1
|
Silva CR, Vieira DP, de Freitas AZ, Ribeiro MS. Photodynamic therapy as a strategic ally in radiotherapy for triple-negative breast cancer: the importance of treatment order. Breast Cancer Res Treat 2025; 210:687-697. [PMID: 39776332 DOI: 10.1007/s10549-024-07607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) accounts for 20% of all breast cancer cases and is notably resistant to radiotherapy (RT). Photodynamic therapy (PDT) using porphyrins or their derivatives has shown promise as a potential cancer treatment and immune activator. This study evaluated the effects of combining PDT and RT in sublethal conditions for TNBC using in vitro and in vivo models. METHODS In vitro, PDT was combined with RT (2.5 Gy) using a porphyrin (TMPyP, 32 μmolL-1) and red light (660 ± 15 nm) with a dose of 50 Jcm-2. We assessed cell viability, survival, apoptosis, ROS, singlet oxygen, and GSH/GSSG ratio. In vivo, we used a TNBC-bearing mouse model and combined PDT with RT in four sessions, comparing treatment sequences. We evaluated tumor volume, clinical manifestations, survival, metastasis in the lungs, ROS, singlet oxygen, and glutathione levels. RESULTS Cells treated with PDT + RT had a lower survival fraction, although PDT alone showed higher apoptosis and singlet oxygen levels than RT-treated groups. In vivo, the treatment sequence plays a crucial role: PDT after RT resulted in better clinical outcomes, prolonged survival, and fewer lung nodules compared to RT, with higher singlet oxygen levels likely stimulating an immune response. CONCLUSION Our results show that PDT can be a valuable adjunct in the RT of TNBC, with the treatment sequence playing a crucial role in enhancing efficacy.
Collapse
Affiliation(s)
- Camila Ramos Silva
- Center for Lasers and Applications, Energy and Nuclear Research Institute (IPEN-CNEN), Av. Lineu Prestes, 2242, São Paulo, Brazil
| | - Daniel Perez Vieira
- Center of Biotechnology, Energy and Nuclear Research Institute (IPEN-CNEN), Av. Lineu Prestes, 2242, São Paulo, Brazil
| | - Anderson Zanardi de Freitas
- Center for Lasers and Applications, Energy and Nuclear Research Institute (IPEN-CNEN), Av. Lineu Prestes, 2242, São Paulo, Brazil
| | - Martha Simões Ribeiro
- Center for Lasers and Applications, Energy and Nuclear Research Institute (IPEN-CNEN), Av. Lineu Prestes, 2242, São Paulo, Brazil.
| |
Collapse
|
2
|
Fithroni AB, Inoue H, Zhou S, Hakim TFN, Tada T, Suzuki M, Sakurai Y, Ishimoto M, Yamada N, Sauriasari R, Sauerwein WAG, Watanabe K, Ohtsuki T, Matsuura E. Novel Drug Delivery Particles Can Provide Dual Effects on Cancer "Theranostics" in Boron Neutron Capture Therapy. Cells 2025; 14:60. [PMID: 39791761 PMCID: PMC11719788 DOI: 10.3390/cells14010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction 10B (n, alpha) 7Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved boron drugs remains challenging. We have previously reported on self-forming nanoparticles for drug delivery consisting of a biodegradable polymer, namely, "AB-type" Lactosome® nanoparticles (AB-Lac particles)- highly loaded with hydrophobic B compounds, namely o-Carborane (Carb) or 1,2-dihexyl-o-Carborane (diC6-Carb), and the latter (diC6-Carb) especially showed the "molecular glue" effect. Here we present in vivo and ex vivo studies with human pancreatic cancer (AsPC-1) cells to find therapeutically optimal formulas and the appropriate treatment conditions for these particles. The biodistribution of the particles was assessed by the tumor/normal tissue ratio (T/N) in terms of tumor/muscle (T/M) and tumor/blood (T/B) ratios using near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG). The in vivo and ex vivo accumulation of B delivered by the injected AB-Lac particles in tumor lesions reached a maximum by 12 h post-injection. Irradiation studies conducted both in vitro and in vivo showed that AB-Lac particles-loaded with either 10B-Carb or 10B-diC6-Carb significantly inhibited the growth of AsPC-1 cancer cells or strongly inhibited their growth, with the latter method being significantly more effective. Surprisingly, a similar in vitro and in vivo irradiation study showed that ICG-labeled AB-Lac particles alone, i.e., without any 10B compounds, also revealed a significant inhibition. Therefore, we expect that our ICG-labeled AB-Lac particles-loaded with 10B compound(s) may be a novel and promising candidate for providing not only NIRF imaging for a practical diagnosis but also the dual therapeutic effects of induced cancer cell death, i.e., "theranostics".
Collapse
Affiliation(s)
- Abdul Basith Fithroni
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
| | - Haruki Inoue
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
| | - Shengli Zhou
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
| | - Taufik Fatwa Nur Hakim
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
| | - Takashi Tada
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (M.S.); (Y.S.)
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (M.S.); (Y.S.)
| | | | - Naoyuki Yamada
- Nihon Fukushi Fuiin Holding, Co., Ltd., Fukushima 979-0513, Japan;
| | - Rani Sauriasari
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia;
| | - Wolfgang A. G. Sauerwein
- Deutsche Gesellschaft für Bor-Neutroneneinfangtherapie DGBNCT e.V., University Hospital Essen, Klinik für Strahlentherapie, 45122 Essen, Germany;
| | - Kazunori Watanabe
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
| | - Takashi Ohtsuki
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
| | - Eiji Matsuura
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (A.B.F.); (H.I.); (S.Z.); (T.F.N.H.); (T.T.); (K.W.); (T.O.)
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia;
- Collaborative Research Center for OMIC, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
- Neutron Therapy Research Center (NTRC), Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
3
|
Tanev MZ, Tomov GT, Georgiev KG, Georgieva ED, Petkova-Parlapanska KV, Nikolova GD, Karamalakova YD. Evaluation of indocyanine green antimicrobial photodynamic therapy in radical species elimination: an in vitro study. Folia Med (Plovdiv) 2024; 66:876-883. [PMID: 39774359 DOI: 10.3897/folmed.66.e135281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Antimicrobial photodynamic therapy (aPDT) utilizes light-sensitive materials to inactivate pathogens. Indocyanine green (ICG) is an FDA-approved photosensitizer known for its effective photo-thermal and photo-chemical properties.
Collapse
|
4
|
Sirek B, Topaloğlu N. Red wavelength-induced photobiomodulation enhances indocyanine green-based anticancer photodynamic therapy. Med Oncol 2024; 42:8. [PMID: 39560842 DOI: 10.1007/s12032-024-02558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Cancer is a global concern worldwide. Prostate cancer has high prevalence and mortality rates among men. Photodynamic therapy (PDT) is an alternative treatment that is promising and effective with fewer side-effects than conventional therapies. However, some factors may limit its efficacy. For this, PDT can be combined with other modalities such as photobiomodulation (PBM) which is commonly used for increased cell proliferation/differentiation and wound healing. In this study, PBM pre-treatment at 655 nm of wavelength with 1, 3, and 5 J/cm2 energy densities was applied to prostate cancer cells to investigate its role in indocyanine green (ICG)-mediated PDT applications. Following PBM treatment, various analyses were assessed including cell viability, cellular uptake of ICG, ATP production, nitric oxide release, reactive oxygen species generation, and the changes in mitochondrial membrane potential. Increased cell death was observed with the PBM pre-treatment at 1 and 3 J/cm2 energy densities depending on ICG incubation time. Intracellular ROS generation and nitric oxide release by PBM had a significant impact on anticancer PDT action. An enhanced anticancer PDT effect was obtained with the PBM pre-treatment which may become a valuable modality to increase the sensitivity of the cancerous cells to PDT applications.
Collapse
Affiliation(s)
- Büşra Sirek
- Department of Biomedical Sciences, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Izmir, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Nermin Topaloğlu
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey.
| |
Collapse
|
5
|
Hong G, Chang JE. Enhancing Cancer Treatment Through Combined Approaches: Photodynamic Therapy in Concert with Other Modalities. Pharmaceutics 2024; 16:1420. [PMID: 39598543 PMCID: PMC11597730 DOI: 10.3390/pharmaceutics16111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
This review explores the role of photodynamic therapy (PDT) as an adjunctive treatment for cancers, with a focus on its potential to enhance the effects of established therapies like chemotherapy, surgery, and radiotherapy. Given the limitations of conventional cancer treatments, PDT's ability to improve therapeutic outcomes through combination strategies is examined. In cancers such as lung, breast, cholangiocarcinoma, and cervical, PDT shows promise in enhancing response rates, reducing recurrence, and minimizing adverse effects when used alongside standard modalities. This study highlights current findings on PDT's mechanisms in complementing chemotherapy, augmenting surgical precision, and enhancing radiotherapeutic effects, thus offering a multi-faceted approach to cancer treatment. Additionally, insights into the clinical application of PDT in these cancers emphasize its potential for reducing tumor resistance and supporting more effective, personalized care. By providing an overview of PDT's synergistic applications across diverse cancer types, this review underscores its emerging significance in oncology as a tool to address traditional treatment limitations. Ultimately, this review aims to inform and inspire researchers and clinicians seeking to refine and innovate cancer therapy strategies through PDT integration, contributing to the advancement of more effective, synergistic cancer treatments.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
6
|
Yaya-Candela AP, Ravagnani FG, Dietrich N, Sousa R, Baptista MS. Specific photodamage on HT-29 cancer cells leads to endolysosomal failure and autophagy blockage by cathepsin depletion. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112919. [PMID: 38677261 DOI: 10.1016/j.jphotobiol.2024.112919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Endolysosomes perform a wide range of cellular functions, including nutrient sensing, macromolecule digestion and recycling, as well as plasma membrane repair. Because of their high activity in cancerous cells, endolysosomes are attractive targets for the development of novel cancer treatments. Light-activated compounds termed photosensitizers (PS) can catalyze the oxidation of specific biomolecules and intracellular organelles. To selectively damage endosomes and lysosomes, HT-29 colorectal cancer cells were incubated with nanomolar concentrations of meso-tetraphenylporphine disulfonate (TPPS2a), an amphiphilic PS taken up via endocytosis and activated by green light (522 nm, 2.1 J.cm-1). Several cellular responses were characterized by a combination of immunofluorescence and immunoblotting assays. We showed that TPPS2a photosensitization blocked autophagic flux without extensive endolysosomal membrane rupture. Nevertheless, there was a severe functional failure of endolysosomes due to a decrease in CTSD (cathepsin D, 55%) and CTSB (cathepsin B, 52%) maturation. PSAP (prosaposin) processing (into saposins) was also considerably impaired, a fact that could be detrimental to glycosphingolipid homeostasis. Therefore, photosensitization of HT-29 cells previously incubated with a low concentration of TPPS2a promotes endolysosomal dysfunction, an effect that can be used to improve cancer therapies.
Collapse
Affiliation(s)
| | | | - Natasha Dietrich
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rafaela Sousa
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
7
|
Kaur R, Bhardwaj A, Gupta S. Cancer treatment therapies: traditional to modern approaches to combat cancers. Mol Biol Rep 2023; 50:9663-9676. [PMID: 37828275 DOI: 10.1007/s11033-023-08809-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
As far as health issues are concerned, cancer causes one out of every six deaths around the globe. As potent therapeutics are still awaited for the successful treatment of cancer, some unconventional treatments like radiotherapy, surgery, and chemotherapy and some advanced technologies like gene therapy, stem cell therapy, natural antioxidants, targeted therapy, photodynamic therapy, nanoparticles, and precision medicine are available to diagnose and treat cancer. In the present scenario, the prime focus is on developing efficient nanomedicines to treat cancer. Although stem cell therapy has the capability to target primary as well as metastatic cancer foci, it also has the ability to repair and regenerate injured tissues. However, nanoparticles are designed to have such novel therapeutic capabilities. Targeted therapy is also now available to arrest the growth and development of cancer cells without damaging healthy tissues. Another alternative approach in this direction is photodynamic therapy (PDT), which has more potential to treat cancer as it does minimal damage and does not limit other technologies, as in the case of chemotherapy and radiotherapy. The best possible way to treat cancer is by developing novel therapeutics through translational research. In the present scenario, an important event in modern oncology therapy is the shift from an organ-centric paradigm guiding therapy to complete molecular investigations. The lacunae in anticancer therapy may be addressed through the creation of contemporary and pertinent cancer therapeutic techniques. In the meantime, the growth of nanotechnology, material sciences, and biomedical sciences has revealed a wide range of contemporary therapies with intelligent features, adaptable functions, and modification potential. The development of numerous therapeutic techniques for the treatment of cancer is summarized in this article. Additionally, it can serve as a resource for oncology and immunology researchers.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Alok Bhardwaj
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| |
Collapse
|
8
|
Srivastava N, Usmani SS, Subbarayan R, Saini R, Pandey PK. Hypoxia: syndicating triple negative breast cancer against various therapeutic regimens. Front Oncol 2023; 13:1199105. [PMID: 37492478 PMCID: PMC10363988 DOI: 10.3389/fonc.2023.1199105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/05/2023] [Indexed: 07/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the deadliest subtypes of breast cancer (BC) for its high aggressiveness, heterogeneity, and hypoxic nature. Based on biological and clinical observations the TNBC related mortality is very high worldwide. Emerging studies have clearly demonstrated that hypoxia regulates the critical metabolic, developmental, and survival pathways in TNBC, which include glycolysis and angiogenesis. Alterations to these pathways accelerate the cancer stem cells (CSCs) enrichment and immune escape, which further lead to tumor invasion, migration, and metastasis. Beside this, hypoxia also manipulates the epigenetic plasticity and DNA damage response (DDR) to syndicate TNBC survival and its progression. Hypoxia fundamentally creates the low oxygen condition responsible for the alteration in Hypoxia-Inducible Factor-1alpha (HIF-1α) signaling within the tumor microenvironment, allowing tumors to survive and making them resistant to various therapies. Therefore, there is an urgent need for society to establish target-based therapies that overcome the resistance and limitations of the current treatment plan for TNBC. In this review article, we have thoroughly discussed the plausible significance of HIF-1α as a target in various therapeutic regimens such as chemotherapy, radiotherapy, immunotherapy, anti-angiogenic therapy, adjuvant therapy photodynamic therapy, adoptive cell therapy, combination therapies, antibody drug conjugates and cancer vaccines. Further, we also reviewed here the intrinsic mechanism and existing issues in targeting HIF-1α while improvising the current therapeutic strategies. This review highlights and discusses the future perspectives and the major alternatives to overcome TNBC resistance by targeting hypoxia-induced signaling.
Collapse
Affiliation(s)
- Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rajasekaran Subbarayan
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Educations, Chennai, India
| | - Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, New Delhi, India
| | - Pranav Kumar Pandey
- Dr. R.P. Centre for Opthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Zhang L, Oudeng G, Wen F, Liao G. Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment. Biomater Res 2022; 26:61. [PMID: 36348441 PMCID: PMC9641873 DOI: 10.1186/s40824-022-00308-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/16/2022] [Indexed: 11/10/2022] Open
Abstract
Near-infrared-II (NIR-II, 1000–1700 nm) light-triggered photothermal therapy (PTT) has been regarded as a promising candidate for cancer treatment, but PTT alone often fails to achieve satisfactory curative outcomes. Hollow nanoplatforms prove to be attractive in the biomedical field owing to the merits including good biocompatibility, intrinsic physical-chemical nature and unique hollow structures, etc. On one hand, hollow nanoplatforms themselves can be NIR-II photothermal agents (PTAs), the cavities of which are able to carry diverse therapeutic units to realize multi-modal therapies. On the other hand, NIR-II PTAs are capable of decorating on the surface to combine with the functions of components encapsulated inside the hollow nanoplatforms for synergistic cancer treatment. Notably, PTAs generally can serve as good photoacoustic imaging (PAI) contrast agents (CAs), which means such kind of hollow nanoplatforms are also expected to be multifunctional all-in-one nanotheranostics. In this review, the recent advances of NIR-II hollow nanoplatforms for single-modal PTT, dual-modal PTT/photodynamic therapy (PDT), PTT/chemotherapy, PTT/catalytic therapy and PTT/gas therapy as well as multi-modal PTT/chemodynamic therapy (CDT)/chemotherapy, PTT/chemo/gene therapy and PTT/PDT/CDT/starvation therapy (ST)/immunotherapy are summarized for the first time. Before these, the typical synthetic strategies for hollow structures are presented, and lastly, potential challenges and perspectives related to these novel paradigms for future research and clinical translation are discussed.
Collapse
|
10
|
Arnau Del Valle C, Hirsch T, Marin M. Recent Advances in Near Infrared Upconverting Nanomaterials for Targeted Photodynamic Therapy of Cancer. Methods Appl Fluoresc 2022; 10. [PMID: 35447614 DOI: 10.1088/2050-6120/ac6937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment of cancer that uses the toxic reactive oxygen species, including singlet oxygen (1O2), generated by photosensitiser drugs following irradiation of a specific wavelength to destroy the cancerous cells and tumours. Visible light is commonly used as the excitation source in PDT, which is not ideal for cancer treatment due to its reduced tissue penetration, and thus inefficiency to treat deep-lying tumours. Additionally, these wavelengths exhibit elevated autofluorescence background from the biological tissues which hinders optical biomedical imaging. An alternative to UV-Vis irradiation is the use of near infrared (NIR) excitation for PDT. This can be achieved using upconverting nanoparticles (UCNPs) functionalised with photosensitiser (PS) drugs where UCNPs can be used as an indirect excitation source for the activation of PS drugs yielding to the production of singlet 1O2 following NIR excitation. The use of nanoparticles for PDT is also beneficial due to their tumour targeting capability, either passively via the enhanced permeability and retention (EPR) effect or actively via stimuli-responsive targeting and ligand-mediated targeting (ie. using recognition units that can bind specific receptors only present or overexpressed on tumour cells). Here, we review recent advances in NIR upconverting nanomaterials for PDT of cancer with a clear distinction between those reported nanoparticles that could potentially target the tumour due to accumulation via the EPR effect (passive targeting) and nanoparticle-based systems that contain targeting agents with the aim of actively target the tumour via a molecular recognition process.
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- University of East Anglia, School of Chemistry, Norwich Research Park, Norwich, NR4 7TJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Thomas Hirsch
- University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors, Regensburg, 93040, GERMANY
| | - Maria Marin
- University of East Anglia, School of Chemistry, Norwich Research Park, Norwich, NR4 7TJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
11
|
Sevieri M, Silva F, Bonizzi A, Sitia L, Truffi M, Mazzucchelli S, Corsi F. Indocyanine Green Nanoparticles: Are They Compelling for Cancer Treatment? Front Chem 2020; 8:535. [PMID: 32766203 PMCID: PMC7378786 DOI: 10.3389/fchem.2020.00535] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Indocyanine green (ICG) is a Food and Drug Administration–approved near-infrared fluorescent dye, employed as an imaging agent for different clinical applications due to its attractive physicochemical properties, high sensitivity, and safety. However, free ICG suffers from some drawbacks, such as relatively short circulation half-life, concentration-dependent aggregation, and rapid clearance from the body, which would confine its feasible application in oncology. Here, we aim to discuss encapsulation of ICG within a nanoparticle formulation as a strategy to overcome some of its current limitations and to enlarge its possible applications in cancer diagnosis and treatment. Our purpose is to provide a short but exhaustive overview of clinical outcomes that these nanocomposites would provide, discussing opportunities, limitations, and possible impacts with regard to the main clinical needs in oncology.
Collapse
Affiliation(s)
- Marta Sevieri
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Filippo Silva
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Arianna Bonizzi
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Leopoldo Sitia
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Marta Truffi
- Laboratorio di Nanomedicina e Imaging Molecolare, Istituti Clinici Scientifici Spa-Società Benefit IRCCS, Pavia, Italy
| | - Serena Mazzucchelli
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Fabio Corsi
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy.,Laboratorio di Nanomedicina e Imaging Molecolare, Istituti Clinici Scientifici Spa-Società Benefit IRCCS, Pavia, Italy
| |
Collapse
|
12
|
Kareliotis G, Tremi I, Kaitatzi M, Drakaki E, Serafetinides AA, Makropoulou M, Georgakilas AG. Combined radiation strategies for novel and enhanced cancer treatment. Int J Radiat Biol 2020; 96:1087-1103. [PMID: 32602416 DOI: 10.1080/09553002.2020.1787544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Numerous studies focus on cancer therapy worldwide, and although many advances have been recorded, the complexity of the disease dictates thinking out of the box to confront it. This study reviews some of the currently available ionizing (IR) and non-ionizing radiation (NIR)-based treatment methods and explores their possible combinations that lead to synergistic, multimodal approaches with promising therapeutic outcomes. Traditional techniques, like radiotherapy (RT) show decent results, although they cannot spare 100% the healthy tissues neighboring with the cancer ones. Targeted therapies, such as proton and photodynamic therapy (PT and PDT, respectively) present adequate outcomes, even though each one has its own drawbacks. To overcome these limitations, the combination of therapeutic modalities has been proposed and has already been showing promising results. At the same time, the recent advances in nanotechnology in the form of nanoparticles enhance cancer therapy, making multimodal treatments worthy of exploring and studying. The combination of RT and PDT has reached the level of clinical trials and is showing promising results. Moreover, in vitro and in vivo studies of nanoparticles with PDT have also provided beneficial results concerning enhanced radiation treatments. In any case, novel and multimodal approaches have to be adopted to achieve personalized, enhanced and effective cancer treatment.
Collapse
Affiliation(s)
- Georgios Kareliotis
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Ioanna Tremi
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Myrsini Kaitatzi
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Eleni Drakaki
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Alexandros A Serafetinides
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Mersini Makropoulou
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| |
Collapse
|
13
|
Sánchez-Ramírez DR, Domínguez-Ríos R, Juárez J, Valdés M, Hassan N, Quintero-Ramos A, Del Toro-Arreola A, Barbosa S, Taboada P, Topete A, Daneri-Navarro A. Biodegradable photoresponsive nanoparticles for chemo-, photothermal- and photodynamic therapy of ovarian cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111196. [PMID: 32806317 DOI: 10.1016/j.msec.2020.111196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/19/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022]
Abstract
Ovarian cancer (OC) is the deadliest gynecological cancer. Standard treatment of OC is based on cytoreductive surgery followed by chemotherapy with platinum drugs and taxanes; however, innate and acquired drug-resistance is frequently observed followed by a relapse after treatment, thus, more efficient therapeutic approaches are required. Combination therapies involving phototherapies and chemotherapy (the so-called chemophototherapy) may have enhanced efficacy against cancer, by attacking cancer cells through different mechanisms, including DNA-damage and thermally driven cell membrane and cytoskeleton damage. We have designed and synthesized poly(lactic-co-glycolic) nanoparticles (PLGA NPs) containing the chemo-drug carboplatin (CP), and the near infrared (NIR) photosensitizer indocyanine green (ICG). We have evaluated the drug release profile, the photodynamic ROS generation and photothermal capacities of the NPs. Also, the antitumoral efficiency of the NPs was evaluated using the SKOV-3 cell line as an in vitro OC model, observing an enhanced cytotoxic effect when irradiating cells with an 800 nm laser. Evidence here shown supports the potential application of the biodegradable photoresponsive NPs in the clinical stage due to the biocompatibility of the materials used, the spatiotemporal control of the therapy and, also, the less likely development of resistance against the combinatorial therapy.
Collapse
Affiliation(s)
- Dante R Sánchez-Ramírez
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Rossina Domínguez-Ríos
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Josué Juárez
- Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo, Sonora 83000, Mexico
| | - Miguel Valdés
- Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo, Sonora 83000, Mexico
| | - Natalia Hassan
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, San Joaquín 2409, Chile
| | - Antonio Quintero-Ramos
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Alicia Del Toro-Arreola
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Silvia Barbosa
- Departamento de Física de Partículas, Instituto de Investigaciones Sanitarias (IDIS) y Agrupación Estratégica de Materiales, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Departamento de Física de Partículas, Instituto de Investigaciones Sanitarias (IDIS) y Agrupación Estratégica de Materiales, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antonio Topete
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico.
| | - Adrián Daneri-Navarro
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico.
| |
Collapse
|
14
|
Liu H, Cheng R, Dong X, Zhu S, Zhou R, Yan L, Zhang C, Wang Q, Gu Z, Zhao Y. BiO2–x Nanosheets as Radiosensitizers with Catalase-Like Activity for Hypoxia Alleviation and Enhancement of the Radiotherapy of Tumors. Inorg Chem 2020; 59:3482-3493. [DOI: 10.1021/acs.inorgchem.9b03280] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huimin Liu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Ran Cheng
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinghua Dong
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruyi Zhou
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyang Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Wang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhanjun Gu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
15
|
Investigation of combined photodynamic and radiotherapy effects of gallium phthalocyanine chloride on MCF-7 breast cancer cells. J Biol Inorg Chem 2019; 25:39-48. [PMID: 31650249 DOI: 10.1007/s00775-019-01730-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022]
Abstract
In this study, we evaluated the effect of gallium phthalocyanine chloride (GaPcCl) as a radio- and photosensitizer on MCF-7 breast cancer cell line. We incubated cells with GaPcCl in different concentrations (from 3.125 to 100 μg/ml). Then cells in separate groups were exposed to different light doses (1.8 and 2.8 J/cm2) at wavelength of 660 nm and 2-Gy X-ray ionizing radiation, alone and in combination. Finally, cell survival and apoptosis were determined by MTT assay and flow cytometry, respectively. The results showed that the deactivated GaPcCl at concentration of 100 µg/ml reduces the cell viability up to 15%. While, photoactivated GaPcCl (100 µg/ml) at light dose of 2.8 J/cm2 significantly decreases cell viability up to 55.3%. Although MTT assay demonstrated that GaPcCl is not act as a radiosensitizer, flow cytometry showed significant increase in cell apoptosis when GaPcCl was exposed to 2 Gy X-ray. Using of GaPcCl-PDT (photodynamic therapy) integration with X-ray substantially increased cell death in comparison to the absence of X-ray. Furthermore, flow cytometry displayed a significant increase in apoptosis cells (especially late apoptosis) in this combination therapy. Our result proved that GaPcCl is an effective photosensitizer in MCF-7 human breast cancer cell line. The combination of GaPcCl-PDT and radiotherapy can be an efficient treatment against cancer. This approach needs further investigations on animal models for human purposes.Graphic abstract.
Collapse
|
16
|
Low dose photodynamic therapy harmonizes with radiation therapy to induce beneficial effects on pancreatic heterocellular spheroids. Oncotarget 2019; 10:2625-2643. [PMID: 31080554 PMCID: PMC6499000 DOI: 10.18632/oncotarget.26780] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) has seen long standing interest as a therapy for resistant cancers, but the main Achilles’ heel for its successful clinical exploitation is the use of poorly penetrating visible light. This limitation could be overcome by using radioluminescent nanoparticles, which can be excited during radiation therapy (RT) with penetrating X-rays. When infused in tumors, X-ray activated-nanoscintillators act as internal light sources and excite nearby photosensitizers. Recent studies demonstrated that it is realistic to achieve low dose PDT with current nanoscintillators. However, as the origin of enhanced RT efficacy with nanoscintillators may have varying origins, we aimed to answer the basic question: Is a combination of low-dose PDT beneficial to the RT efficacy in clinically relevant models of cancer? Pancreatic cancer (PanCa) remains a lethal disease for which RT is part of the palliative care and for which PDT demonstrated promising results in clinical trial. We thus evaluated the combination of low-dose PDT and RT delivered in absence of nanoscintillators on various heterocellular spheroid models that recapitulate the clinical heterogeneity of PanCa. Although therapeutic effects emerged at different timepoints in each model, the RT/PDT combination uniformly achieved favorable outcomes. With RT providing stunted tumor growth while PDT drove adjuvant apoptotic and necrotic cell death, the combination produced significantly smaller and less viable PanCa spheroids. In conclusion, the beneficial RT/PDT treatment outcomes encourage the further development of nanoscinitillators for X-ray-activated PDT. Assessment of such combination treatments should encompass multiparametric and temporally-spaced assessment of treatment effects in preclinical cancer models.
Collapse
|
17
|
Cline B, Delahunty I, Xie J. Nanoparticles to mediate X-ray-induced photodynamic therapy and Cherenkov radiation photodynamic therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1541. [PMID: 30063116 PMCID: PMC6355363 DOI: 10.1002/wnan.1541] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) has emerged as an attractive option for cancer treatment. However, conventional PDT is activated by light that has poor tissue penetration depths, limiting its applicability in the clinic. Recently the idea of using X-ray sources to activate PDT and overcome the shallow penetration issue has garnered significant interest. This can be achieved by external beam irradiation and using a nanoparticle scintillator as transducer. Alternatively, research on exploiting Cherenkov radiation from radioisotopes to activate PDT has also begun to flourish. In either approach, the most auspicious success is achieved using nanoparticles as either a scintillator or a photosensitizer to mediate energy transfer and radical production. Both X-ray induced PDT (X-PDT) and Cherenkov radiation PDT (CR-PDT) contain a significant radiation therapy (RT) component and are essentially PDT and RT combination. Unlike the conventional combination, however, in X-PDT and CR-PDT, one energy source simultaneously activates both processes, making the combination always in synchronism and the synergy potential maximized. While still in early stage of development, X-PDT and CR-PDT address important issues in the clinic and hold great potential in translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Benjamin Cline
- Department of Chemistry, University of Georgia, Athens, Georgia
| | - Ian Delahunty
- Department of Chemistry, University of Georgia, Athens, Georgia
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| |
Collapse
|
18
|
Fan W, Tang W, Lau J, Shen Z, Xie J, Shi J, Chen X. Breaking the Depth Dependence by Nanotechnology-Enhanced X-Ray-Excited Deep Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806381. [PMID: 30698854 DOI: 10.1002/adma.201806381] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/26/2018] [Indexed: 05/12/2023]
Abstract
The advancements in nanotechnology have created multifunctional nanomaterials aimed at enhancing diagnostic accuracy and treatment efficacy for cancer. However, the ability to target deep-seated tumors remains one of the most critical challenges for certain nanomedicine applications. To this end, X-ray-excited theranostic techniques provide a means of overcoming the limits of light penetration and tissue attenuation. Herein, a comprehensive overview of the recent advances in nanotechnology-enhanced X-ray-excited imaging and therapeutic methodologies is presented, with an emphasis on the design of multifunctional nanomaterials for contrast-enhanced computed tomography (CT) imaging, X-ray-excited optical luminescence (XEOL) imaging, and X-ray-excited multimodal synchronous/synergistic therapy. The latter is based on the concurrent use of radiotherapy with chemotherapy, gas therapy, photodynamic therapy, or immunotherapy. Moreover, the featured biomedical applications of X-ray-excited deep theranostics are discussed to highlight the advantages of X-ray in high-sensitivity detection and efficient elimination of malignant tumors. Finally, key issues and technical challenges associated with this deep theranostic technology are identified, with the intention of advancing its translation into the clinic.
Collapse
Affiliation(s)
- Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
19
|
Burns JM, Jia W, Nelson JS, Majaron B, Anvari B. Photothermal treatment of port-wine stains using erythrocyte-derived particles doped with indocyanine green: a theoretical study. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-10. [PMID: 30499264 PMCID: PMC6318811 DOI: 10.1117/1.jbo.23.12.121616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/02/2018] [Indexed: 05/20/2023]
Abstract
Pulsed dye laser irradiation in the wavelength range of 585 to 600 nm is currently the gold standard for treatment of port-wine stains (PWSs). However, this treatment method is often ineffective for deeply seated blood vessels and in individuals with moderate to heavy pigmentation. Use of optical particles doped with the FDA-approved near-infrared (NIR) absorber, indocyanine green (ICG), can potentially provide an effective method to overcome these limitations. Herein, we theoretically investigate the effectiveness of particles derived from erythrocytes, which contain ICG, in mediating photothermal destruction of PWS blood vessels. We refer to these particles as NIR erythrocyte-derived transducers (NETs). Our theoretical model consists of a Monte Carlo algorithm to estimate the volumetric energy deposition, a finite elements approach to solve the heat diffusion equation, and a damage integral based on an Arrhenius relationship to quantify tissue damage. The model geometries include simulated PWS blood vessels as well as actual human PWS blood vessels plexus obtained by the optical coherence tomography. Our simulation results indicate that blood vessels containing micron- or nano-sized NETs and irradiated at 755 nm have higher levels of photothermal damage as compared to blood vessels without NETs irradiated at 585 nm. Blood vessels containing micron-sized NETs also showed higher photothermal damage than blood vessels containing nano-sized NETs. The theoretical model presented can be used in guiding the fabrication of NETs with patient-specific optical properties to allow for personalized treatment based on the depth and size of blood vessels as well as the pigmentation of the individual's skin.
Collapse
Affiliation(s)
- Joshua M. Burns
- University of California, Riverside, Department of Bioengineering, Riverside, California, United States
| | - Wangcun Jia
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - J. Stuart Nelson
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Boris Majaron
- Jožef Stefan Institute, Department of Complex Matter, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
| | - Bahman Anvari
- University of California, Riverside, Department of Bioengineering, Riverside, California, United States
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| |
Collapse
|
20
|
Abstract
The synthesis and characterization of three metalla-rectangles of the general formula [Ru4(η6-p-cymene)4(μ4-clip)2(μ2-Lanthr)2][CF3SO3]4 (Lanthr: 9,10-bis(3,3’-ethynylpyridyl) anthracene; clip = oxa: oxalato; dobq: 2,5-dioxido-1,4-benzoquinonato; donq: 5,8-dioxido-1,4-naphthoquinonato) are presented. The molecular structure of the metalla-rectangle [Ru4(η6-p-cymene)4(μ4-oxa)2(μ2-Lanthr)2]4+ has been confirmed by the single-crystal X-ray structure analysis of [Ru4(η6-p-cymene)4(μ4-oxa)2(μ2-Lanthr)2][CF3SO3]4 · 4 acetone (A2 · 4 acetone), thus showing the anthracene moieties to be available for reaction with oxygen. While the formation of the endoperoxide form of Lanthr was observed in solution upon white light irradiation, the same reaction does not occur when Lanthr is part of the metalla-assemblies.
Collapse
|
21
|
Burns JM, Vankayala R, Mac JT, Anvari B. Erythrocyte-Derived Theranostic Nanoplatforms for Near Infrared Fluorescence Imaging and Photodestruction of Tumors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27621-27630. [PMID: 30036031 PMCID: PMC6526021 DOI: 10.1021/acsami.8b08005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanoparticles activated by near-infrared (NIR) excitation provide a capability for optical imaging and photodestruction of tumors. We have engineered optical nanoconstructs derived from erythrocytes, which are doped with the FDA-approved NIR dye, indocyanine green (ICG). We refer to these constructs as NIR erythrocyte-mimicking transducers (NETs). Herein, we investigate the phototheranostic capabilities of NETs for fluorescence imaging and photodestruction of SKBR3 breast cancer cells and subcutaneous xenograft tumors in mice. Our cellular studies demonstrate that NETs are internalized by these cancer cells and localized to their lysosomes. As evidenced by NIR fluorescence imaging and in vivo laser irradiation studies, NETs remain available within tumors at 24 h postintravenous injection. In response to continuous wave 808 nm laser irradiation at intensity of 680 mW/cm2 for 10-15 min, NETs mediate the destruction of cancer cells and tumors in mice through synergistic photochemical and photothermal effects. We demonstrate that NETs are effective in mediating photoactivation of Caspase-3 to induce tumor apoptosis. Our results provide support for the effectiveness of NETs as theranostic agents for fluorescence imaging and photodestruction of tumors and their role in photoinduced apoptosis initiated by their localization to lysosomes.
Collapse
Affiliation(s)
- Joshua M. Burns
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Jenny T. Mac
- Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
- Corresponding Author:
| |
Collapse
|
22
|
Ghorbani F, Imanparast A, Hataminia F, Sazgarnia A. A novel nano-superparamagnetic agent for photodynamic and photothermal therapies: An in-vitro study. Photodiagnosis Photodyn Ther 2018; 23:314-324. [PMID: 30016753 DOI: 10.1016/j.pdpdt.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/27/2018] [Accepted: 07/13/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND In this study, iron oxide nanoparticles (SPIONs) were synthesized and coated by GA (SG) and then SG was encapsulated by ICG (SGI). After identifying specifications and cytotoxicity of the agents, the potential of SGI for photodynamic therapy (PDT) and photothermal therapy (PTT) was studied. METHODS An SGI size of 12-13 nm was determined by TEM images and its zeta potential was measured at -23.8 ± 5.8 mV. MCF-7 and HT-29 cells were exposed to a non-coherent light source at a wavelength of 730 nm and a range of 3.9-124.8 J/cm2 under two different concentrations of agents. The viability of treated cells was determined via MTT assay. To analyze the effects of different irradiation conditions, some indices such as Coefficient of Light Effect, Synergism Index, Addition Ratio, Treatment Efficacy and ED50 were defined. RESULTS Cell survival at the highest power of irradiation in the absence of any agent was decreased to 93% and 73% for HT-29 and MCF-7, respectively. In both cell lines, the cellular survival dropped by increasing the light source intensity. The maximum cell death recorded for SG, ICG and SGI was 63 ± 2%, 63 ± 2% and 21 ± 2% for MCF-7 cells and 67 ± 2%, 78 ± 1% and 53 ± 1% for HT-29 cells, respectively. CONCLUSION SGI had a significant photodynamic and photothermal effect on cells. This is a promising outcome, which can help enhance the effectiveness of a minimally invasive treatment. Moreover, SPIONs can be used to apply magnetic hyperthermia or act as a contrast agent in MRI images.
Collapse
Affiliation(s)
- Farzaneh Ghorbani
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Armin Imanparast
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Ameneh Sazgarnia
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Jafarzadeh N, Mani-Varnosfaderani A, Gilany K, Eynali S, Ghaznavi H, Shakeri-Zadeh A. The molecular cues for the biological effects of ionizing radiation dose and post-irradiation time on human breast cancer SKBR3 cell line: A Raman spectroscopy study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:1-8. [PMID: 29413692 DOI: 10.1016/j.jphotobiol.2018.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
Abstract
Radiotherapy is one of the main modalities of cancer treatment. The utility of Raman spectroscopy (RS) for detecting the distinct radiobiological responses in human cancer cells is currently under investigation. RS holds great promises to provide good opportunities for personalizing radiotherapy treatments. Here, we report the effects of the radiation dose and post-irradiation time on the molecular changes in the human breast cancer SKBR3 cells, using RS. The SKBR3 cells were irradiated by gamma radiation with different doses of 0, 1, 2, 4, and 6 Gy. The Raman signals were acquired 24 and 48 h after the gamma radiation. The collected Raman spectra were analyzed by different statistical methods such as principal component analysis, linear discriminant analysis, and genetic algorithm. A thorough analysis of the obtained Raman signals revealed that 2 Gy of gamma radiation induces remarkable molecular and structural changes in the SKBR3 cells. We found that the wavenumbers in the range of 1000-1400 cm-1 in Raman spectra are selective for discriminating between the effects of the different doses of irradiation. The results also revealed that longer post-irradiation time leads to the relaxation of the cells to their initial state. The molecular changes that occurred in the 2Gy samples were mostly reversible. On the other hand, the exposure to doses higher than 4Gy induced serious irreversible changes, mainly seen in 2700-2800 cm-1 in Raman spectra. The classification models developed in this study would help to predict the radiation-based molecular changes induced in the cancer cells by only using RS. Also, this designed framework may facilitate the process of biodosimetry.
Collapse
Affiliation(s)
- Naser Jafarzadeh
- Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | | | - Kambiz Gilany
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samira Eynali
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Habib Ghaznavi
- Department of Pharmacology, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Ali Shakeri-Zadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran; Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
24
|
Larue L, Ben Mihoub A, Youssef Z, Colombeau L, Acherar S, André JC, Arnoux P, Baros F, Vermandel M, Frochot C. Using X-rays in photodynamic therapy: an overview. Photochem Photobiol Sci 2018; 17:1612-1650. [DOI: 10.1039/c8pp00112j] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy is a therapeutic option to treat cancer and other diseases.
Collapse
|
25
|
Geralde MC, Leite IS, Inada NM, Salina ACG, Medeiros AI, Kuebler WM, Kurachi C, Bagnato VS. Pneumonia treatment by photodynamic therapy with extracorporeal illumination - an experimental model. Physiol Rep 2017; 5:5/5/e13190. [PMID: 28292878 PMCID: PMC5350187 DOI: 10.14814/phy2.13190] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 11/24/2022] Open
Abstract
Infectious pneumonia is a major cause of morbidity/mortality, mainly because of the increasing rate of microorganisms resistant to antibiotics. Photodynamic Therapy (PDT) is emerging as a promising approach, as effects are based on oxidative stress, preventing microorganism resistance. In two previous studies, the in vitro inactivation of Streptococcus pneumoniae using indocyanine green (ICG) and infrared light source was a success killing 5 log10 colony-forming units (CFU/mL) with only 10 μmol/L ICG. In this work, a proof-of-principle protocol was designed to treat lung infections by PDT using extracorporeal illumination with a 780 nm laser device and also ICG as photosensitizer. Hairless mice were infected with S. pneumoniae and PDT was performed two days after infection. For control groups, CFU recovery ranged between 103-104/mouse. For PDT group, however, no bacteria were recovered in 80% of the animals. Based on this result, animal survival was evaluated separately over 50 days. No deaths occurred in PDT group, whereas 60% of the control group died. Our results indicate that extracorporeal PDT has the potential for pneumonia treatment, and pulmonary decontamination with PDT may be used as a single therapy or as an antibiotics adjuvant.
Collapse
Affiliation(s)
- Mariana C Geralde
- University of São Paulo, São Carlos, Brazil .,Federal University of São Carlos, São Carlos, Brazil
| | | | | | | | | | - Wolfgang M Kuebler
- Keenan Research Centre of St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
26
|
Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 2017; 117:13566-13638. [DOI: 10.1021/acs.chemrev.7b00258] [Citation(s) in RCA: 1059] [Impact Index Per Article: 132.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenpei Fan
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peng Huang
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
27
|
Efficient cell death induction in human glioblastoma cells by photodynamic treatment with Tetrahydroporphyrin-Tetratosylat (THPTS) and ionizing irradiation. Oncotarget 2017; 8:72411-72423. [PMID: 29069798 PMCID: PMC5641141 DOI: 10.18632/oncotarget.20403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/04/2017] [Indexed: 01/17/2023] Open
Abstract
Background So far, glioblastomas cannot be cured by standard therapy and have an extremely poor median survival of about 15 months. The photodynamic therapy (PDT) with next generation photosensitizers, reaching a higher therapeutic depth, might offer a new, adjuvant treatment strategy in brain cancer therapy. Here, we investigated the effect of THPTS-PDT combined with ionizing irradiation (IR) on glioblastoma cells in vitro and in vivo. Results THPTS colocalized to mitochondria and was not found in the nucleus. THPTS (2–20 μg/ml)-PDT significantly reduced the proliferation, metabolic activity and clonogenic survival and induced cell death mainly through apoptosis and autophagy. THPTS-PDT combined with IR decreased the clonogenicity significantly compared to single treatments. THPTS (≤ 300 μg/ml) alone showed no dark toxicity. The maximum therapeutic depth of THPTS-PDT in C6 glioblastomas was 13 mm. Materials and Methods Three human glioblastoma cell lines (U-87 MG, A-172, DBTRG-05MG) were incubated with THPTS (1–300 μg/ml) 3–24 hours before laser treatment (760 nm, 30 J/cm2). THPTS localization and effects on metabolic activity, proliferation, cell death mechanisms and long-term reproductive survival were assessed. IR was conducted on an X-ray unit (0.813 Gy/min). Results were verified in vivo on a subcutaneous C6 glioblastoma model in Wistar rats. Conclusions This study demonstrated efficient THPTS-PDT in glioblastoma cells, in vitro and in vivo. The combinatorial effects of THPTS-PDT and IR are of specific clinical interest as enhanced eradication of infiltrating glioblastoma cells in the tumor surrounding tissue might possibly reduce the commonly occurring local relapses.
Collapse
|
28
|
Chouikrat R, Baros F, André JC, Vanderesse R, Viana B, Bulin AL, Dujardin C, Arnoux P, Verelst M, Frochot C. A Photosensitizer Lanthanide Nanoparticle Formulation that Induces Singlet Oxygen with Direct Light Excitation, But Not By Photon or X-ray Energy Transfer. Photochem Photobiol 2017; 93:1439-1448. [DOI: 10.1111/php.12799] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Rima Chouikrat
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
- UPR 8011; CNRS, Centre d'Elaboration de Matériaux et d'Etudes Structurales; Université de Toulouse (CEMES); Toulouse France
| | - Francis Baros
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| | - Jean-Claude André
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| | - Régis Vanderesse
- Laboratoire de Chimie Physique Macromoléculaire (LCPM); UMR CNRS 7375; Université de Lorraine; Nancy France
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR CNRS 7375; CNRS; Nancy France
| | | | - Anne-Laure Bulin
- Institut Lumière Matière; UMR5306; Université Lyon 1-CNRS; Villeurbanne France
| | - Christophe Dujardin
- Institut Lumière Matière; UMR5306; Université Lyon 1-CNRS; Villeurbanne France
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| | - Marc Verelst
- UPR 8011; CNRS, Centre d'Elaboration de Matériaux et d'Etudes Structurales; Université de Toulouse (CEMES); Toulouse France
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| |
Collapse
|
29
|
Chen F, Zhang XH, Hu XD, Liu PD, Zhang HQ. The effects of combined selenium nanoparticles and radiation therapy on breast cancer cells in vitro. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:937-948. [PMID: 28685585 DOI: 10.1080/21691401.2017.1347941] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Radiosensitizers that increase cancer cell radio-sensitivity can enhance the effectiveness of irradiation and minimize collateral damage. Nanomaterial has been employed in conjunction with radiotherapy as radiosensitizers, due to its unique physicochemical properties. In this article, we evaluated selenium nanoparticles (Nano-Se) as a new radiosensitizer. Nano-Se was used in conjunction with irradiation on MCF-7 breast cancer cells, and efficacy and mechanisms of this combined treatment approach were evaluated. Nano-Se reinforced the toxic effects of irradiation, leading to a higher mortality rate than either treatment used alone, inducing cell cycle arrest at the G2/M phase and the activation of autophagy, and increasing both endogenous and irradiation-induced reactive oxygen species formation. These results suggest that Nano-Se can be used as an adjuvant drug to improve cancer cell sensitivity to the toxic effects of irradiation and thereby reduce damage to normal tissue nearby.
Collapse
Affiliation(s)
- Feng Chen
- a College of Materials Science and Technology , Nanjing University of Aeronautics and Astronautics , Nanjing , Jiangsu , People's Republic of China
| | - Xiao Hong Zhang
- a College of Materials Science and Technology , Nanjing University of Aeronautics and Astronautics , Nanjing , Jiangsu , People's Republic of China
| | - Xiao Dan Hu
- a College of Materials Science and Technology , Nanjing University of Aeronautics and Astronautics , Nanjing , Jiangsu , People's Republic of China
| | - Pei Dang Liu
- b Jiangsu Key Laboratory for Biomaterials and Devices , Southeast University , Nanjing , Jiangsu , People's Republic of China
| | - Hai Qian Zhang
- a College of Materials Science and Technology , Nanjing University of Aeronautics and Astronautics , Nanjing , Jiangsu , People's Republic of China.,b Jiangsu Key Laboratory for Biomaterials and Devices , Southeast University , Nanjing , Jiangsu , People's Republic of China.,c Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou University , Suzhou , People's Republic of China
| |
Collapse
|
30
|
Banerjee SM, MacRobert AJ, Mosse CA, Periera B, Bown SG, Keshtgar MRS. Photodynamic therapy: Inception to application in breast cancer. Breast 2016; 31:105-113. [PMID: 27833041 DOI: 10.1016/j.breast.2016.09.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 01/04/2023] Open
Abstract
Photodynamic therapy (PDT) is already being used in the treatment of many cancers. This review examines its components and the new developments in our understanding of its immunological effects as well as pre-clinical and clinical studies, which have investigated its potential use in the treatment of breast cancer.
Collapse
Affiliation(s)
- S M Banerjee
- Royal Free London NHS Foundation Trust, UK; Division of Surgery and Interventional Science, University College London, UK
| | - A J MacRobert
- Division of Surgery and Interventional Science, University College London, UK
| | - C A Mosse
- Division of Surgery and Interventional Science, University College London, UK
| | - B Periera
- Royal Free London NHS Foundation Trust, UK
| | - S G Bown
- Division of Surgery and Interventional Science, University College London, UK
| | - M R S Keshtgar
- Royal Free London NHS Foundation Trust, UK; Division of Surgery and Interventional Science, University College London, UK.
| |
Collapse
|
31
|
Mallidi S, Anbil S, Bulin AL, Obaid G, Ichikawa M, Hasan T. Beyond the Barriers of Light Penetration: Strategies, Perspectives and Possibilities for Photodynamic Therapy. Theranostics 2016; 6:2458-2487. [PMID: 27877247 PMCID: PMC5118607 DOI: 10.7150/thno.16183] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT) is a photochemistry based treatment modality that involves the generation of cytotoxic species through the interactions of a photosensitizer molecule with light irradiation of an appropriate wavelength. PDT is an approved therapeutic modality for several cancers globally and in several cases has proved to be effective where traditional treatments have failed. The key parameters that determine PDT efficacy are 1. the photosensitizer (nature of the molecules, selectivity, and macroscopic and microscopic localization etc.), 2. light application (wavelength, fluence, fluence rate, irradiation regimes etc.) and 3. the microenvironment (vascularity, hypoxic regions, stromal tissue density, molecular heterogeneity etc.). Over the years, several groups aimed to monitor and manipulate the components of these critical parameters to improve the effectiveness of PDT treatments. However, PDT is still misconstrued to be a surface treatment primarily due to the limited depths of light penetration. In this review, we present the recent advances, strategies and perspectives in PDT approaches, particularly in cancer treatment, that focus on increasing the 'damage zone' beyond the reach of light in the body. This is enabled by a spectrum of approaches that range from innovative photosensitizer excitation strategies, increased specificity of phototoxicity, and biomodulatory approaches that amplify the biotherapeutic effects induced by photodynamic action. Along with the increasing depth of understanding of the underlying physical, chemical and physiological mechanisms, it is anticipated that with the convergence of these strategies, the clinical utility of PDT will be expanded to a powerful modality in the armamentarium for the management of cancer.
Collapse
Affiliation(s)
- Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Sriram Anbil
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815
- The University of Texas School of Medicine at San Antonio, San Antonio, TX 78229
| | - Anne-Laure Bulin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Girgis Obaid
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Megumi Ichikawa
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
32
|
Wang GD, Nguyen HT, Chen H, Cox PB, Wang L, Nagata K, Hao Z, Wang A, Li Z, Xie J. X-Ray Induced Photodynamic Therapy: A Combination of Radiotherapy and Photodynamic Therapy. Am J Cancer Res 2016; 6:2295-2305. [PMID: 27877235 PMCID: PMC5118595 DOI: 10.7150/thno.16141] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Conventional photodynamic therapy (PDT)'s clinical application is limited by depth of penetration by light. To address the issue, we have recently developed X-ray induced photodynamic therapy (X-PDT) which utilizes X-ray as an energy source to activate a PDT process. In addition to breaking the shallow tissue penetration dogma, our studies found more efficient tumor cell killing with X-PDT than with radiotherapy (RT) alone. The mechanisms behind the cytotoxicity, however, have not been elucidated. In the present study, we investigate the mechanisms of action of X-PDT on cancer cells. Our results demonstrate that X-PDT is more than just a PDT derivative but is essentially a PDT and RT combination. The two modalities target different cellular components (cell membrane and DNA, respectively), leading to enhanced therapy effects. As a result, X-PDT not only reduces short-term viability of cancer cells but also their clonogenecity in the long-run. From this perspective, X-PDT can also be viewed as a unique radiosensitizing method, and as such it affords clear advantages over RT in tumor therapy, especially for radioresistant cells. This is demonstrated not only in vitro but also in vivo with H1299 tumors that were either subcutaneously inoculated or implanted into the lung of mice. These findings and advances are of great importance to the developments of X-PDT as a novel treatment modality against cancer.
Collapse
|
33
|
de Faria CMG, Inada NM, Kurachi C, Bagnato VS. Determination of the threshold dose distribution in photodynamic action from in vitro experiments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:168-175. [DOI: 10.1016/j.jphotobiol.2016.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/28/2022]
|
34
|
Fan W, Bu W, Shi J. On The Latest Three-Stage Development of Nanomedicines based on Upconversion Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:3987-4011. [PMID: 27031300 DOI: 10.1002/adma.201505678] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Following the "detect-to-treat" strategy, by biological engineering, the emerging upconversion nanoparticles (UCNPs) have become one of the most promising inorganic nanomedicines, and their biomedical applications have gradually shifted from multimodal tumor imaging to highly efficient cancer therapy. The past few years have witnessed a three-stage development of UCNP-based nanomedicines. On one hand, UCNPs can optimize each clinical treatment tool (chemotherapy, photodynamic therapy (PDT), radiotherapy (RT)) by controlled drug delivery/release, near-infrared (NIR)-excited deep PDT, and radiosensitization, respectively, all of which contribute greatly to the optimized treatment efficacy along with minimized side effects. On the other hand, several individual treatments can be "smartly" integrated into a single UCNP-based nanotheranostic system for multimodal synergetic therapy, which can further improve the overall therapeutic effectiveness. Especially, UCNPs provide more-effective strategies for overcoming tumor hypoxia, thus leading to an ideal treatment efficacy for complete eradication of solid tumors. Finally, the critical issues regarding the future development of UCNPs are discussed to promote the clinic-translational applications of UCNP-based nanomedicines, as well as realization of our "one drug fits all" dream.
Collapse
Affiliation(s)
- Wenpei Fan
- State Key Laboratory of High performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Wenbo Bu
- State Key Laboratory of High performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
35
|
Abstract
This review summarizes the latest progress in deep photodynamic therapy (PDT), which overcomes the Achilles' heel of PDT.
Collapse
Affiliation(s)
- Wenpei Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging
- Department of Biomedical Engineering
- School of Medicine
- Shenzhen University
- Shenzhen 518060
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging
- Department of Biomedical Engineering
- School of Medicine
- Shenzhen University
- Shenzhen 518060
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
36
|
Ghoodarzi R, Changizi V, Montazerabadi AR, Eyvazzadaeh N. Assessing of integration of ionizing radiation with Radachlorin-PDT on MCF-7 breast cancer cell treatment. Lasers Med Sci 2015; 31:213-9. [DOI: 10.1007/s10103-015-1844-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/30/2015] [Indexed: 12/15/2022]
|
37
|
Hu J, Tang Y, Elmenoufy AH, Xu H, Cheng Z, Yang X. Nanocomposite-Based Photodynamic Therapy Strategies for Deep Tumor Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5860-87. [PMID: 26398119 DOI: 10.1002/smll.201501923] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/03/2015] [Indexed: 05/22/2023]
Abstract
Photodynamic therapy (PDT), as an emerging clinically approved modality, has been used for treatment of various cancer diseases. Conventional PDT strategies are mainly focused on superficial lesions because the wavelength of illumination light of most clinically approved photosensitizers (PSs) is located in the UV/VIS range that possesses limited tissue penetration ability, leading to ineffective therapeutic response for deep-seated tumors. The combination of PDT and nanotechnology is becoming a promising approach to fight against deep tumors. Here, the rapid development of new PDT modalities based on various smartly designed nanocomposites integrating with conventionally used PSs for deep tumor treatments is introduced. Until now many types of multifunctional nanoparticles have been studied, and according to the source of excitation energy they can be classified into three major groups: near infrared (NIR) light excited nanomaterials, X-ray excited scintillating/afterglow nanoparticles, and internal light emission excited nanocarriers. The in vitro and in vivo applications of these newly developed PDT modalities are further summarized here, which highlights their potential use as promising nano-agents for deep tumor therapy.
Collapse
Affiliation(s)
- Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yong'an Tang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ahmed H Elmenoufy
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Pharmaceutical Chemistry, College of Pharmacy, Misr University for Science and Technology, Al-Motamayez District, 6th of October City, P.O. Box: 77, Egypt
| | - Huibi Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University Stanford, California, USA
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
38
|
Dolat E, Rajabi O, Salarabadi SS, Yadegari-Dehkordi S, Sazgarnia A. Silver nanoparticles and electroporation: Their combinational effect on Leishmania major. Bioelectromagnetics 2015; 36:586-96. [PMID: 26769083 DOI: 10.1002/bem.21945] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 10/27/2015] [Indexed: 11/08/2022]
Abstract
Leishmaniasis is an emerging and uncontrolled disease. The use of routine drugs has been limited due to proven side effects and drug resistance. Interestingly, novel approaches such as nanotechnology have been applied as a therapeutic modality. Silver nanoparticles have shown antileishmanial effects but because of their nonspecific and toxic effects on normal cells, their use has been limited. On the other hand, it has been demonstrated that electric pulses induce electropores on cell membranes resulting in higher entrance of certain molecules into cells. There is a hypothesis proposing that use of electroporation and silver nanoparticles simultaneously can induce greater accumulation of particles in infected cells, besides higher toxicity. In this study, after applying electric pulses with different concentrations of silver nanoparticles (SNPs), cell survival rate was determined by standard viability assays. On the basis of these data, 2 μg/ml of SNPs and 700 V/cm with 100 μs duration of electroporation were selected as the non-lethal condition. Promastigotes and infected macrophage cells received both treatments and the survival percentage and Infection Index were calculated. In parasites and cells receiving both treatments, higher toxicity was observed in comparison to each treatment given individually, showing a synergic effect on promastigotes. Therefore, application of electric pulses could overcome limitations in using the antileishmanial properties of silver nanoparticles.
Collapse
Affiliation(s)
- Elham Dolat
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Rajabi
- Faculty of pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Fan W, Shen B, Bu W, Zheng X, He Q, Cui Z, Ni D, Zhao K, Zhang S, Shi J. Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials 2015; 69:89-98. [DOI: 10.1016/j.biomaterials.2015.08.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 11/27/2022]
|
40
|
Chen F, Zhang XH, Hu XD, Zhang W, Lou ZC, Xie LH, Liu PD, Zhang HQ. Enhancement of radiotherapy by ceria nanoparticles modified with neogambogic acid in breast cancer cells. Int J Nanomedicine 2015; 10:4957-69. [PMID: 26316742 PMCID: PMC4542556 DOI: 10.2147/ijn.s82980] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the main strategies for cancer treatment but has significant challenges, such as cancer cell resistance and radiation damage to normal tissue. Radiosensitizers that selectively increase the susceptibility of cancer cells to radiation can enhance the effectiveness of radiotherapy. We report here the development of a novel radiosensitizer consisting of monodispersed ceria nanoparticles (CNPs) covered with the anticancer drug neogambogic acid (NGA-CNPs). These were used in conjunction with radiation in MCF-7 breast cancer cells, and the efficacy and mechanisms of action of this combined treatment approach were evaluated. NGA-CNPs potentiated the toxic effects of radiation, leading to a higher rate of cell death than either treatment used alone and inducing the activation of autophagy and cell cycle arrest at the G2/M phase, while pretreatment with NGA or CNPs did not improve the rate of radiation-induced cancer cells death. However, NGA-CNPs decreased both endogenous and radiation-induced reactive oxygen species formation, unlike other nanomaterials. These results suggest that the adjunctive use of NGA-CNPs can increase the effectiveness of radiotherapy in breast cancer treatment by lowering the radiation doses required to kill cancer cells and thereby minimizing collateral damage to healthy adjacent tissue.
Collapse
Affiliation(s)
- Feng Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Xiao Hong Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Xiao Dan Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Wei Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Zhi Chao Lou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Li Hua Xie
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Pei Dang Liu
- Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Hai Qian Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China ; Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
41
|
Fan W, Bu W, Shen B, He Q, Cui Z, Liu Y, Zheng X, Zhao K, Shi J. Intelligent MnO2 Nanosheets Anchored with Upconversion Nanoprobes for Concurrent pH-/H2O2-Responsive UCL Imaging and Oxygen-Elevated Synergetic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:4155-61. [PMID: 26058562 DOI: 10.1002/adma.201405141] [Citation(s) in RCA: 505] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 05/08/2015] [Indexed: 05/28/2023]
Affiliation(s)
- Wenpei Fan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Wenbo Bu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Bo Shen
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, P. R. China
| | - Qianjun He
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Zhaowen Cui
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yanyan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xiangpeng Zheng
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Kuaile Zhao
- Department of Radiology, Shanghai Cancer Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
42
|
Lamberti MJ, Vittar NBR, Rivarola VA. Breast cancer as photodynamic therapy target: Enhanced therapeutic efficiency by overview of tumor complexity. World J Clin Oncol 2014; 5:901-907. [PMID: 25493228 PMCID: PMC4259952 DOI: 10.5306/wjco.v5.i5.901] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/04/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy is a minimally invasive and clinically approved procedure for eliminating selected malignant cells with specific light activation of a photosensitizer agent. Whereas interstitial and intra-operative approaches have been investigated for the ablation of a broad range of superficial or bulky solid tumors such as breast cancer, the majority of approved photodynamic therapy protocols are for the treatment of superficial lesions of skin and luminal organs. This review article will discuss recent progress in research focused mainly on assessing the efficacies of various photosensitizers used in photodynamic therapy, as well as the combinatory strategies of various therapeutic modalities for improving treatments of parenchymal and/or stromal tissues of breast cancer solid tumors. Cytotoxic agents are used in cancer treatments for their effect on rapidly proliferating cancer cells. However, such therapeutics often lack specificity, which can lead to toxicity and undesirable side effects. Many approaches are designed to target tumors. Selective therapies can be established by focusing on distinctive intracellular (receptors, apoptotic pathways, multidrug resistance system, nitric oxide-mediated stress) and environmental (glucose, pH) differences between tumor and healthy tissue. A rational design of effective combination regimens for breast cancer treatment involves a better understanding of the mechanisms and molecular interactions of cytotoxic agents that underlie drug resistance and sensitivity.
Collapse
|
43
|
Shemesh CS, Moshkelani D, Zhang H. Thermosensitive liposome formulated indocyanine green for near-infrared triggered photodynamic therapy: in vivo evaluation for triple-negative breast cancer. Pharm Res 2014; 32:1604-14. [PMID: 25407543 DOI: 10.1007/s11095-014-1560-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/27/2014] [Indexed: 01/22/2023]
Abstract
PURPOSE The focus of this research was to formulate and evaluate a theranostic liposomal delivery system using indocyanine green (ICG) as a photosensitizer, triggered by near infrared (NIR) irradiation, for in vivo photodynamic therapy (PDT) of breast cancer. METHODS Cytotoxicity of PDT using liposomal ICG (LPICG) as well as free ICG (FRICG) was evaluated in the human MDA-MB-468 triple-negative breast cancer (TNBC) cell line. NIR irradiation-induced increase in temperature was also monitored both in vitro and in vivo. Quantitative pharmacokinetic profile and fluorescence imaging-based biodistribution patterns of both formulations were obtained using the human TNBC xenograft model in nude mice. Overall safety, tolerability, and long-term anti-tumor efficacy of LPICG versus FRICG-mediated PDT was evaluated. RESULTS Significant loss of cell viability was achieved following photoactivation of LPICG via NIR irradiation. Temperatures of irradiated LPICG increased with increasing concentrations of loaded ICG, which correlated with significant rise of temperature compared to PBS in vivo (p < 0.01). Pharmacokinetic assessment revealed a significant increase in systemic distribution and circulation half-life of LPICG, and NIR fluorescence imaging demonstrated enhanced accumulation of liposomes within the tumor region. Tumor growth in mice treated with LPICG followed by NIR irradiation was significantly reduced compared to those treated with FRICG, saline, and irradiation alone. CONCLUSIONS In vivo photodynamic therapy using LPICG demonstrated targeted biodistribution and superior anti-tumor efficacy in a human TNBC xenograft model compared to FRICG. In addition, this unique delivery system exhibited a promising role in NIR image-guided delivery and real-time biodistribution monitoring of formulation with ICG serving as the fluorescent probe.
Collapse
Affiliation(s)
- Colby S Shemesh
- Drug Delivery Laboratory, Department of Pharmaceutical Sciences College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia, 30341, USA
| | | | | |
Collapse
|
44
|
Fan W, Shen B, Bu W, Chen F, He Q, Zhao K, Zhang S, Zhou L, Peng W, Xiao Q, Ni D, Liu J, Shi J. A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials 2014; 35:8992-9002. [PMID: 25103233 DOI: 10.1016/j.biomaterials.2014.07.024] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022]
Abstract
To achieve the accurate diagnosis and efficient in situ therapy of malignant tumors is encouraging but still remains a big challenge. The integration of upconversion nanoparticles and mesoporous silica that can combine the diagnostic/therapeutic functions within a single platform, may provide a more advanced way for the efficient theranostics of cancer. In this study, sub-80 nm rattle-structured multifunctional Gd-UCNPs core/mesoporous silica shell nanotheranostics (UCMSNs) were successfully constructed for the co-delivery of a radio-/photo-sensitizer hematoporphyrin (HP) and a radiosensitizer/chemodrug docetaxel (Dtxl). Upon NIR excitation and X-ray irradiation, the complete tumor elimination has been achieved by the synergetic chemo-/radio-/photodynamic tri-modal therapy under the assistance of simultaneous magnetic/upconversion luminescent (MR/UCL) bimodal imaging. To the best of our knowledge, this study is the first example of achieving tri-modal synergetic therapy in one single nanotheranostic system, and we anticipate that it may serve as a particularly useful platform for the clinical diagnosis and efficient treatment of cancer from bench to beside.
Collapse
Affiliation(s)
- Wenpei Fan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Bo Shen
- Institute of Radiation Medicine, Fudan University, PR China
| | - Wenbo Bu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Qianjun He
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Kuaile Zhao
- Department of Radiology, Shanghai Cancer Hospital, Fudan University, PR China
| | - Shengjian Zhang
- Department of Radiology, Shanghai Cancer Hospital, Fudan University, PR China
| | - Liangping Zhou
- Department of Radiology, Shanghai Cancer Hospital, Fudan University, PR China
| | - Weijun Peng
- Department of Radiology, Shanghai Cancer Hospital, Fudan University, PR China
| | - Qingfeng Xiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Dalong Ni
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Jianan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.
| |
Collapse
|
45
|
Mohammadi Z, Sazgarnia A, Rajabi O, Soudmand S, Esmaily H, Sadeghi HR. An in vitro study on the photosensitivity of 5-aminolevulinic acid conjugated gold nanoparticles. Photodiagnosis Photodyn Ther 2013; 10:382-8. [DOI: 10.1016/j.pdpdt.2013.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/05/2013] [Accepted: 03/14/2013] [Indexed: 01/25/2023]
|
46
|
|
47
|
Mehdizadeh A, Pandesh S, Shakeri-Zadeh A, Kamrava SK, Habib-Agahi M, Farhadi M, Pishghadam M, Ahmadi A, Arami S, Fedutik Y. The effects of folate-conjugated gold nanorods in combination with plasmonic photothermal therapy on mouth epidermal carcinoma cells. Lasers Med Sci 2013; 29:939-48. [DOI: 10.1007/s10103-013-1414-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 07/29/2013] [Indexed: 12/22/2022]
|
48
|
Photosensitizing and radiosensitizing effects of mitoxantrone: combined chemo-, photo-, and radiotherapy of DFW human melanoma cells. Lasers Med Sci 2013; 28:1533-9. [PMID: 23371053 DOI: 10.1007/s10103-013-1275-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/22/2013] [Indexed: 12/19/2022]
Abstract
This study evaluated the effects of mitoxantrone (MX), an antitumor agent, as a sensitizer to both photodynamic and radiation therapy in DFW human melanoma cells. Cells were incubated with MX at different concentrations for 90 min and then exposed to non-coherent light at different fluence rates and/or X-ray ionizing radiation at different dose rates. Combinatorial effects of this chemo-, photo-, and radiotherapy were also evaluated. MX had no significant effects on viability at moderate doses but had a strong cytotoxic effect on cancer cells when used as a photosensitizer. MX also acted as a potent radiosensitizer. We observed a dose-dependent effect on cell viability in cells exposed to MX in combination with phototherapy and radiotherapy. Strong synergistic effects were observed for combinations of two or more treatment methods, which, in some cases, induced complete cell death. Thus, a combination of ionizing radiation with MX-mediated photodynamic therapy could serve as a new method for cancer therapy with fewer adverse side effects.
Collapse
|