1
|
Cheng Y, Yu Q, Zhang W, Liu Z, Ding J, Pan H, Li Y, Wu D, Zhu M, Xie X, Zhu N. Diet dependent trophic transfer of nanoparticles (ZnO and TiO 2) along the "photic biofilm-snail" food chain. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137657. [PMID: 40010214 DOI: 10.1016/j.jhazmat.2025.137657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Multispecies biofilm exhibited high resistance to nanotoxicity by secreting extracellular polymeric substances (EPS) and undergoing alterations in the community composition. Scarce information was available to assess how these changes could further influence the transfer of nanoparticles (NPs) through the biofilm-based food chain. Photic biofilm was exposed to two distinct NPs (ZnO and TiO2) and subsequently grazed by snails. Exposure to different NPs led to variations in biomass, chlorophyll content, EPS productivity, alpha diversity, and community composition of the photic biofilm. The presence of ZnO NPs facilitated the growth of phylum Cyanobacteria while TiO2 promoted EPS productivity of photic biofilm. EPS were capable of embedding NPs (TiO2 and ZnO) within its matrix, thereby mitigating their aggregation within the biofilm matrix. These alterations were subsequently confirmed to have an impact on the trophic transfer factors (TTF) of NPs through the constructed biofilm-snail food chain. The TTF of ZnO was lower than that of TiO2 in feeding scenario 1 (only fed on TiO2 or ZnO biofilm) but higher than that of TiO2 in feeding scenario 2 (fed on TiO2 and ZnO biofilm simultaneously), which was attributed to the shifts in the algae composition and a smaller size of ZnO NPs in EPS. This study demonstrated that the response of photic biofilm to NPs further affected the TTFs of NPs through the food chain.
Collapse
Affiliation(s)
- Yu Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Quanbo Yu
- Shanghai Engineering Research Center of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
| | - Weihua Zhang
- Management Service Center of Yuncheng Chemical Industry Park, Heze 274700, China
| | - Zhiqiang Liu
- Jiangsu Changhuan Environment Technology Co. Ltd., Changzhou 213002, China
| | - Jue Ding
- School of Geographical Sciences, Jiangsu Second Normal University, Nanjing 211200, China
| | - Hongzhe Pan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Dan Wu
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, Nanjing, China
| | - Minghua Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
2
|
Ahmed NA, Elshahawy MF, Raafat AI, Abdou FY, Tahar HA. Rat model evaluation for healing-promoting effectiveness and antimicrobial activity of electron beam synthesized (polyvinyl alcohol-pectin)- silver doped zinc oxide hydrogel dressings enriched with lavender oil. Int J Biol Macromol 2025; 288:138618. [PMID: 39672426 DOI: 10.1016/j.ijbiomac.2024.138618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Ag/ZnO NPs and lavender oil (LVO) were incorporated into (polyvinyl alcohol/pectin) (PVA/Pet) dressings using electron beam irradiation technology. The Ag/ZnO NPs were prepared using the precipitation method and characterized using XRD, FTIR, and EDX techniques. TEM micrograph shows their spherical appearance with an average size of around 27.4 nm. The increase in the (PVA: Pet) feed solution concentration up to 30% enhances the gel content to 92%. The swelling degree reaches 1674% using 80 wt% pectin content. Meanwhile, increasing the irradiation dose up to 45 kGy increases the gel fraction and negatively affects the swelling capabilities. Incorporating Ag/ZnO NPs and LVO slightly decreased the gel fraction, the swelling degree, and the dressing's porosity reached 87%. In pseudo extracellular fluids, dressings with 10% LVO demonstrate 419% swelling capacities, and their WVTR reaches 271.1 g/m2h. Dressings show biocompatibility, antimicrobial potential, and excellent wound healing capacity towards the excisional wound model in rats, as confirmed by the histological and biochemical results. LVO-(PVA/Pet)-Ag/ZnO dressings may accelerate tissue granulation and remodeling by replacing lost collagen and cause the wound to constrict by upregulating markers associated with wound healing so that it can be recommended as a wound healing candidate.
Collapse
Affiliation(s)
- Nehad A Ahmed
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mai F Elshahawy
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Amany I Raafat
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Fatma Y Abdou
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hadeer A Tahar
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
3
|
Jing G, Hu C, Fang K, Li Y, Wang L. How Nanoparticles Help in Combating Chronic Wound Biofilms Infection? Int J Nanomedicine 2024; 19:11883-11921. [PMID: 39563901 PMCID: PMC11575445 DOI: 10.2147/ijn.s484473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Chronic wound infection has become a global health problem, with bacterial biofilms, which are difficult to penetrate using traditional antibiotics, considered the primary cause of recurrent infection and delayed healing in chronic wounds. In recent years, the outstanding performance of nanomaterials in controlling biofilm infections has been widely acknowledged, and these materials are regarded as highly promising for chronic wound infection management. The formation and structure of chronic wound biofilms undergo complex dynamic changes. Therefore, a deep understanding of the underlying causes of repeated wound infections and the specific antibacterial mechanisms of nanomaterials at different stages of biofilm formation is crucial for effective "chronic wound infection management". This review first reveals the relationship between biofilms, wound chronicity, and recurrent infections. Secondly, it focuses on the four stages of chronic wound biofilm formation: (1) adhesion stage, (2) aggregation and promotion stage, (3) maturation stage, and (4) regeneration and dissemination stage. It also comprehensively summarizes the specific antibacterial mechanisms of nanomaterials. This study analyzes essential factors affecting the control of chronic wound biofilms by nanoparticles from various perspectives, such as the material itself, the local wound environment, and the systemic host response. Finally, the limitations and potential future trends in current research are discussed. In summary, nanoparticles represent a promising strategy for combating chronic wound biofilm infections, and this review provides new insights for alternative adjuvant therapies in managing bacterial biofilm infections in chronic wounds.
Collapse
Affiliation(s)
- Gang Jing
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Chen Hu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Keyi Fang
- School of Stomatology, Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Yingying Li
- School of Stomatology, Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Linlin Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People's Republic of China
| |
Collapse
|
4
|
Kumar V, Kaushik NK, Singh D, Singh B. Exploring novel potential of mycosynthesized magnetic nanoparticles for phosphatase immobilization and biological activity. Int J Biol Macromol 2024; 280:135740. [PMID: 39304049 DOI: 10.1016/j.ijbiomac.2024.135740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Among different microbes, fungi are proficient candidates for the extracellular synthesis of iron nanoparticles. For biogenic synthesis of iron nanoparticles, a thermophilic mould Myceliophthora thermophila BJTLRMDU7 was used in this study. Mycogenic magnetic nanoparticles were used for phosphatase immobilization and therapeutic applications such as antimicrobial and antimalarial activity. Firstly, the phosphatase was immobilized on biogenic iron nanoparticles with an efficiency of >56 %. Immobilized enzyme was optimally active at 60 °C and pH 5. Immobilized phosphatase was recycled using external magnetic field up to 4th cycle retaining >50 % activity. The immobilized phosphatase efficiently released inorganic phosphate from different flours such as wheat, maize and gram at 37 °C and 60 °C. There was continuous increase in the release of inorganic phosphorus from all samples with incubation time at 37 °C and slight reduction at 60 °C. These nanoparticles showed the effective antimicrobial activity against Bacillus subtilis, Escherichia coli and Myceliophthora thermophila. Further, the synthesized iron nanoparticles showed antimalarial potential against Plasmodium falciparum. Biogenic nanoparticles did not exhibit hemolytic activity and cytotoxicity. Therefore, biogenic iron nanoparticles could be used as a suitable matrix for immobilization of enzymes and safe therapeutics.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India
| | - Naveen Kumar Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida 201313, U.P., India
| | - Davender Singh
- Department of Physics, RPS Degree College, Mahendergarh 123029, Haryana, India
| | - Bijender Singh
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India; Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
5
|
Khanizadeh P, Mumivand H, Morshedloo MR, Maggi F. Application of Fe 2O 3 nanoparticles improves the growth, antioxidant power, flavonoid content, and essential oil yield and composition of Dracocephalum kotschyi Boiss. FRONTIERS IN PLANT SCIENCE 2024; 15:1475284. [PMID: 39450081 PMCID: PMC11500079 DOI: 10.3389/fpls.2024.1475284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Dracocephalum kotschyi Boiss., an endemic and endangered medicinal and aromatic plant in Iran, showcases distinct botanical characteristics and therapeutic promise. According to the IUCN grouping criteria, this plant is facing challenges due to overcollection from its natural habitats. To address this issue, there is an increasing inclination towards cultivating this species within agricultural systems. This study aimed to evaluate the impact of applying Fe2O3 nanoparticles (NPs) at varying concentrations (50, 100, and 200 mg L-1), as well as bulk Fe2O3 at the same concentrations, on the growth, essential oil production, antioxidant capacity, total phenol, and flavonoid content of D. kotschyi. The foliar application of 100 and/or 200 mg L-1 of Fe2O3 NPs resulted in the greatest leaf length and dry weight, while Fe2O3 NPs at the level of 100 mg L-1 led to the highest leaf/stem ratio. Additionally, spraying 200 mg L-1 of Fe2O3 NPs and all concentrations of bulk Fe2O3 positively impacted chlorophyll and carotenoid levels. Both nano and bulk Fe2O3 supplements stimulated H2O2 production and subsequently enhanced enzymatic antioxidant activity. The use of 50 mg L-1 of Fe2O3 NPs resulted in the highest flavonoid content and non-enzymatic antioxidant activity. Meanwhile, the highest essential oil content and yield was achieved by the application of 50 and/or 100 mg L-1 Fe2O3 NPs. The addition of low concentration of Fe2O3 NPs (50 mg L-1) resulted in a significant increase in the concentration of geranial, while a higher supply of Fe2O3 NPs (200 mg L-1) significantly decreased the percentage of neral in the essential oil. Overall, the application of Fe2O3 NPs demonstrated significant potential for increased biomass, enhanced yield, essential oil production, and phytochemical attributes. The findings highlight the versatility of Fe2O3 NPs at optimal concentrations, acting as both a nano-fertilizer and a nano-inducer, promoting the production and accumulation of valuable secondary metabolites in plants.
Collapse
Affiliation(s)
- Parisa Khanizadeh
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Hasan Mumivand
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Mohamad Reza Morshedloo
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
6
|
Zhan Y, Hu H, Yu Y, Chen C, Zhang J, Jarnda KV, Ding P. Therapeutic strategies for drug-resistant Pseudomonas aeruginosa: Metal and metal oxide nanoparticles. J Biomed Mater Res A 2024; 112:1343-1363. [PMID: 38291785 DOI: 10.1002/jbm.a.37677] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Pseudomonas aeruginosa (PA) is a widely prevalent opportunistic pathogen. Multiple resistant strains of PA have emerged from excessive or inappropriate use of antibiotics, making their eradication increasingly difficult. Therefore, the search for highly efficient and secure novel antimicrobial agents is crucial. According to reports, there is an increasing exploration of nanometals for antibacterial purposes. The antibacterial mechanisms involving the nanomaterials themselves, the release of ions, and the induced oxidative stress causing leakage and damage to biomolecules are widely accepted. Additionally, the study of the cytotoxicity of metal nanoparticles is crucial for their antibacterial applications. This article summarizes the types of metal nanomaterials and metal oxide nanomaterials that can be used against PA, their respective unique antibacterial mechanisms, cytotoxicity, and efforts made to improve antibacterial performance and reduce toxicity, including combination therapy with other materials and antibiotics, as well as green synthesis approaches.
Collapse
Affiliation(s)
- Yujuan Zhan
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Huiting Hu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ying Yu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Cuimei Chen
- School of Public Health, Xiangnan University, Chenzhou, Hunan, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Kermue Vasco Jarnda
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| |
Collapse
|
7
|
Lu L, Zhao Y, Li M, Wang X, Zhu J, Liao L, Wang J. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances. J Pharm Anal 2024; 14:100906. [PMID: 38634060 PMCID: PMC11022105 DOI: 10.1016/j.jpha.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 04/19/2024] Open
Abstract
Extracellular polymeric substances (EPS) constitutes crucial elements within bacterial biofilms, facilitating accelerated antimicrobial resistance and conferring defense against the host's immune cells. Developing precise and effective antibiofilm approaches and strategies, tailored to the specific characteristics of EPS composition, can offer valuable insights for the creation of novel antimicrobial drugs. This, in turn, holds the potential to mitigate the alarming issue of bacterial drug resistance. Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias, which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds. Considering the pivotal role of EPS in biofilm functionality, it is imperative for EPS research to delve deeper into the analysis of intricate compositions, moving beyond the current focus on polymeric materials. This necessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches. In this study, we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions. Additionally, novel strategies aimed at targeting EPS to enhance biofilm penetration were explored, with a specific focus on highlighting the limitations associated with colorimetric methods. Furthermore, we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges. This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS, thereby inhibiting biofilm formation. This insight opens up a new avenue for exploration within this research domain.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yuting Zhao
- Meishan Pharmaceutical Vocational College, School of Pharmacy, Meishan, Sichuan, 620200, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaobo Wang
- Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, 646000, China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
8
|
Ali K, Rakesh S, Khalid S, Khan AU. Moist Heat Synthesis of Magnetic EGCG-Cappedα-Fe 2O 3 Nanoparticles and Their In Vitro and In Silico Interactions with Pristine HSA- and NDM-1-Producing Bacteria. ACS OMEGA 2023; 8:48775-48786. [PMID: 38162781 PMCID: PMC10753701 DOI: 10.1021/acsomega.3c05743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 01/03/2024]
Abstract
A simple, facile, moist-heating (e.g., autoclave), one-step procedure for EGCG-mediated biosynthesis of narrow-size magnetic iron oxide (α-Fe2O3) nanoparticles (EGCG-MINPs) was developed. The influence of pH of the reaction mixture over the size distribution of as-synthesized EGCG-MINPs was investigated systematically by employing UV-visible (UV-vis) spectroscopy and dynamic light scattering (DLS)-based hydrodynamic size, surface charge (zeta-potential), and polydispersity index (PDI). The FE-SEM, TEM, and XRD characterizations revealed that the EGCG-MINPs synthesized at pH 5.0 were in the size range of 6.20-16.7 nm and possess well-crystalline hexagonal shaped nanostructures of hematite (α-Fe2O3) crystal phase. The role of EGCG in Fe3+ ion reduction and EGCG-MINP formation was confirmed by FTIR analysis. The VSM analysis has revealed that EGCG-MINPs were highly magnetic nanostructures with the hysteretic feature of saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) as 33.64 emu/g, 12.18 emu/g, and 0.33 Oe, respectively. Besides, significant (p < 0.001) dose-dependent (250-1000 μg/mL) antibacterial and antibiofilm activities against the NDM-1-producing Gram-negative Escherichia coli (AK-33), Klebsiella pneumoniae (AK-65), Pseudomonas aeruginosa (AK-66), and Shigella boydii (AK-67) bacterial isolates warranted the as-synthesized EGCG-MINPs as a promising alternative for clinical management of chronic bacterial infections in biomedical settings. In addition, molecular docking experiments revealed that compared to free Fe3+ and EGCG alone, the EGCG-MINPs or Fe-EGCG complex possess significantly high binding affinity toward HSA and hence can be considered as promising biocompatible nanodrug carriers in in vivo drug delivery systems.
Collapse
Affiliation(s)
- Khursheed Ali
- Medical Microbiology and Molecular
Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Shruti Rakesh
- Medical Microbiology and Molecular
Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Shamsi Khalid
- Medical Microbiology and Molecular
Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Asad U. Khan
- Medical Microbiology and Molecular
Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| |
Collapse
|
9
|
Zúñiga-Miranda J, Guerra J, Mueller A, Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Heredia-Moya J, Guamán LP. Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2919. [PMID: 37999273 PMCID: PMC10674528 DOI: 10.3390/nano13222919] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The rise of antimicrobial resistance caused by inappropriate use of these agents in various settings has become a global health threat. Nanotechnology offers the potential for the synthesis of nanoparticles (NPs) with antimicrobial activity, such as iron oxide nanoparticles (IONPs). The use of IONPs is a promising way to overcome antimicrobial resistance or pathogenicity because of their ability to interact with several biological molecules and to inhibit microbial growth. In this review, we outline the pivotal findings over the past decade concerning methods for the green synthesis of IONPs using bacteria, fungi, plants, and organic waste. Subsequently, we delve into the primary challenges encountered in green synthesis utilizing diverse organisms and organic materials. Furthermore, we compile the most common methods employed for the characterization of these IONPs. To conclude, we highlight the applications of these IONPs as promising antibacterial, antifungal, antiparasitic, and antiviral agents.
Collapse
Affiliation(s)
- Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Julio Guerra
- Facultad de Ingeniería en Ciencias Aplicadas, Universidad Técnica del Norte, Ibarra 100107, Ecuador;
| | - Alexander Mueller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| |
Collapse
|
10
|
Ikram M, Shujah T, Shahzadi A, Haider A, Rafique A, Ul-Hamid A, Nabgan W, Haider SK, Alshahrani T, Algaradah MM, Yousaf SA, Haider J. Multiple phases of yttrium-doped molybdenum trioxide nanorods as efficient dye degrader and bactericidal agents with molecular docking analysis. CHEMOSPHERE 2023; 340:139855. [PMID: 37611764 DOI: 10.1016/j.chemosphere.2023.139855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/15/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Contaminants removal is usually becoming an exciting subject of research from water considering their environmental and ecological effects. This work provides pathways to remove organic pollutants from water via nanomaterials and is used as an antibiotic against bacteria like Escherichia coli (E. coli). In this study, molybdenum trioxide (MoO3) and yttrium (Y) doped (2 and 4%) MoO3 nanorods were synthesized by co-precipitation method. Advanced characterization techniques have been introduced to study textural structures, morphological developments, and optical characteristics of produced products. X-ray diffraction studied multiple crystalline structures of prepared samples as hexagonal, orthorhombic, and monoclinic of pure MoO3 with decrease in crystallinity and crystallite size upon Y doping. UV-visible spectroscopy unveiled a redshift (bathochromic effect) in absorption pattern attributed to band gap energy (Eg) decreases. Photoluminescence spectra examined the recombination rate of electrons (e-) and holes (h+) as charge carriers. A sufficient catalytic activity (CA) was observed against methylene blue (MB) dye in an acidic medium (99.74%) and efficient bactericidal action was studied against (E. coli) with zone of inhibition (5.20 mm) for 4% Y-doped MoO3. In addition, in silico docking demonstrated potential inhibitory effect of produced nanomaterials on FabH and FabI enzymes of fatty acid biosynthesis.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College, University Lahore, Lahore, 54000, Punjab, Pakistan.
| | - Tahira Shujah
- Department of Physics, University of Central Punjab, Lahore, 54000, Punjab, Pakistan
| | - Anum Shahzadi
- Facutly of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ali Haider
- Department of Clinical Medicine, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, 66000, Multan, Punjab, Pakistan
| | - Aqsa Rafique
- Solar Cell Applications Research Lab, Department of Physics, Government College, University Lahore, Lahore, 54000, Punjab, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, 43007, Tarragona, Spain.
| | - Syed Karrar Haider
- Department of Physics, University of Central Punjab, Lahore, 54000, Punjab, Pakistan
| | - Thamraa Alshahrani
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - S Amber Yousaf
- Department of Physics, University of Central Punjab, Lahore, 54000, Punjab, Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
11
|
Mohamad EA, Ramadan MA, Mostafa MM, Elneklawi MS. Enhancing the antibacterial effect of iron oxide and silver nanoparticles by extremely low frequency electric fields (ELF-EF) against S. aureus. Electromagn Biol Med 2023; 42:99-113. [PMID: 37154170 DOI: 10.1080/15368378.2023.2208610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/05/2023] [Indexed: 05/10/2023]
Abstract
Staphylococcus aureus is the cause of many infectious and inflammatory diseases and a lot of studies aim to discover alternative ways for infection control and treatment rather than antibiotics. This work attempts to reduce bacterial activity and growth characteristics of Staphylococcus aureus using nanoparticles (iron oxide nanoparticles and silver nanoparticles) and extremely low frequency electric fields (ELF-EF). Bacterial suspensions of Staphylococcus aureus were used to prepare the samples, which were evenly divided into groups. Control group, 10 groups were exposed to ELF-EF in the frequency range (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 Hz), iron oxide NPs treated group, iron oxide NPs exposed to 0.8 Hz treated group, silver NPs treated group and the last group was treated with silver NPs and 0.8 Hz. Antibiotic sensitivity testing, dielectric relaxation, and biofilm development for the living microbe were used to evaluate morphological and molecular alterations. Results showed that combination of nanoparticles with ELF-EF at 0.8 Hz enhanced the bacterial inhibition efficiency, which may be due to structural changes. These were supported by the dielectric measurement results which indicated the differences in the dielectric increment and electrical conductivity for the treated samples compared with control samples. This was also confirmed by biofilm formation measurements obtained. We may conclude that the exposure of Staphylococcus aureus bacteria to ELF-EF and NPs affected its cellular activity and structure. This technique is nondestructive, safe and fast and could be considered as a mean to reduce the use of antibiotics.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa A Ramadan
- Department of laser application in metrology photochemistry and agriculture, National institute of laser Enhanced science NILES Cairo University Egypt, Giza, Egypt
| | - Marwa M Mostafa
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mona S Elneklawi
- Department of Biomedical Equipments & Systems, Faculty of Applied Medical Sciences, October 6 University, Giza, Egypt
| |
Collapse
|
12
|
Metryka O, Wasilkowski D, Adamczyk-Habrajska M, Mrozik A. Undesirable consequences of the metallic nanoparticles action on the properties and functioning of Escherichia coli, Bacillus cereus and Staphylococcus epidermidis membranes. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130728. [PMID: 36610340 DOI: 10.1016/j.jhazmat.2023.130728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Controversial and inconsistent findings on the toxicity of metallic nanoparticles (NPs) against many bacteria are common in recorded studies; therefore, further advanced experimental work is needed to elucidate the mechanisms underlying nanotoxicity. This study deciphered the direct effects of Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs on membrane permeability, cytoplasmic leakage, ATP level, ATPase activity and fatty acid profiling of Escherichia coli, Bacillus cereus and Staphylococcus epidermidis as model microorganisms. A multifaceted analysis of all collected results indicated the different influences of individual NPs on the measured parameters depending on their type and concentration. Predominantly, membrane permeability was correlated with increased cytoplasmic leakage, reduced total ATP levels and ATPase activity. The established fatty acid profiles were unique and concerned various changes in the percentages of hydroxyl, cyclopropane, branched and unsaturated fatty acids. Decisively, E. coli was more susceptible to changes in measured parameters than B. cereus and S. epidermidis. Also, it was established that ZnO-NPs and Cu-NPs had a major differentiating impact on studied parameters. Additionally, bacterial cell imaging using scanning electron microscopy elucidated different NPs distributions on the cell surface. The presented results are believed to provide novel, valuable and accumulated knowledge in the understanding of NPs action on bacterial membranes.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, Katowice 40-032, Poland.
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 29, Katowice 40-032, Poland
| | - Małgorzata Adamczyk-Habrajska
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia, Żytnia 12, Sosnowiec 41-200, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 29, Katowice 40-032, Poland.
| |
Collapse
|
13
|
Farghaly FA, Al-Kahtany FA, Hamada AM, Radi AA. Thiol, volatile and semi-volatile compounds alleviate the stress of zinc oxide nanoparticles of the pomegranate callus. CHEMOSPHERE 2023; 312:137151. [PMID: 36368531 DOI: 10.1016/j.chemosphere.2022.137151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Pomegranate trees are tropical and subtropical shrubs with nutritional benefits and pharmaceutical and therapeutic uses. Antioxidative systems protect the structure and function of cellular membranes. This study demonstrated the connection between oxidative stress generated by excess nanoparticles ZnO (ZnO-NPs) accumulation in pomegranate calli and the involvement of thiol groups and volatile and semi-volatile compounds in alleviating this stress. The effect of the non-enzymatic antioxidant system was studied using callus treated with three levels of ZnO-NPs or bulk particles (ZnO-BPs). With rising ZnO levels in the media, callus growth was gradually decreased by ZnO in both forms (NPs and BPs). Malondialdehyde (MDA) measurements revealed that different concentrations of both forms promoted lipid peroxidation. The supply of both forms had a considerable stimulatory influence on the cysteine (Cys) content in calli. Raised ZnO-NP concentrations increased glutathione (GSH) and non-protein thiols (NPTs) content in calli, but higher ZnO-BP concentrations lowered their content. Conversely, ZnO-NP levels reduced the protein thiols (PTs) content in calli, but ZnO-BP concentrations increased their content. GC-MS analysis was employed to investigate the volatile and semi-volatile chemical profiles within calli following exposure to 0 and 150 μg mL-1 of ZnO in both forms. GC-MS analysis detected 77, 67, and 83 compounds in ZnO-treated calli, of which 14, 16, and 20 with a similarity value greater than 70%, based on a NIST library, were recognized as metabolites for ZnO untreated and NPs- and BPs-treated calli, respectively. Six substances, including five alkanes and one morphinan, showed similarities in metabolite composition between control and NPs- or BPs-treated calli. ZnO-NPs-treated calli contained two alkane compounds only similar to the control, but ZnO-BPs-treated calli had six metabolites, including four alkanes, one carboxylic acid, and one ester. However, eight alkanes were similar within the callus treated with NPs and BPs.
Collapse
Affiliation(s)
- Fatma A Farghaly
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | | | - Afaf M Hamada
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Abeer A Radi
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
14
|
Saleem S, Khan MS. Phyto-interactive impact of green synthesized iron oxide nanoparticles and Rhizobium pusense on morpho-physiological and yield components of greengram. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:146-160. [PMID: 36403488 DOI: 10.1016/j.plaphy.2022.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The iron oxide nanoparticles (IONPs) prepared by green synthesis method using Syzigium cumini leaf extract was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD confirmed the crystalline structure of green synthesized NPs measuring around 33 nm while SEM revealed its nearly spherical shape. Rhizobium species recovered from greengram nodules, identified by 16s rRNA gene sequencing as Rhizobium pusense produced 30% more exopolysaccharides (EPS) in basal medium treated with 1000 μg IONPs/ml. Compositional variation in EPS was observed by Fourier-transform infrared spectroscopy (FTIR). There was no reduction in rhizobial viability and no damage to bacterial membrane was observed under SEM and confocal laser scanning microscopy (CLSM), respectively. Effects of IONPs and R. pusense, used alone and in combination on the growth and development of greengram plants varied considerably. Plants grown with IONPs and R. pusence, used alone and in combination, showed a significant increase in seed germination rate, length and dry biomass of plant organs and seed components compared to controls. The IONPs in the presence of rhizobial strain further increased seed germination, plant growth, seed protein and pigments. Greater protein content (442 mg/g) was observed in seeds at 250 mg/kg of IONPs compared to control. Plants raised with mixture of IONPs plus R. pusense had maximum chlorophyll content (39.2 mg/g FW) while proline content decreased by 53% relative to controls. This study confirms that the green synthesis of IONPs from S. cumini leaf possess useful plant growth promoting effects and could be developed as a nano-biofertilizer for optimizing legume production.
Collapse
Affiliation(s)
- Samia Saleem
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Mohd Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
15
|
Almutairi HH, Parveen N, Ansari SA. Hydrothermal Synthesis of Multifunctional Bimetallic Ag-CuO Nanohybrids and Their Antimicrobial, Antibiofilm and Antiproliferative Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4167. [PMID: 36500789 PMCID: PMC9737815 DOI: 10.3390/nano12234167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The rapidly growing global problem of infectious pathogens acquiring resistance to conventional antibiotics is an instigating reason for researchers to continue the search for functional as well as broad-spectrum antimicrobials. Hence, we aimed in this study to synthesis silver-copper oxide (Ag-CuO) nanohybrids as a function of Ag concentration (0.05, 0.1, 0.3 and 0.5 g) via the one-step hydrothermal method. The bimetallic Ag-CuO nanohybrids Ag-C-1, Ag-C-2, Ag-C-3 and Ag-C-4 were characterized for their physico-chemical properties. The SEM results showed pleomorphic Ag-CuO crystals; however, the majority of the particles were found in spherical shape. TEM results showed that the Ag-CuO nanohybrids in formulations Ag-C-1 and Ag-C-3 were in the size range of 20-35 nm. Strong signals of Ag, Cu and O in the EDX spectra revealed that the as-synthesized nanostructures are bimetallic Ag-CuO nanohybrids. The obtained Ag-C-1, Ag-C-2, Ag-C-3 and Ag-C-4 nanohybrids have shown their MICs and MBCs against E. coli and C. albicans in the range of 4-12 mg/mL and 2-24 mg/mL, respectively. Furthermore, dose-dependent toxicity and apoptosis process stimulation in the cultured human colon cancer HCT-116 cells have proven the Ag-CuO nanohybrids as promising antiproliferative agents against mammalian cancer.
Collapse
Affiliation(s)
- Hayfa Habes Almutairi
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia
| | - Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia
| | - Sajid Ali Ansari
- Department of Physics, College of Science, King Faisal University, Al Ahsa, P.O. Box 400, Hofuf 31982, Saudi Arabia
| |
Collapse
|
16
|
Ali K, Zaidi S, Khan AA, Khan AU. Orally fed EGCG coronate food released TiO 2 and enhanced penetrability into body organs via gut. BIOMATERIALS ADVANCES 2022; 144:213205. [PMID: 36442452 DOI: 10.1016/j.bioadv.2022.213205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Owing to unique nano-scale properties, TiO2-NPs (T-NPs) are employed as food-quality enhancers in >900 processed food products. Whereas, epigallocatechin-3-gallate (EGCG), a green tea polyphenol is consumed in traditional brewed tea, globally. Taken together, we aimed to investigate whether human gastric-acid digested T-NPs and complex tea catechins yield ionic species (Ti4+, Ti3+ etc.) and active EGCG forms to meet favourable conditions for in vivo bio-genesis of EGCG-coronated TiO2-NPs (ET-NPs) in human gut. Secondly, compared to bare-surface micro and nano-scale TiO2, i.e., T-MPs and T-NPs, respectively, how EGCG coronation on ET-NPs in the gut facilitates the modulation of intrinsic propensity of internalization of TiO2 species into bacteria, body-organs, and gut-microbiota (GM), and immune system. ET-NPs were synthesized in non-toxic aqueous solution at varied pH (3-10) and characterised by state-of-the-arts for crystallinity, surface-charge, EGCG-encapsulation, stability, size, composition and morphology. Besides, flow-cytometry (FCM), TEM, EDS, histopathology, RT-PCR, 16S-rRNA metagenomics and ELISA were also performed to assess the size and surface dependent activities of ET-NPs, T-NPs and T-MPs vis-a-vis planktonic bacteria, biofilm, GM bacterial communities and animal's organs. Electron-microscopic, NMR, FTIR, DLS, XRD and EDS confirmed the EGCG coronation, dispersity, size-stability of ET-NPs, crystallinity and elemental composition of ET-NPs-8 and T-NPs. Besides, FCM, RT-PCR, 16S-rRNA metagenomics, histopathology, SEM and EDS analyses exhibited that EGCG coronation in ET-NPs-8 enhanced the penetration into body organs (i.e., liver and kidney etc.) and metabolically active bacterial communities of GM.
Collapse
Affiliation(s)
- Khursheed Ali
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Sahar Zaidi
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Aijaz A Khan
- Department of Anatomy, Jawaharlal Nehru Medical College & Hospital, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
17
|
Huang L, Jin Y, Zhou D, Liu L, Huang S, Zhao Y, Chen Y. A Review of the Role of Extracellular Polymeric Substances (EPS) in Wastewater Treatment Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12191. [PMID: 36231490 PMCID: PMC9566195 DOI: 10.3390/ijerph191912191] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
A review of the characterization and functions of extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems is presented in this paper. EPS represent the complex high-molecular-weight mixture of polymers excreted by microorganisms generated from cell lysis as well as adsorbed inorganic and organic matter from wastewater. EPS exhibit a three-dimensional, gel-like, highly hydrated matrix that facilitates microbial attachment, embedding, and immobilization. EPS play multiple roles in containments removal, and the main components of EPS crucially influence the properties of microbial aggregates, such as adsorption ability, stability, and formation capacity. Moreover, EPS are important to sludge bioflocculation, settleability, and dewatering properties and could be used as carbon and energy sources in wastewater treatment. However, due to the complex structure of EPS, related knowledge is incomplete, and further research is necessary to understand fully the precise roles in biological treatment processes.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China
| | - Yinie Jin
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Danheng Zhou
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Linxin Liu
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shikun Huang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yaqi Zhao
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China
| |
Collapse
|
18
|
Ikram M, Haider A, Imran M, Haider J, Naz S, Ul-Hamid A, Nabgan W, Mustajab M, Shahzadi A, Shahzadi I, Raza MA, Nazir G. Facile synthesis of starch and tellurium doped SrO nanocomposite for catalytic and antibacterial potential: In silico molecular docking studies. Int J Biol Macromol 2022; 221:496-507. [PMID: 36087751 DOI: 10.1016/j.ijbiomac.2022.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022]
Abstract
A chemical co-precipitation route was used to synthesize novel strontium oxide (SrO), SrO-starch composite and various tellurium (Te) concentrations were incorporated in SrO-starch composite. This study aims to enhance the catalytic activities and bactericidal behavior of SrO, SrO-starch composite with different percentage concentrations of Te doping and a fixed amount of starch nanoparticles. XRD affirmed that the dopant contribution was investigated to improve crystallinity. Surface morphological characteristics and elemental composition evaluation were determined using an FE-SEM and EDS exhibit a doping concentration of an element in the synthesized products. The configuration of Sr-O-Sr bonds and molecular vibrations has been indicated by FTIR spectra. In addition, dye degradation of prepared samples was investigated through catalytic activity (CA) in the existence of NaBH4 act as a reduction representative. The Te-doped SrO-starch composite indicates superior catalytic activity and shows a degradation of Methylene blue dye (91.4 %) in an acidic medium. The synthesis nanocatalyst demonstrated impressive antibacterial activity against Staphylococcus aureus (S. aureus) at high and low concentrations exhibiting zones of inhibition 9.30 mm as compared to ciprofloxacin. Furthermore, molecular docking studies of synthesized nanocomposites were performed against selected enzyme targets, i.e., β-lactamaseE.coli and DNA GyraseE.coli.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Pakistan.
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University Faisalabad, Pakpattan Road, Sahiwal, Punjab 57000, Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Sadia Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain.
| | - Muhammad Mustajab
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Pakistan
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Iram Shahzadi
- Punjab University College of Pharmacy, University of the Punjab, 54000, Pakistan
| | - Muhammad Asif Raza
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Franco D, Calabrese G, Guglielmino SPP, Conoci S. Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application. Microorganisms 2022; 10:microorganisms10091778. [PMID: 36144380 PMCID: PMC9503339 DOI: 10.3390/microorganisms10091778] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
The growing increase in antibiotic-resistant bacteria has led to the search for new antibacterial agents capable of overcoming the resistance problem. In recent years, nanoparticles (NPs) have been increasingly used to target bacteria as an alternative to antibiotics. The most promising nanomaterials for biomedical applications are metal and metal oxide NPs, due to their intrinsic antibacterial activity. Although NPs show interesting antibacterial properties, the mechanisms underlying their action are still poorly understood, limiting their use in clinical applications. In this review, an overview of the mechanisms underlying the antibacterial activity of metal and metal oxide NPs will be provided, relating their efficacy to: (i) bacterial strain; (ii) higher microbial organizations (biofilm); (iii) and physico-chemical properties of NPs. In addition, bacterial resistance strategies will be also discussed to better evaluate the feasibility of the different treatments adopted in the clinical safety fields. Finally, a wide analysis on recent biomedical applications of metal and metal oxide NPs with antibacterial activity will be provided.
Collapse
Affiliation(s)
- Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
- Correspondence:
| | - Salvatore Pietro Paolo Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
- Department of Chemistry ‘‘Giacomo Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- LabSense Beyond Nano, URT Department of Physic, National Research Council (CNR), Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| |
Collapse
|
20
|
Tariq M, Mohammad KN, Ahmed B, Siddiqui MA, Lee J. Biological Synthesis of Silver Nanoparticles and Prospects in Plant Disease Management. Molecules 2022; 27:4754. [PMID: 35897928 PMCID: PMC9330430 DOI: 10.3390/molecules27154754] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Exploration of nanoparticles (NPs) for various biological and environmental applications has become one of the most important attributes of nanotechnology. Due to remarkable physicochemical properties, silver nanoparticles (AgNPs) are the most explored and used NPs in wide-ranging applications. Also, they have proven to be of high commercial use since they possess great chemical stability, conductivity, catalytic activity, and antimicrobial potential. Though several methods including chemical and physical methods have been devised, biological approaches using organisms such as bacteria, fungi, and plants have emerged as economical, safe, and effective alternatives for the biosynthesis of AgNPs. Recent studies highlight the potential of AgNPs in modern agricultural practices to control the growth and spread of infectious pathogenic microorganisms since the introduction of AgNPs effectively reduces plant diseases caused by a spectrum of bacteria and fungi. In this review, we highlight the biosynthesis of AgNPs and discuss their applications in plant disease management with recent examples. It is proposed that AgNPs are prospective NPs for the successful inhibition of pathogen growth and plant disease management. This review gives a better understanding of new biological approaches for AgNP synthesis and modes of their optimized applications that could contribute to sustainable agriculture.
Collapse
Affiliation(s)
- Moh Tariq
- Department of Botany, Lords University, Alwar 301028, India
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh 202002, India; (K.N.M.); (M.A.S.)
| | - Khan Nazima Mohammad
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh 202002, India; (K.N.M.); (M.A.S.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Mansoor A. Siddiqui
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh 202002, India; (K.N.M.); (M.A.S.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
21
|
Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02276-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Iron Oxide Nanoparticles-Plant Insignia Synthesis with Favorable Biomedical Activities and Less Toxicity, in the “Era of the-Green”: A Systematic Review. Pharmaceutics 2022; 14:pharmaceutics14040844. [PMID: 35456678 PMCID: PMC9026296 DOI: 10.3390/pharmaceutics14040844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
In the era of favoring environment-friendly approaches for pharmaceutical synthesis, “green synthesis” is expanding. Green-based nanomedicine (NM), being less toxic and if having biomedical acceptable activities, thence, the chemical methods of synthesis are to be replaced by plants for reductive synthesis. Iron oxide nanoparticles (IONPs) exhibited remarkable anti-microbial and anti-cancer properties, besides being a drug delivery tool. However, owing to limitations related to the chemical synthetic method, plant-mediated green synthesis has been recognized as a promising alternative synthetic method. This systematic review (SR) is addressing plant-based IONPs green synthesis, characteristics, and toxicity studies as well as their potential biomedical applications. Furthermore, the plant-based green-synthesized IONPs in comparison to nanoparticles (NPs) synthesized via other conventional methods, characteristics, and efficacy or toxicity profiles would be mentioned (if available). Search strategy design utilized electronic databases including Science Direct, PubMed, and Google Scholar search. Selection criteria included recent clinical studies, available in the English language, published till PROSPERO registration. After screening articles obtained by first electronic database search, by title, abstract and applying the PICO criteria, the search results yielded a total of 453 articles. After further full text filtrations only 48 articles were included. In conclusion, the current SR emphasizes the perspective of the IONPs plant-mediated green synthesis advantage(s) when utilized in the biomedical pharmaceutical field, with less toxicity.
Collapse
|
23
|
Ul-Hamid A, Dafalla H, Hakeem AS, Haider A, Ikram M. In-Vitro Catalytic and Antibacterial Potential of Green Synthesized CuO Nanoparticles against Prevalent Multiple Drug Resistant Bovine Mastitogen Staphylococcus aureus. Int J Mol Sci 2022; 23:2335. [PMID: 35216450 PMCID: PMC8878101 DOI: 10.3390/ijms23042335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/07/2023] Open
Abstract
Nanoparticles prepared from bio-reduction agents are of keen interest to researchers around the globe due to their ability to mitigate the harmful effects of chemicals. In this regard, the present study aims to synthesize copper oxide nanoparticles (CuO NPs) by utilizing root extracts of ginger and garlic as reducing agents, followed by the characterization and evaluation of their antimicrobial properties against multiple drug resistant (MDR) S. aureus. In this study, UV-vis spectroscopy revealed a reduced degree of absorption with an increase in the extract amount present in CuO. The maximum absorbance for doped NPs was recorded around 250 nm accompanying redshift. X-ray diffraction analysis revealed the monoclinic crystal phase of the particles. The fabricated NPs exhibited spherical shapes with dense agglomeration when examined with FE-SEM and TEM. The crystallite size measured by using XRD was found to be within a range of 23.38-46.64 nm for ginger-doped CuO and 26-56 nm for garlic-doped CuO. Green synthesized NPs of ginger demonstrated higher bactericidal tendencies against MDR S. aureus. At minimum and maximum concentrations of ginger-doped CuO NPs, substantial inhibition areas for MDR S. aureus were (2.05-3.80 mm) and (3.15-5.65 mm), and they were measured as (1.1-3.55 mm) and (1.25-4.45 mm) for garlic-doped NPs. Conventionally available CuO and crude aqueous extract (CAE) of ginger and garlic roots reduced MB in 12, 21, and 38 min, respectively, in comparison with an efficient (100%) reduction of dye in 1 min and 15 s for ginger and garlic doped CuO NPs.
Collapse
Affiliation(s)
- Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Hatim Dafalla
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
| | - Abbas Saeed Hakeem
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
| | - Ali Haider
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture (MNSUA), Multan 66000, Pakistan;
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University, Lahore 54000, Pakistan;
| |
Collapse
|
24
|
Rauf A, Ahmad T, Khan A, Maryam, Uddin G, Ahmad B, Mabkhot YN, Bawazeer S, Riaz N, Malikovna BK, Almarhoon ZM, Al-Harrasi A. Green synthesis and biomedicinal applications of silver and gold nanoparticles functionalized with methanolic extract of Mentha longifolia. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:194-203. [PMID: 33629627 DOI: 10.1080/21691401.2021.1890099] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
This study deals with facile and rapid synthesis of silver nanoparticles (AgNPs) and Gold nanoparticles (AuNPs) using Mentha longifolia leaves extracts (MLE). The synthesized AgNPs and AuNPs were characterized by UV-visible spectroscopy (UV-Vis), Fourier transformed infra-red spectroscopy (FT-IR), atomic force microscopy (AFM) and transmission electron microscopy (TEM) techniques. The phytochemical analysis showed the presence of bioactive secondary metabolites, which are involved in the synthesis of nanoparticles (NPs). The surface plasmon resonance (SPR) observed at 435 and 550 nm, confirmed the green synthesis of AgNPs and AuNPs, respectively. The TEM images showed poly dispersed and round oval shapes of Ag and Au NPs with an average particles size of 10.23 ± 2 nm and 13.45 ± 2 nm, respectively. TEM results are in close agreements with that of AFM analysis. The FT-IR spectroscopy revealed the presence of OH, -NH2 and C = O groups, which involved in the synthesis of NPs. The MLE and their AgNPs and AuNP exhibited good in vitro antibacterial and anti-oxidant activities. Moreover, MLE and NPs also showed in vivo analgesic activities in mice, and excellent sedative properties in open field test paradigm.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Touqeer Ahmad
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Maryam
- Institute of Chemical Sciences, University of Peshawar, Peshawar, KPK, Pakistan
| | - Ghias Uddin
- Institute of Chemical Sciences, University of Peshawar, Peshawar, KPK, Pakistan
| | - Bashir Ahmad
- Centre for Biotechnology & Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Yahia Nasser Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Sciences (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Sami Bawazeer
- Pharmacognosy Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nadia Riaz
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
25
|
Bacterial extracellular protein interacts with silver ions to produce protein-encapsulated bactericidal AgNPs. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Sonbol H, Ameen F, AlYahya S, Almansob A, Alwakeel S. Padina boryana mediated green synthesis of crystalline palladium nanoparticles as potential nanodrug against multidrug resistant bacteria and cancer cells. Sci Rep 2021; 11:5444. [PMID: 33686169 PMCID: PMC7940407 DOI: 10.1038/s41598-021-84794-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Green synthesized nanoparticles (NPs) have emerged as a new and promising alternative to overcome the drug resistance problem. Peculiar nano-specific features of palladium NPs (Pd-NPs) offer invaluable possibilities for clinical treatment. Due to the development of multi-drug resistance (MDR) in pathogenic bacteria and the prevalence of cancers, use of algae-mediated Pd-NPs could be a prospective substitute. Therefore, Pd-NPs were synthesized by a one-step, cost-effective, and environmentally friendly green method using the extract from a brown alga, Padina boryana (PB-extract), and evaluated for their antibacterial, antibiofilm, and anticancer activities. Pd-NPs were physicochemically characterized for size, shape, morphology, surface area, charge, atomic composition, crystal structure, and capping of Pd-NPs by PB-extract biomolecules by various techniques. The data revealed crystalline Pd-NPs with an average diameter of 8.7 nm, crystal size/structure of 11.16 nm/face-centered cubic, lattice d-spacing of 0.226 nm, 28.31% as atomic percentage, surface area of 16.1 m2/g, hydrodynamic size of 48 nm, and zeta-potential of - 28.7 ± 1.6 mV. Fourier-transform infrared spectroscopy (FT-IR) analysis revealed the role of PB-extract in capping of Pd-NPs by various functional groups such as -OH, C=C, C-O, and C-N from phenols, aliphatic hydrocarbons, aromatic rings, and aliphatic amine. Out of 31, 23 compounds were found involved in biosynthesis by Gas chromatography-mass spectrometry (GC-MS) analysis. Isolated strains were identified as MDR Staphylococcus aureus, Escherichia fergusonii, Acinetobacter pittii, Pseudomonas aeruginosa, Aeromonas enteropelogenes, and Proteus mirabilis and Pd-NPs exhibited strong antibacterial/antibiofilm activities against them with minimum inhibitory concentration (MIC) in the range of 62.5-125 μg/mL. Moreover, cell viability assays showed concentration-dependent anti-proliferation of breast cancer MCF-7 cells. Pd-NPs also enhanced mRNA expression of apoptotic marker genes in the order: p53 (5.5-folds) > bax (3.5-folds) > caspase-3 (3-folds) > caspase-9 (2-folds) at 125 μg/mL. This study suggested the possible role of PB-extract capped Pd-NPs for successful clinical management of MDR pathogens and breast cancer cells.
Collapse
Affiliation(s)
- Hana Sonbol
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Sami AlYahya
- National Center for Biotechnology, King Abdulaziz City for Science & Technology, Riyadh, Saudi Arabia
| | - Abobakr Almansob
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Suaad Alwakeel
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Vihodceva S, Šutka A, Sihtmäe M, Rosenberg M, Otsus M, Kurvet I, Smits K, Bikse L, Kahru A, Kasemets K. Antibacterial Activity of Positively and Negatively Charged Hematite ( α-Fe 2O 3) Nanoparticles to Escherichia coli, Staphylococcus aureus and Vibrio fischeri. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:652. [PMID: 33800165 PMCID: PMC7999532 DOI: 10.3390/nano11030652] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
In the current study, the antibacterial activity of positively and negatively charged spherical hematite (α-Fe2O3) nanoparticles (NPs) with primary size of 45 and 70 nm was evaluated against clinically relevant bacteria Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) as well as against naturally bioluminescent bacteria Vibrio fischeri (an ecotoxicological model organism). α-Fe2O3 NPs were synthesized using a simple green hydrothermal method and the surface charge was altered via citrate coating. To minimize the interference of testing environment with NP's physic-chemical properties, E. coli and S. aureus were exposed to NPs in deionized water for 30 min and 24 h, covering concentrations from 1 to 1000 mg/L. The growth inhibition was evaluated following the postexposure colony-forming ability of bacteria on toxicant-free agar plates. The positively charged α-Fe2O3 at concentrations from 100 mg/L upwards showed inhibitory activity towards E. coli already after 30 min of contact. Extending the exposure to 24 h caused total inhibition of growth at 100 mg/L. Bactericidal activity of positively charged hematite NPs against S. aureus was not observed up to 1000 mg/L. Differently from positively charged hematite NPs, negatively charged citrate-coated α-Fe2O3 NPs did not exhibit any antibacterial activity against E. coli and S. aureus even at 1000 mg/L. Confocal laser scanning microscopy and flow cytometer analysis showed that bacteria were more tightly associated with positively charged α-Fe2O3 NPs than with negatively charged citrate-coated α-Fe2O3 NPs. Moreover, the observed associations were more evident in the case of E. coli than S. aureus, being coherent with the toxicity results. Vibrio fischeri bioluminescence inhibition assays (exposure medium 2% NaCl) and colony forming ability on agar plates showed no (eco)toxicity of α-Fe2O3 (EC50 and MBC > 1000 mg/L).
Collapse
Affiliation(s)
- Svetlana Vihodceva
- Research Laboratory of Functional Materials Technologies, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia;
| | - Andris Šutka
- Research Laboratory of Functional Materials Technologies, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia;
| | - Mariliis Sihtmäe
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| | - Merilin Rosenberg
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Maarja Otsus
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| | - Imbi Kurvet
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| | - Krisjanis Smits
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia; (K.S.); (L.B.)
| | - Liga Bikse
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia; (K.S.); (L.B.)
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| |
Collapse
|
28
|
Alomary MN, Ansari MA. Proanthocyanin-Capped Biogenic TiO 2 Nanoparticles with Enhanced Penetration, Antibacterial and ROS Mediated Inhibition of Bacteria Proliferation and Biofilm Formation: A Comparative Approach. Chemistry 2021; 27:5817-5829. [PMID: 33434357 DOI: 10.1002/chem.202004828] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 12/24/2022]
Abstract
Biofunctionalized TiO2 nanoparticles with a size range of 18.42±1.3 nm were synthesized in a single-step approach employing Grape seed extract (GSE) proanthocyanin (PAC) polyphenols. The effect of PACs rich GSE corona was examined with respect to 1) the stability and dispersity of as-synthesized GSE-TiO2 -NPs, 2) their antiproliferative and antibiofilm efficacy, and 3) their propensity for internalization and reactive oxygen species (ROS) generation in urinary tract infections (UTIs) causing Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus saprophyticus strains. State-of-the-art techniques were used to validate GSE-TiO2 -NPs formation. Comparative Fourier transformed infrared (FTIR) spectral analysis demonstrated that PACs linked functional -OH groups likely play a central role in Ti4+ reduction and nucleation to GSE-TiO2 -NPs, while forming a thin, soft corona around nascent NPs to attribute significantly enhanced stability and dispersity. Transmission electron microscopic (TEM) and inductively coupled plasma mass-spectroscopy (ICP-MS) analyses confirmed there was significantly (p<0.05) enhanced intracellular uptake of GSE-TiO2 -NPs in both Gram-negative and -positive test uropathogens as compared to bare TiO2 -NPs. Correspondingly, compared to bare NPs, GSE-TiO2 -NPs induced intracellular ROS formation that corresponded well with dose-dependent inhibitory patterns of cell proliferation and biofilm formation in both the tested strains. Overall, this study demonstrates that -OH rich PACs of GSE corona on biogenic TiO2 -NPs maximized the functional stability, dispersity and propensity of penetration into planktonic cells and biofilm matrices. Such unique merits warrant the use of GSE-TiO2 -NPs as a novel, functionally stable and efficient antibacterial nano-formulation to combat the menace of UTIs in clinical settings.
Collapse
Affiliation(s)
- Mohammad N Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11451, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| |
Collapse
|
29
|
Aloe Vera-Mediated Te Nanostructures: Highly Potent Antibacterial Agents and Moderated Anticancer Effects. NANOMATERIALS 2021; 11:nano11020514. [PMID: 33670538 PMCID: PMC7922676 DOI: 10.3390/nano11020514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Cancer and antimicrobial resistance to antibiotics are two of the most worrying healthcare concerns that humanity is facing nowadays. Some of the most promising solutions for these healthcare problems may come from nanomedicine. While the traditional synthesis of nanomaterials is often accompanied by drawbacks such as high cost or the production of toxic by-products, green nanotechnology has been presented as a suitable solution to overcome such challenges. In this work, an approach for the synthesis of tellurium (Te) nanostructures in aqueous media has been developed using aloe vera (AV) extracts as a unique reducing and capping agent. Te-based nanoparticles (AV-TeNPs), with sizes between 20 and 60 nm, were characterized in terms of physicochemical properties and tested for potential biomedical applications. A significant decay in bacterial growth after 24 h was achieved for both Methicillin-resistant Staphylococcus aureus and multidrug-resistant Escherichia coli at a relative low concentration of 5 µg/mL, while there was no cytotoxicity towards human dermal fibroblasts after 3 days of treatment. AV-TeNPs also showed anticancer properties up to 72 h within a range of concentrations between 5 and 100 µg/mL. Consequently, here, we present a novel and green approach to produce Te-based nanostructures with potential biomedical applications, especially for antibacterial and anticancer applications.
Collapse
|
30
|
Ansari MA, Asiri SMM, Alzohairy MA, Alomary MN, Almatroudi A, Khan FA. Biofabricated Fatty Acids-Capped Silver Nanoparticles as Potential Antibacterial, Antifungal, Antibiofilm and Anticancer Agents. Pharmaceuticals (Basel) 2021; 14:139. [PMID: 33572296 PMCID: PMC7915658 DOI: 10.3390/ph14020139] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
The current study demonstrates the synthesis of fatty acids (FAs) capped silver nanoparticles (AgNPs) using aqueous poly-herbal drug Liv52 extract (PLE) as a reducing, dispersing and stabilizing agent. The NPs were characterized by various techniques and used to investigate their potent antibacterial, antibiofilm, antifungal and anticancer activities. GC-MS analysis of PLE shows a total of 37 peaks for a variety of bio-actives compounds. Amongst them, n-hexadecanoic acid (21.95%), linoleic acid (20.45%), oleic acid (18.01%) and stearic acid (13.99%) were found predominately and most likely acted as reducing, stabilizing and encapsulation FAs in LIV-AgNPs formation. FTIR analysis of LIV-AgNPs shows some other functional bio-actives like proteins, sugars and alkenes in the soft PLE corona. The zone of inhibition was 10.0 ± 2.2-18.5 ± 1.0 mm, 10.5 ± 2.5-22.5 ± 1.5 mm and 13.7 ± 1.0-16.5 ± 1.2 against P. aeruginosa, S. aureus and C. albicans, respectively. LIV-AgNPs inhibit biofilm formation in a dose-dependent manner i.e., 54.4% ± 3.1%-10.12% ± 2.3% (S. aureus), 72.7% ± 2.2%-23.3% ± 5.2% (P. aeruginosa) and 85.4% ± 3.3%-25.6% ± 2.2% (C. albicans), and SEM analysis of treated planktonic cells and their biofilm biomass validated the fitness of LIV-AgNPs in future nanoantibiotics. In addition, as prepared FAs rich PLE capped AgNPs have also exhibited significant (p < 0.05 *) antiproliferative activity against cultured HCT-116 cells. Overall, this is a very first demonstration on employment of FAs rich PLE for the synthesis of highly dispersible, stable and uniform sized AgNPs and their antibacterial, antifungal, antibiofilm and anticancer efficacy.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sarah Mousa Maadi Asiri
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Mohammad A. Alzohairy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia;
| | - Mohammad N. Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11451, Saudi Arabia;
| | - Ahmad Almatroudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia;
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| |
Collapse
|
31
|
Begum I, Ameen F, Soomro Z, Shamim S, AlNadhari S, Almansob A, Al-Sabri A, Arif A. Facile fabrication of malonic acid capped silver nanoparticles and their antibacterial activity. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2021; 33:101231. [DOI: 10.1016/j.jksus.2020.101231] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
32
|
Green synthesis, antimicrobial, antibiofilm and antitumor activities of superparamagnetic γ-Fe 2O 3 NPs and their molecular docking study with cell wall mannoproteins and peptidoglycan. Int J Biol Macromol 2020; 171:44-58. [PMID: 33373634 DOI: 10.1016/j.ijbiomac.2020.12.162] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Fatty acids-assisted superparamagnetic maghemite (γ-Fe2O3) NPs was biologically synthesized using extract of polyherbal drug Liv52 (L52E). The NPs were characterized by UV-vis spectroscopy, FT-IR, SEM, TEM, EDX, XRD and VSM. The major biological molecules present in L52E analysed by GC-MS were saturated fatty acids (palmitic acid 21.95%; stearic acid 13.99%; myristic acid 1.14%), monounsaturated fatty acid (oleic acid 18.43%), polyunsaturated fatty acid (linoleic acid 20.45%), and aromatic phenol (cardanol monoene 11.92%) that could imply in bio-fabrication and stabilization of γ-Fe2O3 NPs. The FT-IR spectra revealed involvement of carboxylic group of fatty acids, amide group of proteins and hydroxyl group of phenolic compounds that acts as reducing and capping agents. The synthesized NPs were used to investigate their antimicrobial, antibiofilm activity against P. aeruginosa, MRSA and C. albicans and anticancer activity on colon cancer cells (HCT-116) for biomedical applications. Further, molecular docking study was performed to explore the interaction of Fe2O3 NPs with major cell wall components i.e., peptidoglycan and mannoproteins. The docking studies revealed that Fe2O3 interacted efficiently with peptidoglycan and mannoproteins and Fe2O3 get accommodated into catalytic cleft of mannoprotein. Due to magnetic property, the biological activity of γ-Fe2O3 can be further enhanced by applying external magnetic field alone or in amalgamation with other therapeutics drugs.
Collapse
|
33
|
Anti-cancer efficacy of Aloe vera capped hematite nanoparticles in human breast cancer (MCF-7) cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Das S, Barman S, Teron R, Bhattacharya SS, Kim KH. Secondary metabolites and anti-microbial/anti-oxidant profiles in Ocimum spp.: Role of soil physico-chemical characteristics as eliciting factors. ENVIRONMENTAL RESEARCH 2020; 188:109749. [PMID: 32531524 DOI: 10.1016/j.envres.2020.109749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/23/2020] [Accepted: 05/26/2020] [Indexed: 05/27/2023]
Abstract
Ocimum has long been used as a medicinal plant, although little information is available about its bioactive ingredients, and the influence of soil properties on modulation of secondary metabolites in Ocimum has yet to be ascertained. In this study, we present a thorough survey of all potential metabolic compounds in O. sanctum and O. basilicum. In both species, certain compounds (e.g., quercetin, kaempferol, catechin, and S-adenosyl homocysteine) were detected coincidently. In the case of O. basilicum, other vital phenolic acids (e.g., ursolic, vanilic, coumaric, and syringic acids) were identified. The aqueous extracts (AEs) of Ocimum recorded decrease of 6-94% in the proliferation of pathogenic bacteria (e.g., Listeria monocytogenes, Staphylococcus sp., Salmonella sp., and Bacillus sp.). The AEs also showed effective antioxidant activity by reducing free radicals by a factor of 1.04-1.13. Root-zone soil samples of both Ocimum spp. were collected from strategic locations with varying levels of key soil attributes (e.g., soil organic carbon (SOC), microbial biomass carbon (MBC), urease, and phosphatase). At high levels of SOC, MBC, and soil enzymes, the bioactivity of Ocimum spp. was observed to be promoted, especially with respect to secondary metabolite expression, anti-pathogenic activity, and anti-oxidant properties. As such, the findings of strong correlations between secondary metabolite concentrations and bioactivity attributes in Ocimum suggest the potent role of soil quality in eliciting the production of secondary metabolite in association with bioactivity in Ocimum spp.
Collapse
Affiliation(s)
- Subhasish Das
- Department of Environmental Science, Pachhunga University College, Mizoram University, Aizawl, 796001, India.
| | - Soma Barman
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur, 784 028, India
| | - Rangbamon Teron
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur, 784 028, India
| | - Satya Sundar Bhattacharya
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur, 784 028, India.
| | - Ki-Hyun Kim
- Dept. of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
35
|
Irreversible disruption of the cytoskeleton as induced by non-cytotoxic exposure to titanium dioxide nanoparticles in lung epithelial cells. Chem Biol Interact 2020; 323:109063. [PMID: 32224134 DOI: 10.1016/j.cbi.2020.109063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
Exposure to TiO2 NPs induces several cellular alterations after NPs uptake including disruption of cytoskeleton that is crucial for lung physiology but is not considered as a footprint of cell damage. We aimed to investigate cytoskeleton disturbances and the impact on cell migration induced by an acute TiO2 NPs exposure (24 h) and the recovery capability after 6 days of NPs-free treatment, which allowed investigating if cytoskeleton damage was reversible. Exposure to TiO2 NPs (10 μg/cm2) for 24 h induced a decrease 20.2% and 25.1% in tubulin and actin polymerization. Exposure to TiO2 NPs (10 μg/cm2) for 24 h followed by 6 days of NPs-free had a decrease of 26.6% and 21.3% in tubulin and actin polymerization, respectively. The sustained exposure for 7 days to 1 μg/cm2 and 10 μg/cm2 induced a decrease of 22.4% and 30.7% of tubulin polymerization respectively, and 28.7% and 46.2% in actin polymerization. In addition, 24 h followed 6 days of NPs-free exposure of TiO2 NPs (1 μg/cm2 and 10 μg/cm2) decreased cell migration 40.7% and 59.2%, respectively. Cells exposed (10 μg/cm2) for 7 days had a decrease of 65.5% in cell migration. Ki67, protein surfactant B (SFTPB) and matrix metalloprotease 2 (MMP2) were analyzed as genes related to lung epithelial function. The results showed a 20% of Ki67 upregulation in cells exposed for 24 h to 10 μg/cm2 TiO2 NPs while a downregulation of 20% and 25.8% in cells exposed to 1 μg/cm2 and 10 μg/cm2 for 24 h followed by 6 days of NPs-free exposure. Exposure to 1 μg/cm2 and 10 μg/cm2 for 24 h and 7 days upregulates SFTPB expression in 53% and 59% respectively, MMP2 expression remain unchanged. In conclusion, exposure of TiO2 NPs affected cytoskeleton of lung epithelial cells irreversibly but this damage was not cumulative.
Collapse
|
36
|
Haider A, Ijaz M, Ali S, Haider J, Imran M, Majeed H, Shahzadi I, Ali MM, Khan JA, Ikram M. Green Synthesized Phytochemically (Zingiber officinale and Allium sativum) Reduced Nickel Oxide Nanoparticles Confirmed Bactericidal and Catalytic Potential. NANOSCALE RESEARCH LETTERS 2020; 15:50. [PMID: 32124107 PMCID: PMC7052104 DOI: 10.1186/s11671-020-3283-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/18/2020] [Indexed: 05/12/2023]
Abstract
Phyto-synthesized nanoparticles (NPs) having reduced chemical toxicity have been focused globally and become essential component of nanotechnology recently. We prepared green phytochemically (ginger and garlic) reduced NiO-NPs to replace synthetic bactericidal and catalytic agent in textile industry. NPs were characterized using ultra-violet visible spectroscopy (UV-Vis), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The synthesis of NPs was confirmed by XRD and UV-Vis having strong absorption at 350 nm with size ranged between 16-52 nm for ginger and 11-59 nm for garlic. Scanning and transmission electron microscopy confirmed pleomorphism with cubic- and more spherical-shaped NPs. Moreover, exact quantities of garlic and ginger extracts (1:3.6 ml) incorporated to synthesize NiO-NPs have been successfully confirmed by FTIR. Phytochemically reduced NPs by garlic presented enhanced bactericidal activity against multiple drug-resistant Staphylococcus aureus at increasing concentrations (0.5, 1.0 mg/50 μl) and also degraded methylene blue (MB) dye efficiently. Conclusively, green synthesized NiO-NPs are impending activists to resolve drug resistance as well as environment friendly catalytic agent that may be opted at industrial scale.
Collapse
Affiliation(s)
- Ali Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Punjab, 54000, Pakistan
| | - Muhammad Ijaz
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Punjab, 54000, Pakistan.
| | - Sidra Ali
- Department of Gynaecology& Obstetric (Unit -III), Jinnah Hospital, Lahore, Punjab, 54000, Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Muhammad Imran
- State key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hamid Majeed
- Department of Food Sciences, Cholistan University of Veterinary and Animal Sciences, Near DHA663100, Bahawalpur, Pakistan
| | - Iram Shahzadi
- University College of Pharmacy, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and animal sciences, Lahore, Punjab, 54000, Pakistan
| | - Jawaria Ali Khan
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Punjab, 54000, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University, Lahore, Punjab, 54000, Pakistan.
| |
Collapse
|
37
|
Yılmaz Öztürk B, Yenice Gürsu B, Dağ İ. Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Myristica fragrans bio-active ester functionalized ZnO nanoparticles exhibit antibacterial and antibiofilm activities in clinical isolates. J Microbiol Methods 2019; 166:105716. [PMID: 31499093 DOI: 10.1016/j.mimet.2019.105716] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
We provide a novel one-step/one-pot bio-inspired method of synthesis for Myristica fragrans leaf ester (MFLE) capped‑zinc oxide nanoparticles (MFLE-ZnONPs). Antibacterial and antbiofilm efficacies of MFLE-ZnONPs were tested against the multi-drug resistant (MDR) Escherichia coli (E. coli-336), methicillin-resistant Staphylococcus aureus (MRSA-1) and methicillin-sensitive (MSSA-2) clinical isolates. Antibacterial screening using well diffusion assay revealed the cytotoxicity of MFLE-ZnONPs in the range of 500-2000 μg/ml. MFLE-ZnONPs significantly increased the zone of growth inhibition of E. coli-336 (17.0 ± 0.5 to 19.25 ± 1.0 mm), MSSA-2 (16.75 ± 0.8 to 19.0 ± 0.7 mm) and MRSA-1 (16.25 ± 1.0 to 18.25 ± 0.5 mm), respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentrations (MBC) against E. coli-336, MRSA-1 and MSSA-2 were found to be 1500, 1000 and 500 μg/ml, and 2500, 2000 and 1500 μg/ml, respectively. A time and dose dependent reduction in the cell proliferation were also found at the respective MICs of tested strains. Scanning electron microscopy (SEM) of MFLE-ZnONPs-treated strains exhibited cellular damage via loss of native rod and coccoid shapes because of the formation of pits and cavities. E. coli-336 and MRSA-1 strains at their MICs (1500 and 1000 μg/ml) sharply reduced the biofilm production to 51% and 24%. The physico-chemical characterization via x-ray diffraction (XRD) ascertained the crystallinity and an average size of MFLE-ZnONPs as 48.32 ± 2.5 nm. Gas chromatography-mass spectroscopy (GC-MS) analysis of MFLE-ZnONPs unravelled the involvement of two bio-active esters (1) butyl 3-oxobut-2-yl ester and (2) α-monoolein) as surface capping/stabilizing agents. Fourier transform infrared (FTIR) analysis of MFLE and MFLE-ZnONPs showed the association of amines, alkanes, aldehydes, amides, carbonyl and amines functional groups in the corona formation. Overall, our data provide novel insights on the rapid development of eco-friendly, cost-effective bio-synthesis of MFLE-ZnONPs, showing their putative application as nano-antibiotics against MDR clinical isolates.
Collapse
|
39
|
Gebre SH, Sendeku MG. New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0931-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
40
|
Ahmed B, Solanki B, Zaidi A, Khan MS, Musarrat J. Bacterial toxicity of biomimetic green zinc oxide nanoantibiotic: insights into ZnONP uptake and nanocolloid-bacteria interface. Toxicol Res (Camb) 2019; 8:246-261. [PMID: 30997024 PMCID: PMC6417486 DOI: 10.1039/c8tx00267c] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022] Open
Abstract
This study was aimed to fill the critical gap of knowledge regarding the interaction between green zinc oxide nanoparticles (ZnONPs) and bacterial interface. Wurtzite phase ZnONPs with a band gap energy of 3.28 eV were produced by exploiting a simple and green biosynthesis method using an inexpensive precursor of A. indica leaf extract and zinc nitrate. ZnONPs were characterized using UV-Vis spectroscopy, XRD, FTIR, SEM, EDX, DLS, TEM, and zeta-potential analysis. The primary size obtained was 26.3 nm (XRD) and 33.5 ± 6.5 nm (TEM), whereas, the secondary size was found to be 287 ± 5.2 nm with -32.8 ± 1.8 mV ζ-potential denoting the physical colloid chemistry of ZnONPs. Crystallinity and the spherical morphology of ZnONPs were also evident with some sort of particle agglomeration. ZnONPs retained plant functional groups endorsing their hydrophilic character. The antibacterial and antibiofilm activity of ZnONPs was significant (p ≤ 0.05) and the MIC/MBC against most frequent clinical isolates of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus ranged from 0.5 to 1.0 (MIC)/1.0 to 1.5 mg ml-1 (MBC). The dissolution of ZnONPs to Zn2+ ions in a nutrient medium increased as a result of interaction with the bacterial surface and metabolites. Substantial surface binding of ZnONPs followed by intracellular uptake disrupted the cell morphology and caused obvious injury to the cell membrane. Interrupted bacterial growth kinetics, loss of cell respiration, enhanced production of intracellular ROS, and the leakage of the cytoplasmic content unequivocally suggested a strong interaction of ZnONPs with the exterior cell surface and intracellular components, eventually leading to cell death and destruction of biofilms. Overall, the results elucidated eco-friendly production of ZnONPs expressing a prominent interfacial correlation with bacteria and hence, prospecting the use of green ZnONPs as effective nanoantibiotics.
Collapse
Affiliation(s)
- Bilal Ahmed
- Department of Agricultural Microbiology , Aligarh Muslim University , Aligarh , India . ; Tel: +91-9045836145
| | - Bushra Solanki
- Department of Agricultural Microbiology , Aligarh Muslim University , Aligarh , India . ; Tel: +91-9045836145
| | - Almas Zaidi
- Department of Agricultural Microbiology , Aligarh Muslim University , Aligarh , India . ; Tel: +91-9045836145
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology , Aligarh Muslim University , Aligarh , India . ; Tel: +91-9045836145
| | - Javed Musarrat
- Department of Agricultural Microbiology , Aligarh Muslim University , Aligarh , India . ; Tel: +91-9045836145
| |
Collapse
|