1
|
Giakoumaki M, Lambrou GI, Vlachodimitropoulos D, Tagka A, Vitsos A, Kyriazi M, Dimakopoulou A, Anagnostou V, Karasmani M, Deli H, Grigoropoulos A, Karalis E, Rallis MC, Black HS. Type I Diabetes Mellitus Suppresses Experimental Skin Carcinogenesis. Cancers (Basel) 2024; 16:1507. [PMID: 38672589 PMCID: PMC11048394 DOI: 10.3390/cancers16081507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This study explores the previously uncharted territory of the effects of ultraviolet (UV) radiation on diabetic skin, compared to its well-documented impact on normal skin, particularly focusing on carcinogenesis and aging. Employing hairless SKH-hr2, Type 1 and 2 diabetic, and nondiabetic male mice, the research subjected these to UV radiation thrice weekly for eight months. The investigation included comprehensive assessments of photoaging and photocarcinogenesis in diabetic versus normal skin, measuring factors such as hydration, trans-epidermal water loss, elasticity, skin thickness, melanin, sebum content, stratum corneum exfoliation and body weight, alongside photo documentation. Additionally, oxidative stress and the presence of hydrophilic antioxidants (uric acid and glutathione) in the stratum corneum were evaluated. Histopathological examination post-sacrifice provided insights into the morphological changes. Findings reveal that under UV exposure, Type 1 diabetic skin showed heightened dehydration, thinning, and signs of accelerated aging. Remarkably, Type 1 diabetic mice did not develop squamous cell carcinoma or pigmented nevi, contrary to normal and Type 2 diabetic skin. This unexpected resistance to UV-induced skin cancers in Type 1 diabetic skin prompts a crucial need for further research to uncover the underlying mechanisms providing this resistance.
Collapse
Affiliation(s)
- Maria Giakoumaki
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, School of Health Sciences, Medical School, National and Kapodistrian University of Athens, Thivon & Levaeias 8, Goudi, 11527 Athens, Greece;
- Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| | - Dimitrios Vlachodimitropoulos
- Department of Forensic Medicine and Toxicology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527 Athens, Greece;
| | - Anna Tagka
- First Department of Dermatology and Venereology, ‘Andreas Syggros” Hospital, School of Medicine, National and Kapodistrian University of Athens, Ionos Dragoumi 5, 11621 Athens, Greece;
| | - Andreas Vitsos
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Maria Kyriazi
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Aggeliki Dimakopoulou
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Vasiliki Anagnostou
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Marina Karasmani
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Heleni Deli
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Andreas Grigoropoulos
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Evangelos Karalis
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Michail Christou Rallis
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Homer S. Black
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
2
|
Park SM, Jung CJ, Lee DG, Yu YE, Ku TH, Hong MS, Lim TK, Paeng KI, Cho HK, Cho IJ, Ku SK. Elaeagnus umbellata Fruit Extract Protects Skin from Ultraviolet-Mediated Photoaging in Hairless Mice. Antioxidants (Basel) 2024; 13:195. [PMID: 38397793 PMCID: PMC10885948 DOI: 10.3390/antiox13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Photoaging refers to the accumulation of skin damage which includes wrinkle formation, loss of elasticity, and epidermal thickening due to repeated ultraviolet (UV) irradiation. The present study investigated the protective effects of Elaeagnus umbellata fruit extract (Elaea) on UV-mediated photoaged skin of SKH1 hairless mice and compared the effects of Elaea with ascorbic acid. Although there was no difference in body weight between groups during experimental period, oral administration of 50-200 mg/kg Elaea once daily for 15 weeks significantly prevented an increase in skin weight, epithelial thickening of epidermis, and apoptosis caused by UV irradiation. Skin replica and histopathological analyses revealed that Elaea dose-dependently decreased wrinkle and microfold formation. In addition, Elaea administration restored UV-mediated reduction in type I collagen and hyaluronan through the inhibition of matrix metalloproteinases and p38 mitogen-activated protein kinase expression. Moreover, Elaea suppressed UV-dependent increases in superoxide anion production, fatty acid oxidation, and protein nitration by up-regulating antioxidant system. Furthermore, Elaea alleviated infiltration of inflammatory cells in UV-irradiated skin. The preventive effects of 100 mg/kg Elaea administration against UV-induced photoaging were similar to those by 100 mg/kg ascorbic acid. Collectively, the present study suggests that the E. umbellata fruit is a promising edible candidate to prevent skin photoaging.
Collapse
Affiliation(s)
- Seok-Man Park
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (S.-M.P.); (C.-J.J.); (D.-G.L.)
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea;
| | - Cheol-Jong Jung
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (S.-M.P.); (C.-J.J.); (D.-G.L.)
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea;
| | - Dae-Geon Lee
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (S.-M.P.); (C.-J.J.); (D.-G.L.)
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea;
| | - Yeong-Eun Yu
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea;
| | - Tae-Hun Ku
- Okchundang Korean Medicine Clinic, Ulsan 44900, Republic of Korea;
| | - Mu-Seok Hong
- Rodam Korean Medical Clinic, Seoul 06038, Republic of Korea; (M.-S.H.); (T.-K.L.); (K.-I.P.); (H.-K.C.)
| | - Tae-Kyung Lim
- Rodam Korean Medical Clinic, Seoul 06038, Republic of Korea; (M.-S.H.); (T.-K.L.); (K.-I.P.); (H.-K.C.)
| | - Kwong-Il Paeng
- Rodam Korean Medical Clinic, Seoul 06038, Republic of Korea; (M.-S.H.); (T.-K.L.); (K.-I.P.); (H.-K.C.)
| | - Hyun-Ki Cho
- Rodam Korean Medical Clinic, Seoul 06038, Republic of Korea; (M.-S.H.); (T.-K.L.); (K.-I.P.); (H.-K.C.)
| | - Il-Je Cho
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea;
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (S.-M.P.); (C.-J.J.); (D.-G.L.)
| |
Collapse
|
3
|
Kerche LE, Carrara IM, Marinello PC, Cavalcante DGSM, Danna CS, Cecchini R, Cecchini AL, Job AE. Antioxidant and photoprotective role of latex C-serum from Hevea brasiliensis during 15-week UVB irradiation in male hairless SKH-1 mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:846-858. [PMID: 37671816 DOI: 10.1080/15287394.2023.2255885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
It is known that UVB radiation induces several adverse skin alterations starting from simple photoaging to skin cancer. In addition, it was demonstrated that reactive oxygen species (ROS) were found to be related to cancer development and progression. The aim of study was to examine whether male hairless (SKH-1) mice (Mus musculus) that were subchronically exposed to UVB radiation presented with actinic keratosis (AK) and squamous cell carcinoma lesions, and that treatment with latex C-serum cream significantly prevented abnormal skin development. Data demonstrated for the first time the photoprotective activity of latex C-serum extracted from the rubber tree Hevea brasiliensis var. subconcolor Ducke. Latex C-serum prevented the progression of AK to squamous cell carcinoma in SKH-1 mice, indicating that mice topically treated with latex C-serum presented only AK lesions and treatment with the highest concentration (10%) significantly reduced epidermal thickness, suggesting diminished cell proliferation. Latex C-serum protected the skin of mice against oxidative stress damage, increasing catalase (CAT) activity, regenerating glutathione (GSH) levels, lowering thiobarbituric acid-reactive species (TBARS) production and regenerating the total antioxidant capacity (TAC) of the skin. Evidence that UV radiation in skin induced systemic alterations and erythrocytic analysis indicated that latex C-serum increased CAT activity and GSH levels. Taken together these data indicate that latex C-serum plays an important antioxidant and photoprotective role, preventing serious damage to the skin following exposure to UVB radiation.
Collapse
Affiliation(s)
- Leandra E Kerche
- Department of Physics, Chemistry and Biology, São Paulo State University, Presidente Prudente, SP, Brazil
- Department of Physiological Sciences, Western São Paulo University, Presidente Prudente, SP, Brazil
| | - Iriana M Carrara
- Department of General Pathology, Londrina State University, Londrina, PR, Brazil
| | - Poliana C Marinello
- Department of General Pathology, Londrina State University, Londrina, PR, Brazil
| | - Dalita G S M Cavalcante
- Department of Physics, Chemistry and Biology, São Paulo State University, Presidente Prudente, SP, Brazil
| | - Caroline S Danna
- Department of Physics, Chemistry and Biology, São Paulo State University, Presidente Prudente, SP, Brazil
| | - Rubens Cecchini
- Department of General Pathology, Londrina State University, Londrina, PR, Brazil
| | | | - Aldo E Job
- Department of Physics, Chemistry and Biology, São Paulo State University, Presidente Prudente, SP, Brazil
| |
Collapse
|
4
|
Park JY, Lee JY, Kim Y, Kang CH. Lactic Acid Bacteria Improve the Photoprotective Effect via MAPK/AP-1/MMP Signaling Pathway on Skin Fibroblasts. Microorganisms 2022; 10:2481. [PMID: 36557732 PMCID: PMC9782026 DOI: 10.3390/microorganisms10122481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Ultraviolet B (UVB) exposure causes a breakdown of collagen, oxidative stress, and inflammation. UVB activates mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and matrix metalloproteinases (MMPs). In this study, we evaluated 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radical scavenging activity and the photoprotective effect of lactic acid bacteria LAB strains, including Lactobacillus, Bifidobacterium, and Streptococcus genera in UVB-exposed skin fibroblasts. Nine LAB strains displayed antioxidant activity by regulating superoxide dismutase in UVB-exposed skin fibroblasts. Four LAB strains (MG4684, MG5368, MG4511, and MG5140) recovered type I procollagen level by inhibiting MMPs, MAPK, and AP-1 protein expression. Additionally, these four strains reduced the expression of proinflammatory cytokines by inhibiting oxidative stress. Therefore, L. fermentum MG4684, MG5368, L. rhamnosus MG4511, and S. thermophilus MG5140 are potentially photoprotective.
Collapse
Affiliation(s)
| | | | | | - Chang-Ho Kang
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| |
Collapse
|
5
|
Zhang X, Li H, Liu C, Yuan X. Role of ROS‑mediated autophagy in melanoma (Review). Mol Med Rep 2022; 26:303. [PMID: 35946460 PMCID: PMC9434998 DOI: 10.3892/mmr.2022.12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/22/2022] [Indexed: 11/06/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer with the poorest prognosis and its pathogenesis has yet to be fully elucidated. As key factors that regulate cellular homeostasis, both reactive oxygen species (ROS) and autophagy are involved in the development of melanoma, from melanomagenesis to progression and drug resistance. However, the interaction between ROS and autophagy in the etiology and treatment of melanoma is not well characterized. The present review examined the production of ROS and the role of oxidative stress in melanoma, and summarized the role of ROS‑mediated autophagy in melanomagenesis and melanoma cell fate decision following treatment with various anticancer drugs. The present findings may lead to a better understanding of the pathogenesis and progression of melanoma, and suggest promising treatment options for this disease.
Collapse
Affiliation(s)
- Xuebing Zhang
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Huaijun Li
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Chengxiang Liu
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Xingxing Yuan
- Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
6
|
Salaheldin TA, Adhami VM, Fujioka K, Mukhtar H, Mousa SA. Photochemoprevention of ultraviolet Beam Radiation-induced DNA damage in keratinocytes by topical delivery of nanoformulated Epigallocatechin-3-gallate. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102580. [PMID: 35768037 DOI: 10.1016/j.nano.2022.102580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/25/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Ultraviolet Beam (UVB) radiation is the main cause of skin cancer worldwide. Besides biocompatibility, the instability and limited skin permeability are the most challenging features of many effective photochemopreventive agents. (-)-Epigallocatechin-3-gallate (EGCG) is a natural polyphenolic compound extracted from Camellia sinensis that has been demonstrated to have antioxidant, anti-inflammatory, and anti-cancer properties. We evaluated the efficacy of three innovative EGCG nanoformulations in chemoprevention of UVB-induced DNA damage in keratinocytes. Results indicated that the EGCG nanoformulations reduced UVB-induced oxidative stress elevation and DNA damage. The nanoformulations also reduced the UVB-induced formation of pyrimidine and pyrimidone photoproducts in 2D human immortalized HaCaT keratinocytes and SKH-1 hairless mice through antioxidant effects and possibly through absorption of UVB radiation. In addition, EGCG nanoformulations inhibited UVB-induced chemokine/cytokine activation and promoted EGCG skin permeability and stability. Taken together, the results suggest the use of EGCG nanoformulations as potential natural chemopreventive agents during exposure to UVB radiation.
Collapse
Affiliation(s)
- Taher A Salaheldin
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Vaqar M Adhami
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kazutoshi Fujioka
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Hasan Mukhtar
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
7
|
Mahendra CK, Goh KW, Ming LC, Zengin G, Low LE, Ser HL, Goh BH. The Prospects of Swietenia macrophylla King in Skin Care. Antioxidants (Basel) 2022; 11:antiox11050913. [PMID: 35624777 PMCID: PMC9137607 DOI: 10.3390/antiox11050913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
The importance of cosmetics in our lives is immeasurable. Covering items from daily personal hygienic products to skincare, it has become essential to consumers that the items that they use are safe and effective. Since natural products are from natural sources, and therefore considered “natural” and “green” in the public’s eyes, the rise in demand for such products is not surprising. Even so, factoring in the need to remain on trend and innovative, cosmetic companies are on a constant search for new ingredients and inventive new formulations. Based on numerous literature, the seed of Swietenia macrophylla has been shown to possess several potential “cosmetic-worthy” bioproperties, such as skin whitening, photoprotective, antioxidant, antimicrobial, etc. These properties are vital in the cosmetic business, as they ultimately contribute to the “ageless” beauty that many consumers yearn for. Therefore, with further refinement and research, these active phytocompounds may be a great contribution to the cosmetic field in the near future.
Collapse
Affiliation(s)
- Camille Keisha Mahendra
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia;
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Correspondence: (L.C.M.); (B.H.G.)
| | - Gokhan Zengin
- Biochemistry and Physiology Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Liang Ee Low
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Hooi-Leng Ser
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia;
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (L.C.M.); (B.H.G.)
| |
Collapse
|
8
|
Oxidative Stress-Related Mechanisms in Melanoma and in the Acquired Resistance to Targeted Therapies. Antioxidants (Basel) 2021; 10:antiox10121942. [PMID: 34943045 PMCID: PMC8750393 DOI: 10.3390/antiox10121942] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a highly aggressive cancer with the poorest prognosis, representing the deadliest form of skin cancer. Activating mutations in BRAF are the most frequent genetic alterations, present in approximately 50% of all melanoma cases. The use of specific inhibitors towards mutant BRAF variants and MEK, a downstream signaling target of BRAF in the MAPK pathway, has significantly improved progression-free and overall survival in advanced melanoma patients carrying BRAF mutations. Nevertheless, despite these improvements, resistance still develops within the first year of therapy in around 50% of patients, which is a significant problem in managing BRAF-mutated advanced melanoma. Understanding these mechanisms is one of the mainstreams of the research on BRAFi/MEKi acquired resistance. Both genetic and epigenetic mechanisms have been described. Moreover, in recent years, oxidative stress has emerged as another major force involved in all the phases of melanoma development, from initiation to progression until the onsets of the metastatic phenotype and chemoresistance, and has thus become a target for therapy. In the present review, we discuss the current knowledge on oxidative stress and its signaling in melanoma, as well as the oxidative stress-related mechanisms in the acquired resistance to targeted therapies.
Collapse
|
9
|
Miao F. Hydroxytyrosol Alleviates DSS–induced Colitis by Inhibiting NLRP3 Inflammasome Activation and Modulating Gut Microbiota in vivo. Nutrition 2021; 97:111579. [DOI: 10.1016/j.nut.2021.111579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022]
|
10
|
Zhou X, Du HH, Long X, Pan Y, Hu J, Yu J, Zhao X. β-Nicotinamide Mononucleotide (NMN) Administrated by Intraperitoneal Injection Mediates Protection Against UVB-Induced Skin Damage in Mice. J Inflamm Res 2021; 14:5165-5182. [PMID: 34675595 PMCID: PMC8504657 DOI: 10.2147/jir.s327329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Objective Ultraviolet light is an important environmental factor that induces skin oxidation, inflammation, and other diseases. Nicotinamide mononucleotide (NMN) has the effect of anti-oxidation and improving various physiological processes. This study explores the protective effect of NMN monomers given via intraperitoneal injection on UVB-induced photodamage. Methods We used a murine model of UVB-induced photodamage to evaluate the effect of an NMN monomer on photoaging skin by assessing skin and liver tissue sections, serum and skin oxidative stress levels, inflammatory markers, mRNA expression, and protein expression of skin- and liver-related genes. Results The results showed that NMN treatment blocked UVB-induced photodamage in mice, maintaining normal structure and amount of collagen fibers, normal thickness of epidermis and dermis, reducing the production of mast cells, and maintaining complete organized skin structure. NMN intraperitoneal injection also maintained the normal morphology of the mouse liver after UVB exposure. Meanwhile, NMN intraperitoneal injection was found to increase antioxidant ability and regulate the proinflammatory response of the skin and liver to UVB irradiation by enhancing the activity of antioxidant enzymes, release of anti-inflammatory cytokines, reduction of hydrogen peroxide production (H2O2), and decreased inflammatory cytokines. Furthermore, RT-qPCR results indicated that NMN reduced oxidative stress of skin and liver by promoting the activation of the AMP-activated protein kinase (AMPK) signaling pathway and further increasing the expression of downstream antioxidant genes of AMPK. RT-qPCR results also revealed that NMN treatment could downregulate the mRNA expression of interleukin (IL)-6, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α, and upregulate NF-kappa-B inhibitor-α (IκB-α) and interleukin (IL)-10 by inhibiting the activation of nuclear factor-κBp65 (NFκB-p65). Finally, NMN upregulated AMPK, IκB-α, SOD1, and CAT in the skin and downregulated NF-κBp65 protein expression, which is in line with the RT-qPCR results. Conclusion Based on the above results, NMN monomer treatment with intraperitoneal injection also block the photodamage caused by UVB irradiation in mice by regulating the oxidative stress response and inflammatory response.
Collapse
Affiliation(s)
- Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan, South Korea
| | - Hang-Hang Du
- Department of Plastic Surgery, Chongqing Huamei Plastic Surgery Hospital, Chongqing, People's Republic of China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Jian Hu
- R&D Department, Effepharm (Shanghai) Co., Ltd, Shanghai, People's Republic of China
| | - Jianjun Yu
- R&D Department, Effepharm (Shanghai) Co., Ltd, Shanghai, People's Republic of China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| |
Collapse
|
11
|
Akinfenwa AO, Abdul NS, Marnewick JL, Hussein AA. Protective Effects of Linearthin and Other Chalcone Derivatives from Aspalathus linearis (Rooibos) against UVB Induced Oxidative Stress and Toxicity in Human Skin Cells. PLANTS 2021; 10:plants10091936. [PMID: 34579468 PMCID: PMC8467595 DOI: 10.3390/plants10091936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/03/2023]
Abstract
Skin cells suffer continuous damage from chronic exposure to ultraviolet light (UV) that may result in UV-induced oxidative stress and skin thinning. This has necessitated the formulation of cosmeceutical products rich in natural antioxidants and free radical scavengers. Aspalathus linearis (rooibos) is an endemic South African fynbos plant growing naturally in the Western Cape region. The plant is rich in phenolics and other bioactives with a wide spectrum of health benefits. The chemical study of an acetonic extract of green A. linearis afforded a novel compound named linearthin (1) and two known dihydrochalcones, aspalathin (2) and nothofagin (3). The chemical structure of the novel compound was elucidated based on spectroscopic data analysis. The bio-evaluation of the isolated chalcones in vitro for protection against UVB-induced oxidative stress were systematically assessed by examining cell viability, metabolic activity, apoptosis, and cytotoxicity using HaCaT and SK-MEL-1 skin cells models. It was observed that pre-treatment with tested samples for 4- and 24 h at low concentrations were sufficient to protect skin cells from UVB-induced damage in vitro as evidenced by higher cell viability and improved metabolic activity in both keratinocytes (HaCaT) and melanocytes (SK-MEL-1). The results further show that the pre-treatment regimen employed by this study involved some degree of cellular adaptation as evidenced by higher levels of reduced glutathione with a concomitant decrease in lipid peroxidation and lowered caspase 3 activity. Furthermore, compound 1 was most cytoprotective against UVB irradiation of HaCaT cell line (over 24 h) with an IC50 of 282 µg/mL and SK-MEL-1 cell line with IC50 values of 248.3 and 142.6 µg/mL over 4 and 24 h, respectively. On the other hand, HaCaT cells exposed to 2 over 4 h before UVB irradiation showed the highest degree of cytoprotection with an IC50 of 398.9 µg/mL among the four studied samples. These results show that linearthin (1) and the two glycoside dihydrochalcone of A. linearis have the potential to be further developed as antioxidant cosmeceutical ingredients that may protect skin against UVB-induced damage.
Collapse
Affiliation(s)
- Akeem O. Akinfenwa
- Department of Chemistry, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa;
| | - Naeem S. Abdul
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (N.S.A.); (J.L.M.)
| | - Jeanine L. Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (N.S.A.); (J.L.M.)
| | - Ahmed A. Hussein
- Department of Chemistry, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa;
- Correspondence: ; Tel.: +27-21-959-6193; Fax: +27-21-959-3055
| |
Collapse
|
12
|
Moattari CR, Granstein RD. Neuropeptides and neurohormones in immune, inflammatory and cellular responses to ultraviolet radiation. Acta Physiol (Oxf) 2021; 232:e13644. [PMID: 33724698 DOI: 10.1111/apha.13644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Humans are exposed to varying amounts of ultraviolet radiation (UVR) through sunlight. UVR penetrates into human skin leading to release of neuropeptides, neurotransmitters and neuroendocrine hormones. These messengers released from local sensory nerves, keratinocytes, Langerhans cells (LCs), mast cells, melanocytes and endothelial cells (ECs) modulate local and systemic immune responses, mediate inflammation and promote differing cell biologic effects. In this review, we will focus on both animal and human studies that elucidate the roles of calcitonin gene-related peptide (CGRP), substance P (SP), nerve growth factor (NGF), nitric oxide and proopiomelanocortin (POMC) derivatives in mediating immune and inflammatory effects of exposure to UVR as well as other cell biologic effects of UVR exposure.
Collapse
|
13
|
Philips N, Richardson R, Siomyk H, Bynum D, Gonzalez S. “Skin cancer, polyphenols, and oxidative stress” or Counteraction of oxidative stress, inflammation, signal transduction pathways, and extracellular matrix remodeling that mediate skin carcinogenesis by polyphenols. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Miao F, Shan C, Shah SAH, Akhtar RW, Wang X, Ning D. Effect of walnut (Juglans sigillata) oil on intestinal antioxidant, anti-inflammatory, immunity, and gut microbiota modulation in mice. J Food Biochem 2020; 45:e13567. [PMID: 33222270 DOI: 10.1111/jfbc.13567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/28/2022]
Abstract
The study investigated the anti-oxidant, anti-inflammatory, immunity, and gut microbiota modulation in mice (n = 60; 15 mice/group) after intragastric administration of walnut oil (WO; three groups (low (LD), medium (MD), and high doses (HD): 2.5, 5, and 10 ml/kg, respectively) and normal control (NC, saline). WO significantly increased the median villous height/crypt depth (VH/CD) ratio, the activities of superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in intestinal mucosa. WO exerted the anti-inflammatory effects by decreasing the expression of tumor necrosis factor-α (TNF-α) in the duodenal mucosa. All groups shared 157 operational taxonomic units (OTUs; 97% similarity) representing nine phyla. The relative abundance in gut microbiota shifted from more pathogenic bacteria-Helicobacter (NC: 22% versus MD: 3%) toward probiotic-Lactobacillus (NC: 19% versus MD: 40%). The immune organ index (spleen) and contents of secretory immunoglobulin A (S-IgA) were increased from small intestine. In conclusion, WO decreased the oxidative stress, inflammation, and improved the immunity and beneficial gut microbiota in the mice. PRACTICAL APPLICATIONS: Walnut oil (WO) is widely used in traditional medicine around the world and is prescribed as beneficial food oil in agro-industry. However, the intestinal benefits of WO have not been explored extensively, and even its therapeutic mechanism still remains unknown in modern medicine. In this study, WO from Juglans sigillata was investigated for its preventive and protective effects on the intestinal mucosa in mice including anti-oxidant, anti-inflammatory, immunity, and gut microbiota modulation. WO decreased the oxidative stress, inflammation, and improved immunity and beneficial gut microbiota in the mice. WO has shown strong probiotic effect on the gut, and thus, can be considered as a potential candidate in food. The study outcome would enhance utilization of WO for the prevention of gastrointestinal diseases (e.g., Helicobacter, etc.) both in animals and human (inflammatory bowel diseases, IBD) and the formulation of functional foods.
Collapse
Affiliation(s)
- Fujun Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Chunlan Shan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Syed Aftab Hussain Shah
- Pakistan Scientific & Technological Information Center, Quaid-i-Azam University Campus, Islamabad, Pakistan
| | - Rana Waseem Akhtar
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Xuanjun Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland, Kunming, China
| |
Collapse
|
15
|
Bianchini Silva LS, Perasoli FB, Carvalho KV, Vieira KM, Paz Lopes MT, Bianco de Souza GH, Henrique Dos Santos OD, Freitas KM. Melaleuca leucadendron (L.) L. flower extract exhibits antioxidant and photoprotective activities in human keratinocytes exposed to ultraviolet B radiation. Free Radic Biol Med 2020; 159:54-65. [PMID: 32745772 DOI: 10.1016/j.freeradbiomed.2020.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022]
Abstract
Recently, there has been a demand for the replacement of chemical sunscreens with natural compounds that could prevent or restore UV-induced skin damage. Here, we investigated the photoprotective influence of the Melaleuca leucadendron ethanolic flower extract (EEMec) on factors involved in cellular and molecular UVB-induced oxidative stress in human skin keratinocytes (HaCaT). The phytochemical constituents, antioxidant potential by DPPH assay, content of total phenolic and flavonoid compounds in EEMec were evaluated. HaCaT cells were treated with EEMec followed by irradiation with UVB. CAT activity; GSH and ROS levels; and SOD1, GPx, CAT and COX-2 expression assays were employed to verify the oxidative stress, as well as EEMec effect on transmembrane transport, and pro-inflammatory and pro-apoptotic protein expression. EEMec reverted the viability loss of HaCaT cells after irradiation with UVB, exhibited significant antioxidant capacity and free radical scavenging activity in vitro, inhibited COX-2 expression and ensure protection of DNA-damage. EEMec shown a great photoprotective property to prevent keratinocytes damage induced by UV radiation and, thus a candidate potential to application as an adjuvant in sunscreen formulations as a strategy to reduce risk of sunburn and prevent skin diseases associated with UV-induced inflammation and cancer.
Collapse
Affiliation(s)
- Luan Silvestro Bianchini Silva
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Fernanda Barçante Perasoli
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Karen Vitor Carvalho
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Karla Murata Vieira
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Miriam Teresa Paz Lopes
- Laboratório de Substâncias Antitumorais, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil
| | - Gustavo Henrique Bianco de Souza
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Orlando David Henrique Dos Santos
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil.
| | - Kátia Michelle Freitas
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| |
Collapse
|
16
|
Pasqual-Melo G, Bernardes SS, Souza-Neto FP, Carrara IM, Ramalho LNZ, Marinello PC, Luiz RC, Cecchini R, Bekeschus S, Cecchini AL. The progression of metastatic melanoma augments a pro-oxidative milieu locally but not systemically. Pathol Res Pract 2020; 216:153218. [PMID: 33002848 DOI: 10.1016/j.prp.2020.153218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Malignant melanoma is the most dangerous form of skin cancer. Despite new therapies for melanoma treatment, effective therapy is mainly limited by excessive metastasis. Currently, the factors determining metastasis development are not elucidated, but oxidative stress was suggested to be involved. To this end, we analyzed oxidative stress parameters during the metastatic development using the syngeneic B16F10 melanoma model. An increase in blood plasma lipid peroxidation occurred at the earliest stage of the disease, with a progressive decrease in oxidative damage and an increase in antioxidant defense. Vice versa, increased lipid peroxidation and 3-nitrotyrosine, and decreased antioxidant parameters were observed in the metastatic nodules throughout the disease. This was concomitant with a progressive increase in vascular endothelial growth factor and proliferating cell nuclear antigen. We conclude that the oxidative stress in the bloodstream decreases during the metastatic process and that nitrosative stress increases during the proliferation and growth of metastatic nodules in the tumor microenvironment. These results will help to better understand the role of oxidative stress during melanoma metastasis.
Collapse
Affiliation(s)
- Gabriella Pasqual-Melo
- Laboratory of Molecular Pathology, State University of Londrina, Brazil; Laboratory of Pathophysiology and Free Radicals, State University of Londrina, Brazil; ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Sara S Bernardes
- Laboratory of Molecular Pathology, State University of Londrina, Brazil; Laboratory of Tissue Microenvironment, Federal University of Minas Gerais, Brazil
| | - Fernando P Souza-Neto
- Laboratory of Molecular Pathology, State University of Londrina, Brazil; Laboratory of Pathophysiology and Free Radicals, State University of Londrina, Brazil
| | - Iriana M Carrara
- Laboratory of Molecular Pathology, State University of Londrina, Brazil; Laboratory of Pathophysiology and Free Radicals, State University of Londrina, Brazil
| | | | | | - Rodrigo C Luiz
- Laboratory of Molecular Pathology, State University of Londrina, Brazil
| | - Rubens Cecchini
- Laboratory of Pathophysiology and Free Radicals, State University of Londrina, Brazil
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Alessandra L Cecchini
- Laboratory of Molecular Pathology, State University of Londrina, Brazil; Laboratory of Pathophysiology and Free Radicals, State University of Londrina, Brazil.
| |
Collapse
|
17
|
Antioxidative Effects of Ascorbic Acid and Astaxanthin on ARPE-19 Cells in an Oxidative Stress Model. Antioxidants (Basel) 2020; 9:antiox9090833. [PMID: 32899990 PMCID: PMC7556018 DOI: 10.3390/antiox9090833] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 01/26/2023] Open
Abstract
Oxidative stress has been implicated as critical pathogenic factors contributing to the etiology of diabetic retinopathy and other retinal diseases. This study investigated antioxidative effect of ascorbic acid and astaxanthin on ARPE-19 cells within an oxidative stress model induced by common biological sources of reactive oxygen species (ROS). Hydrogen peroxide (H2O2) at concentrations of 0.1–0.8 mM and 20–100 mJ/cm2 of ultraviolet B (UVB) were treated to ARPE-19 cells. Cell viability and intracellular ROS level changes were measured. With the sublethal and lethal dose of each inducers, 0–750 μM of ascorbic acid and 0–40 μM of astaxanthin were treated to examine antioxidative effect on the model. Ascorbic acid at concentrations of 500 and 750 μM increased the cell viability not only in the UVB model but also in the H2O2 model, but 20 and 40 μM of astaxanthin only did so in the UVB model. The combination of ascorbic acid and astaxanthin showed better antioxidative effect compared to each drug alone, suggesting a synergistic effect.
Collapse
|
18
|
Chen J, Zhang S, Wu J, Wu S, Xu G, Wei D. Essential Role of Nonessential Amino Acid Glutamine in Atherosclerotic Cardiovascular Disease. DNA Cell Biol 2019; 39:8-15. [PMID: 31825254 DOI: 10.1089/dna.2019.5034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is a major disease that seriously harms human health and is known as the "number one killer" in developed countries and the leading cause of death worldwide. Glutamine is the most abundant nonessential amino acid in the human blood that has multifaceted effects on the body. Recent studies showed that glutamine is negatively corrected with the progression of atherosclerotic lesions. In this review, we focused on the relationship of glutamine with macrophage polarization, nitrification stress, oxidative stress injury, myocardial ischemia-reperfusion injury, and therapeutic angiogenesis to review its roles in atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Jinna Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Province Innovative Training Base for Medical Postgraduates, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shulei Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Province Innovative Training Base for Medical Postgraduates, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jiaxiong Wu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Province Innovative Training Base for Medical Postgraduates, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shiyuan Wu
- YueYang Maternal-Child Medicine Health Hospital Hunan, Province Innovative Training Base for Medical Postgraduates, Yueyang, Hunan, China
| | - Gaosheng Xu
- YueYang Maternal-Child Medicine Health Hospital Hunan, Province Innovative Training Base for Medical Postgraduates, Yueyang, Hunan, China
| | - Dangheng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Province Innovative Training Base for Medical Postgraduates, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
19
|
Fluorescence imaging of Cys in keratinocytes upon UVB exposure using phenyl doped graphitic carbon nitride Nanosheets-Au nanoparticles nanocomposite. Anal Chim Acta 2019; 1091:127-134. [PMID: 31679566 DOI: 10.1016/j.aca.2019.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/04/2019] [Accepted: 09/12/2019] [Indexed: 01/25/2023]
Abstract
Ultraviolet B (UVB) irradiation induces the generation of reactive oxygen species (ROS) and causes damages to human skin. The depletion of glutathione (GSH) to scavenge ROS can protect skin cells from oxidative damage. However, little is known about the concentration level changes of cysteine (Cys), a precursor of GSH in skin cells after exposure to UVB irradiation. Herein, phenyl doped graphitic carbon nitride nanosheets-Au nanoparticles nanocomposite was prepared by in situ deposition of Au nanoparticles on the surface of phenyl doped graphitic carbon nitride nanosheets and showed a turn-on fluorescence response toward Cys over homocysteine, glutathione under physiological conditions. In the presence of Cys, remarkable enhancement of green fluorescence was observed. This nanocomposite was successfully applied for fluorescence imaging of Cys in human skin epidermal cells and monitoring the changes of Cys concentration level under the oxidative stress upon exposure to UVB irradiation in keratinocytes. It was found that the concentration of Cys was increased in the initial period after exposure to UVB irradiation and then gradually decreased to the normal level for the synthesis of GSH to defense the oxidative stress. Our result helps to understand the physiological function of Cys in human skin cells under UVB exposure.
Collapse
|
20
|
Kremer JL, Melo GP, Marinello PC, Bordini HP, Rossaneis AC, Sábio LR, Cecchini R, Cecchini AL, Verri WA, Luiz RC. Citral prevents UVB-induced skin carcinogenesis in hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111565. [DOI: 10.1016/j.jphotobiol.2019.111565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 07/20/2019] [Indexed: 02/06/2023]
|
21
|
Marine Compound 3-bromo-4,5-dihydroxybenzaldehyde Protects Skin Cells against Oxidative Damage via the Nrf2/HO-1 Pathway. Mar Drugs 2019; 17:md17040234. [PMID: 31010200 PMCID: PMC6521005 DOI: 10.3390/md17040234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, we aimed to illustrate the potential bio-effects of 3-bromo-4,5-dihydroxybenzaldehyde (3-BDB) on the antioxidant/cytoprotective enzyme heme oxygenase-1 (HO-1) in keratinocytes. The antioxidant effects of 3-BDB were examined via reverse transcription PCR, Western blotting, HO-1 activity assay, and immunocytochemistry. Chromatin immunoprecipitation analysis was performed to test for nuclear factor erythroid 2-related factor 2 (Nrf2) binding to the antioxidant response element of the HO-1 promoter. Furthermore, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the cytoprotective effects of 3-BDB were mediated by the activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB, Akt) signaling. Moreover, 3-BDB induced the phosphorylation of ERK and Akt, while inhibitors of ERK and Akt abrogated the 3-BDB-enhanced levels of HO-1 and Nrf2. Finally, 3-BDB protected cells from H2O2- and UVB-induced oxidative damage. This 3-BDB-mediated cytoprotection was suppressed by inhibitors of HO-1, ERK, and Akt. The present results indicate that 3-BDB activated Nrf2 signaling cascades in keratinocytes, which was mediated by ERK and Akt, upregulated HO-1, and induced cytoprotective effects against oxidative stress.
Collapse
|
22
|
Carrara IM, Melo GP, Bernardes SS, Neto FS, Ramalho LNZ, Marinello PC, Luiz RC, Cecchini R, Cecchini AL. Looking beyond the skin: Cutaneous and systemic oxidative stress in UVB-induced squamous cell carcinoma in hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 195:17-26. [PMID: 31035030 DOI: 10.1016/j.jphotobiol.2019.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022]
Abstract
Cumulative ultraviolet (UV) exposure is associated with squamous skin cell carcinoma. UV radiation induces oxidative modifications in biomolecules of the skin leading to photocarcinogenesis. Indeed, the cyclobutene pyrimidine dimers and other dimers formed by photoaddition between carbon-carbon bonds also have an important role in the initiation process. However, information on the systemic redox status during these processes is scarce. Thus, we investigated the systemic redox profile in UVB-induced squamous cell carcinoma in mice. Female hairless mice were exposed to UVB radiation (cumulative dose = 17.1 J/cm2). The dorsal skin of these mice developed actinic keratosis (AK) and squamous cell carcinoma (SCC) and presented increased levels of oxidative and nitrosative stress biomarkers (4-hydroxy-2-nonenal and 3-nitrotyrosine), and decreased antioxidant defenses. Systemically, we observed the consumption of plasmatic antioxidant defenses and increased levels of advanced oxidized protein products (AOPP), an oxidative stress product derived from systemic inflammatory response. Taken together, our results indicate that UVB chronic irradiation leads not only to adjacent and tumoral oxidative stress in the skin, but it systemically is reflected through the blood. These new findings clarify some aspects of the pathogenesis of SCC and should assist in formulating better chemoprevention strategies, while avoiding additional primary SCC development and metastasis.
Collapse
Affiliation(s)
- Iriana Moratto Carrara
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Gabriella Pasqual Melo
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Sara Santos Bernardes
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Healthy Sciences Research, Federal University of Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil, UFGD, R. João Rosa Góes, 1761 - Vila Progresso, Dourados, MS, 79825-070, Brazil.
| | - Fernando Souza Neto
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Leandra Naira Zambelli Ramalho
- Department of Pathology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), FMRP, Av. Bandeirantes, 3900 - Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Poliana Camila Marinello
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Rodrigo Cabral Luiz
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Rubens Cecchini
- Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Alessandra Lourenço Cecchini
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil.
| |
Collapse
|
23
|
Chakrabarti R, Singh MK, Sharma JG, Mittal P. Dietary supplementation of vitamin C: an effective measure for protection against UV-B irradiation using fish as a model organism. Photochem Photobiol Sci 2019; 18:224-231. [PMID: 30444520 DOI: 10.1039/c8pp00481a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of UV-B protective mechanisms in aquacultural species is essential for the sustainable production of healthy aqua crop. Freshwater carp Catla catla larvae (13.5 ± 1.12 mg) were fed with a diet containing 0.5% vitamin C (D1) and a control diet (D2) for 40 days. Each group was exposed to two doses of UV-B irradiation: 360 (5 min, D15 min and D25 min) and 720 mJ cm-2 (10 min, D110 min and D210 min) for 15 days. Significantly (p < 0.05) higher survival and average weight were recorded in D1 compared to D2 exposed to the same dose. Also, significantly (p < 0.001) higher nitric oxide synthase and lower thiobarbituric acid reactive substances and heat shock protein 70 levels were recorded in D15 min compared to the other groups. A direct relationship was found between the dose of UV-B and DNA fragmentation in muscles. DNA damage indices such as tail DNA, tail extent moment and olive tail moment were significantly (p < 0.01) lower in D15 min. Thus, supplementation of vitamin C in the diet provides UV-B protection to larvae.
Collapse
Affiliation(s)
- R Chakrabarti
- Aqua Research Lab, Department of Zoology, University of Delhi, Delhi 110 007, India.
| | - M K Singh
- Aqua Research Lab, Department of Zoology, University of Delhi, Delhi 110 007, India.
| | - J G Sharma
- Department of Biotechnology, Delhi Technological University, Bawana Road, New Delhi 110042, India
| | - P Mittal
- Department of Mathematics, Satyawati College, University of Delhi, Delhi 110052, India
| |
Collapse
|
24
|
Brand RM, Wipf P, Durham A, Epperly MW, Greenberger JS, Falo LD. Targeting Mitochondrial Oxidative Stress to Mitigate UV-Induced Skin Damage. Front Pharmacol 2018; 9:920. [PMID: 30177881 PMCID: PMC6110189 DOI: 10.3389/fphar.2018.00920] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
Unmitigated UV radiation (UVR) induces skin photoaging and multiple forms of cutaneous carcinoma by complex pathways that include those mediated by UV-induced reactive oxygen species (ROS). Upon UVR exposure, a cascade of events is induced that overwhelms the skin’s natural antioxidant defenses and results in DNA damage, intracellular lipid and protein peroxidation, and the dysregulation of pathways that modulate inflammatory and apoptotic responses. To this end, natural products with potent antioxidant properties have been developed to prevent, mitigate, or reverse this damage with varying degrees of success. Mitochondria are particularly susceptible to ROS and subsequent DNA damage as they are a major intracellular source of oxidants. Therefore, the development of mitochondrially targeted agents to mitigate mitochondrial oxidative stress and resulting DNA damage is a logical approach to prevent and treat UV-induced skin damage. We summarize evidence that some existing natural products may reduce mitochondrial oxidative stress and support for synthetically generated mitochondrial targeted cyclic nitroxides as potential alternatives for the prevention and mitigation of UVR-induced skin damage.
Collapse
Affiliation(s)
- Rhonda M Brand
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Austin Durham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel S Greenberger
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
25
|
Sekowski S, Terebka M, Veiko A, Lapshina E, Sulkowska U, Zavodnik IB, Abdulladjanova N, Mavlyanov S, Roszkowska A, Zamaraeva M. Epigallocatechin gallate (EGCG) activity against UV light-induced photo damages in erythrocytes and serum albumin—theoretical and experimental studies. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Vicentini GE, Martins HA, Fracaro L, de Souza SRG, da Silva Zanoni KP, Silva TNX, Blegniski FP, Guarnier FA, Zanoni JN. Does l -glutamine-supplemented diet extenuate NO-mediated damage on myenteric plexus of Walker 256 tumor-bearing rats? Food Res Int 2017; 101:24-34. [DOI: 10.1016/j.foodres.2017.08.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 01/10/2023]
|
27
|
Skin changes in streptozotocin-induced diabetic rats. Biochem Biophys Res Commun 2017; 490:1154-1161. [PMID: 28668393 DOI: 10.1016/j.bbrc.2017.06.166] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022]
|
28
|
Hu S, Zhang X, Chen F, Wang M. Dietary polyphenols as photoprotective agents against UV radiation. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
29
|
Zegarska B, Pietkun K, Zegarski W, Bolibok P, Wiśniewski M, Roszek K, Czarnecka J, Nowacki M. Air pollution, UV irradiation and skin carcinogenesis: what we know, where we stand and what is likely to happen in the future? Postepy Dermatol Alergol 2017; 34:6-14. [PMID: 28261026 PMCID: PMC5329103 DOI: 10.5114/ada.2017.65616] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/17/2016] [Indexed: 02/08/2023] Open
Abstract
The link between air pollution, UV irradiation and skin carcinogenesis has been demonstrated within a large number of epidemiological studies. Many have shown the detrimental effect that UV irradiation can have on human health as well as the long-term damage which can result from air pollution, the European ESCAPE project being a notable example. In total, at present around 2800 different chemical substances are systematically released into the air. This paper looks at the hazardous impact of air pollution and UV and discusses: 1) what we know; 2) where we stand; and 3) what is likely to happen in the future. Thereafter, we will argue that there is still insufficient evidence of how great direct air pollution and UV irradiation are as factors in the development of skin carcinogenesis. However, future prospects of progress are bright due to a number of encouraging diagnostic and preventive projects in progress at the moment.
Collapse
Affiliation(s)
- Barbara Zegarska
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Katarzyna Pietkun
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
- Chair and Department of Rehabilitation, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Wojciech Zegarski
- Chair and Department of Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Oncology Centre – Professor Franciszek Łukaszczyk Memorial Hospital in Bydgoszcz, Poland
| | - Paulina Bolibok
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Maciej Nowacki
- Chair and Department of Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Oncology Centre – Professor Franciszek Łukaszczyk Memorial Hospital in Bydgoszcz, Poland
| |
Collapse
|
30
|
Portantiolo Lettnin A, Teixeira Santos Figueiredo Salgado M, Gonsalez Cruz C, Manoel Rodrigues da Silva-Júnior F, Cunha Gonzalez V, de Souza Votto AP, Santos Trindade G, de Moraes Vaz Batista Filgueira D. Protective effect of infrared-A radiation against damage induced by UVB radiation in the melan-a cell line. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:125-32. [DOI: 10.1016/j.jphotobiol.2016.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
|
31
|
de Quadros T, Schramm H, Zeni EC, Simioni C, Allodi S, Müller YMR, Ammar D, Nazari EM. Developmental effects of exposure to ultraviolet B radiation on the freshwater prawn Macrobrachium olfersi: Mitochondria as a target of environmental UVB radiation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:279-287. [PMID: 27344016 DOI: 10.1016/j.ecoenv.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
In South America, increased UVB radiation has become an important environmental issue that is potentially threatening aquatic ecosystems. Considering that species exhibit different degrees of sensitivity to UVB radiation and that embryos are more sensitive than organisms at later life stages, the aim of this study was to characterize the effects of UVB radiation on subcellular compartments of embryos of the freshwater prawn Macrobrachium olfersi. This species lives and reproduces in clear and shallow waters, where UV radiation can fully penetrates. Embryos were irradiated with a UVB 6W lamp for 30min and examined after 1h, 12h, 24h and 48h of exposure. The irradiance of the UVB used simulates the UV radiation that embryos receive in the natural environment. The subcellular compartment most affected by the UVB radiation was the mitochondria, which exhibited a circular shape, a decrease in mitochondrial cristae, rupture of membranes and a morphology compatible with fission. These impairments were observed simultaneously with increased ROS production, just after 1h of UVB exposure. Thus, we investigated proteins related to mitochondrial fission (Drp-1) and fusion (Mfn-1), which are essential to cell maintenance. We found a significant increase in Drp-1 expression at all analyzed time-points and a significant decrease in Mfn-1 expression only after 24h of UVB exposure. Additionally, a decrease in embryonic cell viability was verified via the mitochondrial integrity assay. To conclude, we observed important mitochondrial dysfunctions against the environmental stress caused by UVB radiation. Moreover, the cellular responses found are critical and should not be disregarded, because they impact embryos that can potentially compromise the aquatic ecosystems.
Collapse
Affiliation(s)
- Thaline de Quadros
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Brazil
| | - Heloísa Schramm
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Brazil
| | - Eliane C Zeni
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Brazil
| | - Carmen Simioni
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Brazil
| | - Silvana Allodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Yara M R Müller
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Brazil
| | - Dib Ammar
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Brazil; Centro Universitário Católica de Santa Catarina, Brazil
| | - Evelise M Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Brazil
| |
Collapse
|
32
|
Meinke MC, Müller R, Bechtel A, Haag SF, Darvin ME, Lohan SB, Ismaeel F, Lademann J. Evaluation of carotenoids and reactive oxygen species in human skin after UV irradiation: a critical comparison between in vivo and ex vivo investigations. Exp Dermatol 2015; 24:194-7. [PMID: 25431109 DOI: 10.1111/exd.12605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2014] [Indexed: 12/25/2022]
Abstract
UV irradiation is one of the most harmful exogenous factors for the human skin. In addition to the development of erythema, free radicals, that is reactive oxygen species (ROS), are induced under its influence and promote the development of oxidative stress in the skin. Several techniques are available for determining the effect of UV irradiation. Resonance Raman spectroscopy (RRS) measures the reduction of the carotenoid concentration, while electron paramagnetic resonance (EPR) spectroscopy enables the analysis of the production of free radicals. Depending on the method, the skin parameters are analysed in vivo or ex vivo. This study provides a critical comparison between in vivo and ex vivo investigations on the ROS formation and carotenoid depletion caused by UV irradiation in human skin. The oxygen content of tissue was also determined. It was shown that the antioxidant status measured in the skin samples in vivo and ex vivo was different. The depletion in the carotenoid concentration in vivo exceeded the value determined ex vivo by a factor of about 1.5, and the radical formation after UV irradiation was significantly greater in vivo by a factor of 3.5 than that measured in excised human skin, which can be explained by the lack of oxygen ex vivo.
Collapse
Affiliation(s)
- Martina C Meinke
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Singh MK, Sharma JG, Chakrabarti R. Simulation study of natural UV-B radiation on Catla catla and its impact on physiology, oxidative stress, Hsp 70 and DNA fragmentation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 149:156-63. [DOI: 10.1016/j.jphotobiol.2015.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/27/2015] [Accepted: 05/06/2015] [Indexed: 12/17/2022]
|
34
|
Lapshina EA, Zamaraeva M, Cheshchevik VT, Olchowik-Grabarek E, Sekowski S, Zukowska I, Golovach NG, Burd VN, Zavodnik IB. Cranberry flavonoids prevent toxic rat liver mitochondrial damage in vivo and scavenge free radicals in vitro. Cell Biochem Funct 2015; 33:202-10. [PMID: 25962994 DOI: 10.1002/cbf.3104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/05/2015] [Accepted: 03/18/2015] [Indexed: 01/16/2023]
Abstract
The present study was undertaken for further elucidation of the mechanisms of flavonoid biological activity, focusing on the antioxidative and protective effects of cranberry flavonoids in free radical-generating systems and those on mitochondrial ultrastructure during carbon tetrachloride-induced rat intoxication. Treatment of rats with cranberry flavonoids (7 mg/kg) during chronic carbon tetrachloride-induced intoxication led to prevention of mitochondrial damage, including fragmentation, rupture and local loss of the outer mitochondrial membrane. In radical-generating systems, cranberry flavonoids effectively scavenged nitric oxide (IC50 = 4.4 ± 0.4 µg/ml), superoxide anion radicals (IC50 = 2.8 ± 0.3 µg/ml) and hydroxyl radicals (IC50 = 53 ± 4 µg/ml). The IC50 for reduction of 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH) was 2.2 ± 0.3 µg/ml. Flavonoids prevented to some extent lipid peroxidation in liposomal membranes and glutathione oxidation in erythrocytes treated with UV irradiation or organic hydroperoxides as well as decreased the rigidity of the outer leaflet of the liposomal membranes. The hepatoprotective potential of cranberry flavonoids could be due to specific prevention of rat liver mitochondrial damage. The mitochondria-addressed effects of flavonoids might be related both to radical-scavenging properties and modulation of various mitochondrial events.
Collapse
Affiliation(s)
- Elena A Lapshina
- Department of Biochemistry, Yanka Kupala State University of Grodno, Grodno, Belarus
| | - Maria Zamaraeva
- Department of Biophysics, University of Bialystok, Bialystok, Poland
| | - Vitali T Cheshchevik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Grodno, Belarus
| | | | - Szymon Sekowski
- Department of Biophysics, University of Bialystok, Bialystok, Poland
| | - Izabela Zukowska
- Department of Biophysics, University of Bialystok, Bialystok, Poland
| | - Nina G Golovach
- Department of Biochemistry, Yanka Kupala State University of Grodno, Grodno, Belarus
| | - Vasili N Burd
- Department of Biochemistry, Yanka Kupala State University of Grodno, Grodno, Belarus
| | - Ilya B Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Grodno, Belarus
| |
Collapse
|
35
|
Terra VA, Souza-Neto FP, Frade MAC, Ramalho LNZ, Andrade TAM, Pasta AAC, Conchon AC, Guedes FA, Luiz RC, Cecchini R, Cecchini AL. Genistein prevents ultraviolet B radiation-induced nitrosative skin injury and promotes cell proliferation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 144:20-7. [PMID: 25668145 DOI: 10.1016/j.jphotobiol.2015.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/21/2023]
Abstract
Nitric oxide (NO) levels increase considerably after 24h of exposure of skin to ultraviolet B (UVB) radiation, which leads to nitrosative skin injury. In addition, increased NO levels after exposure to UVB radiation are associated with inhibition of cell proliferation. Compared to the UV-control group, UV-genistein at 10 mg/kg (UV-GEN10) group showed tissue protection, decreased lipid peroxide and nitrotyrosine formation, and low CAT activity. Furthermore, NO levels and iNOS labeling remained high. In this group, the reduction in lipid peroxides and nitrotyrosine was accompanied by upregulation of cell proliferation factors (Ki67 and PCNA), which indicated that prevention of nitrosative skin injury promoted cell proliferation and DNA repair. Genistein also prevented nitrosative events, inhibited ONOO(-) formation, which leads to tissue protection and cell proliferation. The UV-GEN15 group did not result in a greater protective effect compared to that with UV-GEN10 group. In the UV-GEN15 group, histological examination of the epidermis showed morphological alterations without efficient protection against lipid peroxide formation, as well as inhibition of Ki67 and PCNA, and VEGF labeling, which suggested inhibition of cell proliferation. These results help to elucidate the mechanisms underlying the photoprotective effect of genistein and reveal the importance of UVB radiation-induced nitrosative damage.
Collapse
Affiliation(s)
- V A Terra
- Laboratorio de Patologia Molecular, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil
| | - F P Souza-Neto
- Laboratorio de Patologia Molecular, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil; Laboratorio de Patofisiologia e Radicais Livres, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil
| | - M A C Frade
- Departamento de Clínica Medica, Divisão de Dermatologia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - L N Z Ramalho
- Departamento de Patologia e Medicina Legal, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - T A M Andrade
- Departamento de Clínica Medica, Divisão de Dermatologia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - A A C Pasta
- Laboratorio de Patologia Molecular, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil
| | - A C Conchon
- Laboratorio de Patologia Molecular, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil
| | - F A Guedes
- Departamento de Patologia e Medicina Legal, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - R C Luiz
- Laboratorio de Patologia Molecular, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil
| | - R Cecchini
- Laboratorio de Patofisiologia e Radicais Livres, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil
| | - A L Cecchini
- Laboratorio de Patologia Molecular, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil; Laboratorio de Patofisiologia e Radicais Livres, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil.
| |
Collapse
|
36
|
Liang Q, Wang L, He Y, Wang Z, Xu J, Ma H. Hydrolysis kinetics and antioxidant activity of collagen under simulated gastrointestinal digestion. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
37
|
Hydrolysis kinetics and radical-scavenging activity of gelatin under simulated gastrointestinal digestion. Food Chem 2014; 163:1-5. [DOI: 10.1016/j.foodchem.2014.04.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/11/2014] [Accepted: 04/23/2014] [Indexed: 12/19/2022]
|
38
|
Hong SD, Yoon DY, Lee S, Han SB, Kim Y. Antimelanogenic chemicals with in vivo efficacy against skin pigmentation in guinea pigs. Arch Pharm Res 2014; 37:1241-51. [PMID: 25066073 DOI: 10.1007/s12272-014-0447-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/05/2014] [Indexed: 01/11/2023]
Abstract
Ultraviolet (UV) radiation under sunlight stimulates skin pigmentation through immediately affecting the oxidative modification of existing melanin pigments and the spatial redistribution of pigmented melanosomes followed by the up-regulation of melanogenic genes in delayed kinetics. However, abnormal accumulation and synthesis of melanin biopolymers are responsible for skin disorders with more pigmented patches. Chemical-based regulation of the hyperpigmented disorders has been a long-standing goal for cosmetic and pharmaceutical applications. A large number of the chemicals with antimelanogenic activity have met with limited or no success in the treatment of skin patients, since they may not overcome the challenge of penetrating the skin barrier. Guinea pig skin displays similar kinetic parameters to human skin in the transdermal absorption of numerous chemicals, thus can serve as the surrogate for human skin. Here, we provide a concise review of our current understanding of the chemical-based therapy against skin hyperpigmentation in UV-irradiated guinea pig models, suggest molecular mechanisms of the action and emphasize the translation from preclinical outcomes to skin patients.
Collapse
Affiliation(s)
- Seung Deok Hong
- College of Pharmacy, Chungbuk National University, Cheongju, 361-763, Korea
| | | | | | | | | |
Collapse
|
39
|
Napolitano A, Panzella L, Monfrecola G, d'Ischia M. Pheomelanin-induced oxidative stress: bright and dark chemistry bridging red hair phenotype and melanoma. Pigment Cell Melanoma Res 2014; 27:721-33. [PMID: 24814217 DOI: 10.1111/pcmr.12262] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/08/2014] [Indexed: 01/20/2023]
Abstract
The complex interplay of genetic and epigenetic factors linking sun exposure to melanoma in the red hair phenotype hinges on the peculiar physical and chemical properties of pheomelanins and the underlying biosynthetic pathway, which is switched on by the effects of inactivating polymorphisms in the melanocortin 1 receptor gene. In addition to the long recognized UV-dependent pathways of toxicity and cell damage, a UV-independent pro-oxidant state induced by pheomelanin within the genetically determined background of the red hair phenotype has recently been disclosed. This review provides a detailed discussion of the possible UV-dependent and UV-independent chemical mechanisms underlying pheomelanin-mediated oxidative stress, with special reference to the oxygen-dependent depletion of glutathione and other cell antioxidants. The new concept of pheomelanin as a 'living' polymer and biocatalyst that may grow by exposure to monomer building blocks and may trigger autooxidative processes is also discussed. As a corollary, treatment of inflammatory skin diseases in RHP patients is briefly commented. Finally, possible concerted strategies for melanoma prevention in the red hair phenotype are proposed.
Collapse
|
40
|
Silva MA, Trevisan G, Hoffmeister C, Rossato MF, Boligon AA, Walker CIB, Klafke JZ, Oliveira SM, Silva CR, Athayde ML, Ferreira J. Anti-inflammatory and antioxidant effects of Aloe saponaria Haw in a model of UVB-induced paw sunburn in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 133:47-54. [DOI: 10.1016/j.jphotobiol.2014.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/16/2014] [Accepted: 02/24/2014] [Indexed: 11/16/2022]
|
41
|
Srinivasan M, Kalpana KB, Devipriya N, Menon VP. Protective effect of lycopene on whole body irradiation induced liver damage of Swiss albino mice: Pathological evaluation. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bionut.2013.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Park JE, Pyun HB, Woo SW, Jeong JH, Hwang JK. The protective effect of Kaempferia parviflora extract on UVB-induced skin photoaging in hairless mice. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2014; 30:237-45. [PMID: 24313661 DOI: 10.1111/phpp.12097] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 12/03/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chronic skin exposure to ultraviolet (UV) light increases reactive oxygen species (ROS) and stimulates the expression of matrix metalloproteinases (MMPs) through c-Jun and c-Fos activation. These signaling cascades induce the degradation of extracellular matrix (ECM) components, resulting in photoaging. METHODS This study evaluated the preventive effect of the ethanol extract of Kaempferia parviflora Wall. ex. Baker (black ginger) on UVB-induced photoaging in vivo. To investigate the antiphotoaging effect of K. parviflora extract (KPE), UVB-irradiated hairless mice administered oral doses of KPE (100 or 200 mg/kg/day) for 13 weeks. RESULTS In comparison to the UVB control group, KPE significantly prevented wrinkle formation and the loss of collagen fibers with increased type I, III, and VII collagen genes (COL1A1, COL3A1, and COL7A1). The decrease in wrinkle formation was associated with a significant reduction in the UVB-induced expression of MMP-2, MMP-3, MMP-9, and MMP-13 via the suppression of c-Jun and c-Fos activity. KPE also increased the expression of catalase, which acts as an antioxidant enzyme in skin. In addition, expression of inflammatory mediators, such as nuclear factor kappa B (NF-κB), interleukin-1β (IL-1β), and cyclooxygenase-2 (COX-2), was significantly reduced by KPE treatment. CONCLUSION The results show that oral administration of KPE significantly prevents UVB-induced photoaging in hairless mice, suggesting its potential as a natural antiphotoaging material.
Collapse
Affiliation(s)
- Ji-Eun Park
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | | | | | | | | |
Collapse
|
43
|
Panzella L, Leone L, Greco G, Vitiello G, D'Errico G, Napolitano A, d'Ischia M. Red human hair pheomelanin is a potent pro-oxidant mediating UV-independent contributory mechanisms of melanomagenesis. Pigment Cell Melanoma Res 2014; 27:244-52. [PMID: 24387634 DOI: 10.1111/pcmr.12199] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/26/2013] [Indexed: 12/29/2022]
Abstract
The highest incidence of melanoma in red haired individuals is attributed to the synthesis and phototoxic properties of pheomelanin pigments. Recently, pheomelanin has also been implicated in UV-independent pathways of oxidative stress; however, the underlying mechanisms have remained uncharted. Herein, we disclose the unprecedented property of purified red human hair pheomelanin (RHP) to promote (i) the oxygen-dependent depletion of major cell antioxidants, for example glutathione and NADH; (ii) the autoxidative formation of melanin pigments from their precursors. RHP would thus behave as a unique 'living' polymer and biocatalyst that may grow by simple exposure to monomer building blocks and may trigger autoxidative processes. These results yield new clues as to the origin of the pro-oxidant state in the red hair phenotype, uncover non-enzymatic pathways of melanogenesis, and pave the way to innovative strategies for melanoma prevention.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Philips N, Siomyk H, Bynum D, Gonzalez S. Skin Cancer, Polyphenols, and Oxidative Stress. Cancer 2014. [DOI: 10.1016/b978-0-12-405205-5.00026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Piao MJ, Kang KA, Kim KC, Chae S, Kim GO, Shin T, Kim HS, Hyun JW. Diphlorethohydroxycarmalol attenuated cell damage against UVB radiation via enhancing antioxidant effects and absorbing UVB ray in human HaCaT keratinocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:680-688. [PMID: 23892284 DOI: 10.1016/j.etap.2013.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 06/12/2013] [Accepted: 06/20/2013] [Indexed: 06/02/2023]
Abstract
Exposure of human skin to excessive ultraviolet B (UVB) radiation induces pathophysiological processes via the generation of reactive oxygen species (ROS) in skin cells, such as keratinocytes. This study investigated the ability of diphlorethohydroxycarmalol (DPHC) to protect human keratinocytes (HaCaT) against UVB-induced cell damage. DPHC restored cell viability that was reduced by UVB light. DPHC had an absorption maximum close to the UVB spectrum and decreased UVB-induced intracellular ROS levels, increased levels of reduced glutathione, activated superoxide dismutase and catalase. DPHC also decreased UVB-mediated damage to cellular components, including lipids, proteins, DNA, and attenuated UVB-induced apoptosis. These results suggest that DPHC safeguards human keratinocytes against UVB-induced cell damage by absorbing UVB ray, scavenging ROS and enhancing antioxidant system.
Collapse
Affiliation(s)
- Mei Jing Piao
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Kyoung Ah Kang
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Ki Cheon Kim
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Sungwook Chae
- Aging Research Center, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Gi Ok Kim
- Jeju Technopark Bioconvergence Center, Jeju 690-121, Republic of Korea
| | - Taekyun Shin
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Hye Sun Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
46
|
Filip GA, Postescu ID, Bolfa P, Catoi C, Muresan A, Clichici S. Inhibition of UVB-induced skin phototoxicity by a grape seed extract as modulator of nitrosative stress, ERK/NF-kB signaling pathway and apoptosis, in SKH-1 mice. Food Chem Toxicol 2013; 57:296-306. [DOI: 10.1016/j.fct.2013.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/10/2013] [Accepted: 03/17/2013] [Indexed: 01/07/2023]
|
47
|
Gabrielska J, Sekowski S, Zukowska I, Przestalski S, Zamaraeva M. The modified action of triphenyllead chloride on UVB-induced effects in albumin and lipids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 89:36-42. [PMID: 23260240 DOI: 10.1016/j.ecoenv.2012.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/04/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
Previously we have shown a toxic effect of the organometallic compound triphenyllead (TPhPb) on cells. In the present study we evaluated the destructive effect of TPhPb on model systems--serum albumin and liposome membranes--alone and under UVB irradiation. UVB irradiation of bovine serum albumin results in protein S-S bond reduction, free SH- and CO- group formation and decrease in fluorescence intensity of tryptophans. Triphenyllead chloride alone and under UVB irradiation did not induce protein oxidation, measured as formation of carbonyl groups, in serum albumin; however, it decreased the content of SH- groups in both cases (alone and under UVB radiation) in a dose-dependent manner. It was found that triphenyllead chloride alone did not induce lipid peroxidation of liposomes but increased their fluidity. However, under UVB irradiation TPhPb dramatically enhances the pro-oxidant action of UVB in a manner dependent on concentration and intensity of radiation, and these effects were suppressed by Trolox. These results suggest that the toxicity of TPhPb under UVB irradiation is due to formation of radical forms of the compound and its disordered effects on the membrane structure.
Collapse
Affiliation(s)
- Janina Gabrielska
- Wroclaw University of Environmental and Life Sciences, CK Norwida 25/27, Wroclaw, Poland
| | | | | | | | | |
Collapse
|
48
|
Hyun YJ, Piao MJ, Zhang R, Choi YH, Chae S, Hyun JW. Photo-protection by 3-bromo-4, 5-dihydroxybenzaldehyde against ultraviolet B-induced oxidative stress in human keratinocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 83:71-78. [PMID: 22795593 DOI: 10.1016/j.ecoenv.2012.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/09/2012] [Accepted: 06/14/2012] [Indexed: 06/01/2023]
Abstract
Exposure of the skin to ultraviolet B (UVB) radiation leads to epidermal damage and the generation of reactive oxygen species (ROS) in skin cells, including keratinocytes. Therefore, the photo-protective effect of 3-bromo-4, 5-dihydroxybenzaldehyde (BDB) against UVB was assessed in human HaCaT keratinocytes exposed to UVB radiation in vitro. BDB restored cell viability, which decreased upon exposure to UVB radiation. BDB exhibited scavenging activity against 1, 1-diphenyl-2-picrylhydrazyl radicals, intracellular ROS induced by hydrogen peroxide (H(2)O(2)) or UVB radiation, the superoxide anion generated by the xanthine/xanthine oxidase system, and the hydroxyl radical generated by the Fenton reaction (FeSO(4)+H(2)O(2)). Moreover, BDB absorbed UVB and decreased injury resulting from UVB-induced oxidative stress to lipids, proteins and DNA. Finally, BDB reduced UVB-induced apoptosis, as exemplified by fewer apoptotic bodies and a reduction in DNA fragmentation. Taken together, these results suggest that BDB protects human keratinocytes against UVB-induced oxidative stress by scavenging ROS and absorbing UVB rays, thereby reducing injury to cellular components.
Collapse
Affiliation(s)
- Yu Jae Hyun
- Jeju National University School of Medicine, Jeju 690-756, Republic of Korea.
| | | | | | | | | | | |
Collapse
|