PSII activity in S. costatum under P limitation was associated with the impairment of the oxygen-evolving complex (the donor side of PSII), the hindrance of electron transport from QA - to QB (the acceptor side of PSII), and the inhibition of electron transport to photosystem I (PSI). The 100% decrease in D1 protein level of S. costatum after P limitation for 6 days and PsbO protein level after 2 days of P limitation were attributed to its enhanced photoinhibition. In contrast, P. globosa maintained its photosynthetic activity with minor impairment of the function of PSII. With accelerated PSII repair and highly increased non-photochemical quenching (NPQ), P. globosa can avoid serious PSII damage under P limitation. On the contrary, S. costatum decreased its D1 restoration under P limitation, and the maximum NPQ value in S. costatum was only one-sixth of that in P. globosa. The present work provides extensive evidence that a close interaction exists between the tolerance to P limitation and photosynthetic responses of S. costatum and P. globosa.
Collapse
Affiliation(s)
- Xiaojie Chai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lingling Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiao Zhan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China,*Correspondence: Jiao Zhan, ✉
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
10
|
Khristin MS, Smolova TN, Khorobrykh AA. Dimerization of the Free and Photosystem II-Associated PsbO Protein upon Irradiation with UV Light. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922060100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
11
|
Landi M, Guidi L. Effects of abiotic stress on photosystem II proteins. PHOTOSYNTHETICA 2022; 61:148-156. [PMID: 39650668 PMCID: PMC11515818 DOI: 10.32615/ps.2022.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/01/2022] [Indexed: 12/11/2024]
Abstract
Photosystem II (PSII) represents the most vulnerable component of the photosynthetic machinery and its response in plants subjected to abiotic stress has been widely studied over many years. PSII is a thylakoid membrane-located multiprotein pigment complex that catalyses the light-induced electron transfer from water to plastoquinone with the concomitant production of oxygen. PSII is rich in intrinsic (PsbA and PsbD, namely D1 and D2, CP47 or PsbB and CP43 or PsbC) but also extrinsic proteins. The first ones are more largely conserved from cyanobacteria to higher plants while the extrinsic proteins are different among species. It has been found that extrinsic proteins involved in oxygen evolution change dramatically the PSII efficiency and PSII repair systems. However, little information is available on the effects of abiotic stress on their function and structure.
Collapse
Affiliation(s)
- M. Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - L. Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
12
|
Ślesak I, Mazur Z, Ślesak H. Genes encoding the photosystem II proteins are under purifying selection: an insight into the early evolution of oxygenic photosynthesis. PHOTOSYNTHESIS RESEARCH 2022; 153:163-175. [PMID: 35648248 DOI: 10.1007/s11120-022-00917-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
The molecular evolution concerns coding sequences (CDSs) of genes and may affect the structure and function of proteins. Non-uniform use of synonymous codons during translation, known as codon usage bias (CUB), depends on the balance between mutations bias and natural selection. We estimated different CUB indices, i.e. the effective number of codons (ENC), G + C content in the 3rd codon positions (GC3), and codon adaptation index for CDSs of intrinsic proteins of photosystem II (PSII), such as psbA (D1), psbD (D2), psbB (CP47), psbC (CP43), and CDSs of the extrinsic protein psbO (PsbO). These genes occur in all organisms that perform oxygenic photosynthesis (OP) on Earth: cyanobacteria, algae and plants. Comparatively, a similar analysis of codon bias for CDSs of L and M subunits that constitute the core proteins of the type II reaction centre (RCII) in anoxygenic bacteria was performed. Analysis of CUB indices and determination of the number of synonymous (dS) and nonsynonymous substitutions (dN) in all analysed CDSs indicated that the crucial PSII and RCII proteins were under strong purifying (negative) selection in course of evolution. Purifying selection was also estimated for CDSs of atpA, the α subunit of ATP synthase, an enzyme that was most likely already present in the last universal common ancestor (LUCA). The data obtained point to an ancient origin of OP, even in the earliest stages of the evolution of life on Earth.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Zofia Mazur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Halina Ślesak
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
13
|
Li M, Ma J, Li X, Sui SF. In situ cryo-ET structure of phycobilisome-photosystem II supercomplex from red alga. eLife 2021; 10:e69635. [PMID: 34515634 PMCID: PMC8437437 DOI: 10.7554/elife.69635] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Phycobilisome (PBS) is the main light-harvesting antenna in cyanobacteria and red algae. How PBS transfers the light energy to photosystem II (PSII) remains to be elucidated. Here we report the in situ structure of the PBS-PSII supercomplex from Porphyridium purpureum UTEX 2757 using cryo-electron tomography and subtomogram averaging. Our work reveals the organized network of hemiellipsoidal PBS with PSII on the thylakoid membrane in the native cellular environment. In the PBS-PSII supercomplex, each PBS interacts with six PSII monomers, of which four directly bind to the PBS, and two bind indirectly. Additional three 'connector' proteins also contribute to the connections between PBS and PSIIs. Two PsbO subunits from adjacent PSII dimers bind with each other, which may promote stabilization of the PBS-PSII supercomplex. By analyzing the interaction interface between PBS and PSII, we reveal that αLCM and ApcD connect with CP43 of PSII monomer and that αLCM also interacts with CP47' of the neighboring PSII monomer, suggesting the multiple light energy delivery pathways. The in situ structures illustrate the coupling pattern of PBS and PSII and the arrangement of the PBS-PSII supercomplex on the thylakoid, providing the near-native 3D structural information of the various energy transfer from PBS to PSII.
Collapse
Affiliation(s)
- Meijing Li
- Key Laboratory for Protein Sciences of Ministry of Education, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Jianfei Ma
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Xueming Li
- Key Laboratory for Protein Sciences of Ministry of Education, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua UniversityBeijingChina
- Department of Biology, Southern University of Science and TechnologyGuangdongChina
| |
Collapse
|
14
|
Page AML, Chapman MA. Identifying genomic regions targeted during eggplant domestication using transcriptome data. J Hered 2021; 112:519-525. [PMID: 34130314 PMCID: PMC8634079 DOI: 10.1093/jhered/esab035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/11/2021] [Indexed: 11/15/2022] Open
Abstract
Identifying genes and traits that have diverged during domestication provides key information of importance for maintaining and even increasing yield and nutrients in existing crops. A “bottom-up” population genetics approach was used to identify signatures of selection across the eggplant genome, to better understand the process of domestication. RNA-seq data were obtained for 4 wild eggplants (Solanum insanum L.) and 16 domesticated eggplants (S. melongena L.) and mapped to the eggplant genome. Single-nucleotide polymorphism (SNPs) exhibiting signatures of selection in domesticates were identified as those exhibiting high FST between the 2 populations (evidence of significant divergence) and low π for the domesticated population (indicative of a selective sweep). Some of these regions appear to overlap with previously identified quantitative trait loci for domestication traits. Genes in regions of linkage disequilibrium surrounding these SNPs were searched against the Arabidopsis thaliana and tomato genomes to find orthologs. Subsequent gene ontology (GO) enrichment analysis identified over-representation of GO terms related to photosynthesis and response to the environment. This work reveals genomic changes involved in eggplant domestication and improvement, and how this compares to observed changes in the tomato genome, revealing shared chromosomal regions involved in the domestication of both species.
Collapse
Affiliation(s)
- Anna M L Page
- Biological Sciences, University of Southampton, Southampton, UK
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
15
|
Wei MY, Liu JY, Li H, Hu WJ, Shen ZJ, Qiao F, Zhu CQ, Chen J, Liu X, Zheng HL. Proteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlings. Nitric Oxide 2021; 111-112:14-30. [PMID: 33839259 DOI: 10.1016/j.niox.2021.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 01/31/2023]
Abstract
Hydrogen sulfide (H2S) is an important gaseous signal molecule which participates in various abiotic stress responses. However, the underlying mechanism of H2S associated salt tolerance remains elusive. In this study, sodium hydrosulfide (NaHS, donor of H2S) was used to investigate the protective role of H2S against salt stress at the biochemical and proteomic levels. Antioxidant activity and differentially expressed proteins (DEPs) of rice seedlings treated by NaCl or/and exogenous H2S were investigated by the methods of biochemical approaches and comparative proteomic analysis. The protein-protein interaction (PPI) analysis was used for understanding the interaction networks of stress responsive proteins. In addition, relative mRNA levels of eight selected identified DEPs were analyzed by quantitative real-time PCR. The result showed that H2S alleviated oxidative damage caused by salt stress in rice seedling. The activities of some antioxidant enzymes and glutathione metabolism were mediated by H2S under salt stress. Proteomics analyses demonstrated that NaHS regulated antioxidant related proteins abundances and affected related enzyme activities under salt stress. Proteins related to light reaction system (PsbQ domain protein, plastocyanin oxidoreductase iron-sulfur protein), Calvin cycle (phosphoglycerate kinase, sedoheptulose-1,7-bisphosphatase precursor, ribulose-1,5-bisphosphate carboxylase/oxygenase) and chlorophyll biosynthesis (glutamate-1-semialdehyde 2,1-aminomutase, coproporphyrinogen III oxidase) are important for NaHS against salt stress. ATP synthesis related proteins, malate dehydrogenase and 2, 3-bisphosphoglycerate-independent phosphoglycerate mutase were up-regulated by NaHS under salt stress. Protein metabolism related proteins and cell structure related proteins were recovered or up-regulated by NaHS under salt stress. The PPI analysis further unraveled a complicated regulation network among above biological processes to enhance the tolerance of rice seedling to salt stress under H2S treatment. Overall, our results demonstrated that H2S takes protective roles in salt tolerance by mitigating oxidative stress, recovering photosynthetic capacity, improving primary and energy metabolism, strengthening protein metabolism and consolidating cell structure in rice seedlings.
Collapse
Affiliation(s)
- Ming-Yue Wei
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Ji-Yun Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Huan Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Wen-Jun Hu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China; Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, PR China
| | - Zhi-Jun Shen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Fang Qiao
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Chun-Quan Zhu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Xiang Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China.
| |
Collapse
|
16
|
Apraez Muñoz JJ, de Almeida AAF, Pirovani CP, Ahnert D, Baligar VC. Mitigation of Pb toxicity by Mn in seedling of the cacao clonal CCN 51 genotype grown in soil: physiological, biochemical, nutritional and molecular responses. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:240-256. [PMID: 33528689 DOI: 10.1007/s10646-021-02348-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Lead (Pb) is a highly toxic metal for humans, animals and plants even at low concentrations in the soil. The ingestion of chocolate produced from contaminated beans can contribute to consumer exposure to Pb. While, Mn is an element essential for plants and participates as enzymatic cofactors in several metabolic pathways. The objective of this study was to evaluate the influence of Mn on mitigation of Pb toxicity in seedling of the cacao clonal CCN 51 genotype grown in soils with different doses of Pb, Mn and Mn+Pb, through physiological, biochemical, molecular and nutritional responses. It was found that the seedling of the cacao clonal CCN 51 genotype grown in soils with high Pb, Mn and Mn+Pb contents accumulated these heavy metals in the roots and leaves. Mn doses reduced the Pb uptake by root system and prevented that the Pb accumulated at toxic levels in the roots and leaves of the plants. High doses of Pb applied in soil were highly toxic to the plants, leading, in some cases, them to death. However, no Mn toxicity was observed in cocoa plants, even at high doses in the soil. Uptake of Pb and Mn by the roots and its transport into the aerial part of the plant promoted changes in photosynthesis, leaf gas exchange, respiration, carboxylation and in the instantaneous efficiency of carboxylation, reducing in the treatments with the highest concentrations of Pb, and the emission of chlorophyll fluorescence, affecting the efficiency of photosystem 2 and the production of photoassimilates. Besides that, Pb, Mn and Mn+Pb toxicities activated defense mechanisms in plants that alter the gene expression of met, psbA and psbO, increasing in plants subjected to high concentrations of Pb and the activity of the enzymes involved in the cellular detoxification of excess ROS at the leaf level. In addition, high uptake of Mn by root system was found to reduced Pb uptake in plants grown with Mn+Pb in the soil. Therefore, application of Mn in the soil can be used to mitigate the Pb toxicity in seedling of the cacao clonal CCN 51 genotype grown in contaminated soils.
Collapse
Affiliation(s)
- Jose Julian Apraez Muñoz
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Alex-Alan Furtado de Almeida
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Carlos Priminho Pirovani
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Dário Ahnert
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Virupax C Baligar
- USDA-ARS-Beltsville Agricultural Research Center, Beltsville, MD, USA
| |
Collapse
|
17
|
Jiang T, Mu B, Zhao R. Plastid chaperone HSP90C guides precursor proteins to the SEC translocase for thylakoid transport. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7073-7087. [PMID: 32853383 PMCID: PMC7906790 DOI: 10.1093/jxb/eraa399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/24/2020] [Indexed: 05/04/2023]
Abstract
Chloroplast stromal factors involved in regulating thylakoid protein targeting are poorly understood. We previously reported that in Arabidopsis thaliana, the stromal-localized chaperone HSP90C (plastid heat shock protein 90) interacted with the nuclear-encoded thylakoid lumen protein PsbO1 (PSII subunit O isoform 1) and suggested a role for HSP90C in aiding PsbO1 thylakoid targeting. Using in organello transport assays, particularly with model substrates naturally expressed in stroma, we showed that light, exogenous ATP, and HSP90C activity were required for Sec-dependent transport of green fluorescent protein (GFP) led by the PsbO1 thylakoid targeting sequence. Using a previously identified PsbO1T200A mutant, we provided evidence that a stronger interaction between HSP90C and PsbO1 better facilitated its stroma-thylakoid trafficking. We also demonstrated that SecY1, the channel protein of the thylakoid SEC translocase, specifically interacted with HSP90C in vivo. Inhibition of the chaperone ATPase activity suppressed the association of the PsbO1GFP-HSP90C complex with SecY1. Together with analyzing the expression and accumulation of a few other thylakoid proteins that utilize the SRP, TAT, or SEC translocation pathways, we propose a model in which HSP90C forms a guiding complex that interacts with thylakoid protein precursors and assists in their specific targeting to the thylakoid SEC translocon.
Collapse
Affiliation(s)
- Tim Jiang
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bona Mu
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Monteiro Reis GS, Furtado de Almeida AA, de Almeida Santos N, Santana JO, Maria de Souza Araújo D, Mora-Ocampo IY, Ahnert D, Pirovani CP. Proteomic profiles of young and mature cocoa leaves subjected to mechanical stress caused by wind. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:851-867. [PMID: 32889352 DOI: 10.1016/j.plaphy.2020.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Cocoa is a perennial and arboreal species intolerant to strong and frequent winds and, for this reason, is usually grown with windbreaks of trees. The mechanical alterations caused by the wind in the field have a great impact on the growth, development and productivity of cocoa. The present work had a main objective to understand the molecular mechanisms of responses to mechanical stress, caused by the action of constant wind flow in young plants of cocoa through alterations of the proteomic profile in young (YL) and mature leaves (ML). Plants were exposed to constant wind (CW) at a speed of 4.5 m s-1 for 12 h. There was a reduction in the accumulation of proteins in YL and a significant increase in ML submitted to CW in relation to the control. Differentially accumulated proteins, identified in YL and ML, belong to a broad functional group, related to energy production and carbon metabolism. Besides that, there was a higher efficiency in the protein relative abundance associated to energy production and the assimilation of carbon in the ML exposed to CW, in relation to the control. It was observed the appearance of new isoforms and, or post-transitional changes, which represent an acclimatization and tolerance response of these leaves to the stressor factor. In contrast, in YL, the energy production and the synthesis of gene products essential for their growth and development were affected by the mechanical stress caused by the wind, making them more intolerant.
Collapse
Affiliation(s)
- Graciele Santos Monteiro Reis
- Department of Biological Sciences, Santa Cruz State University, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Ilhéus, BA, Brazil
| | - Alex-Alan Furtado de Almeida
- Department of Biological Sciences, Santa Cruz State University, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Ilhéus, BA, Brazil.
| | - Nayara de Almeida Santos
- Department of Biological Sciences, Santa Cruz State University, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Ilhéus, BA, Brazil
| | - Juliano Oliveira Santana
- Department of Biological Sciences, Santa Cruz State University, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Ilhéus, BA, Brazil
| | - D'avila Maria de Souza Araújo
- Department of Biological Sciences, Santa Cruz State University, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Ilhéus, BA, Brazil
| | - Irma Yuliana Mora-Ocampo
- Department of Biological Sciences, Santa Cruz State University, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Ilhéus, BA, Brazil
| | - Dário Ahnert
- Department of Biological Sciences, Santa Cruz State University, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Ilhéus, BA, Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, Santa Cruz State University, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Ilhéus, BA, Brazil
| |
Collapse
|
19
|
Bayro-Kaiser V, Nelson N. Temperature Sensitive Photosynthesis: Point Mutated CEF-G, PRK, or PsbO Act as Temperature-Controlled Switches for Essential Photosynthetic Processes. FRONTIERS IN PLANT SCIENCE 2020; 11:562985. [PMID: 33101332 PMCID: PMC7545824 DOI: 10.3389/fpls.2020.562985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/04/2020] [Indexed: 05/30/2023]
Abstract
Temperature sensitive mutants have been widely used to study structure, biogenesis and function of a large variety of essential proteins. However, this method has not yet been exploited for the study of photosynthesis. We used negative selection to isolate temperature-sensitive-photoautotrophic (TSP) mutants in Chlamydomonas reinhardtii. From a population of randomly mutagenized cells (n=12,000), a significant number of TSP mutants (n=157) were isolated. They were able to grow photoautotrophically at 25°C, but lacked this ability at 37°C. Further phenotypic characterization of these mutants enabled the identification of three unique and highly interesting mutant strains. Following, the selected strains were genetically characterized by extensive crossing and whole genome sequencing. Correspondingly, the single amino acid changes P628F in the Chloroplast-Elongation-Factor-G (CEF-G), P129L in Phosphoribulokinase (PRK), and P101H in an essential subunit of Photosystem II (PsbO) were identified. These key changes alter the proteins in such way that they were functional at the permissive temperature, however, defective at the restrictive temperature. These mutants are presented here as superb and novel tools for the study of a wide range of aspects relevant to photosynthesis research, tackling three distinct and crucial photosynthetic processes: Chloroplast translation, PET-chain, and CBB-cycle.
Collapse
|
20
|
Huang S, Zuo T, Ni W. Important roles of glycinebetaine in stabilizing the structure and function of the photosystem II complex under abiotic stresses. PLANTA 2020; 251:36. [PMID: 31903497 DOI: 10.1007/s00425-019-03330-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/14/2019] [Indexed: 05/08/2023]
Abstract
The molecular and physiological mechanisms of glycinebetaine stabilizing photosystem II complex under abiotic stresses are discussed, helping to address food shortage problems threatening the survival of growing population. In the backdrop of climate change, the frequency, dimensions and duration of extreme events have increased sharply, which may have unintended consequences for agricultural. The acclimation of plants to a constantly changing environment involves the accumulation of compatible solutes. Various compatible solutes enable plants to tolerate abiotic stresses, and glycinebetaine (GB) is one of the most-studied. The biosynthesis and accumulation of GB appear in numerous plant species, especially under environmental stresses. The exogenous application of GB and GB-accumulating transgenic plants have been proven to further promote plant development under stresses. Early research on GB focused on the maintenance of osmotic potential in plants. Subsequent experimental evidence demonstrated that it also protects proteins including the photosystem II complex (PSII) from denaturation and deactivation. As reviewed here, multiple experimental evidences have indicated considerable progress in the roles of GB in stabilizing PSII under abiotic stresses. Based on these advances, we've concluded two effects of GB on PSII: (1) it stabilizes the structure of PSII by protecting extrinsic proteins from dissociation or by promoting protein synthesize; (2) it enhances the oxygen-evolving activity of PSII or promotes the repair of the photosynthetic damage of PSII.
Collapse
Affiliation(s)
- Shan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China
| | - Ting Zuo
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China
| | - Wuzhong Ni
- College of Environmental and Resource Sciences, Zhejiang University, Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Oberprieler C, Talianova M, Griesenbeck J. Effects of polyploidy on the coordination of gene expression between organellar and nuclear genomes in Leucanthemum Mill. (Compositae, Anthemideae). Ecol Evol 2019; 9:9100-9110. [PMID: 31463007 PMCID: PMC6706232 DOI: 10.1002/ece3.5455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/04/2019] [Accepted: 06/15/2019] [Indexed: 11/30/2022] Open
Abstract
Whole-genome duplications (WGD) through polyploid speciation are associated with disruptions of well-tuned relationships among the three plant cell genomes. Key metabolic processes comprising multi-subunit enzyme complexes, for which partner proteins are both nuclear- and plastid-encoded, are dependent on maintenance of stoichiometric ratios among the subunits to avoid cytonuclear imbalances after WGDs. By using qPCR for gene copy and transcript number quantification, we have studied the relationship of subunit expression in the two gene pairs rbcL/rbcS (the two subunits of RuBisCO) and psbA/psbO (two members of photosystem II) in closely related members of Leucanthemum (Compositae, Anthemideae), comprising a diploid, a tetraploid, and a hexaploid species. While gene copy numbers exhibit the expected pattern of an increase in the nuclear-encoded partner gene relative to the plastid-encoded one, we find that the two partner gene systems behave differently after WGD: While in the psbA/psbO partner gene system, shifts in the gene copy balance caused by polyploidization are not accommodated for through changes in transcription intensities of the two partner genes, the rbcL/rbcS system even shows an unexpected reversed dosage effect with up-regulated transcription intensities on both the nuclear and the plastidal side. We interpret the behavior of the psbA/psbO partner gene system as being due to the stoichiometrically relaxed relationship between the two gene products caused by a fast, damage-provoked combustion of the psbA gene product (the D1 core protein of PSII). Conversely, the finely tuned expression dependencies of the rbcL/rbcS system may be the reason for the observed positive feedback runaway signal as reaction to gene copy imbalances caused by a polyploidization shock.
Collapse
Affiliation(s)
- Christoph Oberprieler
- Evolutionary and Systematic Botany Group, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Martina Talianova
- Evolutionary and Systematic Botany Group, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | | |
Collapse
|
22
|
Xu HF, Dai GZ, Qiu BS. Weak red light plays an important role in awakening the photosynthetic machinery following desiccation in the subaerial cyanobacterium Nostoc flagelliforme. Environ Microbiol 2019; 21:2261-2272. [PMID: 30895692 DOI: 10.1111/1462-2920.14600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/31/2019] [Accepted: 03/19/2019] [Indexed: 11/28/2022]
Abstract
The subaerial cyanobacterium Nostoc flagelliforme can survive for years in the desiccated state and light exposure may stimulate photosynthetic recovery during rehydration. However, the influence of light quality on photosynthetic recovery and the underlying mechanism remain unresolved. Exposure of field collected N. flagelliforme to light intensity ≥2 μmol photons m-2 s-1 showed that the speed of photosystem II (PSII) recovery was in the following order: red > green > blue ≈ violet light. Decreasing the light intensity showed that weak red light stimulated PSII recovery during rehydration. The chlorophyll fluorescence transient and oxygen evolution activity indicated that the oxygen evolution complex (OEC) was the activated site triggered by weak red light. The damaged D1 protein accumulated in the thylakoid membrane during dehydration and is degraded and resynthesized during dark rehydration. PsbO interaction with the thylakoid membrane was induced by weak red light. Thus, weak red light plays an important role in triggering OEC photoactivation and the formation of functional PSII during rehydration. In its arid habitats, weak red light could stimulate the awakening of dormant N. flagelliforme after absorbing water from nighttime dew or rain to maximize growth during the early daylight hours of the dry season.
Collapse
Affiliation(s)
- Hai-Feng Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Guo-Zheng Dai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Bao-Sheng Qiu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| |
Collapse
|
23
|
Cardona T, Sánchez‐Baracaldo P, Rutherford AW, Larkum AW. Early Archean origin of Photosystem II. GEOBIOLOGY 2019; 17:127-150. [PMID: 30411862 PMCID: PMC6492235 DOI: 10.1111/gbi.12322] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/03/2018] [Accepted: 10/11/2018] [Indexed: 05/09/2023]
Abstract
Photosystem II is a photochemical reaction center that catalyzes the light-driven oxidation of water to molecular oxygen. Water oxidation is the distinctive photochemical reaction that permitted the evolution of oxygenic photosynthesis and the eventual rise of eukaryotes. At what point during the history of life an ancestral photosystem evolved the capacity to oxidize water still remains unknown. Here, we study the evolution of the core reaction center proteins of Photosystem II using sequence and structural comparisons in combination with Bayesian relaxed molecular clocks. Our results indicate that a homodimeric photosystem with sufficient oxidizing power to split water had already appeared in the early Archean about a billion years before the most recent common ancestor of all described Cyanobacteria capable of oxygenic photosynthesis, and well before the diversification of some of the known groups of anoxygenic photosynthetic bacteria. Based on a structural and functional rationale, we hypothesize that this early Archean photosystem was capable of water oxidation to oxygen and had already evolved protection mechanisms against the formation of reactive oxygen species. This would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life SciencesImperial College LondonLondonUK
| | | | | | | |
Collapse
|
24
|
Takahashi M, Morikawa H. A novel role for PsbO1 in photosynthetic electron transport as suggested by its light-triggered selective nitration in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2018; 13:e1513298. [PMID: 30230951 PMCID: PMC6259825 DOI: 10.1080/15592324.2018.1513298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Exposure of Arabidopsis leaves to nitrogen dioxide (NO2) results in the selective nitration of specific proteins, such as PsbO1. The 9th tyrosine residue (9Tyr) of PsbO1 has been identified as the nitration site. This nitration is triggered by light and inhibited by photosynthetic electron transport inhibitors. During protein nitration, tyrosyl and NO2 radicals are formed concurrently and combine rapidly to form 3-nitrotyrosine. A selective oxidation mechanism for 9Tyr of PsbO1 is required. We postulated that, similar to 161Tyr of D1, 9Tyr of PsbO1 is selectively photo-oxidized by photosynthetic electron transport in response to illumination to a tyrosyl radical. In corroboration, after reappraising our oxygen evolution analysis, the nitration of PsbO1 proved responsible for decreased oxygen evolution from the thylakoid membranes. NO2 is reportedly taken into cells as nitrous acid, which dissociates to form NO2-. NO2- may be oxidized into NO2 by the oxygen-evolving complex. Light may synchronize this reaction with tyrosyl radical formation. These findings suggest a novel role for PsbO1 in photosynthetic electron transport.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
25
|
Wang Y, Feng Y, Liu X, Zhong M, Chen W, Wang F, Du H. Response of Gracilaria lemaneiformis to nitrogen deprivation. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Qu J, Shen L, Zhao M, Li W, Jia C, Zhu H, Zhang Q. Determination of the Role of Microcystis aeruginosa in Toxin Generation Based on Phosphoproteomic Profiles. Toxins (Basel) 2018; 10:toxins10070304. [PMID: 30041444 PMCID: PMC6070999 DOI: 10.3390/toxins10070304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 01/06/2023] Open
Abstract
Microcystis aeruginosa is the most common species responsible for toxic cyanobacterial blooms and is considered a significant contributor to the production of cyanotoxins, particularly the potent liver toxins called microcystins. Numerous studies investigating Microcystis spp. blooms have revealed their deleterious effects in freshwater environments. However, the available knowledge regarding the global phosphoproteomics of M. aeruginosa and their regulatory roles in toxin generation is limited. In this study, we conducted comparative phosphoproteomic profiling of non-toxic and toxin-producing strains of M. aeruginosa. We identified 59 phosphorylation sites in 37 proteins in a non-toxic strain and 26 phosphorylation sites in 18 proteins in a toxin-producing strain. The analysis of protein phosphorylation abundances and functions in redox homeostasis, energy metabolism, light absorption and photosynthesis showed marked differences between the non-toxic and toxin-producing strains of M. aeruginosa, indicating that these processes are strongly related to toxin generation. Moreover, the protein-protein interaction results indicated that BJ0JVG8 can directly interact with the PemK-like toxin protein B0JQN8. Thus, the phosphorylation of B0JQN8 appears to be associated with the regulatory roles of toxins in physiological activity.
Collapse
Affiliation(s)
- Jiangqi Qu
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing 100068, China.
| | - Liping Shen
- State key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Meng Zhao
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing 100068, China.
| | - Wentong Li
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing 100068, China.
| | - Chengxia Jia
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing 100068, China.
| | - Hua Zhu
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing 100068, China.
| | - Qingjing Zhang
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing 100068, China.
| |
Collapse
|
27
|
Liu X, Yang M, Wang Y, Chen Z, Zhang J, Lin X, Ge F, Zhao J. Effects of PSII Manganese-Stabilizing Protein Succinylation on Photosynthesis in the Model Cyanobacterium Synechococcus sp. PCC 7002. PLANT & CELL PHYSIOLOGY 2018; 59:1466-1482. [PMID: 29912468 DOI: 10.1093/pcp/pcy080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Lysine succinylation is a newly identified protein post-translational modification and plays important roles in various biological pathways in both prokaryotes and eukaryotes, but its extent and function in photosynthetic organisms remain largely unknown. Here, we performed the first systematic studies of lysine succinylation in cyanobacteria, which are the only prokaryotes capable of oxygenic photosynthesis and the established model organisms for studying photosynthetic mechanisms. By using mass spectrometry analysis in combination with the enrichment of succinylated peptides from digested cell lysates, we identified 1,704 lysine succinylation sites on 691 proteins in a model cyanobacterium Synechococcus sp. PCC 7002. Bioinformatic analysis revealed that a large proportion of the succinylation sites were present on proteins in photosynthesis and metabolism. Among all identified succinylated proteins involved in photosynthesis, the PSII manganese-stabilizing protein (PsbO) was found to be succinylated on Lys99 and Lys234. Functional studies of PsbO were performed by site-directed mutagenesis, and mutants mimicking either constitutively succinylated (K99E and K234E) or non-succinylated states (K99R and K234R) were constructed. The succinylation-mimicking K234E mutant exhibited a decreased oxygen evolution rate of the PSII center and the efficiency of energy transfer during the photosynthetic reaction. Molecular dynamics simulations suggested a mechanism that may allow succinylation to influence the efficiency of photosynthesis by altering the conformation of PsbO, thereby hindering the interaction between PsbO and the PSII core. Our findings suggest that reversible succinylation may be an important regulatory mechanism during photosynthesis in Synechococcus, as well as in other photosynthetic organisms.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingkun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jia Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaohuang Lin
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jindong Zhao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
28
|
Bommer M, Coates L, Dau H, Zouni A, Dobbek H. Protein crystallization and initial neutron diffraction studies of the photosystem II subunit PsbO. Acta Crystallogr F Struct Biol Commun 2017; 73:525-531. [PMID: 28876232 PMCID: PMC5619745 DOI: 10.1107/s2053230x17012171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/22/2017] [Indexed: 11/10/2022] Open
Abstract
The PsbO protein of photosystem II stabilizes the active-site manganese cluster and is thought to act as a proton antenna. To enable neutron diffraction studies, crystals of the β-barrel core of PsbO were grown in capillaries. The crystals were optimized by screening additives in a counter-diffusion setup in which the protein and reservoir solutions were separated by a 1% agarose plug. Crystals were cross-linked with glutaraldehyde. Initial neutron diffraction data were collected from a 0.25 mm3 crystal at room temperature using the MaNDi single-crystal diffractometer at the Spallation Neutron Source, Oak Ridge National Laboratory.
Collapse
Affiliation(s)
- Martin Bommer
- Institut für Biologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Holger Dau
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Holger Dobbek
- Institut für Biologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
29
|
Barry BA, Brahmachari U, Guo Z. Tracking Reactive Water and Hydrogen-Bonding Networks in Photosynthetic Oxygen Evolution. Acc Chem Res 2017; 50:1937-1945. [PMID: 28763201 DOI: 10.1021/acs.accounts.7b00189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In oxygenic photosynthesis, photosystem II (PSII) converts water to molecular oxygen through four photodriven oxidation events at a Mn4CaO5 cluster. A tyrosine, YZ (Y161 in the D1 polypeptide), transfers oxidizing equivalents from an oxidized, primary chlorophyll donor to the metal center. Calcium or its analogue, strontium, is required for activity. The Mn4CaO5 cluster and YZ are predicted to be hydrogen bonded in a water-containing network, which involves amide carbonyl groups, amino acid side chains, and water. This hydrogen-bonded network includes amino acid residues in intrinsic and extrinsic subunits. One of the extrinsic subunits, PsbO, is intrinsically disordered. This extensive (35 Å) network may be essential in facilitating proton release from substrate water. While it is known that some proteins employ internal water molecules to catalyze reactions, there are relatively few methods that can be used to study the role of water. In this Account, we review spectroscopic evidence from our group supporting the conclusion that the PSII hydrogen-bonding network is dynamic and that water in the network plays a direct role in catalysis. Two approaches, transient electron paramagnetic resonance (EPR) and reaction-induced FT-IR (RIFT-IR) spectroscopies, were used. The EPR experiments focused on the decay kinetics of YZ• via recombination at 190 K and the solvent isotope, pH, and calcium dependence of these kinetics. The RIFT-IR experiments focused on shifts in amide carbonyl frequencies, induced by photo-oxidation of the metal cluster, and on the isotope-based assignment of bands to internal, small protonated water clusters at 190, 263, and 283 K. To conduct these experiments, PSII was prepared in selected steps along the catalytic pathway, the Sn state cycle (n = 0-4). This cycle ultimately generates oxygen. In the EPR studies, S-state dependent changes were observed in the YZ• lifetime and in its solvent isotope effect. The YZ• lifetime depended on the presence of calcium at pH 7.5, but not at pH 6.0, suggesting a two-donor model for PCET. At pH 6.0 or 7.5, barium and ammonia both slowed the rate of YZ• recombination, consistent with disruption of the hydrogen-bonding network. In the RIFT-IR studies of the S state transitions, infrared bands associated with the transient protonation and deprotonation of internal waters were identified by D2O and H218O labeling. The infrared bands of these protonated water clusters, Wn+ (or nH2O(H3O)+, n = 5-6), exhibited flash dependence and were produced during the S1 to S2 and S3 to S0 transitions. Calcium dependence was observed at pH 7.5, but not at pH 6.0. S-state induced shifts were observed in amide C═O frequencies during the S1 to S2 transition and attributed to alterations in hydrogen bonding, based on ammonia sensitivity. In addition, isotope editing of the extrinsic subunit, PsbO, established that amide vibrational bands of this lumenal subunit respond to the S state transitions and that PsbO is a structural template for the reaction center. Taken together, these spectroscopic results support the hypothesis that proton transfer networks, extending from YZ to PsbO, play a functional and dynamic role in photosynthetic oxygen evolution.
Collapse
Affiliation(s)
- Bridgette A. Barry
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Udita Brahmachari
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhanjun Guo
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
30
|
del Val C, Bondar AN. Charged groups at binding interfaces of the PsbO subunit of photosystem II: A combined bioinformatics and simulation study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:432-441. [DOI: 10.1016/j.bbabio.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 01/20/2023]
|
31
|
Barkla BJ. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity. Proteomes 2016; 4:proteomes4030026. [PMID: 28248236 PMCID: PMC5217352 DOI: 10.3390/proteomes4030026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 12/11/2022] Open
Abstract
Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Southern Cross Plant Sciences, Southern Cross University, Lismore 2481, NSW, Australia.
| |
Collapse
|
32
|
Bommer M, Bondar AN, Zouni A, Dobbek H, Dau H. Crystallographic and Computational Analysis of the Barrel Part of the PsbO Protein of Photosystem II: Carboxylate–Water Clusters as Putative Proton Transfer Relays and Structural Switches. Biochemistry 2016; 55:4626-35. [DOI: 10.1021/acs.biochem.6b00441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Bommer
- Institut
für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Fachbereich
Physik, Theoretical Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Athina Zouni
- Institut
für Biologie, Biophysik der Photosynthese, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Holger Dobbek
- Institut
für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Holger Dau
- Fachbereich
Physik, Biophysics and Photosynthesis, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
33
|
Mummadisetti MP, Frankel LK, Bellamy HD, Sallans L, Goettert JS, Brylinski M, Bricker TM. Use of Protein Cross-Linking and Radiolytic Labeling To Elucidate the Structure of PsbO within Higher-Plant Photosystem II. Biochemistry 2016; 55:3204-13. [PMID: 27203407 DOI: 10.1021/acs.biochem.6b00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have used protein cross-linking with the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and radiolytic footprinting coupled with high-resolution tandem mass spectrometry, to examine the structure of higher-plant PsbO when it is bound to Photosystem II. Twenty intramolecular cross-linked residue pairs were identified. On the basis of this cross-linking data, spinach PsbO was modeled using the Thermosynechococcus vulcanus PsbO structure as a template, with the cross-linking distance constraints incorporated using the MODELLER program. Our model of higher-plant PsbO identifies several differences between the spinach and cyanobacterial proteins. The N-terminal region is particularly interesting, as this region has been suggested to be important for oxygen evolution and for the specific binding of PsbO to Photosystem II. Additionally, using radiolytic mapping, we have identified regions on spinach PsbO that are shielded from the bulk solvent. These domains may represent regions on PsbO that interact with other components, as yet unidentified, of the photosystem.
Collapse
Affiliation(s)
- Manjula P Mummadisetti
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Laurie K Frankel
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Henry D Bellamy
- The J. Bennett Johnston, Sr. Center for Advanced Microstructures & Devices, Louisiana State University , Baton Rouge, Louisiana 70806, United States
| | - Larry Sallans
- The Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati , Cincinnati, Ohio 45221, United States
| | - Jost S Goettert
- The J. Bennett Johnston, Sr. Center for Advanced Microstructures & Devices, Louisiana State University , Baton Rouge, Louisiana 70806, United States
| | - Michal Brylinski
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Terry M Bricker
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
34
|
Snow JT, Polyviou D, Skipp P, Chrismas NAM, Hitchcock A, Geider R, Moore CM, Bibby TS. Quantifying Integrated Proteomic Responses to Iron Stress in the Globally Important Marine Diazotroph Trichodesmium. PLoS One 2015; 10:e0142626. [PMID: 26562022 PMCID: PMC4642986 DOI: 10.1371/journal.pone.0142626] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/23/2015] [Indexed: 02/03/2023] Open
Abstract
Trichodesmium is a biogeochemically important marine cyanobacterium, responsible for a significant proportion of the annual 'new' nitrogen introduced into the global ocean. These non-heterocystous filamentous diazotrophs employ a potentially unique strategy of near-concurrent nitrogen fixation and oxygenic photosynthesis, potentially burdening Trichodesmium with a particularly high iron requirement due to the iron-binding proteins involved in these processes. Iron availability may therefore have a significant influence on the biogeography of Trichodesmium. Previous investigations of molecular responses to iron stress in this keystone marine microbe have largely been targeted. Here a holistic approach was taken using a label-free quantitative proteomics technique (MSE) to reveal a sophisticated multi-faceted proteomic response of Trichodesmium erythraeum IMS101 to iron stress. Increased abundances of proteins known to be involved in acclimation to iron stress and proteins known or predicted to be involved in iron uptake were observed, alongside decreases in the abundances of iron-binding proteins involved in photosynthesis and nitrogen fixation. Preferential loss of proteins with a high iron content contributed to overall reductions of 55-60% in estimated proteomic iron requirements. Changes in the abundances of iron-binding proteins also suggested the potential importance of alternate photosynthetic pathways as Trichodesmium reallocates the limiting resource under iron stress. Trichodesmium therefore displays a significant and integrated proteomic response to iron availability that likely contributes to the ecological success of this species in the ocean.
Collapse
Affiliation(s)
- Joseph T. Snow
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, The University of Manchester, Wolfson Molecular Imaging Centre, Manchester, United Kingdom
- * E-mail:
| | - Despo Polyviou
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
| | - Paul Skipp
- Centre for Proteomic Research, University of Southampton, Southampton, United Kingdom
| | - Nathan A. M. Chrismas
- School of Geographical Sciences, University of Bristol, University Road, Clifton, Bristol, United Kingdom
| | - Andrew Hitchcock
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Richard Geider
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - C. Mark Moore
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
| | - Thomas S. Bibby
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
35
|
Lorch S, Capponi S, Pieront F, Bondar AN. Dynamic Carboxylate/Water Networks on the Surface of the PsbO Subunit of Photosystem II. J Phys Chem B 2015; 119:12172-81. [DOI: 10.1021/acs.jpcb.5b06594] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Lorch
- Theoretical
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Sara Capponi
- Department
of Physiology and Biophysics, University of California at Irvine, Medical Sciences I, Irvine, California 92697, United States
| | - Florian Pieront
- Theoretical
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Theoretical
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
36
|
Ifuku K. Localization and functional characterization of the extrinsic subunits of photosystem II: an update. Biosci Biotechnol Biochem 2015; 79:1223-31. [DOI: 10.1080/09168451.2015.1031078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Photosystem II (PSII), which catalyzes photosynthetic water oxidation, is composed of more than 20 subunits, including membrane-intrinsic and -extrinsic proteins. The extrinsic proteins of PSII shield the catalytic Mn4CaO5 cluster from exogenous reductants and serve to optimize oxygen evolution at physiological ionic conditions. These proteins include PsbO, found in all oxygenic organisms, PsbP and PsbQ, specific to higher plants and green algae, and PsbU, PsbV, CyanoQ, and CyanoP in cyanobacteria. Furthermore, red algal PSII has PsbQ′ in addition to PsbO, PsbV, and PsbU, and diatoms have Psb31 in supplement to red algal-type extrinsic proteins, exemplifying the functional divergence of these proteins during evolution. This review provides an updated summary of recent findings on PSII extrinsic proteins and discusses their binding, function, and evolution within various photosynthetic organisms.
Collapse
Affiliation(s)
- Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
37
|
Pigolev AV, Klimov VV. The green alga Chlamydomonas reinhardtii as a tool for in vivo study of site-directed mutations in PsbO protein of photosystem II. BIOCHEMISTRY (MOSCOW) 2015; 80:662-73. [DOI: 10.1134/s0006297915060036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Offenbacher AR, Pagba CV, Polander BC, Brahmachari U, Barry BA. First site-specific incorporation of a noncanonical amino acid into the photosynthetic oxygen-evolving complex. ACS Chem Biol 2014; 9:891-6. [PMID: 24437616 DOI: 10.1021/cb400880u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In photosystem II (PSII), water is oxidized at the oxygen-evolving complex. This process occurs through a light-induced cycle that produces oxygen and protons. While coupled proton and electron transfer reactions play an important role in PSII and other proteins, direct detection of internal proton transfer reactions is challenging. Here, we demonstrate that the unnatural amino acid, 7-azatryptophan (7AW), has unique, pH-sensitive vibrational frequencies, which are sensitive markers of proton transfer. The intrinsically disordered, PSII subunit, PsbO, which contains a single W residue (Trp241), was engineered to contain 7AW at position 241. Fluorescence shows that 7AW-241 is buried in a hydrophobic environment. Reconstitution of 7AW(241)PsbO to PSII had no significant impact on oxygen evolution activity or flash-dependent protein dynamics. We conclude that directed substitution of 7AW into other structural domains is likely to provide a nonperturbative spectroscopic probe, which can be used to define internal proton pathways in PsbO.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department of Chemistry and
Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Cynthia V. Pagba
- Department of Chemistry and
Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Brandon C. Polander
- Department of Chemistry and
Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Udita Brahmachari
- Department of Chemistry and
Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Bridgette A. Barry
- Department of Chemistry and
Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
39
|
Marín M, Ott T. Intrinsic disorder in plant proteins and phytopathogenic bacterial effectors. Chem Rev 2014; 114:6912-32. [PMID: 24697726 DOI: 10.1021/cr400488d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Macarena Marín
- Genetics Institute, Faculty of Biology, Ludwig-Maximilians-University of Munich , Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| | | |
Collapse
|
40
|
Najafpour MM, Haghighi B, Ghobadi MZ, Sedigh DJ. Nanolayered manganese oxide/poly(4-vinylpyridine) as a biomimetic and very efficient water oxidizing catalyst: toward an artificial enzyme in artificial photosynthesis. Chem Commun (Camb) 2014; 49:8824-6. [PMID: 23959144 DOI: 10.1039/c3cc44399j] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanolayered Mn oxide/poly(4-vinylpyridine) as a model for Mn cluster in photosystem II was synthesized and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and UV-Visible spectroscopy (UV-Vis). The compound is a very efficient water oxidizing catalyst, and sizable oxygen evolution was detected at 50 mV overpotential at near neutral pH. The number is as low as the overpotential is used by nature in photosystem II of cyanobacteria, algae and green plants for similar reactions.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | | | | | | |
Collapse
|
41
|
Najafpour MM, Ghobadi MZ, Sedigh DJ, Haghighi B. Nano-sized layered manganese oxide in a poly-L-glutamic acid matrix: a biomimetic, homogenized, heterogeneous structural model for the water-oxidizing complex in photosystem II. RSC Adv 2014. [DOI: 10.1039/c4ra04719b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we report a nano-sized layered Mn–Ca oxide in poly-L-glutamic acid as a structural model for a biological water-oxidizing site in plants, algae and cyanobacteria.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
- Center of Climate Change and Global Warming
- Institute for Advanced Studies in Basic Sciences (IASBS)
| | | | - Davood Jafarian Sedigh
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
| | - Behzad Haghighi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
- Center of Climate Change and Global Warming
- Institute for Advanced Studies in Basic Sciences (IASBS)
| |
Collapse
|
42
|
Pokhrel R, Brudvig GW. Oxygen-evolving complex of photosystem II: correlating structure with spectroscopy. Phys Chem Chem Phys 2014; 16:11812-21. [DOI: 10.1039/c4cp00493k] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Nagao R, Suga M, Niikura A, Okumura A, Koua FHM, Suzuki T, Tomo T, Enami I, Shen JR. Crystal Structure of Psb31, a Novel Extrinsic Protein of Photosystem II from a Marine Centric Diatom and Implications for Its Binding and Function. Biochemistry 2013; 52:6646-52. [DOI: 10.1021/bi400770d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryo Nagao
- Department
of Integrated Sciences in Physics and Biology, College
of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8850, Japan
| | - Michihiro Suga
- Graduate
School of Natural Science and Technology/Faculty of Science, Okayama University, Tsushima Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Ayako Niikura
- Graduate
School of Natural Science and Technology/Faculty of Science, Okayama University, Tsushima Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Akinori Okumura
- Department
of Integrated Sciences in Physics and Biology, College
of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8850, Japan
| | - Faisal Hammad Mekky Koua
- Graduate
School of Natural Science and Technology/Faculty of Science, Okayama University, Tsushima Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Takehiro Suzuki
- Biomolecular
Characterization Team, Discovery Research Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Tatsuya Tomo
- Department
of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka
1-3, Shinjuku-ku, Tokyo 162-8601, Japan
- PRESTO, Japan Science
and Technology Agency (JST), 4-1-8
Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Isao Enami
- Department
of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka
1-3, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Jian-Ren Shen
- Graduate
School of Natural Science and Technology/Faculty of Science, Okayama University, Tsushima Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
44
|
Offenbacher AR, Polander BC, Barry BA. An intrinsically disordered photosystem II subunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation. J Biol Chem 2013; 288:29056-68. [PMID: 23940038 DOI: 10.1074/jbc.m113.487561] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) is a membrane-bound enzyme that utilizes solar energy to catalyze the photooxidation of water. Molecular oxygen is evolved after four sequential light-driven oxidation reactions at the Mn4CaO5 oxygen-evolving complex, producing five sequentially oxidized states, Sn. PSII is composed of 17 membrane-spanning subunits and three extrinsic subunits, PsbP, PsbQ, and PsbO. PsbO is intrinsically disordered and plays a role in facilitation of the water oxidizing cycle. Native PsbO can be removed and substituted with recombinant PsbO, thereby restoring steady-state activity. In this report, we used reaction-induced Fourier transform infrared spectroscopy to obtain information concerning the role of PsbP, PsbQ, and PsbO during the S state cycle. Light-minus-dark difference spectra were acquired, monitoring structural changes associated with each accessible flash-induced S state transition in a highly purified plant PSII preparation (Triton X-100, octylthioglucoside). A comparison of S2 minus S1 spectra revealed that removal of PsbP and PsbQ had no significant effect on the data, whereas amide frequency and intensity changes were associated with PsbO removal. These data suggest that PsbO acts as an organizational template for the PSII reaction center. To identify any coupled conformational changes arising directly from PsbO, global (13)C-PsbO isotope editing was employed. The reaction-induced Fourier transform infrared spectra of accessible S states provide evidence that PsbO spectral contributions are temperature (263 and 277 K) and S state dependent. These experiments show that PsbO undergoes catalytically relevant structural dynamics, which are coupled over long distance to hydrogen-bonding changes at the Mn4CaO5 cluster.
Collapse
Affiliation(s)
- Adam R Offenbacher
- From the School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | | | |
Collapse
|
45
|
Castillo-Medina RE, Islas-Flores T, Thomé PE, Iglesias-Prieto R, Lin S, Zhang H, Villanueva MA. The PsbO homolog from Symbiodinium kawagutii (Dinophyceae) characterized using biochemical and molecular methods. PHOTOSYNTHESIS RESEARCH 2013; 115:167-78. [PMID: 23708979 DOI: 10.1007/s11120-013-9856-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/16/2013] [Indexed: 05/10/2023]
Abstract
A photosystem II component, the PsbO protein is essential for maximum rates of oxygen production during photosynthesis, and has been extensively characterized in plants and cyanobacteria but not in symbiotic dinoflagellates. Its close interaction with D1 protein has important environmental implications since D1 has been identified as the primary site of damage in endosymbiotic dinoflagellates after thermal stress. We identified and biochemically characterized the PsbO homolog from Symbiodinium kawagutii as a 28-kDa protein, and immunolocalized it to chloroplast membranes. Chloroplast association was further confirmed by western blot on photosynthetic membrane preparations. TX-114 phase partitioning, chromatography, and SDS-PAGE for single band separation and partial peptide sequencing yielded peptides identical or with high identity to PsbO from dinoflagellates. Analysis of a cDNA library revealed three genes differing by only one aminoacid residue in the in silico-translated ORFs despite greater differences at nucleotide level in the untranslated, putative regulatory sequences. The consensus full amino acid sequence displayed all the characteristic domains and features of PsbO from other sources, but changes in functionally critical, highly conserved motifs were detected. Our biochemical, molecular, and immunolocalization data led to the conclusion that the 28-kDa protein from S. kawagutii is the PsbO homolog, thereby named SkPsbO. We discuss the implications of critical amino acid substitutions for a putative regulatory role of this protein.
Collapse
Affiliation(s)
- Raúl E Castillo-Medina
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México-UNAM, Prol. Avenida Niños Héroes S/N, 77580 Puerto Morelos, Q ROO, Mexico
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
SIGNIFICANCE Disulfide-bonded proteins in chloroplasts from green plants exist in the envelope and the thylakoid membrane, and in the stroma and the lumen. The formation of disulfide bonds in proteins is referred to as oxidative folding and is linked to the import and folding of chloroplast proteins as well as the assembly and repair of thylakoid complexes. It is also important in the redox regulation of enzymes and signal transfer. RECENT ADVANCES Green-plant chloroplasts contain enzymes that can form and isomerize disulfide bonds in proteins. In Arabidopsis thaliana, four proteins are identified that are relevant for the catalysis of disulfide bond formation in chloroplast proteins. The proteins' low quantum yield of Photosystem II 1 (LQY1, At1g75690) and snowy cotyledon 2 (SCO2, At3g19220) exhibits protein disulfide isomerase activity and is suggested to function in the assembly and repair of Photosystem II (PSII), and the biogenesis of thylakoids in cotyledons, respectively. The thylakoid-located Lumen thiol oxidoreductase 1 (LTO1, At4g35760) can catalyze the formation of the disulfide bond of the extrinsic PsbO protein of PSII. In addition, the stroma-located protein disulfide isomerase PDIL1-3 (At3g54960) may have a role in oxidative folding. CRITICAL ISSUES Research on oxidative folding in chloroplasts plants is in an early stage and little is known about the mechanisms of disulfide bond formation in chloroplast proteins. FUTURE DIRECTIONS The close link between the import and folding of chloroplast proteins suggests that Hsp93, a component of the inner envelope's import apparatus, may have co-chaperones that can catalyze disulfide bond formation in newly imported proteins.
Collapse
|
47
|
Tóth SZ, Schansker G, Garab G. The physiological roles and metabolism of ascorbate in chloroplasts. PHYSIOLOGIA PLANTARUM 2013; 148:161-75. [PMID: 23163968 DOI: 10.1111/ppl.12006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 05/03/2023]
Abstract
Ascorbate is a multifunctional metabolite in plants. It is essential for growth control, involving cell division and cell wall synthesis and also involved in redox signaling, in the modulation of gene expression and regulation of enzymatic activities. Ascorbate also fulfills crucial roles in scavenging reactive oxygen species, both enzymatically and nonenzymatically, a well-established phenomenon in the chloroplasts stroma. We give an overview on these important physiological functions and would like to give emphasis to less well-known roles of ascorbate, in the thylakoid lumen, where it also plays multiple roles. It is essential for photoprotection as a cofactor for violaxanthin de-epoxidase, a key enzyme in the formation of nonphotochemical quenching. Lumenal ascorbate has recently also been shown to act as an alternative electron donor of photosystem II once the oxygen-evolving complex is inactivated and to protect the photosynthetic machinery by slowing down donor-side induced photoinactivation; it is yet to be established if ascorbate has a similar role in the case of other stress effects, such as high light and UV-B stress. In bundle sheath cells, deficient in oxygen evolution, ascorbate provides electrons to photosystem II, thereby poising cyclic electron transport around photosystem I. It has also been shown that, by supporting linear electron transport through photosystem II in sulfur-deprived Chlamydomonas reinhardtii cells, in which oxygen evolution is largely inhibited, externally added ascorbate enhances hydrogen production. For fulfilling its multiple roles, Asc has to be transported into the thylakoid lumen and efficiently regenerated; however, very little is known yet about these processes.
Collapse
Affiliation(s)
- Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, P.O. Box 521, H-6701, Hungary.
| | | | | |
Collapse
|
48
|
Liu H, Chen J, Huang RYC, Weisz D, Gross ML, Pakrasi HB. Mass spectrometry-based footprinting reveals structural dynamics of loop E of the chlorophyll-binding protein CP43 during photosystem II assembly in the cyanobacterium Synechocystis 6803. J Biol Chem 2013; 288:14212-14220. [PMID: 23546881 DOI: 10.1074/jbc.m113.467613] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PSII repair cycle is required for sustainable photosynthesis in oxygenic photosynthetic organisms. In cyanobacteria and higher plants, proteolysis of the precursor D1 protein (pD1) to expose a C-terminal carboxylate group is an essential step leading to coordination of the Mn4CaO5 cluster, the site of water oxidation. Psb27 appears to associate with both pD1- and D1-containing PSII assembly intermediates by closely interacting with CP43. Here, we report that reduced binding affinity between CP43 and Psb27 is triggered by the removal of the C-terminal extension of the pD1 protein. A mass spectrometry-based footprinting strategy was adopted to probe solvent-exposed aspartic and glutamic acid residues on the CP43 protein. By comparing the extent of footprinting between HT3ΔctpAΔ27PSII and HT3ΔctpAPSII, two genetically modified PSII assembly complexes, we found that Psb27 binds to CP43 on the side of Loop E distal to the pseudo-symmetrical D1-D2 axis. By comparing a second pair of PSII assembly complexes, we discovered that Loop E of CP43 undergoes a significant conformational rearrangement due to the removal of the pD1 C-terminal extension, altering the Psb27-CP43 binding interface. The significance of this conformational rearrangement is discussed in the context of recruitment of the PSII lumenal extrinsic proteins and Mn4CaO5 cluster assembly. In addition to CP43's previously known function as one of the core PSII antenna proteins, this work demonstrates that Loop E of CP43 plays an important role in the functional assembly of the Water Oxidizing Center (WOC) during PSII biogenesis.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Jiawei Chen
- Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Richard Y-C Huang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Daniel Weisz
- Department of Biology, Washington University, St. Louis, Missouri 63130; Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, Missouri 63130.
| |
Collapse
|
49
|
Popelka H, Yocum C. Probing the N-terminal sequence of spinach PsbO: evidence that essential threonine residues bind to different functional sites in eukaryotic photosystem II. PHOTOSYNTHESIS RESEARCH 2012; 112:117-128. [PMID: 22614952 DOI: 10.1007/s11120-012-9745-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/03/2012] [Indexed: 06/01/2023]
Abstract
The N-terminal ¹E-⁶L domain of the manganese-stabilizing protein (PsbO) from spinach prevents non-specific binding of the subunit to photosystem II (PSII) and deletions of the ¹E-⁷T or ¹E-¹⁵T sequences from the PsbO N-terminus reduce or impair, respectively, functional binding of PsbO to PSII (Popelkova et al., Biochemistry 42:6193-6200, 2003). The work presented here provides deeper insights into the interaction of PsbO with PSII. The data show that a single mutation, ¹⁵T → A in mature PsbO from spinach reduces the stoichiometry of its functional binding from two to one subunit per PSII and decreases reconstitution of activity to about 45 % of the wild-type control. Replacement of the ¹E-⁶L domain with ⁶M in the T15A PsbO mutant has no additional negative effect on recovery of O₂ evolution activity, but it significantly weakens both functional and nonspecific binding of the truncated mutant to PSII. These results suggest that the ¹⁵T side-chain by itself is essential for binding of one of two PsbO subunits to eukaryotic PSII and that specific PSII-binding sites for PsbO are distinguishable; one PSII-binding site does not require PsbO-¹⁵T and probably interacts with the other N-terminal domain of PsbO. Identity of the latter domain is revealed by a requirement for the presence of the ¹E-⁶L sequence that is shown here to be necessary for high-affinity binding of PsbO to PSII. When combined with previous results, the data presented here lead to a more detailed model for PsbO binding in eukaryotic PSII.
Collapse
Affiliation(s)
- Hana Popelka
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048, USA.
| | | |
Collapse
|
50
|
Commet A, Boswell N, Yocum CF, Popelka H. pH optimum of the photosystem II H₂O oxidation reaction: effects of PsbO, the manganese-stabilizing protein, Cl- retention, and deprotonation of a component required for O₂ evolution activity. Biochemistry 2012; 51:3808-18. [PMID: 22512418 DOI: 10.1021/bi201678m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxide ion inhibits Photosystem II (PSII) activity by extracting Cl(-) from its binding site in the O(2)-evolving complex (OEC) under continuous illumination [Critchley, C., et al. (1982) Biochim. Biophys. Acta 682, 436]. The experiments reported here examine whether two subunits of PsbO, the manganese-stabilizing protein, bound to eukaryotic PSII play a role in protecting the OEC against OH(-) inhibition. The data show that the PSII binding properties of PsbO affect the pH optimum for O(2) evolution activity as well as the Cl(-) affinity of the OEC that decreases with an increasing pH. These results suggest that PsbO functions as a barrier against inhibition of the OEC by OH(-). Through facilitation of efficient retention of Cl(-) in PSII [Popelkova, H., et al. (2008) Biochemistry 47, 12593], PsbO influences the ability of Cl(-) to resist OH(-)-induced release from its site in the OEC. Preventing inhibition by OH(-) allows for normal (short) lifetimes of the S(2) and S(3) states in darkness [Roose, J. L., et al. (2011) Biochemistry 50, 5988] and for maximal steady-state activity by PSII. The data presented here indicate that activation of H(2)O oxidation occurs with a pK(a) of ∼6.5, which could be a function of deprotonation of one or more amino acid residues that reside near the OEC active site on the D1 and CP43 intrinsic subunits of the PSII reaction center.
Collapse
Affiliation(s)
- Alan Commet
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|