1
|
Karimi M, Sheibani Pour M, Etemadi A, Karimi MA, Hodjat M, Chiniforush N. The photobiomodulation effects of continuous and pulsed blue diode laser on proliferation and osteogenic differentiation of periodontal ligament stem cells. Photochem Photobiol 2025. [PMID: 40251753 DOI: 10.1111/php.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/25/2025] [Accepted: 03/23/2025] [Indexed: 04/21/2025]
Abstract
This study investigated the photobiomodulation effect of pulsed and continuous blue diode laser on osteogenic differentiation and proliferation of periodontal ligament mesenchymal stem cells. Periodontal Ligament Stem cells were seeded in 96-well plates, and 450 nm blue laser irradiation procedure was performed a day after cell seeding. Each experimental group was divided into two subgroups according to their energy density and irradiation duration: Continuous wave (100 mW, 10s, 2 J/cm2 and 100 mW, 20 s, 4 J/cm2) and pulse wave (200 mW, 10 s, 2 J/cm2 and 200 mW, 20 s, 4 J/cm2 and duty cycle 50% for both). Then, all groups were evaluated with a cell viability test (MTT), cell apoptosis (Annexin V) on the second and fourth days after irradiation, Alizarin Red staining on the 14th day after irradiation based on genes. Real-time PCR was conducted 7 and 14 days after irradiation. GAPD gene primers were used as internal control, and OPN, OCN, ALP, and RUNX2 gene primers were used as tests. The one-way ANOVA statistical analysis revealed that cell proliferation in the continuous-irradiated groups was significantly higher than in pulsed groups. However, there is no significant difference in comparison with the control group. Also, pulsed-irradiated groups demonstrated a higher rate of necrosis. The osteogenic differentiation in the continuous groups was more substantial than in the pulsed and the control groups. In comparison to all other study groups, the group that received continuous mode irradiation at an energy density of 2 J/cm2, power of 100 mW, and a radiation time of 10 s exhibited significantly higher numbers of calcified nodules and increased expression of OPN, OCN, and ALP genes (p < 0.05). Overall, treating periodontal ligament stem cells with a continuous blue diode laser and appropriate parameters can enhance their osteogenic differentiation and proliferation, accelerating the regeneration of periodontal tissues.
Collapse
Affiliation(s)
- Mohammadreza Karimi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Sheibani Pour
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ardavan Etemadi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Karimi
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
2
|
Mayahara K, Okuma R, Sasagawa T, Motoyoshi M, Shimizu N. Effects of low-level laser irradiation on osteoclastogenesis in prostaglandin E 2-stimulated macrophages. Lasers Med Sci 2025; 40:163. [PMID: 40153082 DOI: 10.1007/s10103-025-04423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/19/2025] [Indexed: 03/30/2025]
Abstract
Low-level laser accelerates bone healing by regulating inflammation. In periodontal tissues, excessive mechanical stress induces alveolar bone resorption by producing excessive prostaglandin E2 (PGE2), which is an inflammatory agent that induces osteoclast differentiation. In this study, we aimed to investigate the effect of a low-energy Ga-Al-As diode laser (LLL) on PGE2-induced osteoclast differentiation of RAW264.7 (RAW) cells. RAW cells were stimulated with 10- 6 M PGE2 and irradiated with 810 nm LLL at 3.0 mW/cm2 for 10 min. After LLL stimulation, the cells were cultured for five days and subjected to tartrate-resistant acid phosphatase staining. Expression levels of the osteoclastogenesis-inducing factors, receptor activator of nuclear factor-κB ligand and nuclear factor of activated T cells 1 (NFATc1), were examined 24 and 48 h after PGE2 stimulation and LLL irradiation. Extracellular ATP concentration was determined 0, 1, 5, 10, and 20 min after PGE2 stimulation and LLL irradiation. Additionally, intracellular calcium concentration was measured as the fluorescence intensity of the cultured cells over time (20 s/scan) after 10 min of LLL irradiation. To investigate the nuclear translocation of NFATc1, the cells were fixed after 1 h of PGE2 stimulation and LLL irradiation and subjected to immunofluorescence analysis. The same experiments were performed using the P2 × 4 receptor (ATP-gated channel) antagonist, 5-BDBD. Small osteoclasts were observed in the LLL irradiation group. Receptor activator of nuclear factor-κB ligand and NFATc1 mRNA levels were not significantly different between the LLL-irradiated and non-irradiated groups. Extracellular ATP release and intracellular Ca2+ levels were increased by PGE2 stimulation but decreased by LLL irradiation and 5-BDBD treatment. Nuclear NFATc1 levels were also increased by PGE2 stimulation, but this effect was reversed by LLL irradiation and 5-BDBD treatment. Overall, our results suggest that LLL irradiation inhibits PGE2-induced osteoclast differentiation by inhibiting Ca2+-NFATc1 signaling via extracellular ATP release.
Collapse
Affiliation(s)
- Kotoe Mayahara
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan.
- Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan.
| | - Risako Okuma
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | | | - Mitsuru Motoyoshi
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan
- Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
3
|
El-Halwagy MO, Hegazy EM, Shalaby HK, Mahmoud EF. Impact of short and long-term application of low-level laser therapy on mandibular alveolar process of osteoporotic rats - a Histological and Molecular Study. Lasers Med Sci 2025; 40:5. [PMID: 39751945 PMCID: PMC11698838 DOI: 10.1007/s10103-024-04246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
This study aims to investigate and compare the effects of short and long-term application of low-level laser therapy on the mandibular alveolar process of osteoporotic rats. Forty adult male albino rats were included in this study. After animal grouping, the experimental group received dexamethasone (0.1 mg/kg b.wt./day for 60 days) for the induction of osteoporosis, then the rats were treated using LLLT (830 nm, 100 mW, at 60 J/cm2). The lower jaw specimens were collected and processed for histological, molecular, and histomorphometric assessments. The osteoporotic group exhibited alveolar bone resorption, accompanied by significantly upregulated RANKL and downregulated OPG mRNA expression. The short-term application of laser group showed alveolar bone partial improvement with slightly downregulated RANKL and slightly upregulated OPG levels. The long-term application of laser group showed dramatic positive changes in the alveolar bone, with markedly downregulated RANKL and upregulated OPG levels. LLLT shows potential as a low-risk and impactful local management for osteoporosis, with long-term laser application demonstrably improving bone quality, quantity, and organization compared to short-term application.
Collapse
Affiliation(s)
- Mai O El-Halwagy
- Oral Biology Department, Faculty of Dentistry, Suez University, P.O.Box:43221, Suez, Egypt.
| | - Enas M Hegazy
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, P.O.Box:41523, Ismailia, Egypt
| | - Hany K Shalaby
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Suez University, P.O.Box:43221, Suez, Egypt
| | - Elham F Mahmoud
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, P.O.Box:41523, Ismailia, Egypt
| |
Collapse
|
4
|
Vanderlei BMC, Torres MC, Paredes N, Garcez AS, Pavini PTM, Suzuki SS, Moon W. Effect of photobiomodulation and corticopuncture methods on tooth displacement and gene expression: animal study. Lasers Med Sci 2024; 39:283. [PMID: 39547960 DOI: 10.1007/s10103-024-04136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/08/2024] [Indexed: 11/17/2024]
Abstract
AIM The aim of this study was to evaluate the expression levels of vascular endothelial growth factor (VEGF), Peroxiredoxin 1 (PRX1), glucose transporter 1 (GLUT1) and type I collagen (COL1) and the rate of tooth movement comparing 3 accelerated tooth movement (ATM) methods: Corticopuncture (CP), photobiomodulation (PBM) and the combined technique (CP + PBM) on days 1, 3, 7 and 14. METHODS Orthodontic tooth movement was induced in 24 male Wistar rats. CP procedure included three perforations: two in the palate and one mesial to the molars. GaAlAs diode laser irradiation was performed on days 0, 2, 4 and 6, totaling 4 irradiations. 14 days (810 nm, 100 mW, 15 s). Gingival tissue was collected from the cervical area of both first molars and qPCR was performed to isolate and quantify mRNA levels. RESULTS All ATM groups showed increased tooth displacement compared to control after 14 days (20% for PBM; 40% for CP and 60% for CP + PBM). PBM showed higher VEGF expression on days 1,3 and 7 followed by CP and CP + PBM. PRX1 levels increased on days 1 and 3 in PBM and CP + PBM. GLUT1 increased on day 3 in all groups. No difference was found on levels of VEGF, PRX1 and GLUT1 among the groups on day 14, except for COL1 which increased significantly in PBM group. CONCLUSION All ATM methods showed higher expression of all of VEGF, PRX1, GLUT1, COL1 than control group. PBM and CP + PBM groups had more expression related to angiogenesis, glucose uptake, oxidative stress and collagen synthesis.
Collapse
Affiliation(s)
| | | | - Ney Paredes
- School of Dentistry, University of California, Los Angeles, CA, USA
| | | | | | - Selly Sayuri Suzuki
- Department of Orthodontics and Post-graduation in Orthodontics, Faculdade São Leopoldo Mandic, Campinas, SP, 52020-060, Brazil
| | - Won Moon
- Department of Orthodontics, at Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
5
|
de Alexandria FED, Silva NC, Assis L, Filho ALMM, Kido HW, Tarocco JC, Ferreira RS, Barraviera B, Parizotto NA, Silva JF, Neto MADN, Tim CR. Diabetic rats skin wounds treated with heterologous fibrin sealant followed by photobiomodulation therapy. Lasers Med Sci 2024; 39:279. [PMID: 39542936 DOI: 10.1007/s10103-024-04229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Diabetes mellitus is characterized by elevated blood glucose levels causing sometimes impairment of the body's ability to repair itself. Promising treatments for tissue repair have included photobiomodulation therapy and heterologous fibrin biopolymer (HFB). This study aimed to evaluate the impact of photobiomodulation therapy by LED, both as a standalone treatment and in conjunction with heterologous fibrin biopolymer in treatment of skin lesions of diabetic rats. Diabetes was induced using alloxan. Full-thickness skin wounds were induced on the backs of 56 Wistar rats, which were randomly allocated into four groups: control group, heterologous fibrin biopolymer group, photobiomodulation therapy by LED group, and photobiomodulation therapy by LED combined with heterologous fibrin biopolymer group. The treatments spanned two experimental periods, lasting 7 and 14 days. Notably, the HFB group exhibited results similar to those of the LED group concerning wound regression, while demonstrating superior resistance to healing. Interestingly, the LED + HFB group showed greater skin damage at 7 days, but an improved repair process at 14 days compared to the control group. The findings indicate that combining photobiomodulation by LED with HFB did not enhance wound healing in diabetic rats beyond the effects of each treatment alone. Both treatments were effective individually, with HFB showing particular strength in promoting collagen maturation and improving tissue biomechanical properties. This study contributes to the ongoing body of research on skin repair with this innovative HFB. Future clinical trials will be essential to validate this proposition.
Collapse
Affiliation(s)
| | | | - Livia Assis
- Scientific and Technological Institute, Universidade Brasil, Sao Paulo (SP), Brazil
| | | | - Hueliton Wilian Kido
- Diretoria de Saúde III , Universidade Nove de Julho, São Bernardo do Campo (SP) , Brazil
| | | | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals , Universidade Estadual Paulista, Botucatu (SP), Brazil
| | - Benedito Barraviera
- Botucatu Medical School, Universidade Estadual Paulista, Botucatu (SP), Brazil
| | | | - José Figueiredo Silva
- Center for Research in Biotechnology and Biodiversity, Universidade Estadual do Piauí, Teresina (PI), Brazil
| | | | - Carla Roberta Tim
- Scientific and Technological Institute, Universidade Brasil, Sao Paulo (SP), Brazil.
| |
Collapse
|
6
|
Popa T, Negrutiu M, Gherman LM, Ciubean AD, Cosma DI, Gheban D, Popa C, Irsay L. The Effects of Surface Patterning and Photobiomodulation on the Osseointegration of Titanium Implants in Osteoporotic Long Bones: An In Vivo Study in Rats. J Funct Biomater 2024; 15:346. [PMID: 39590550 PMCID: PMC11595363 DOI: 10.3390/jfb15110346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to assess the impact of titanium surface patterning used in combination with photobiomodulation therapy on enhancing osseointegration in osteoporotic bone fractures. C.p. titanium implants were employed, half with an unmodified surface and half with a modified one, showing a nanostructured cellular surface. Surface patterning aimed to obtain a complex morphology designed for better osseointegration, using a selective anodization process after photoresist coating. A total of 52 rats were used, of which 4 were sacrificed 12 weeks after ovariectomy to evaluate bone density. A total of 48 rats received titanium implants in both tibiae and underwent surgery for implant placement and bone fracture. Half of the rats were subjected to photobiomodulation. The times of sacrifice were 2, 4, and 6 weeks after finalizing LASER therapy. The evaluation methods were micro-CT scanning, the mechanical pull-force test, and morphology. Mechanical tests revealed a significant difference in the surface-patterned titanium with the LASER group at 2 weeks, but not at 4 and 6 weeks. This group outperformed regular titanium and titanium/LASER groups. Micro-CT showed no significant differences, while the morphology indicated better bone quality at 4 weeks in all LASER-treated groups. The effect of surface patterning and photobiomodulation leads to better osseointegration, especially in the earlier stages.
Collapse
Affiliation(s)
- Theodor Popa
- Rehabilitation Hospital, Str. Viilor 46-50, 400347 Cluj-Napoca, Romania; (T.P.); (A.D.C.); (D.I.C.); (L.I.)
- Department of Rehabilitation, “Iuliu Hatieganu” University of Medicine and Pharmacy, Str. Victor Babes nr. 8, 400012 Cluj-Napoca, Romania
- Department of Orthopedics, “Iuliu Hatieganu” University of Medicine and Pharmacy, Str. Victor Babes nr. 8, 400012 Cluj-Napoca, Romania
| | - Mircea Negrutiu
- Department of Dermatovenerology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Str. Victor Babes nr. 8, 400012 Cluj-Napoca, Romania;
- Dermatovenerology, Emergency County Hospital, Str. Clinicilor nr. 3-5, 400006 Cluj-Napoca, Romania
| | - Luciana Madalina Gherman
- Experimental Centre, “Iuliu Hatieganu” University of Medicine and Pharmacy, Str. Victor Babes nr. 8, 400012 Cluj-Napoca, Romania;
| | - Alina Deniza Ciubean
- Rehabilitation Hospital, Str. Viilor 46-50, 400347 Cluj-Napoca, Romania; (T.P.); (A.D.C.); (D.I.C.); (L.I.)
- Department of Rehabilitation, “Iuliu Hatieganu” University of Medicine and Pharmacy, Str. Victor Babes nr. 8, 400012 Cluj-Napoca, Romania
| | - Dan Ionut Cosma
- Rehabilitation Hospital, Str. Viilor 46-50, 400347 Cluj-Napoca, Romania; (T.P.); (A.D.C.); (D.I.C.); (L.I.)
- Department of Orthopedics, “Iuliu Hatieganu” University of Medicine and Pharmacy, Str. Victor Babes nr. 8, 400012 Cluj-Napoca, Romania
| | - Dan Gheban
- Department of Anatomical Pathology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Str. Victor Babes nr. 8, 400012 Cluj-Napoca, Romania;
| | - Catalin Popa
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, 103-105, Muncii Ave., 400641 Cluj-Napoca, Romania
| | - Laszlo Irsay
- Rehabilitation Hospital, Str. Viilor 46-50, 400347 Cluj-Napoca, Romania; (T.P.); (A.D.C.); (D.I.C.); (L.I.)
- Department of Rehabilitation, “Iuliu Hatieganu” University of Medicine and Pharmacy, Str. Victor Babes nr. 8, 400012 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Atarbashi-Moghadam F, Mahmoudian A, Taghipour N, Hakimiha N, Azadi A, Nokhbatolfoghahaei H. Enhancement of the angiogenic differentiation in the periodontal ligament stem cells using fibroblast growth factor 2 and photobiomodulation: An in vitro investigation. Photochem Photobiol 2024. [PMID: 39435497 DOI: 10.1111/php.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/10/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024]
Abstract
This study aims to evaluate and compare the effect of fibroblastic growth factor 2 (FGF-2) and photobiomodulation, solely or in combination, in angiogenic differentiation of human periodontal ligament stem cells (hPDLSCs). The study comprises the following groups: control group (hPDLSCs only), FGF-2 (50 ng/mL) group, two photobiomodulation groups with a 4 J/cm2 energy density of 808 nm diode laser (1-Session or 2-Session), and two groups with the combination of each 1-Session or 2-Session photobiomodulation with FGF-2 (50 ng/mL). The 4',6-diamidino-2-phenylindole (DAPI) staining, and Methyl Thiazolyl Tetrazolium (MTT) assay were undertaken on days 2, 4, and 6. Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) analysis on days 2, 4, 6, 8, and 11 was conducted to investigate VEGF-A and ANG-I genes. Coherently, the results of the DAPI and MTT showed the Laser (2-Session) group had higher cell viability than others on day 6. All groups demonstrated a growth pattern in the expression of VEGF-A and ANG-I from day 2 to 8 and, afterward, a significant downgrowth to day 11 (p < 0.05). The most amounts of expression of VEGF-A and ANG-I on day 8 were seen in the Laser (2-Session) group. Two-time application of photobiomodulation using a diode laser with 808 nm wavelength after 2 and 4 days of cell seeding can be associated with higher cell viability and angiogenic differentiation of hPDLSCs compared to the one-time application of photobiomodulation and administration of FGF-2.
Collapse
Affiliation(s)
- Fazele Atarbashi-Moghadam
- Department of Periodontics, Dental School of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhosein Mahmoudian
- Department of Periodontics, Dental School of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Azadi
- Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Zhou W, Zhang Q, Chen J, Gan J, Li Y, Zou J. Angiopoietin-4 expression and potential mechanisms in carcinogenesis: Current achievements and perspectives. Clin Exp Med 2024; 24:224. [PMID: 39294405 PMCID: PMC11410924 DOI: 10.1007/s10238-024-01449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/23/2024] [Indexed: 09/20/2024]
Abstract
As one of the factors regulating tumour angiogenesis, angiopoietin-4 (ANGPT4), which plays an important role in promoting tumour proliferation, survival, expansion and angiogenesis, is highly expressed in some tumours, such as lung adenocarcinoma, glioblastoma and ovarian cancer. This may be related to the fact that ANGPT4 affects the blood vessels and lymphatic system of the tumour. Specifically, ANGPT4 could play an effective role in promoting cancer by affecting the tyrosine kinase receptor TIE2, ERK1/2 and PI3K/AKT signalling pathways. Therefore, ANGPT4 may be an important biomarker for the occurrence and development of cancer and poor prognosis. In addition, the inhibition of ANGPT4 may be a useful cancer treatment. This paper reviews the latest preclinical research on ANGPT4, emphasizes its role in tumourigenesis and broadens our understanding of the carcinogenic function of ANGPT4 and the development of ANGPT4 inhibitors. This is the latest version of the revised version of the previous article.
Collapse
Affiliation(s)
- Wenchao Zhou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qunfeng Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junling Chen
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinpeng Gan
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
9
|
Atarbashi-Moghadam F, Samadi-Rad A, Hakimiha N, Taghipour N, Mahmoudian A, Azadi A, Nokhbatolfoghahaei H. The impact of photobiomodulation on angiogenic differentiation of two different dental derived stem cells using two irradiation protocols: an in vitro investigation. BMC Oral Health 2024; 24:1090. [PMID: 39277707 PMCID: PMC11402196 DOI: 10.1186/s12903-024-04753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024] Open
Abstract
The present study aimed to compare the effect of photobiomodulation with different energy densities on the angiogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and stem cells from human exfoliated deciduous teeth (SHED). Photobiomodulation therapy with a 660 nm diode laser (2.4 J/cm2 and 3.9 J/cm2) on two consecutive days post-culture was applied to two types of stem cells (hPDLSCs and SHED). The Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) test was undertaken to investigate Vascular Endothelial Growth Factor-A (VEGF-A) and Angiopoietin I (ANG-I) genes on days 1, 3, 5, 7, and 10 after the first session of laser application. The 4',6-diamidino-2-phenylindole (DAPI) staining and Methyl Thiazolyl Tetrazolium (MTT) test were conducted on days 1, 3, and 5 after the first session of laser application, to assess the cell viability. The Two-way ANOVA with Tukey post hoc test was used to analyze the outcomes of the MTT and RT-qPCR tests. The results of the MTT and DAPI convergently illustrated that the groups receiving photobiomodulation with 2.4 J/cm2 had higher cell viability compared to 3.9 J/cm2. All experimental groups showed an upregulation of VEGF-A and ANG-I gene expression from day 1 to 5, followed by a downregulation from day 5 to 10. The groups with cultured hPDLSCs and SHED receiving photobiomodulation using 2.4 J/cm2 had the most amounts of VEGF-A and ANG-I gene expression on day 5, respectively. In conclusion, the 660 nm mediated photobiomodulation therapy of cultured SHED and hPDLSCs with 2.4 J/cm2 energy density may be associated with higher angiogenic differentiation (the expression of VEGF-A and ANG-I) as well as higher cell viability compared to the photobiomodulation therapy with 3.9 J/cm2.
Collapse
Affiliation(s)
- Fazele Atarbashi-Moghadam
- Department of Periodontics, Dental School of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Samadi-Rad
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhosein Mahmoudian
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Azadi
- Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Danshjoo BLVD, Velenjak, Shahid Chamran Highway, Tehran, 1983963113, Iran.
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Ganse B. Methods to accelerate fracture healing - a narrative review from a clinical perspective. Front Immunol 2024; 15:1384783. [PMID: 38911851 PMCID: PMC11190092 DOI: 10.3389/fimmu.2024.1384783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
Bone regeneration is a complex pathophysiological process determined by molecular, cellular, and biomechanical factors, including immune cells and growth factors. Fracture healing usually takes several weeks to months, during which patients are frequently immobilized and unable to work. As immobilization is associated with negative health and socioeconomic effects, it would be desirable if fracture healing could be accelerated and the healing time shortened. However, interventions for this purpose are not yet part of current clinical treatment guidelines, and there has never been a comprehensive review specifically on this topic. Therefore, this narrative review provides an overview of the available clinical evidence on methods that accelerate fracture healing, with a focus on clinical applicability in healthy patients without bone disease. The most promising methods identified are the application of axial micromovement, electromagnetic stimulation with electromagnetic fields and direct electric currents, as well as the administration of growth factors and parathyroid hormone. Some interventions have been shown to reduce the healing time by up to 20 to 30%, potentially equivalent to several weeks. As a combination of methods could decrease the healing time even further than one method alone, especially if their mechanisms of action differ, clinical studies in human patients are needed to assess the individual and combined effects on healing progress. Studies are also necessary to determine the ideal settings for the interventions, i.e., optimal frequencies, intensities, and exposure times throughout the separate healing phases. More clinical research is also desirable to create an evidence base for clinical guidelines. To make it easier to conduct these investigations, the development of new methods that allow better quantification of fracture-healing progress and speed in human patients is needed.
Collapse
Affiliation(s)
- Bergita Ganse
- Innovative Implant Development (Fracture Healing), Clinics and Institutes of Surgery, Saarland University, Homburg, Germany
- Department of Trauma, Hand and Reconstructive Surgery, Clinics and Institutes of Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
11
|
Lu P, Peng J, Liu J, Chen L. The role of photobiomodulation in accelerating bone repair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:55-67. [PMID: 38493961 DOI: 10.1016/j.pbiomolbio.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Bone repair is faced with obstacles such as slow repair rates and limited bone regeneration capacity. Delayed healing even nonunion could occur in bone defects, influencing the life quality of patients severely. Photobiomodulation (PBM) utilizes different light sources to derive beneficial therapeutic effects with the advantage of being non-invasive and painless, providing a promising strategy for accelerating bone repair. In this review, we summarize the parameters, mechanisms, and effects of PBM regulating bone repair, and further conclude the current clinical application of PBM devices in bone repair. The wavelength of 635-980 nm, the output power of 40-100 mW, and the energy density of less than 100 J/cm2 are the most commonly used parameters. New technologies, including needle systems and biocompatible and implantable optical fibers, offer references to realize an efficient and safe strategy for bone repair. Further research is required to establish the reliability of outcomes from in vivo and in vitro studies and to standardize clinical trial protocols.
Collapse
Affiliation(s)
- Ping Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jie Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
12
|
Zhong J, Zhang X, Ruan Y, Huang Y. Photobiomodulation therapy's impact on angiogenesis and osteogenesis in orthodontic tooth movement: in vitro and in vivo study. BMC Oral Health 2024; 24:147. [PMID: 38297232 PMCID: PMC10832110 DOI: 10.1186/s12903-023-03824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND This study explores the effectiveness of Photobiomodulation Therapy (PBMT) in enhancing orthodontic tooth movement (OTM), osteogenesis, and angiogenesis through a comprehensive series of in vitro and in vivo investigations. The in vitro experiments involved co-culturing MC3T3-E1 and HUVEC cells to assess PBMT's impact on cell proliferation, osteogenesis, angiogenesis, and associated gene expression. Simultaneously, an in vivo experiment utilized an OTM rat model subjected to laser irradiation at specific energy densities. METHODS In vitro experiments involved co-culturing MC3T3-E1 and HUVEC cells treated with PBMT, enabling a comprehensive assessment of cell proliferation, osteogenesis, angiogenesis, and gene expression. In vivo, an OTM rat model was subjected to laser irradiation at specified energy densities. Statistical analyses were performed to evaluate the significance of observed differences. RESULTS The results revealed a significant increase in blood vessel formation and new bone generation within the PBMT-treated group compared to the control group. In vitro, PBMT demonstrated positive effects on cell proliferation, osteogenesis, angiogenesis, and gene expression in the co-culture model. In vivo, laser irradiation at specific energy densities significantly enhanced OTM, angiogenesis, and osteogenesis. CONCLUSIONS This study highlights the substantial potential of PBMT in improving post-orthodontic bone quality. The observed enhancements in angiogenesis and osteogenesis suggest a pivotal role for PBMT in optimizing treatment outcomes in orthodontic practices. The findings position PBMT as a promising therapeutic intervention that could be seamlessly integrated into orthodontic protocols, offering a novel dimension to enhance overall treatment efficacy. Beyond the laboratory, these results suggest practical significance for PBMT in clinical scenarios, emphasizing its potential to contribute to the advancement of orthodontic treatments. Further exploration of PBMT in orthodontic practices is warranted to unlock its full therapeutic potential.
Collapse
Affiliation(s)
- Jietong Zhong
- School of Stomatology, Southwest Medical University, Sichuang, Luzhou, China
| | - Xinyu Zhang
- The Second People's Hospital of Yibin, Yibin, Sichuang, China
| | - Yaru Ruan
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China.
| | - Yue Huang
- School of Stomatology, Southwest Medical University, Sichuang, Luzhou, China.
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Zhou WC, Zhang QF, Chen JL, Gan JP, Li YK, Zou J. Angiopoietin4 (ANGPT4) expression and potential mechanisms in carcinogenesis: current achievements and perspectives. Clin Exp Med 2023; 23:4449-4456. [PMID: 37659993 DOI: 10.1007/s10238-023-01178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Angiopoietin4(ANGPT4) which plays a significant role in endothelial cell proliferation, survival, angiogenesis and expansion in tumors and other pathological states is a significant regulator of tumor angiogenesis. ANGPT4 expression is enhanced in many cancer cells. For example, the overexpression of ANGPT4 promotes the formation, development and progress of lung adenocarcinoma, glioblastoma and ovarian cancer. Related studies show that ANGPT4 encourages the proliferation, survival and invasion of tumor cells, while promoting the expansion of the tumor vascular system and affecting the tumor immune microenvironment. ANGPT4 can also promote carcinogenesis by affecting the ERK1/2, PI3K/AKT and other signal pathways downstream of tyrosine kinase with immunoglobulin-like and EGF-like domains 2(TIE2) and TIE2. Therefore, ANGPT4 may be a potential and significant biomarker for predicting malignant tumor progression and adverse outcomes. In addition, inhibition of ANGPT4 may be a meaningful cancer treatment. This paper reviews the latest research results of ANGPT4 in preclinical research, and emphasizes its role in carcinogenesis. Additional research on the carcinogenic function of ANGPT4 could provide new insights into cancer biology and novel methods for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Wen-Chao Zhou
- Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Qun-Feng Zhang
- Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Jun-Ling Chen
- Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Jin-Peng Gan
- Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yu-Kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
14
|
Zhang R, Qu J. The Mechanisms and Efficacy of Photobiomodulation Therapy for Arthritis: A Comprehensive Review. Int J Mol Sci 2023; 24:14293. [PMID: 37762594 PMCID: PMC10531845 DOI: 10.3390/ijms241814293] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) have a significant impact on the quality of life of patients around the world, causing significant pain and disability. Furthermore, the drugs used to treat these conditions frequently have side effects that add to the patient's burden. Photobiomodulation (PBM) has emerged as a promising treatment approach in recent years. PBM effectively reduces inflammation by utilizing near-infrared light emitted by lasers or LEDs. In contrast to photothermal effects, PBM causes a photobiological response in cells, which regulates their functional response to light and reduces inflammation. PBM's anti-inflammatory properties and beneficial effects in arthritis treatment have been reported in numerous studies, including animal experiments and clinical trials. PBM's effectiveness in arthritis treatment has been extensively researched in arthritis-specific cells. Despite the positive results of PBM treatment, questions about specific parameters such as wavelength, dose, power density, irradiation time, and treatment site remain. The goal of this comprehensive review is to systematically summarize the mechanisms of PBM in arthritis treatment, the development of animal arthritis models, and the anti-inflammatory and joint function recovery effects seen in these models. The review also goes over the evaluation methods used in clinical trials. Overall, this review provides valuable insights for researchers investigating PBM treatment for arthritis, providing important references for parameters, model techniques, and evaluation methods in future studies.
Collapse
Affiliation(s)
| | - Junle Qu
- Center for Biomedical Optics and Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
15
|
Wang X, Liu Q, Peng J, Song W, Zhao J, Chen L. The Effects and Mechanisms of PBM Therapy in Accelerating Orthodontic Tooth Movement. Biomolecules 2023; 13:1140. [PMID: 37509176 PMCID: PMC10377711 DOI: 10.3390/biom13071140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Malocclusion is one of the three major diseases, the incidence of which could reach 56% of the imperiled oral and systemic health in the world today. Orthodontics is still the primary method to solve the problem. However, it is clear that many orthodontic complications are associated with courses of long-term therapy. Photobiomodulation (PBM) therapy could be used as a popular way to shorten the course of orthodontic treatment by nearly 26% to 40%. In this review, the efficacy in cells and animals, mechanisms, relevant cytokines and signaling, clinical trials and applications, and the future developments of PBM therapy in orthodontics were evaluated to demonstrate its validity. Simultaneously, based on orthodontic mechanisms and present findings, the mechanisms of acceleration of orthodontic tooth movement (OTM) caused by PBM therapy were explored in relation to four aspects, including blood vessels, inflammatory response, collagen and fibers, and mineralized tissues. Also, the cooperative effects and clinical translation of PBM therapy in orthodontics have been explored in a growing numbers of studies. Up to now, PBM therapy has been gaining popularity for its non-invasive nature, easy operation, and painless procedures. However, the validity and exact mechanism of PBM therapy as an adjuvant treatment in orthodontics have not been fully elucidated. Therefore, this review summarizes the efficacy of PBM therapy on the acceleration of OTM comprehensively from various aspects and was designed to provide an evidence-based platform for the research and development of light-related orthodontic tooth movement acceleration devices.
Collapse
Affiliation(s)
- Xinyuan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qian Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
16
|
Berni M, Brancato AM, Torriani C, Bina V, Annunziata S, Cornella E, Trucchi M, Jannelli E, Mosconi M, Gastaldi G, Caliogna L, Grassi FA, Pasta G. The Role of Low-Level Laser Therapy in Bone Healing: Systematic Review. Int J Mol Sci 2023; 24:7094. [PMID: 37108257 PMCID: PMC10139216 DOI: 10.3390/ijms24087094] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Low-level laser therapy (LLLT) is a treatment that is increasingly used in orthopedics practices. In vivo and in vitro studies have shown that low-level laser therapy (LLLT) promotes angiogenesis, fracture healing and osteogenic differentiation of stem cells. However, the underlying mechanisms during bone formation remain largely unknown. Factors such as wavelength, energy density, irradiation and frequency of LLLT can influence the cellular mechanisms. Moreover, the effects of LLLT are different according to cell types treated. This review aims to summarize the current knowledge of the molecular pathways activated by LLLT and its effects on the bone healing process. A better understanding of the cellular mechanisms activated by LLLT can improve its clinical application.
Collapse
Affiliation(s)
- Micaela Berni
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Alice Maria Brancato
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Camilla Torriani
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Valentina Bina
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Annunziata
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Elena Cornella
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Michelangelo Trucchi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Eugenio Jannelli
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Mario Mosconi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Giulia Gastaldi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Laura Caliogna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Federico Alberto Grassi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Gianluigi Pasta
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| |
Collapse
|
17
|
Retameiro ACB, Neves M, Tavares ALDF, Boaro CDT, Rodriguez DFS, Leal TSDS, Costa RM, Bertolini GRF, Ribeiro LDFC. Resistance exercise and low-level laser therapy improves grip strength and morphological aspects in the ankle joint of Wistar rats with experimental arthritis. Anat Rec (Hoboken) 2023; 306:918-932. [PMID: 36310376 DOI: 10.1002/ar.25112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease mainly affecting synovial joints. Photobiomodulation through low-level laser therapy (LLLT) and resistance exercise may improve the inflammatory process. Therefore, we analyzed the effects of resistance exercise, LLLT, and the combination of both treatments on hind paw grip strength and ankle joint histomorphometric aspects of Wistar rats subjected to experimental RA. A total of 64 male Wistar rats were divided into eight groups: control, control LLLT, control exercise, control LLLT and exercise, arthritis, arthritis LLLT, arthritis exercise, and arthritis LLLT and exercise groups. The experimental RA was induced by a complete Freund's adjuvant injection into the knee joint cavity. Climbing exercises and LLLT (660 nm; 5 J/cm2 per point) were performed as the treatment. In addition, muscle strength was evaluated using the grip strength test, and morphometric evaluations were performed on the ankle joint. Generalized mixed models and multivariate analysis of variance tests were used for statistical analysis. Statistical significance was set at a p-value of .05. Arthritis LLLT, exercise, and LLLT and exercise had positive effects on grip strength between the groups (F[7.56] = 5.8, p < .004) and within the groups (F[4.3] = 9.9, p < .002) throughout the evaluations. Morphometry revealed degenerative lesions in the ankle joint as subintima with angiogenesis, inflammatory cells, flocculated articular cartilage, chondrocyte disorganization, and pannus in the arthritis group (p < .001). The treated groups exhibited morphological characteristics similar to those of the control group. LLLT and resistance exercise restored muscle strength and morphological aspects of the ankle joint in rats with experimentally induced RA.
Collapse
Affiliation(s)
| | - Morgana Neves
- Center of Biological and Health Sciences, State University of Western Paraná, Cascavel, Paraná, Brazil
| | | | - Carolina De Toni Boaro
- Center of Biological and Health Sciences, State University of Western Paraná, Cascavel, Paraná, Brazil
| | | | | | - Rose Meire Costa
- Center of Biological and Health Sciences, State University of Western Paraná, Cascavel, Paraná, Brazil
| | | | | |
Collapse
|
18
|
Asteinza Castro IM, Morga AA, Johnson DS. Photobiomodulation therapy combined with static magnetic field in tibial fracture healing of a dog: A case report. Vet Med Sci 2023; 9:591-599. [PMID: 36639946 PMCID: PMC10029867 DOI: 10.1002/vms3.1071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A 10-week-old male, Xoloitzcuintle (Mexican hairless dog), weighing 8.9 kg was presented after its owner accidentally stepped on its paw. The dog presented with acute pain, inflammation and grade IV lameness in the right hind paw. A complete transverse fracture in the right proximal tibia was diagnosed from radiography. The dog underwent a minimally invasive plate osteosynthesis (MIPO) procedure. After surgery, photobiomodulation therapy combined with static magnetic field (PBMT-sMF) was applied twice daily for 21 days. A multi-wavelength PBMT-sMF device was applied at three sites using different frequencies: proximal and distal of the fracture zone (3000 Hz, 40.35 J per site, and 300 s per site) and in the fracture zone (250 Hz, 39.11 J and 300 s per site). Follow up radiographies were performed after surgery and treatment with PBMT-sMF. Eighteen days post-surgery the healing process of bone was advanced. Fifty-five days post-surgery the callus was enlarged. In addition, radiographic union and clinical union was evidenced by closure of the fracture gap. This case report has reported the use of PBMT-sMF in order to accelerate and improve bone healing following a MIPO procedure on a complete transverse fracture in the proximal tibia of a puppy.
Collapse
Affiliation(s)
| | - Armando Amador Morga
- Division of Ortophedic Care, Animal Home Veterinary Hospital, Mexico City, Mexico
| | | |
Collapse
|
19
|
Pomini KT, Buchaim DV, Bighetti ACC, Hamzé AL, Reis CHB, Duarte MAH, Alcalde MP, Barraviera B, Júnior RSF, de Souza AT, da Silva Santos PS, Pilon JPG, de Marchi MÂ, Nogueira DMB, de Souza Bueno CR, Soares WC, Buchaim RL. Tissue Bioengineering with Fibrin Scaffolds and Deproteinized Bone Matrix Associated or Not with the Transoperative Laser Photobiomodulation Protocol. Molecules 2023; 28:407. [PMID: 36615601 PMCID: PMC9824823 DOI: 10.3390/molecules28010407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Extending the range of use of the heterologous fibrin biopolymer, this pre-clinical study showed a new proportionality of its components directed to the formation of scaffold with a lower density of the resulting mesh to facilitate the infiltration of bone cells, and combined with therapy by laser photobiomodulation, in order to accelerate the repair process and decrease the morphofunctional recovery time. Thus, a transoperative protocol of laser photobiomodulation (L) was evaluated in critical bone defects filled with deproteinized bovine bone particles (P) associated with heterologous fibrin biopolymer (HF). The groups were: BCL (blood clot + laser); HF; HFL; PHF (P+HF); PHFL (P+HF+L). Microtomographically, bone volume (BV) at 14 days, was higher in the PHF and PHFL groups (10.45 ± 3.31 mm3 and 9.94 ± 1.51 mm3), significantly increasing in the BCL, HFL and PHFL groups. Histologically, in all experimental groups, the defects were not reestablished either in the external cortical bone or in the epidural, occurring only in partial bone repair. At 42 days, the bone area (BA) increased in all groups, being significantly higher in the laser-treated groups. The quantification of bone collagen fibers showed that the percentage of collagen fibers in the bone tissue was similar between the groups for each experimental period, but significantly higher at 42 days (35.71 ± 6.89%) compared to 14 days (18.94 ± 6.86%). It can be concluded that the results of the present study denote potential effects of laser radiation capable of inducing functional bone regeneration, through the synergistic combination of biomaterials and the new ratio of heterologous fibrin biopolymer components (1:1:1) was able to make the resulting fibrin mesh less dense and susceptible to cellular permeability. Thus, the best fibrinogen concentration should be evaluated to find the ideal heterologous fibrin scaffold.
Collapse
Affiliation(s)
- Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Ana Carolina Cestari Bighetti
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Abdul Latif Hamzé
- Medical School, University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- UNIMAR Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | - Marco Antonio Húngaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
| | - Murilo Priori Alcalde
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (University Estadual Paulista, UNESP), Botucatu 18610-307, Brazil
- Graduate Programs in Tropical Diseases and Clinical Research, Botucatu Medical School (FMB), São Paulo State University, (UNESP–University Estadual Paulista), Botucatu 18618-687, Brazil
| | - Rui Seabra Ferreira Júnior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (University Estadual Paulista, UNESP), Botucatu 18610-307, Brazil
- Graduate Programs in Tropical Diseases and Clinical Research, Botucatu Medical School (FMB), São Paulo State University, (UNESP–University Estadual Paulista), Botucatu 18618-687, Brazil
| | | | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - João Paulo Galletti Pilon
- Medical School, University of Marilia (UNIMAR), Marília 17525-160, Brazil
- Postgraduate Program in Speech Therapy, São Paulo State University (UNESP—University Estadual Paulista), Marília 17525-900, Brazil
| | - Miguel Ângelo de Marchi
- Coordination of the Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Dayane Maria Braz Nogueira
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Cleuber Rodrigo de Souza Bueno
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Anatomy and Collective Health, Faculty of Medicine and Dentistry, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Anatomy Department, Faculty of Medicine, UNINOVE University, Bauru 17011-102, Brazil
| | - Wendel Cleber Soares
- Vice-Rector/President, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| |
Collapse
|
20
|
Fekrazad S, Sohrabi M, Fekrazad R. Angiogenetic and anti-inflammatory effects of photobiomodulation on bone regeneration in rat: A histopathological, immunohistochemical, and molecular analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112599. [PMID: 36493717 DOI: 10.1016/j.jphotobiol.2022.112599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/27/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Post-surgical bone defects require new alternative approaches for a better healing process. For this matter, photobiomodulation therapy (PBMT) has been used in order to improve the process of healing, pain, and inflammation reduction and tissue rejuvenation. This study is set to evaluate the effect of PBMT on angiogenic and inflammatory factors for bone regeneration in rat post-surgical cranial defects. Thirty male Wistar rats were distributed accidentally into two groups (Subdivided into 3 groups according to their follow-up durations). During operation, an 8-mm critical-sized calvarial defect was made in each rat. A continuous diode laser was used (power density 100 mW/cm2, wavelength 810 nm, the energy density of 4 J/cm2). Bone samples were assessed histomorphometrically and histologically after hematoxylin and eosin (H&E) staining. ALP, PTGIR, OCN, and IL-1 levels were measured by RT-PCR. VEGF expression was studied by immunohistochemistry analysis. The level of IL-1 expression decreased significantly in the PBMT group compared to the control after 7 days (p < 0.05), while, the PTGIR level was improved significantly compared to the control group after 7 days. Furthermore, levels of OCN and ALP improved after PBM use; however, the alterations were not statistically meaningful (p > 0.05). Evaluation with IHC displayed a significant rise in VEGF expression after 3 days in the PBMT group compared to the control (p > 0.05). In this study's conditions, the results showed a meaningful alteration in osteogenic, inflammatory, and angiogenic mediators in post-surgical calvarial defect following PBMT. It appears that PBM can accelerate angiogenesis in the bone healing procedure which can be helpful in bone tissue engineering.
Collapse
Affiliation(s)
- Sepehr Fekrazad
- Department of General Surgery, Subdivision of Surgical Oncology, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Sohrabi
- Department of Pediatrics, Dental School, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, AJA University of Medical Sciences - International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
21
|
Gong C, Lu Y, Jia C, Xu N. Low-level green laser promotes wound healing after carbon dioxide fractional laser therapy. J Cosmet Dermatol 2022; 21:5696-5703. [PMID: 35947511 DOI: 10.1111/jocd.15298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND The carbon dioxide (CO2 ) fractional laser resurfacing has become one of the hottest therapies for dermatoses. However, complications such as skin swelling, prolonged erythema, post-inflammatory hyperpigmentation, and scar formation remain. Low-level laser (LLL) therapy is accepted to promote skin wound healing and regeneration, decrease inflammation and pain, and modulate immunoreaction with low-dose laser of different wavelength. 532 nm laser therapy is commonly used to remove pigmented spots and to tender skin, but not utilized in wound care. OBJECTIVE We aimed to determine the efficacy of the low-level 532 nm green laser in wound healing after CO2 fractional laser. METHODS Six adult male mice (C57BL/6, 8 weeks old) were prepared for animal experiments. The dorsum of each mouse was divided into four parts that, respectively, received designed treatments, as controlled (group Ctrl), 532 nm LLL-treated (group GL), CO2 fractional laser-treated (group FL), and CO2 fractional laser followed by three times 532 nm LLL-treated (group FG). Hematoxylin-eosin staining (H&E), Masson-trichrome staining, CD31 immunohistochemical staining were performed to evaluate the efficacy of wound healing after treated by different irradiations. Western blotting was used to detect the expression of related proteins. Mouse skin fibroblasts (MSFs) were treated with LLL using a wavelength of 532 nm once. Cellular responses were observed and analyzed after 48 hours. Cell viability and migration of different groups were assessed by scratch and the Cell Counting Kit-8 (CCK8) assays, respectively. RESULTS Collagen remodeling and epidermis thickness were significantly enhanced in group FG than that in group FL in morphology. Besides, CD31 immunohistochemical staining indicated prominently increased angiogenesis in both groups FL and FG than non-irradiation group. The expression of extracellular matrix (ECM)-related protein (Col1, Col3 and MMP1) showed a remarkable improvement in wound healing in group FG than that in group FL. Irradiated MSFs showed a better migration ability compared with non-irradiated controls. LLL enhanced the secretion function of MSFs on Collagen I and III. CONCLUSIONS Low-level green laser promotes wound healing after CO2 fractional laser by improving the integrity of skin barrier and allowing for scarless healing. Therefore, low-level green laser therapy might serve as a sequential therapy of invasive laser surgery to ensure a better wound care.
Collapse
Affiliation(s)
- Chengchen Gong
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongzhou Lu
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanlong Jia
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Nan Xu
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Koyuncu A, Koç S, Akdere ÖE, Çakmak AS, Gümüşderelioğlu M. Investigation of the synergistic effect of platelet-rich plasma and polychromatic light on human dermal fibroblasts seeded chitosan/gelatin scaffolds for wound healing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112476. [PMID: 35633608 DOI: 10.1016/j.jphotobiol.2022.112476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Conventional wound healing treatments are insufficient for chronic wounds caused by factors such as senescence of fibroblasts, reduced growth factor synthesis, and poor angiogenesis. Recently, tissue engineering approaches have been investigated to develop effective therapies. In this study, a biochemical/biophysical stimulant-based 3D system was developed for the healing of chronic wounds. In this direction, genipin crosslinked chitosan (CHT)/gelatin (GEL) scaffolds were fabricated by freeze-drying and loaded with platelet-rich plasma (PRP). The scaffolds were seeded with human dermal fibroblasts and then, polychromatic light in near infrared region (NIR) was applied to the scaffolds for activating the platelets and stimulating the fibroblasts (photoactivation, PAC). Thus, fibroblasts were stimulated both chemically and physically by PRP and light, respectively. Cell migration, proliferation, morphology, gene expressions and reactive oxygen species (ROS) activity were evaluated in-vitro. Laminin and collagen 4 expressions that are important for extracellular matrix (ECM) formation, and PDGF (Platelet-derived growth factor) and VEGF (Vascular endothelial growth factor) expressions that are important for vascularization significantly increased in the presence of both PRP and light. Besides, PRP and light improved cell migration in 3D core-and shell model synergistically. Hydrogen peroxide content decreased in both PRP and light, indicating inhibition of ROS production. It was concluded that the stimulation of platelets with light in the NIR has a great potential to use for both platelets activation and stimulation of fibroblasts. As a result, an effective therapy can be developed for chronic wounds by using scaffold-based 3D systems together with PRP and photostimulation.
Collapse
Affiliation(s)
- Ayfer Koyuncu
- Hacettepe University, Graduate School of Science and Engineering, Bioengineering Department, Beytepe, Ankara, Turkey
| | - Sena Koç
- Hacettepe University, Chemical Engineering Department, Beytepe, Ankara, Turkey
| | - Özge Ekin Akdere
- Hacettepe University, Graduate School of Science and Engineering, Bioengineering Department, Beytepe, Ankara, Turkey
| | - Anıl Sera Çakmak
- Hacettepe University, Chemical Engineering Department, Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Hacettepe University, Graduate School of Science and Engineering, Bioengineering Department, Beytepe, Ankara, Turkey; Hacettepe University, Chemical Engineering Department, Beytepe, Ankara, Turkey.
| |
Collapse
|
23
|
An Evaluation of the Effects of Photobiomodulation Therapy on the Peri-Implant Bone Healing of Implants with Different Surfaces: An In Vivo Study. MATERIALS 2022; 15:ma15134371. [PMID: 35806496 PMCID: PMC9267620 DOI: 10.3390/ma15134371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022]
Abstract
(1) Background: This study evaluates the effects of photobiomodulation (PBM) therapy on the peri-implant bone healing of implants with a machined surface (MS) and treated surface (TS). (2) Methods: Topographic characterization of the surfaces (scanning electron microscopy [SEM]- energy dispersive X-ray spectroscopy [EDX]) was performed before and after implant removal. Twenty rabbits were randomly divided into four groups: MS and TS groups (without PBM therapy) and LMS and LTS groups (with PBM therapy). After implant placement, the stability coefficient (ISQ) was measured. In the periods of 21 and 42 days, the ISQ was measured again, followed by biomechanical analysis. (3) Results: The surfaces of the TS implants showed topographic differences compared with MS implants. The ISQ values of the LMS were statistically significant when compared with those of the MS at 42 days (p < 0.001). The removal torque values of the LMS were statistically significant when compared with those of the MS at 21 days (p = 0.023) and 42 days (p = 0.023). For SEM, in general, the LMS, TS and LTS presented high bone tissue coverage when compared to MS. (4) Conclusions: The PBM therapy modulated the osseointegration process and was evidenced mainly on the machined surface.
Collapse
|
24
|
de Freitas Dutra Júnior E, Hidd SMCM, Amaral MM, Filho ALMM, Assis L, Ferreira RS, Barraviera B, Martignago CCS, Figueredo-Silva J, de Oliveira RA, Tim CR. Treatment of partial injury of the calcaneus tendon with heterologous fibrin biopolymer and/or photobiomodulation in rats. Lasers Med Sci 2022; 37:971-981. [PMID: 34041619 DOI: 10.1007/s10103-021-03341-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
The present study aimed to evaluate the new heterologous fibrin biopolymer associated, or not, with photobiomodulation therapy for application in tendon injuries, considered a serious and common orthopedic problem. Thus, 84 Rattus norvegicus had partial transection of the calcaneus tendon (PTCT) and were randomly divided into: control (CG); heterologous fibrin biopolymer (HFB); photobiomodulation (PBM); heterologous fibrin biopolymer + photobiomodulation (HFB + PBM). The animals received HFB immediately after PTCT, while PBM (660 nm, 40 mW, 0.23 J) started 24 h post injury and followed every 24 h for 7, 14, and 21 days. The results of the edema volume showed that after 24 h of PTCT, there was no statistical difference among the groups. After 7, 14, and 21 days, it was observed that the treatment groups were effective in reducing edema when compared to the control. The HFB had the highest edema volume reduction after 21 days of treatment. The treatment groups did not induce tissue necrosis or infections on the histopathological analysis. Tenocyte proliferation, granulation tissue, and collagen formation were observed in the PTCT area in the HFB and HFB + PBM groups, which culminated a better repair process when compared to the CG in the 3 experimental periods. Interestingly, the PBM group revealed, in histological analysis, major tendon injury after 7 days; however, in the periods of 14 and 21 days, the PBM had a better repair process compared to the CG. In the quantification of collagen, there was no statistical difference between the groups in the 3 experimental periods. The findings suggest that the HFB and PBM treatments, isolated or associated, were effective in reducing the volume of the edema, stimulating the repair process. However, the use of HFB alone was more effective in promoting the tendon repair process. Thus, the present study consolidates previous studies of tendon repair with this new HFB. Future clinical trials will be needed to validate this proposal.
Collapse
Affiliation(s)
- Enéas de Freitas Dutra Júnior
- Department of Biomedical Engineering, Instituto Científico E Tecnológico, University Brazil, Carolina FonsecaSão Paulo, 235, Brazil
| | | | - Marcello Magri Amaral
- Department of Biomedical Engineering, Instituto Científico E Tecnológico, University Brazil, Carolina FonsecaSão Paulo, 235, Brazil
| | | | - Livia Assis
- Department of Biomedical Engineering, Instituto Científico E Tecnológico, University Brazil, Carolina FonsecaSão Paulo, 235, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | | | | | - Rauirys Alencar de Oliveira
- Department of Health Sciences, Piauí State University (UESPI), Teresina, PI, Brazil
- Department of Physiotherapy, Faculdade Uninovafapi, Teresina, PI, Brazil
| | - Carla Roberta Tim
- Department of Biomedical Engineering, Instituto Científico E Tecnológico, University Brazil, Carolina FonsecaSão Paulo, 235, Brazil.
| |
Collapse
|
25
|
Kim Y, Kim S, Im G, Kim YH, Jeong G, Jeon HR, Kim D, Lee H, Park SY, Cho SM, Bhang SH. Area light source-triggered latent angiogenic molecular mechanisms intensify therapeutic efficacy of adult stem cells. Bioeng Transl Med 2022; 7:e10255. [PMID: 35079630 PMCID: PMC8780080 DOI: 10.1002/btm2.10255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/31/2022] Open
Abstract
Light-based therapy such as photobiomodulation (PBM) reportedly produces beneficial physiological effects in cells and tissues. However, most reports have focused on the immediate and instant effects of light. Considering the physiological effects of natural light exposure in living organisms, the latent reaction period after irradiation should be deliberated. In contrast to previous reports, we examined the latent reaction period after light exposure with optimized irradiating parameters and validated novel therapeutic molecular mechanisms for the first time. we demonstrated an organic light-emitting diode (OLED)-based PBM (OPBM) strategy that enhances the angiogenic efficacy of human adipose-derived stem cells (hADSCs) via direct irradiation with red OLEDs of optimized wavelength, voltage, current, luminance, and duration, and investigated the underlying molecular mechanisms. Our results revealed that the angiogenic paracrine effect, viability, and adhesion of hADSCs were significantly intensified by our OPBM strategy. Following OPBM treatment, significant changes were observed in HIF-1α expression, intracellular reactive oxygen species levels, activation of the receptor tyrosine kinase, and glycolytic pathways in hADSCs. In addition, transplantation of OLED-irradiated hADSCs resulted in significantly enhanced limb salvage ratio in a mouse model of hindlimb ischemia. Our OPBM might serve as a new paradigm for stem cell culture systems to develop cell-based therapies in the future.
Collapse
Affiliation(s)
- Yu‐Jin Kim
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Sung‐Won Kim
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Gwang‐Bum Im
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Yeong Hwan Kim
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Gun‐Jae Jeong
- Division of Vascular Surgery, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Hye Ran Jeon
- Department of Health Sciences and Technology, SAIHSTSungkyunkwan UniversitySeoulRepublic of Korea
| | - Dong‐Ik Kim
- Division of Vascular Surgery, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Haeshin Lee
- Department of Chemistry, Center for Nature‐Inspired Technology (CNiT)Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Sung Young Park
- Department of Chemical and Biological EngineeringKorea National University of TransportationChungjuRepublic of Korea
| | - Sung Min Cho
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Suk Ho Bhang
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
26
|
Tim CR, Martignago CCS, Assis L, Neves LM, Andrade AL, Silva NC, Parizotto N, Pinto KZ, Rennó AC. Effects of photobiomodulation therapy in chondrocyte response by in vitro experiments and experimental model of osteoarthritis in the knee of rats. Lasers Med Sci 2021; 37:1677-1686. [PMID: 34554354 DOI: 10.1007/s10103-021-03417-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022]
Abstract
The purpose of this study is to evaluate the effects of photobiomodulation (PBM) therapy in chondrocyte response by in vitro experiments and cartilage repair using an experimental model of osteoarthritis (OA) in the knee of rats. The in vitro experiment was performed with chondrocyte cells, and they were divided into two groups: non-irradiated and irradiated with PBM (808 nm; 0.8 J or 1.4 J). Then, cell proliferation was evaluated after 1, 3, and 5 days. The experimental model of osteoarthritis (OA) was performed in the knee of 64 Wistar rats, and they were assorted into control group (CG), PBM (808 nm; 1.4 J). The results of in vitro showed that PBM 1.4 J increased cell proliferation, on days 1 and 5. However, after 3 days was demonstrated a significant increase in cell proliferation in PBM 0.8 J. The in vivo experiment results demonstrated, on histological analysis, that PBM presented less intense signs of tissue degradation with an initial surface discontinuity at the superficial zone and disorganization of the chondrocytes in the cartilage region when compared to CG, after 4 and 8 weeks. These findings were confirmed by immunohistochemistry and qRT-PCR analysis which showed that PBM increased IL-4, IL-10, COL-2, Aggrecan, and TGF-β which are anabolic factors and acts on extracellular matrix. Also, PBM reduces the IL1-β, an inflammatory marker that operates as a catabolic factor on articular cartilage. In conclusion, these results suggest that PBM may have led to a return to tissue homeostasis, promoting chondroprotective effects and stimulating the components of the articular tissue.
Collapse
Affiliation(s)
- Carla Roberta Tim
- Department of Biomedical Engineering, Institute of Science and Technology of Brasil University, Carolina Fonseca, São Paulo, SP, 235, Brazil.
| | | | - Lívia Assis
- Department of Biomedical Engineering, Institute of Science and Technology of Brasil University, Carolina Fonseca, São Paulo, SP, 235, Brazil
| | - Lia Mara Neves
- Department of Physiology, Federal University of São Carlos, Rod. Washington Luis, São Carlos, SP, 235, Brazil
| | - Ana Laura Andrade
- Department of Physiotherapy, Federal University of São Carlos, Rod. Washington Luis, São Carlos, SP, 235, Brazil
| | - Naldiana Cerqueira Silva
- Department of Biomedical Engineering, Institute of Science and Technology of Brasil University, Carolina Fonseca, São Paulo, SP, 235, Brazil
| | - Nivaldo Parizotto
- Department of Biomedical Engineering, Institute of Science and Technology of Brasil University, Carolina Fonseca, São Paulo, SP, 235, Brazil
| | - Karina Zambone Pinto
- Departments of Morphology and Pathology, Federal University of São Carlos, Rod. Washington Luis, São Carlos, SP, 235, Brazil
| | - Ana Claudia Rennó
- Department of Bioscience, Federal University of São Paulo, Rua Silva Jardim, Santos, SP, 136, Brazil
| |
Collapse
|
27
|
Bonvicini JFS, Basso FG, de Souza Costa CA, Soares CJ, Turrioni AP. Photobiomodulation effect of red LED (630 nm) on the free radical levels produced by pulp cells under stress conditions. Lasers Med Sci 2021; 37:607-617. [PMID: 33826014 DOI: 10.1007/s10103-021-03309-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/28/2021] [Indexed: 12/13/2022]
Abstract
The aim of this study was to assess the ability of red light emitting diodes (LED) to modulate oxidative stress in human dental pulp fibroblasts (HDPFs) when different irradiation parameters are employed. Cells from primary teeth were seeded (100,000 cells/well) in 24-well plates in culture medium (DMEM). At 24 h after incubation, the culture medium was replaced with DMEM containing 10 μg/mL lipopolysaccharide (LPS). Thereafter, the cells were irradiated (LED 630 nm, 0.04 W/cm2 and 0.08 W/cm2) at 0 J/cm2 (control group), 4 J/cm2, 15 J/cm2, and 30 J/cm2; and their viability (MTT assay), number (Trypan Blue), synthesis of nitric oxide (NO) (Griess reagent), and reactive oxygen species (ROS) (fluorescence probe, DCFH-DA) were assessed. The Kruskal-Wallis and Mann-Whitney statistical tests using Bonferroni correction were employed (significance level of 5%). Compared to that in control fibroblasts, increased viability was observed in HDPFs exposed to LPS and irradiated with 15 J/cm2 and 30 J/cm2 at 0.04 W/cm2 and 4 J/cm2 and 15 J/cm2 at 0.08 W/cm2 (p < 0.05). Exposure to 4 J/cm2 at 0.04 W/cm2 and 15 J/cm2 and 30 J/cm2 at 0.08 W/cm2 modulated the oxidative stress in cells relative to that observed in non-irradiated LPS-treated pulp cells (p < 0.05). It was concluded that the irradiation strategies of using red LED with radiant exposures of 15 J/cm2 and 30 J/cm2 at 0.04 W/cm2 and 15 J/cm2 at 0.08 W/cm2 were the best parameters to decrease NO and ROS concentration and to stimulate viability of HDPFs exposed to LPS challenge.
Collapse
Affiliation(s)
- Jéssica Fernanda Sena Bonvicini
- Department of Pediatric Dentistry, School of Dentistry, Federal University of Uberlândia, UFU, Av. Pará 1720, Umuarama, Uberlândia, MG, 38400902, Brazil
| | | | | | - Carlos José Soares
- Department of Operative Dentistry and Dental Materials, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Ana Paula Turrioni
- Department of Pediatric Dentistry, School of Dentistry, Federal University of Uberlândia, UFU, Av. Pará 1720, Umuarama, Uberlândia, MG, 38400902, Brazil.
| |
Collapse
|
28
|
Hatefi S, Alizargar J, Le Roux F, Hatefi K, Etemadi Sh M, Davids H, Hsieh NC, Smith F, Abou-El-Hossein K. Review of physical stimulation techniques for assisting distraction osteogenesis in maxillofacial reconstruction applications. Med Eng Phys 2021; 91:28-38. [PMID: 34074463 DOI: 10.1016/j.medengphy.2021.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 01/24/2023]
Abstract
Distraction Osteogenesis (DO) is an emerging limb lengthening method for the reconstruction of the hard tissue and the surrounding soft tissue, in different human body zones. DO plays an important role in treating bone defects in Maxillofacial Reconstruction Applications (MRA) due to reduced side effects and better formed bone tissue compared to conventional reconstruction methods i.e. autologous bone graft, and alloplast implantation. Recently, varying techniques have been evaluated to enhance the characteristics of the newly formed tissues and process parameters. Promising results have been shown in assisting DO treatments while benefiting bone formation mechanisms by using physical stimulation techniques, including photonic, electromagnetic, electrical, and mechanical stimulation technique. Using assisted DO techniques has provided superior results in the outcome of the DO procedure compared to a standard DO procedure. However, DO methods, as well as assisting technologies applied during the DO procedure, are still emerging. Studies and experiments on developed solutions related to this field have been limited to animal and clinical trials. In this review paper, recent advances in physical stimulation techniques and their effects on the outcome of the DO treatment in MRA are surveyed. By studying the effects of using assisting techniques during the DO treatment, enabling an ideal assisted DO technique in MRA can be possible. Although mentioned techniques have shown constructive effects during the DO procedure, there is still a need for more research and investigation to be done to fully understand the effects of assisting techniques and advanced technologies for use in an ultimate DO procedure in MRA.
Collapse
Affiliation(s)
- Shahrokh Hatefi
- Precision Engineering Laboratory, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Javad Alizargar
- Research Center for Healthcare Industry Innovation, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Francis Le Roux
- Department of Mechatronics Engineering, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Katayoun Hatefi
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran.
| | - Milad Etemadi Sh
- Department of Oral and Maxillofacial Surgery, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hajierah Davids
- Department of Physiology, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Nan-Chen Hsieh
- Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Farouk Smith
- Department of Mechatronics Engineering, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Khaled Abou-El-Hossein
- Precision Engineering Laboratory, Nelson Mandela University, Port Elizabeth, South Africa.
| |
Collapse
|
29
|
Magri AMP, Parisi JR, de Andrade ALM, Rennó ACM. Bone substitutes and photobiomodulation in bone regeneration: A systematic review in animal experimental studies. J Biomed Mater Res A 2021; 109:1765-1775. [PMID: 33733598 DOI: 10.1002/jbm.a.37170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 11/08/2022]
Abstract
In general, bone fractures are able of healing by itself. However, in critical situations such as large bone defects, poor blood supply or even infections, the biological capacity of repair can be impaired, resulting in a delay of the consolidation process or even in non-union fractures. Thus, technologies able of improving the process of bone regeneration are of high demand. In this context, ceramic biomaterials-based bone substitutes and photobiomodulation (PBM) have been emerging as promising alternatives. Thus, the present study performed a systematic review targeting to analyze studies in the literature which investigated the effects of the association of ceramic based bone substitutes and PBM in the process of bone healing using animal models of bone defects. The search was conducted from March and April of 2019 in PubMed, Web of Science and Scopus databases. After the eligibility analyses, 16 studies were included in this review. The results showed that the most common material used was hydroxyapatite (HA) followed by Biosilicate associated with infrared PBM. Furthermore, 75% of the studies demonstrated positive effects to stimulate bone regeneration from association of ceramic biomaterials and PBM. All studies used low-level laser therapy (LLLT) device and the most studies used LLLT infrared. The evidence synthesis was moderate for all experimental studies for the variable histological analysis demonstrating the efficacy of techniques on the process of bone repair stimulation. In conclusion, this review demonstrates that the association of ceramic biomaterials and PBM presented positive effects for bone repair in experimental models of bone defects.
Collapse
Affiliation(s)
- Angela Maria Paiva Magri
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil.,University Center of the Guaxupé Education Foundation (UNIFEG), Guaxupé, Minas Gerais, Brazil
| | - Júlia Risso Parisi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil.,Department of Physical Therapy, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | | | - Ana Claudia Muniz Rennó
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil.,Department of Physical Therapy, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| |
Collapse
|
30
|
Golovynska I, Golovynskyi S, Stepanov YV, Stepanova LI, Qu J, Ohulchanskyy TY. Red and near-infrared light evokes Ca 2+ influx, endoplasmic reticulum release and membrane depolarization in neurons and cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 214:112088. [PMID: 33278762 DOI: 10.1016/j.jphotobiol.2020.112088] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Low level light therapy uses light of specific wavelengths in red and near-infrared spectral range to treat various pathological conditions. This light is able to modulate biochemical cascade reactions in cells that can have important health implications. In this study, the effect of low intensity light at 650, 808 and 1064 nm on neurons and two types of cancer cells (neuroblastoma and HeLa) is reported, with focus on the photoinduced change of intracellular level of Ca2+ ions and corresponding signaling pathways. The obtained results show that 650 and 808 nm light promotes intracellular Ca2+ elevation regardless of cell type, but with different dynamics due to the specificities of Ca2+ regulation in neurons and cancer cells. Two origins responsible for Ca2+ elevation are determined to be: influx of exogenous Ca2+ ions into cells and Ca2+ release from endoplasmic reticulum. Our investigation of the related cellular processes shows that light-induced membrane depolarization is distinctly involved in the mechanism of Ca2+ influx. Ca2+ release from endoplasmic reticulum activated by reactive oxygen species generation is considered as a possible light-dependent signaling pathway. In contrast to the irradiation with 650 and 808 nm light, no effects are observed under 1064 nm irradiation. We believe that the obtained insights are of high significance and can be useful for the development of drug-free phototherapy.
Collapse
Affiliation(s)
- Iuliia Golovynska
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Sergii Golovynskyi
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yurii V Stepanov
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Liudmyla I Stepanova
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Junle Qu
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Tymish Y Ohulchanskyy
- Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
31
|
Interaction between Laser Light and Osteoblasts: Photobiomodulation as a Trend in the Management of Socket Bone Preservation-A Review. BIOLOGY 2020; 9:biology9110409. [PMID: 33238412 PMCID: PMC7700402 DOI: 10.3390/biology9110409] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary Dental implants are becoming an accepted tool, and thousands of implants are placed every year by specialists and general practitioners. However, more than 10% of bone surgeries and related procedures can show healing complications as a consequence of infections, tissue damage, or inadequate blood supply. In particular, a deficient blood supply impacts on the optimal healing process because of altered oxygen delivery to cells in the wound and a decrease in their energy supply. Researchers showed how red and infrared light affects key cellular pathways by interacting with specific photoacceptors located within the cell, particularly in mitochondria. Low-level laser therapy or photobiomodulation (PBM), as the recent medical subject heading defines it, is based on a light–cell interaction, which modifies cell metabolism by increasing oxygen consumption and ATP production through mitochondria. Although not all aspects of this interconnection are completely described, many in vitro and in vivo studies showed the benefit of PBM in wound defect management. For instance, treatment of bone with PBM results in a greater amount of new-formed osteoblasts and matrix, an increase in collagen synthesis, and microvascular reestablishment. In our review, we highlight the osteoblast–light interaction, and the in vivo therapeutic tool of PBM for socket preservation is discussed. Abstract Bone defects are the main reason for aesthetic and functional disability, which negatively affect patient’s quality of life. Particularly, after tooth extraction, the bone of the alveolar process resorbs, limiting the optimal prosthetic implant placement. One of the major pathophysiological events in slowly- or non-healing tissues is a blood supply deficiency, followed by a significant decrease in cellular energy amount. The literature shows that photons at the red and infrared wavelengths can interact with specific photoacceptors located within the cell. Through this mechanism, photobiomodulation (PBM) can modify cellular metabolism, by increasing mitochondrial ATP production. Here, we present a review of the literature on the effect of PBM on bone healing, for the management of socket preservation. A search strategy was developed in line with the PRISMA statement. The PubMed and Scholar electronic databases were consulted to search for in vivo studies, with restrictions on the year (<50 years-old), language (English), bone socket preservation, and PBM. Following the search strategy, we identified 269 records, which became 14, after duplicates were removed and titles, abstract and inclusion-, exclusion-criteria were screened. Additional articles identified were 3. Therefore, 17 articles were included in the synthesis. We highlight the osteoblast–light interaction, and the in vivo therapeutic tool of PBM is discussed.
Collapse
|
32
|
Santinoni CS, Neves APC, Almeida BFM, Kajimoto NC, Pola NM, Caliente EA, Belem ELG, Lelis JB, Fucini SE, Messora MR, Garcia VG, Bomfim SRM, Ervolino E, Nagata MJH. Bone marrow coagulated and low-level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization. J Biomed Mater Res A 2020; 109:849-858. [PMID: 32815657 DOI: 10.1002/jbm.a.37076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
Abstract
The present study evaluated bone marrow aspirate (BMA) and low-level laser therapy (LLLT) on bone healing. It was created critical-size defects (CSD) of 5 mm diameter in rat calvaria of 64 rats. Animals were randomly divided into four groups: Control (blood clot), BMA (coagulated BMA), LLLT (laser irradiation and blood clot), and BMA/LLLT (laser irradiation and coagulated BMA). Euthanasia was performed at 15 or 30 days postoperative. Immunohistochemical reactions were performed to identify vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), runt-related transcription factor-2 (Runx2), bone morphogenetic protein-2 (BMP-2), osteocalcin (OCN), and osteopontin (OPN). The markers were quantified, and data were statistically analyzed. Groups BMA/LLLT and LLLT presented significantly higher VEGF expression than group control. Group BMA/LLLT presented a significantly higher expression of PCNA than all experimental groups. Groups BMA and BMA/LLLT presented significantly higher expression of BMP-2 than all experimental groups. Groups LLLT and BMA/LLLT presented significantly higher expression of OPN than groups control and BMA. Groups LLLT, BMA, and BMA/LLLT presented a significantly higher expression of OCN than group control. It can be concluded that the association of BMA and LLLT enhanced bone healing by improving expression of VEGF, PCNA, Runx2, BMP-2, OPN, and OCN.
Collapse
Affiliation(s)
- Carolina S Santinoni
- Dental School of Presidente Prudente, Graduate Program in Dentistry (GPD-Master's Degree), UNOESTE-University of Western Sao Paulo, Presidente Prudente, Brazil.,Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Adrieli P C Neves
- Dental School of Presidente Prudente, Graduate Program in Dentistry (GPD-Master's Degree), UNOESTE-University of Western Sao Paulo, Presidente Prudente, Brazil.,Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Breno F M Almeida
- Division of Clinical, Surgery and Animal Reproduction, Veterinary School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Natália C Kajimoto
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Natália M Pola
- Division of Periodontics, Dental School of Pelotas, Federal University of Pelotas-UFPel, Pelotas, Brazil
| | - Eliana A Caliente
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Eduarda L G Belem
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Joilson B Lelis
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Stephen E Fucini
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil.,Periodontics, Private Practice, Hanover, New Hampshire, USA
| | - Michel R Messora
- Division of Periodontics, School of Dentistry of Ribeirão Preto, University of São Paulo-USP, São Paulo, Brazil
| | - Valdir G Garcia
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Suely R M Bomfim
- Division of Clinical, Surgery and Animal Reproduction, Veterinary School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Edilson Ervolino
- Division of Histology, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Maria J H Nagata
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| |
Collapse
|
33
|
Castro TNS, Martignago CCS, Assis L, de Alexandria FED, Rocha JCT, Parizotto NA, Tim CR. Effects of photobiomodulation therapy in the integration of skin graft in rats. Lasers Med Sci 2020; 35:939-947. [PMID: 31833005 DOI: 10.1007/s10103-019-02909-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/18/2019] [Indexed: 11/29/2022]
Abstract
Skin graft is one of the most common techniques used in plastic surgery and repair. However, there are some complications that can lead to loss of the skin graft. Thus, several features have been studied with the aim of promoting the integration of skin grafts. Among these resources, the use of laser photobiomodulation (laser PBM) has been highlighted. The present study aimed to investigate the effects of laser PBM on the viability and integration of skin grafts in rats. Twenty male Wistar rats (± 250 g) were randomly assigned into two experimental groups with 10 animals each: control group, animals submitted to skin graft and simulation of laser PBM; laser PBM group, submitted to the skin graft and submitted to laser PBM at 660 nm, 40 mW, 60 s, 2.4 J. The animals were submitted to laser photobiomodulation immediately after the surgical procedure and each 24 h. Animal euthanasia occurred on the 7th day after surgery, 24 h after the last treatment session. The histopathological analysis revealed that the laser PBM showed better adhesion of the graft when compared to the control group. Likewise, the morphometric analysis of mast cells, blood vessels, and collagen showed a statistically significant increase in the animals irradiated with the laser PBM when compared to the control group. In addition, immunohistochemical analysis demonstrated that the laser PBM showed statistically higher immunoexpression of FGF when compared to the CG. However, IL-4 immunoexpression did not show statistical difference between the experimental groups. From the results obtained in the present study, it can be suggested that laser photobiomodulation was effective in promoting the integration and viability of total skin grafts in rats.
Collapse
Affiliation(s)
| | | | - Lívia Assis
- Instituto Científico e, Tecnológico da Universidade Brasil, Carolina Fonseca, São Paulo, 235, Brazil
| | | | | | - Nivaldo Antonio Parizotto
- Instituto Científico e, Tecnológico da Universidade Brasil, Carolina Fonseca, São Paulo, 235, Brazil
| | - Carla Roberta Tim
- Instituto Científico e, Tecnológico da Universidade Brasil, Carolina Fonseca, São Paulo, 235, Brazil.
| |
Collapse
|
34
|
Impellizzeri A, Horodynski M, Fusco R, Palaia G, Polimeni A, Romeo U, Barbato E, Galluccio G. Photobiomodulation Therapy on Orthodontic Movement: Analysis of Preliminary Studies with a New Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103547. [PMID: 32438716 PMCID: PMC7277382 DOI: 10.3390/ijerph17103547] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the effectiveness of photobiomodulation therapy (PBMT) on the acceleration of orthodontic movements, deriving from its biostimulating and regenerative capacity on soft tissues, consequent to the increase in differentiation, proliferation, and activity of cells that are involved with alveolar bone remodeling. The present randomized controlled trial was conducted on six patients who required extractive orthodontic therapy because their ectopic canines had erupted. A total of eight canines were analyzed, four of which received laser irradiation (i.e., experimental group). Two weeks after the extractions, all canines of the experimental and placebo groups were distalized simultaneously and symmetrically with the laceback retraction technique. The PBMT protocol consisted of four cycles of laser applications, one each on days 0, 3, 7, and 14 of the study, with session treatment durations of 2–4 min. The results of the descriptive analysis on the distal displacement speed of the canines after 1 month of follow-up indicate an average displacement of 1.35 mm for the non-irradiated group and 1.98 mm for the irradiated group. Through inferential analysis, a statistically significant difference (p < 0.05) was found between the average speed of the irradiated canines and the control canines. The low energy density laser used in this study, with the parameters set, was found to be a tool capable of statistically significantly accelerating the distal displacement of canines.
Collapse
|
35
|
Vassão PG, Renno AC, Smith BN, Bennett GB, Murphy M, Liebert A, Chow R, Laakso EL. Pre-Conditioning and Post-Operative Photobiomodulation Therapy by a Novel Light Patch System for Knee Arthroplasty: A Protocol for a Phase 1 Study. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:206-214. [PMID: 32186975 DOI: 10.1089/photob.2019.4751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Ana Claudia Renno
- Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| | | | | | | | - Ann Liebert
- Sydney Adventist Hospital, Wahroonga, Australia
| | | | - E-Liisa Laakso
- Mater Research, South Brisbane, Australia
- Menzines Health Institute, Griffith University, Queensland, Australia
| |
Collapse
|
36
|
Rosso MPDO, Oyadomari AT, Pomini KT, Della Coletta BB, Shindo JVTC, Ferreira Júnior RS, Barraviera B, Cassaro CV, Buchaim DV, Teixeira DDB, Barbalho SM, Alcalde MP, Duarte MAH, Andreo JC, Buchaim RL. Photobiomodulation Therapy Associated with Heterologous Fibrin Biopolymer and Bovine Bone Matrix Helps to Reconstruct Long Bones. Biomolecules 2020; 10:383. [PMID: 32121647 PMCID: PMC7175234 DOI: 10.3390/biom10030383] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Bone defects cause aesthetic and functional changes that affect the social, economic and especially the emotional life of human beings. This complication stimulates the scientific community to investigate strategies aimed at improving bone reconstruction processes using complementary therapies. Photobiomodulation therapy (PBMT) and the use of new biomaterials, including heterologous fibrin biopolymer (HFB), are included in this challenge. The objective of the present study was to evaluate the influence of photobiomodulation therapy on bone tibial reconstruction of rats with biomaterial consisting of lyophilized bovine bone matrix (BM) associated or not with heterologous fibrin biopolymer. Thirty male rats were randomly separated into three groups of 10 animals. In all animals, after the anesthetic procedure, a noncritical tibial defect of 2 mm was performed. The groups received the following treatments: Group 1: BM + PBMT, Group 2: BM + HFB and Group 3: BM + HFB + PBMT. The animals from Groups 1 and 3 were submitted to PBMT in the immediate postoperative period and every 48 h until the day of euthanasia that occurred at 14 and 42 days. Analyses by computed microtomography (µCT) and histomorphometry showed statistical difference in the percentage of bone formation between Groups 3 (BM + HB + PBMT) and 2 (BM + HFB) (26.4% ± 1.03% and 20.0% ± 1.87%, respectively) at 14 days and at 42 days (38.2% ± 1.59% and 31.6% ± 1.33%, respectively), and at 42 days there was presence of bone with mature characteristics and organized connective tissue. The µCT demonstrated BM particles filling the defect and the deposition of new bone in the superficial region, especially in the ruptured cortical. It was concluded that the association of PBMT with HFB and BM has the potential to assist in the process of reconstructing bone defects in the tibia of rats.
Collapse
Affiliation(s)
- Marcelie Priscila de Oliveira Rosso
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Aline Tiemi Oyadomari
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Bruna Botteon Della Coletta
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - João Vitor Tadashi Cosin Shindo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Rui Seabra Ferreira Júnior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ. Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil or (R.S.F.J.); (B.B.); (C.V.C.)
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ. Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil or (R.S.F.J.); (B.B.); (C.V.C.)
| | - Claudia Vilalva Cassaro
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ. Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil or (R.S.F.J.); (B.B.); (C.V.C.)
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
- Medical School, University Center of Adamantina (UniFAI), Nove de Julho Street, 730-Centro, Adamantina 17800-000, São Paulo, Brazil
| | - Daniel de Bortoli Teixeira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
| | - Murilo Priori Alcalde
- Department of Health Science, University of the Sacred Heart (USC), Bauru 17011-160, São Paulo, Brazil;
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, São Paulo, Brazil;
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, São Paulo, Brazil;
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
| |
Collapse
|
37
|
Macedo AAP, Santos TD, Cunha JLS, Matos FDS, Albuquerque Júnior RLCD, Ribeiro MAG. Effect of laser photobiomodulation associated with a bioceramic cement on the repair of bone tissue in the femur of rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 205:111813. [PMID: 32070823 DOI: 10.1016/j.jphotobiol.2020.111813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/01/2022]
Abstract
This study aimed to evaluate in vivo the effect of laser photobiomodulation associated with a repair cement (MTA Repair HP™) on the process of bone repair in the femur of rats, through histological and histomorphometric assays. Forty Wistar albino rats were randomly divided into four groups, with two periods of euthanasia - 15 and 21 days (n = 5 per period). Under general anesthesia, a bone defect was made in the left femur of each animal. In the LS (Laser) group, the defect was irradiated following the parameters: λ = 808 nm, P = 100 mW, ED = 80 J/cm2 per point, 22 s per point, E = 2.2 J per point. In the LM (MTA Repair HP™ + Laser) group, the defect was filled with MTA Repair HP™ and irradiated with laser in the same protocol of the LS group. In the MH (MTA Repair HP™) group, the defect was filled with MTA Repair HP™ without irradiation. In the CTR (Control) group, the bone defect received no treatment. At 15 days, the mean index of bone neoformation in the defect area was significantly lower in the CTR group as compared to the MH, LS, and LM groups. At 21 days, the LM group presented significantly greater bone neoformation than the MH group, without significant difference between LS and LM. Laser photobiomodulation therapy is promising as an adjuvant in the bone repair process, especially when associated with the use of biomaterials.
Collapse
|
38
|
Al-Waeli H, Nicolau B, Stone L, Abu Nada L, Gao Q, Abdallah MN, Abdulkader E, Suzuki M, Mansour A, Al Subaie A, Tamimi F. Chronotherapy of Non-Steroidal Anti-Inflammatory Drugs May Enhance Postoperative Recovery. Sci Rep 2020; 10:468. [PMID: 31949183 PMCID: PMC6965200 DOI: 10.1038/s41598-019-57215-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Postoperative pain relief is crucial for full recovery. With the ongoing opioid epidemic and the insufficient effect of acetaminophen on severe pain; non-steroidal anti-inflammatory drugs (NSAIDs) are heavily used to alleviate this pain. However, NSAIDs are known to inhibit postoperative healing of connective tissues by inhibiting prostaglandin signaling. Pain intensity, inflammatory mediators associated with wound healing and the pharmacological action of NSAIDs vary throughout the day due to the circadian rhythm regulated by the clock genes. According to this rhythm, most of wound healing mediators and connective tissue formation occurs during the resting phase, while pain, inflammation and tissue resorption occur during the active period of the day. Here we show, in a murine tibia fracture surgical model, that NSAIDs are most effective in managing postoperative pain, healing and recovery when drug administration is limited to the active phase of the circadian rhythm. Limiting NSAID treatment to the active phase of the circadian rhythm resulted in overexpression of circadian clock genes, such as Period 2 (Per2) at the healing callus, and increased serum levels of anti-inflammatory cytokines interleukin-13 (IL-13), interleukin-4 (IL-4) and vascular endothelial growth factor. By contrast, NSAID administration during the resting phase resulted in severe bone healing impairment.
Collapse
Affiliation(s)
- H Al-Waeli
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - B Nicolau
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - L Stone
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - L Abu Nada
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - Q Gao
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - M N Abdallah
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, Ontario, M5G 1G, Canada
| | - E Abdulkader
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - M Suzuki
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Mansour
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Al Subaie
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - F Tamimi
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
39
|
Tunér J, Hosseinpour S, Fekrazad R. Photobiomodulation in Temporomandibular Disorders. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:826-836. [DOI: 10.1089/photob.2019.4705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jan Tunér
- Private Practice, Swedish Laser Medical Society (SLMS), Stockholm, Sweden
| | | | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
40
|
Hosseinpour S, Tunér J, Fekrazad R. Photobiomodulation in Oral Surgery: A Review. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:814-825. [DOI: 10.1089/photob.2019.4712] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, Oral Health Centre, The University of Queensland, Brisbane, Australia
| | - Jan Tunér
- Private Practice, Swedish Laser Medical Society (SLMS), Stockholm, Sweden
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
41
|
Escudero JSB, Perez MGB, de Oliveira Rosso MP, Buchaim DV, Pomini KT, Campos LMG, Audi M, Buchaim RL. Photobiomodulation therapy (PBMT) in bone repair: A systematic review. Injury 2019; 50:1853-1867. [PMID: 31585673 DOI: 10.1016/j.injury.2019.09.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/16/2019] [Accepted: 09/20/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Photobiomodulation therapy (PBMT) using low-level laser influences the release of several growth factors involved in the formation of epithelial cells, fibroblasts, collagen and vascular proliferation, besides accelerating the synthesis of bone matrix due to the increased vascularization and lower inflammatory response, with significant increase of osteocytes in the irradiated bone. Considering its properties, beneficial effects and clinical relevance, the aim of this review was to analyze the scientific literature regarding the use of PBMT in the process of bone defect repair. METHODS Electronic search was carried out in PubMed/MEDLINEⓇ and Web of Science databases with combination of the descriptors low-level laser therapy AND bone repair, considering the period of publication until the year 2018. RESULTS The literature search identified 254 references in PubMed/MEDLINE and 204 in Web of Science, of which 33 and 4 were selected, respectively, in accordance with the eligibility requirements. The analysis of researches showed articles using PBMT in several places of experimentation in the subjects, different types of associated biomaterials, stimulatory effects on cell proliferation, besides variations in the parameters of use of laser therapy, mainly in relation to the wavelength and density of energy. Only four articles reported that the laser did not improve the osteogenic properties of a biomaterial. CONCLUSIONS Many studies have shown that PBMT has positive photobiostimulatory effects on bone regeneration, accelerating its process regardless of parameters and the use of biomaterials. However, standardization of its use is still imperfect and should be better studied to allow correct application concerning the utilization protocols.
Collapse
Affiliation(s)
- Jose Stalin Bayas Escudero
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | - Maria Gabriela Benitez Perez
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | | | - Daniela Vieira Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil; Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Marília, SP, Brazil; Medical School, Discipline of Neuroanatomy, University Center of Adamantina (UNIFAI), Adamantina, SP, Brazil
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | | | - Mauro Audi
- Physiotherapy School, University of Marilia (UNIMAR), Marília-SP, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil; Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Marília, SP, Brazil.
| |
Collapse
|
42
|
Khalil NM, Noureldin MG. Comparison of Single Versus Multiple Low-Level Laser Applications on Bone Formation in Extraction Socket Healing in Rabbits (Histologic and Histomorphometric Study). J Oral Maxillofac Surg 2019; 77:1760-1768. [DOI: 10.1016/j.joms.2019.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/04/2023]
|
43
|
Hosseinpour S, Fekrazad R, Arany PR, Ye Q. Molecular impacts of photobiomodulation on bone regeneration: A systematic review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:147-159. [PMID: 31002851 DOI: 10.1016/j.pbiomolbio.2019.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Photobiomodulation (PBM) encompasses a light application aimed to increase healing process, tissue regeneration, and reducing inflammation and pain. PBM is specifically aimed to modify the expression of cellular molecules; however, PBM impacts on cellular and molecular pathways especially in bone regenerative medicine have been investigated in scattered different studies. The purpose of the current study is to systematically review evidence on molecular impact of PBM on bone regeneration. A comprehensive electronic search in Medline, Scopus, EMBASE, EBSCO, Cochrane library, web of science, and google scholar was conducted from January 1975 to October 2018 limited to English language publications on administrations of photobiomodulation for bone regeneration which evaluated biological factors. In addition, hand search of selected journals was done to retrieve all articles. This systematic review was performed based on PRISMA guideline. Among these studies, five articles reported in vitro results, twelve articles were in vivo, and three of them were clinical trials. The data tabulated according to the type of markers (osteogenic markers, angiogenic markers, growth factors, and inflammation mediators). PBM's effects depend on many parameters which energy density is more important than the others. PBM can significantly enhance expression of osteocalcin, collagen, RUNX-2, vascular endothelial growth factor, bone morphogenic proteins, and COX-2. Although since the heterogeneity of the studies and their limitations, an evidence-based decision for definite therapeutic application of PBM is still unattainable, the findings of our review can help other researchers to ameliorate their study design and elect more efficient approach for their investigation.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia; Department of Periodontology, Dental Faculty - Laser Research Center in Medical Sciences, AJA University of Medical Sciences, 19839, Fatemi, Tehran, Iran.
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Laser Research Center in Medical Sciences, AJA University of Medical Sciences, 19839, Fatemi, Tehran, Iran; International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Praveen R Arany
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, NY, 14214, USA.
| | - Qingsong Ye
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.
| |
Collapse
|
44
|
Dos Anjos LMJ, Salvador PA, de Souza ÁC, de Souza da Fonseca A, de Paoli F, Gameiro J. Modulation of immune response to induced-arthritis by low-level laser therapy. JOURNAL OF BIOPHOTONICS 2019; 12:e201800120. [PMID: 30203577 DOI: 10.1002/jbio.201800120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
As low-level laser therapy immune cells responses are not always clarified, this study aimed to evaluate cytokines and immune cells profile after low-level laser therapy (LLLT) on arthritis-induced model. Arthritis was induced in C57BL/6 mice divided into five groups: euthanized 5 hours after inflammation induction; untreated; dexamethasone treated; LLLT at 3 Jcm-2 ; LLLT at 30 Jcm-2 . Cytokine measurements by enzyme-linked immunosorbent assay and mRNA cytokine relative levels by real-time quantitative polymerase chain reaction were performed with arthritic ankle (IL-1β, IL-6, TNF-α, IL-10 and TGF-β). Macrophages, dendritic cells, natural killer cells, lymphocytes CD4+ , CD8+ , Treg and costimulatory proteins were quantified in proximal lymph node by flow cytometry. Data showed decrease in all cytokine levels after LLLT and alteration in mRNA relative levels, depending on the energy density used. LLLT was able to increase of immune cell populations analyzed in the lymph node as well as costimulatory proteins expression on macrophages and dendritic cells. Treg TCD4+ and TCD8+ population enrichment were observed in LLLT at 3 and 30 Jcm-2 groups, respectively. Furthermore, Treg TCD8+ cells expressing higher levels of CD25 were observed at LLLT at 30 Jcm-2 group. Our results indicate that LLLT could change the inflammatory course of arthritis, tending to accelerate its resolution through immune cells photobiostimulation.
Collapse
Affiliation(s)
- Lúcia Mara J Dos Anjos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Pollyanna A Salvador
- Departamento de Microbiologia, Parasitologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Álvaro C de Souza
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Rio de Janeiro, Brazil
| | - Flávia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Jacy Gameiro
- Departamento de Microbiologia, Parasitologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
45
|
Magri AMP, Fernandes KR, Kido HW, Fernandes GS, Fermino SDS, Gabbai-Armelin PR, Braga FJC, de Góes CP, Prado JLDS, Granito RN, Rennó ACM. Photobiomodulation guided healing in a sub-critical bone defect in calvarias of rats. Laser Ther 2019; 28:171-179. [PMID: 32009730 DOI: 10.5978/islsm.28_19-or-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
Background Photobiomodulation presents stimulatory effects on tissue metabolism, constituting a promising strategy to produce bone tissue healing. Objective the aim of the present study was to investigate the in vivo performance of PBM using an experimental model of cranial bone defect in rats. Material and Methods rats were distributed in 2 different groups (control group and PBM group). After the surgical procedure to induce cranial bone defects, PBM treatment initiated using a 808 nm laser (100 mW, 30 J/cm2, 3 times/week). After 2 and 6 weeks, animals were euthanized and the samples were retrieved for the histopathological, histomorphometric, picrosirius red staining and immunohistochemistry analysis. Results Histology analysis demonstrated that for PBM most of the bone defect was filled with newly formed bone (with a more mature aspect when compared to CG). Histomorphomeric analysis also demonstrated a higher amount of newly formed bone deposition in the irradiated animals, 2 weeks post-surgery. Furthermore, there was a more intense deposition of collagen for PBM, with ticker fibers. Results from Runx-2 immunohistochemistry demonstrated that a higher immunostaining for CG 2 week's post-surgery and no other difference was observed for Rank-L immunostaining. Conclusion This current study concluded that the use of PBM was effective in stimulating newly formed bone and collagen fiber deposition in the sub-critical bone defect, being a promising strategy for bone tissue engineering.
Collapse
Affiliation(s)
- Angela Maria Paiva Magri
- Federal University of São Paulo (UNIFESP). Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil.,University Center of the Guaxupé Educational Foundation (UNIFEG), Avenida Dona Floriana, 463, Guaxupé, MG, 37800000, Brazil
| | | | - Hueliton Wilian Kido
- Federal University of São Paulo (UNIFESP). Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| | | | | | | | | | - Cintia Pereira de Góes
- Federal University of São Paulo (UNIFESP). Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| | | | - Renata Neves Granito
- Federal University of São Paulo (UNIFESP). Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| | - Ana Claudia Muniz Rennó
- Federal University of São Paulo (UNIFESP). Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| |
Collapse
|
46
|
Coskun ME, Coskun KA, Tutar Y. Determination of Optimum Operation Parameters for Low-Intensity Pulsed Ultrasound and Low-Level Laser Based Treatment to Induce Proliferation of Osteoblast and Fibroblast Cells. Photomed Laser Surg 2018; 36:246-252. [PMID: 29466082 DOI: 10.1089/pho.2017.4354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine the optimum operating parameters (pulse duration, energy levels, and application time) to promote induction of osteoblast and fibroblast cell proliferation and to maintain cell viability treated with low-intensity pulsed ultrasound (LIPUS) and low-level laser therapy (LLLT). BACKGROUND DATA The positive effects of LIPUS and LLLT on cellular activity have been reported in recent years. Comparisons between experimental parameters of previous studies are difficult because scientific studies reported frequencies and the duty cycles of LIPUS and wavelengths and doses of LLLT in a wide range of parameters. However, optimum amount of energy and optimum time exposure must be determined to induce bone and tissue cell proliferation for effective healing process and to avoid cell damage. MATERIAL AND METHODS Fibroblast and osteoblast cell cultures were irradiated with LIPUS (10-50% pulse and continuous mode at 1 and 3 MHz for 1, 3, and 5 min) and LLLT (4, 8, and 16 J at 50, 100, 200, 300, 400, and 500 mW). Cell cultures were analyzed using XTT assay. RESULTS For both cell types, LIPUS treatment with 10% pulse (1:9 duty cycle), 3 MHz, and for 1 min and LLLT treatment over 100 mV for 4, 8, and 16 J modalities contributed to the growth, and may help bone repair and tissue healing process optimally. CONCLUSIONS Bio-stimulating effects of LLLT irradiation promote proliferation and maintain cell viability better than LIPUS treatment without causing thermal response for both cell types, and the therapeutic modality above 200 mV has maximum effectiveness.
Collapse
Affiliation(s)
- Mehmet Emre Coskun
- 1 Department of Prosthodontics, Faculty of Dentistry, Cumhuriyet University , Sivas, Turkey
| | - Kubra Acikalin Coskun
- 2 Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University , Sivas, Turkey
| | - Yusuf Tutar
- 3 Department of Nutrition and Dietetics, Health Sciences Faculty, University of Health Sciences , Istanbul, Turkey
| |
Collapse
|
47
|
Skondra FG, Koletsi D, Eliades T, Farmakis ETR. The Effect of Low-Level Laser Therapy on Bone Healing After Rapid Maxillary Expansion: A Systematic Review. Photomed Laser Surg 2018; 36:61-71. [DOI: 10.1089/pho.2017.4278] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Despina Koletsi
- Clinic of Orthodontics and Paediatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Theodore Eliades
- Clinic of Orthodontics and Paediatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
48
|
Bayat M, Virdi A, Jalalifirouzkouhi R, Rezaei F. Comparison of effects of LLLT and LIPUS on fracture healing in animal models and patients: A systematic review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 132:3-22. [PMID: 28688752 DOI: 10.1016/j.pbiomolbio.2017.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 12/29/2022]
Abstract
The aim of this paper is to study the in vivo potency of low-level laser therapy (LLLT) and low intensity pulsed ultrasound (LIPUS) alone, accompanied by bone grafts, or accompanied by other factors on fracture healing in animal models and patients. In this paper, we aim to systematically review the published scientific literature regarding the use of LLLT and LIPUS to accelerate fracture healing in animal models and patients. We searched the PubMed database for the terms LLLT or LIPUS and/or bone, and fracture. Our analysis also suggests that both LIPUS and LLLT may be beneficial to fracture healing in patients, and that LIPUS is more effective. These finding are of considerable importance in those treatments with a LIPUS, as a laser device may reduce healing time. The most clinically relevant impact of the LIPUS treatment could be a significant reduction in the proportion of patients who go on to develop a nonunion. If it is confirmed that the therapeutic influence is true and reliable, patients will obtain benefits from LIPUS and LLLT. Further clinical trials of high methodological quality are needed in order to determine the optimal role of LIPUS and LLLT in fracture healing in patients.
Collapse
Affiliation(s)
- Mohammad Bayat
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA; Cellular and Molecular Biology Research Center, Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amarjit Virdi
- Department of Cell & Molecular Medicine, (formerly, Anatomy and Cell Biology), Rush University Medical Center, 1750 W. Harrison St., Suite 1413A, Chicago, IL 60612, USA.
| | | | - Fatemehalsadat Rezaei
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Henry GA, Cole R. Fracture Healing and Complications in Dogs. TEXTBOOK OF VETERINARY DIAGNOSTIC RADIOLOGY 2018:366-389. [DOI: 10.1016/b978-0-323-48247-9.00031-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
50
|
Affiliation(s)
- E-Liisa Laakso
- Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland, Australia
| |
Collapse
|