1
|
Favot-Laforge L, Muzotte E, Mahfouf W, Rambert J, Cario M, Moisan F, Dousset L, Rezvani HR. Immune signatures across different stages of cutaneous squamous cell carcinoma. J Dermatol Sci 2025:S0923-1811(25)00038-6. [PMID: 40175187 DOI: 10.1016/j.jdermsci.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/21/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Affiliation(s)
- Laure Favot-Laforge
- Université de Poitiers, Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Poitiers, France
| | | | | | | | | | | | - Lea Dousset
- Univ. Bordeaux, INSERM, BRIC, Bordeaux, France
| | - Hamid-Reza Rezvani
- Univ. Bordeaux, INSERM, BRIC, Bordeaux, France; Aquiderm, Univ. Bordeaux, Bordeaux, France.
| |
Collapse
|
2
|
Dousset L, Mahfouf W, Younes H, Fatrouni H, Faucheux C, Muzotte E, Khalife F, Rossignol R, Moisan F, Cario M, Claverol S, Favot-Laforge L, Nieminen AI, Vainio S, Ali N, Rezvani HR. Energy metabolism rewiring following acute UVB irradiation is largely dependent on nuclear DNA damage. Free Radic Biol Med 2025; 227:459-471. [PMID: 39667588 DOI: 10.1016/j.freeradbiomed.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Solar ultraviolet B (UVB) radiation-induced DNA damage is a well-known initiator of skin carcinomas. The UVB-induced DNA damage response (DDR) involves series of signaling cascades that are activated to maintain cell integrity. Among the different biological processes, little is known about the role of energy metabolism in the DDR. We sought to determine whether UVB-induced nuclear and/or mitochondrial cyclobutane pyrimidine dimers (CPDs) alter cellular energy metabolism. To gain insight into this question, we took advantage of keratinocytes expressing nuclear or mitochondrial CPD photolyase. Applying a quantitative proteomic approach and targeted metabolomics, we observed biphasic alterations in multiple metabolic pathways and in the abundance of various metabolites, largely influenced by the presence of genomic CPDs. The heightened oxygen consumption rate post-irradiation, along with mitochondrial structural rearrangements, was found to be dependent on both mitochondrial and nuclear CPDs. Understanding the influence of nuclear and mitochondrial DNA damage on keratinocyte responses to UVB irradiation deepens current knowledge regarding skin cancer prevention, initiation, and therapy.
Collapse
Affiliation(s)
- Léa Dousset
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France; Dermatology Department, Hôpital Saint-André, Bordeaux, France
| | - Walid Mahfouf
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Hadi Younes
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Hala Fatrouni
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Corinne Faucheux
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Elodie Muzotte
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Ferial Khalife
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Rodrigue Rossignol
- Univ. Bordeaux, Inserm, MRGM, U1211, Bordeaux, France; CELLOMET, Centre de Génomique Fonctionnelle de Bordeaux, Univ. Bordeaux, Bordeaux, France
| | - François Moisan
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Muriel Cario
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France; Aquiderm, University of Bordeaux, Bordeaux, France
| | | | | | - Anni I Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, 00014, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, University of Oulu, Oulu, Finland
| | - Nsrein Ali
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, University of Oulu, Oulu, Finland
| | - Hamid-Reza Rezvani
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France; Aquiderm, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
3
|
Tabari MA, Houshyar M, Araghi A, Mirzakhani N, Crescenzo G, Cardone R, Zizzadoro C. Nephroprotective and hepatoprotective effects of lemongrass essential oil and citral on diclofenac-induced toxicity in mice. Biomed Pharmacother 2024; 180:117541. [PMID: 39413620 DOI: 10.1016/j.biopha.2024.117541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The present study was carried out to evaluate and compare the protective potential of two well-known antioxidants of herbal origin in a mouse model of acute DIC-induced nephro- and hepatotoxicity. The tested antioxidants included lemongrass essential oil (LO) and its predominant bioactive constituent citral (CIT). A third herbal product, silymarin (SILY), was used as a reference hepato-renal protective agent. DIC administration led to elevated serum urea and creatinine levels, and prompted oxidative stress along with histopathological changes in the kidney tissue. In parallel, DIC administration increased serum liver enzyme activity, decreased total protein, albumin, and globulin levels, and caused oxidative stress with associated histopathological changes in the liver tissue. Pre-treatment with LO or CIT mitigated DIC-induced alterations in all serum biochemical markers of kidney and liver health (except albumin). High-dose LO, like SILY, within kidney and liver tissues, counteracted DIC-induced oxidative stress and histomorphological alterations. By contrast, CIT failed to mitigate DIC-induced oxidative stress in the kidneys and provided only partial control of DIC-induced oxidative stress in the liver, resulting in less efficient preservation of kidney function and liver structural integrity than LO. Besides confirming the efficacy of SILY at protecting kidneys and liver against the toxicity of DIC in a rodent species different from the one tested so far (rat), this study demonstrated the preventive properties of LO and, to a lesser extent, of CIT against DIC-induced hepato-renal toxicity in mice, supporting their developmental potential as therapeutics.
Collapse
Affiliation(s)
- Mohaddeseh Abouhosseini Tabari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran.
| | - Masoumeh Houshyar
- Faculty of Veterinary Medicine, Babol Branch, Islamic Azad University, Babol, Iran
| | - Atefeh Araghi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran.
| | - Navideh Mirzakhani
- Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran.
| | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Bari, Italy.
| | - Roberta Cardone
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Bari, Italy.
| | - Claudia Zizzadoro
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Bari, Italy.
| |
Collapse
|
4
|
Yu ZW, Zheng M, Fan HY, Liang XH, Tang YL. Ultraviolet (UV) radiation: a double-edged sword in cancer development and therapy. MOLECULAR BIOMEDICINE 2024; 5:49. [PMID: 39417901 PMCID: PMC11486887 DOI: 10.1186/s43556-024-00209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
It has long been widely acknowledged that ultraviolet (UV) light is an environment risk factor that can lead to cancer, particularly skin cancer. However, it is worth noting that UV radiation holds potential for cancer treatment as a relatively high-energy electromagnetic wave. With the help of nanomaterials, the role of UV radiation has caught increasing attention in cancer treatment. In this review, we briefly summarized types of UV-induced cancers, including malignant melanoma, squamous cell carcinoma, basal cell carcinoma, Merkel cell carcinoma. Importantly, we discussed the primary mechanisms underlying UV carcinogenesis, including mutations by DNA damage, immunosuppression, inflammation and epigenetic alterations. Historically limited by its shallow penetration depth, the introduction of nanomaterials has dramatically transformed the utilization of UV light in cancer treatment. The direct effect of UV light itself generally leads to the suppression of cancer cell growth and the initiation of apoptosis and ferroptosis. It can also be utilized to activate photosensitizers for reactive oxygen species (ROS) production, sensitize radiotherapy and achieve controlled drug release. Finally, we comprehensively weigh the significant risks and limitations associated with the therapeutic use of UV radiation. And the contradictory effect of UV exposure in promoting and inhibiting tumor has been discussed. This review provides clues for potential clinical therapy as well as future study directions in the UV radiation field. The precise delivery and control of UV light or nanomaterials and the wavelength as well as dose effects of UV light are needed for a thorough understanding of UV radiation.
Collapse
Affiliation(s)
- Zhen-Wei Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Hua-Yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
5
|
Srivastava G, Mukherjee E, Mittal R, Ganjewala D. Geraniol and citral: recent developments in their anticancer credentials opening new vistas in complementary cancer therapy. Z NATURFORSCH C 2024; 79:163-177. [PMID: 38635829 DOI: 10.1515/znc-2023-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
About 10 million people are diagnosed with cancer each year. Globally, it is the second leading cause of death after heart disease, and by 2035, the death toll could reach 14.6 million. Several drugs and treatments are available to treat cancer, but survival rates remain low. Many studies in recent years have shown that plant-derived monoterpenes, particularly geraniol and citral, are effective against various cancers, including breast, liver, melanoma, endometrial, colon, prostate, and skin cancers. This trend has opened new possibilities for the development of new therapeutics or adjuvants in the field of cancer therapy. These monoterpenes can improve the efficacy of chemotherapy by modulating many signaling molecules and pathways within tumors. Analysis of reports on the anticancer effects published in the past 5 years provided an overview of the most important results of these and related properties. Also, the molecular mechanisms by which they exert their anticancer effects in cell and animal studies have been explained. Therefore, this review aims to highlight the scope of geraniol and citral as complementary or alternative treatment options in cancer therapy.
Collapse
Affiliation(s)
- Gauri Srivastava
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| | - Esha Mukherjee
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| | - Ruchika Mittal
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| | - Deepak Ganjewala
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| |
Collapse
|
6
|
Kerche LE, Carrara IM, Marinello PC, Cavalcante DGSM, Danna CS, Cecchini R, Cecchini AL, Job AE. Antioxidant and photoprotective role of latex C-serum from Hevea brasiliensis during 15-week UVB irradiation in male hairless SKH-1 mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:846-858. [PMID: 37671816 DOI: 10.1080/15287394.2023.2255885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
It is known that UVB radiation induces several adverse skin alterations starting from simple photoaging to skin cancer. In addition, it was demonstrated that reactive oxygen species (ROS) were found to be related to cancer development and progression. The aim of study was to examine whether male hairless (SKH-1) mice (Mus musculus) that were subchronically exposed to UVB radiation presented with actinic keratosis (AK) and squamous cell carcinoma lesions, and that treatment with latex C-serum cream significantly prevented abnormal skin development. Data demonstrated for the first time the photoprotective activity of latex C-serum extracted from the rubber tree Hevea brasiliensis var. subconcolor Ducke. Latex C-serum prevented the progression of AK to squamous cell carcinoma in SKH-1 mice, indicating that mice topically treated with latex C-serum presented only AK lesions and treatment with the highest concentration (10%) significantly reduced epidermal thickness, suggesting diminished cell proliferation. Latex C-serum protected the skin of mice against oxidative stress damage, increasing catalase (CAT) activity, regenerating glutathione (GSH) levels, lowering thiobarbituric acid-reactive species (TBARS) production and regenerating the total antioxidant capacity (TAC) of the skin. Evidence that UV radiation in skin induced systemic alterations and erythrocytic analysis indicated that latex C-serum increased CAT activity and GSH levels. Taken together these data indicate that latex C-serum plays an important antioxidant and photoprotective role, preventing serious damage to the skin following exposure to UVB radiation.
Collapse
Affiliation(s)
- Leandra E Kerche
- Department of Physics, Chemistry and Biology, São Paulo State University, Presidente Prudente, SP, Brazil
- Department of Physiological Sciences, Western São Paulo University, Presidente Prudente, SP, Brazil
| | - Iriana M Carrara
- Department of General Pathology, Londrina State University, Londrina, PR, Brazil
| | - Poliana C Marinello
- Department of General Pathology, Londrina State University, Londrina, PR, Brazil
| | - Dalita G S M Cavalcante
- Department of Physics, Chemistry and Biology, São Paulo State University, Presidente Prudente, SP, Brazil
| | - Caroline S Danna
- Department of Physics, Chemistry and Biology, São Paulo State University, Presidente Prudente, SP, Brazil
| | - Rubens Cecchini
- Department of General Pathology, Londrina State University, Londrina, PR, Brazil
| | | | - Aldo E Job
- Department of Physics, Chemistry and Biology, São Paulo State University, Presidente Prudente, SP, Brazil
| |
Collapse
|
7
|
Lu W, Kong C, Cheng S, Xu X, Zhang J. Succinoglycan riclin relieves UVB-induced skin injury with anti-oxidant and anti-inflammatory properties. Int J Biol Macromol 2023; 235:123717. [PMID: 36806772 DOI: 10.1016/j.ijbiomac.2023.123717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Excessive UVB exposure increases the production of reactive oxygen species (ROS), which causes oxidative damage and epidermal inflammation. Previous studies have identified that the succinoglycan riclin has potent anti-inflammatory properties. The current study aims to investigate whether riclin protects against UVB-induced photodamage. In vitro, riclin demonstrated excellent moisture-preserving properties, along with antioxidant potential by scavenging superoxide anions, hydroxyl and DPPH radicals. Riclin increased Col1α1 and Col3α1 expression in NIH3T3 cells, inhibited oxidation and melanin synthesis by B16F10 cells upon UVB irradiation. In vivo, topical application of riclin effectively attenuated UVB-induced skin damage in C57BL6 mice, which was characterized by erythema, epidermal hyperplasia, hydroxyproline loss and ROS production in skin tissue. Riclin suppressed skin inflammation by the elevation of TNF-α, IL-6, IL-β, and alleviated UVB-induced immune cell up-regulation. Moreover, treatment with a Dectin-1 inhibitor reversed the protective effect of riclin in THP-1 cells.
Collapse
Affiliation(s)
- Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Shijunyin Cheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
8
|
Choi J, Bordeaux ZA, Braun G, Davis C, Parthasarathy V, Deng J, Taylor MT, Kambala A, Cornman H, Oladipo O, Alphonse MP, West CE, Kwatra SG, Kwatra MM. Construction of a Secondary Enclosure for UVB Irradiation of Mice. JID INNOVATIONS 2022; 3:100107. [PMID: 36704704 PMCID: PMC9872852 DOI: 10.1016/j.xjidi.2022.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023] Open
Abstract
UV irradiation is commonly used in murine models of skin cancers. Despite the popularity of using UVB rays to model photocarcinogenesis in animals, there is a lack of standardization in the secondary enclosures used to administer radiation. An appraisal of the literature also shows a general lack of details regarding the materials and procedures utilized in the fabrication of such enclosures. We present in this study a detailed overview of the construction of a UVB exposure chamber that successfully induces lesions in hairless mice. A standardized protocol for producing a UVB enclosure may reduce methodological variation in future studies seeking to investigate photocarcinogenesis in animals.
Collapse
Affiliation(s)
- Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Zachary A. Bordeaux
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gabriella Braun
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cole Davis
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Varsha Parthasarathy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Junwen Deng
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mathew T. Taylor
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anusha Kambala
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hannah Cornman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Olusola Oladipo
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Shawn G. Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Correspondence: Shawn G. Kwatra, Department of Dermatology, Johns Hopkins University School of Medicine, Suite 206, Cancer Research Building II, 1550 Orleans Street, Baltimore, Maryland 21231, USA.
| | - Madan M. Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA,Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
9
|
Liu S, Li S, Ho CT. Dietary bioactives and essential oils of lemon and lime fruits. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Hong J, Mu T, Sun H, Blecker C, Richel A. Photoprotective effects of sweet potato leaf polyphenols and caffeic acid against UV-induced skin-damage in BALB/C nude mice. Food Funct 2022; 13:7075-7087. [PMID: 35695741 DOI: 10.1039/d2fo00425a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed at clarifying the mechanism by which sweet potato leaf polyphenols (SPLPs) ameliorate ultraviolet (UV) radiation damage, using the BALB/c hairless female mouse model. The moisture and hydroxyproline (HYP) contents of the model mouse skin and the thickness of the epidermis and dermis were determined by staining and histological examination. Anti-oxidative enzyme activities, malondialdehyde (MDA) content, and protein carbonyl content in skin tissue and serum were investigated. Expression of inflammatory markers and mitogen-activated protein kinase signaling pathways were evaluated. Topical caffeic acid at 30 mg kg-1 most strongly inhibited the decrease in skin moisture, HYP content, and the thickening of the epidermis. Topical SPLP at 100 mg kg-1 most significantly inhibited the dermal thickening, increased the activities of the superoxide dismutase, catalase as well as glutathione peroxidase, and decreased the content of serum MDA and protein carbonyls markedly. Furthermore, the topical SPLP suppressed the UV-induced rise in the inflammatory markers MMP-1, TNF-α, and NF-κB, and alleviated phosphorylation levels of the stress-signaling proteins JNK and p38. Thus, topical SPLP provided the best overall protection for mouse skin from UV-induced damage.
Collapse
Affiliation(s)
- Jingyang Hong
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China. .,University of Liège, Gembloux Agro-Bio Tech, Department of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, Gembloux, Belgium.,University of Liège, Gembloux Agro-Bio Tech, Biological and Industrial Chemistry Unit, Passage des Déportés, 2, 5030 Gembloux, Belgium
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Christophe Blecker
- University of Liège, Gembloux Agro-Bio Tech, Department of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, Gembloux, Belgium
| | - Aurore Richel
- University of Liège, Gembloux Agro-Bio Tech, Biological and Industrial Chemistry Unit, Passage des Déportés, 2, 5030 Gembloux, Belgium
| |
Collapse
|
11
|
Silva GDSE, de Jesus Marques JN, Moreira Linhares EP, Bonora CM, Costa ÉT, Saraiva MF. Review of anticancer activity of monoterpenoids: Geraniol, nerol, geranial and neral. Chem Biol Interact 2022; 362:109994. [DOI: 10.1016/j.cbi.2022.109994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 01/18/2023]
|
12
|
Camponogara C, Oliveira SM. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103836. [PMID: 35248760 DOI: 10.1016/j.etap.2022.103836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Burn injuries are underappreciated injuries associated with substantial morbidity and mortality. Overexposure to ultraviolet (UV) radiation has dramatic clinical effects in humans and is a significant public health concern. Although the mechanisms underlying UVB exposure are not fully understood, many studies have made substantial progress in the pathophysiology of sunburn in terms of its molecular aspects in the last few years. It is well established that the transient receptor potential ankyrin 1 (TRPA1), and vanilloid 1 (TRPV1) channels modulate the inflammatory, oxidative, and proliferative processes underlying UVB radiation exposure. However, it is still unknown which mechanisms underlying TRPV1/A1 channel activation are elicited in sunburn induced by UVB radiation. Therefore, in this review, we give an overview of the TRPV1/A1 channel-mediated signalling cascades that may be involved in the pathophysiology of sunburn induced by UVB radiation. These data will undoubtedly help to explain the various features of sunburn and contribute to the development of novel therapeutic approaches to better treat it.
Collapse
Affiliation(s)
- Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
13
|
Ortiz MI, Cariño-Cortés R, Muñoz Pérez VM, Medina-Solís CE, Castañeda-Hernández G. Citral inhibits the nociception in the rat formalin test: Effect of metformin and blockers of opioid receptor and the NO-cGMP-K+ channel pathway. Can J Physiol Pharmacol 2021; 100:306-313. [PMID: 34826228 DOI: 10.1139/cjpp-2021-0458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of the present study was to scrutinize the effect of nitric oxide (NO), cGMP, potassium channel blockers and metformin on the citral-produced peripheral antinociception. The rat paw 1% formalin test was used to assess nociception and antinociception. Rats were treated with local peripheral administration of citral (10-100 µg/paw). The antinociception of citral (100 µg/paw) was evaluated with and without the local pretreatment of naloxone, NG-L-nitro-arginine methyl ester (L-NAME, a NO synthesis inhibitor), 1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (ODQ, a soluble guanylyl cyclase inhibitor), metformin, opioid receptors antagonists, and K+ channel blockers. Injection of citral in the rat paw significantly decreased the nociceptive effect of formalin administration during the two phases of the test. Local pretreatment of the paws with L-NAME and ODQ did not reduced the citral-induced antinociception. Glipizide or glibenclamide (Kir6.1-2; ATP-sensitive K+ channel blockers), tetraethylammonium or 4-aminopyridine (KV; voltage-gated K+ channel blockers) or charybdotoxin (KCa1.1; big conductance calcium-activated K+ channel blocker) or apamin (KCa2.1-3; small conductance Ca2+-activated K+ channel antagonist), or metformin, but not the opioid antagonists, reduced the antinociception of citral. Citral produced peripheral antinociception during both phases of the formalin test. These effects were due to the activation of K+ channels and a biguanide-dependent mechanism.
Collapse
Affiliation(s)
- Mario I Ortiz
- Universidad Autonoma del Estado de Hidalgo, 27781, Área Académica de Medicina del Instituto de Ciencias de la Salud, Laboratorio de Farmacología, Dr. Eliseo Ramírez Ulloa 400, Col. Doctores, Pachuca, Hidalgo, Mexico, 42090;
| | - Raquel Cariño-Cortés
- Área Académica de Medicina del Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, Mexico, Pachuca, HIdalgo, Mexico;
| | - Victor Manuel Muñoz Pérez
- Autonomous University of Hidalgo State, 27781, Reproductive Biology, Eliseo Ramírez Ulloa 400, Doctores, Pachuca, Pachuca, Mexico, 42000.,Mexico;
| | - Carlo E Medina-Solís
- Universidad Autónoma del Estado de Hidalgo Instituto de Ciencias de la Salud, 103794, Pachuca, Hidalgo, Mexico;
| | - Gilberto Castañeda-Hernández
- Centro de Investigacion y de Estudios Avanzados del IPN, 42576, Department of Pharmacology, Ciudad de Mexico, Mexico, 07360;
| |
Collapse
|
14
|
Castillo CR, Alishahedani ME, Gough P, Chaudhary PP, Yadav M, Matriz J, Myles IA. Assessing the effects of common topical exposures on skin bacteria associated with atopic dermatitis. SKIN HEALTH AND DISEASE 2021; 1. [PMID: 34723253 PMCID: PMC8555759 DOI: 10.1002/ski2.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background While patients and families struggling with atopic dermatitis (AD) have documented concerns for a contributory role of skin care products in AD pathology, nearly all the skin microbiome studies to date have asked participants to avoid topical products (such as soaps or select medications) for the preceding days to weeks prior to sample collection. Thus, given the established role of the microbiome in AD, the interactions between topical exposures, dysbiosis and AD remains underrepresented in the academic literature. Objectives To address this knowledge gap, we expanded our previous evaluations to test the toxicological effects of a broader range of common chemicals, AD treatment lotions, creams and ointments using both health- and AD-associated strains of Roseomonas mucosa and Staphylococcus spp. Methods Use of in vitro culture techniques and mouse models were deployed to identify chemicals with dysbiotic or pre-biotic potential. A proof-of-concept study was subsequently performed in healthy volunteers to assess global microbiome shifts after exposure to select chemicals using dermatologic patch testing. Results Numerous chemicals possessed antibiotic properties, including many not marketed as anti-microbials. Through targeted combination of potentially beneficial chemicals, we identified combinations which promoted the growth of health-associated isolates over disease-associated strains in bacterial culture and enhanced microbe-specific outcomes in an established mouse model of AD; the most promising of which was the combination of citral and colophonium (often sold as lemon myrtle oil and pine tar). Additional studies would likely further optimize the combination of ingredients use. Similar results were seen in the proof-of-concept human studies. Conclusions Our results could offer a systematic, multiplex approach to identify which products carry dysbiotic potential and thus may guide formulation of new topicals to benefit patients with AD.
Collapse
Affiliation(s)
- C R Castillo
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - M E Alishahedani
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - P Gough
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - P P Chaudhary
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - M Yadav
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - J Matriz
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - I A Myles
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Xu Y, Huang X, Luo Q, Zhang X. MicroRNAs Involved in Oxidative Stress Processes Regulating Physiological and Pathological Responses. Microrna 2021; 10:164-180. [PMID: 34279211 DOI: 10.2174/2211536610666210716153929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
Oxidative stress influences several physiological and pathological cellular events, including cell differentiation, excessive growth, proliferation, apoptosis, and the inflammatory response. Therefore, oxidative stress is involved in the pathogenesis of various diseases, including pulmonary fibrosis, epilepsy, hypertension, atherosclerosis, Parkinson's disease, cardiovascular disease, and Alzheimer's disease. Recent studies have shown that several microRNAs (miRNAs) are involved in developing various diseases caused by oxidative stress and that miRNAs may be helpful to determine the inflammatory characteristics of immune responses during infection and disease. This review describes the known effects of miRNAs on reactive oxygen species to induce oxidative stress and the miRNA regulatory mechanisms involved in the uncoupling of Keap1-Nrf2 complexes. Finally, we summarized the functions of miRNAs in several antioxidant genes. Understanding the crosstalk between miRNAs and oxidative stress-inducing factors during physiological and pathological cellular events may have implications for designing more effective treatments for immune diseases.
Collapse
Affiliation(s)
- Yongjie Xu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Xunhe Huang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Morris JB. Review of Antimicrobial and Other Health Effects in 5 Essential Oil Producing Grass Species. J Diet Suppl 2021; 20:118-131. [PMID: 34219586 DOI: 10.1080/19390211.2021.1944422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The warm season essential oil producing grass species including lemongrass (Cymbopogon citratus), palmarosa grass (C. martini), geranium grass (C. schoenanthus), vetiver grass (Chrysopogon zizanioides), and scented top grass (Capillipedium parviflorum) are used worldwide for their cosmetic and health properties. A discussion providing evidence from literature reviews about the potential uses of these grass species for antimicrobial and other health uses are presented. These species could be used as new therapies for treating microbial infections. The purpose of this study is to discuss in detail, evidence from literature reviews supporting potential health uses and to provide some discussion regarding some agronomic traits for these essential oil producing species.
Collapse
Affiliation(s)
- John Bradley Morris
- United States Department of Agriculture, Agricultural Research Service, Plant Genetic Resources Conservation Unit, Griffin, GA, USA
| |
Collapse
|
17
|
Heat Treatment Improves UV Photoprotective Effects of Licorice in Human Dermal Fibroblasts. Processes (Basel) 2021. [DOI: 10.3390/pr9061040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
External stimulation of the skin by ultraviolet B (UVB) radiation induces oxidative stress or inflammation, causing skin aging and skin cancer. Glycyrrhiza uralensis (licorice) has been used as a medicinal plant for its antioxidant, anti-inflammatory, antiviral, antimicrobial, anticarcinogenic, and hepatoprotective properties. The present study analyzed the effects of thermal processing on the bioactivities of licorice. Heat-treated licorice (HL) extracts had better antioxidant and anti-inflammatory activities than non-treated licorice (NL) extract. HL extracts also had higher total phenol contents than NL extract. In particular, contents of isoliquiritigenin, an antioxidant and anti-inflammatory substance of licorice, increased in proportion to the skin-protection effects of HL extracts. Heat treatment increased the contents of phenolic compounds such as isoliquiritigenin in licorice extract, which improved the UV photoprotective effect of licorice in human dermal fibroblasts.
Collapse
|
18
|
Choi J, West CE, Roh YS, Sutaria N, Kwatra SG, Kwatra MM. Mouse models for actinic keratoses. J Pharmacol Toxicol Methods 2021; 110:107071. [PMID: 33933627 DOI: 10.1016/j.vascn.2021.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
Actinic keratoses (AKs) represent a premalignant skin condition due to chronic sun damage that dramatically increases in prevalence in the aging population. Currently, animal models of AKs utilize photocarcinogenesis, chemical carcinogens, or targeted gene modulation, and each method possesses unique strengths and weaknesses. Models using photodamage most comprehensively describe methods for preferentially selecting AK lesions, while replicating the pathogenesis of AKs with greater fidelity than models utilizing other carcinogenic methods. The following review of current murine models of AKs will aid in the selection of mouse models appropriate for future in vivo studies to test the efficacy of novel therapeutic agents for the treatment of AKs.
Collapse
Affiliation(s)
- Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | - Youkyung S Roh
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nishadh Sutaria
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
19
|
Sato Y, Fujimura T, Hidaka T, Lyu C, Tanita K, Matsushita S, Yamamoto M, Aiba S. Possible Roles of Proinflammatory Signaling in Keratinocytes Through Aryl Hydrocarbon Receptor Ligands for the Development of Squamous Cell Carcinoma. Front Immunol 2020; 11:534323. [PMID: 33178182 PMCID: PMC7596320 DOI: 10.3389/fimmu.2020.534323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) provides a deeper insight into the pathogenesis of cutaneous squamous cell carcinoma (cSCC). AhR ligands, such as 6-formylindolo[3,2-b] carbazole (FICZ), and 7,12-Dimethylbenz[a]anthracene (DMBA), constitute major substrates for the cytochrome P450 (CYP) family, and influence the expression of various cytokine genes, including IL-17 and IL-23-related genes via the AhR. On the other hand, proinflammatory cytokines could drive tumor progression through the TRAF-ERK5 signaling pathway in cSCC. From the above findings, we hypothesized that AhR ligands might enhance the mRNA expression of proinflammatory cytokines via the AhR, leading to the development of cSCC. The purpose of this study was to investigate (1) the immunomodulatory effects of FICZ and DMBA on normal human keratinocytes (NHKCs), focusing on IL-17, and related cytokines/chemokines (IL-23, IL-36γ, and CCL20), (2) the expression of these factors in AhR-dependent pathways using a two-stage chemically induced skin carcinogenesis mouse model, and (3) the expression of these factors in lesion-affected skin in cSCC. Both FICZ and DMBA augmented the expression of CYP1A1, p19, CCL20, and IL-36γ mRNA in NHKCs in vitro. Moreover, the mRNA expression of these proinflammatory factors, as well as IL-17, in mouse cSCC is significantly decreased in the AhR-(fl/fl) Krt5-(Cre) mice compared to wild type mice, leading to a decrease in the number of developed cSCC lesions. Furthermore, CCL20, IL-23, as well as IL-17, are detected in the lesion-affected skin of cSCC patients. Our study demonstrates a possible mechanism for the development of cSCC involving AhR-mediated signaling by epidermal keratinocytes and recruitment of Th17 cells.
Collapse
Affiliation(s)
- Yota Sato
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Hidaka
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chunbing Lyu
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kayo Tanita
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeto Matsushita
- Department of Dermato-Oncology/Dermatology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
20
|
Krishnan P, Sundaram J, Salam S, Subramaniam N, Mari A, Balaraman G, Thiruvengadam D. Citral inhibits N-nitrosodiethylamine-induced hepatocellular carcinoma via modulation of antioxidants and xenobiotic-metabolizing enzymes. ENVIRONMENTAL TOXICOLOGY 2020; 35:971-981. [PMID: 32302048 DOI: 10.1002/tox.22933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma (HCC) ranks the sixth position among various cancers worldwide. Recent research shows that natural and dietary compounds possess many therapeutic effects. Citral is a monoterpene aldehyde that contains geranial and neral. The present study was considered to study the role of citral against N-nitrosodiethylamine (NDEA)-induced HCC via modulation of antioxidants and xenobiotic-metabolizing enzymes in vivo. NDEA-alone-administered group II animals profoundly showed increased tumor incidence, reactive oxygen species, liver marker enzyme levels, serum bilirubin levels, tumor markers of carcinoembryonic antigen, α-fetoprotein, proliferative markers of argyrophilic nucleolar organizing regions, proliferating cell nuclear antigen (PCNA) expressions, phase I xenobiotic-metabolic enzymes and simultaneously decreased antioxidants, and phase II enzymes levels. Citral (100 mg/kg b.w.) treatment significantly reverted the levels in group III cancer-bearing animals when compared to group II cancer-bearing animals. In group IV animals, citral-alone administration did not produce any adverse effect during the experimental condition. Based on the results, citral significantly inhibits the hepatocellular carcinogenesis through restoring the antioxidants and phase II xenobiotic-enzyme levels; thereby, it strongly proves as an antiproliferative agent against rat HCC.
Collapse
Affiliation(s)
- Palanisamy Krishnan
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Jagan Sundaram
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Sharmila Salam
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Nirmala Subramaniam
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Ashok Mari
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | | | - Devaki Thiruvengadam
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| |
Collapse
|
21
|
Entrapment of Citrus limon var. pompia Essential Oil or Pure Citral in Liposomes Tailored as Mouthwash for the Treatment of Oral Cavity Diseases. Pharmaceuticals (Basel) 2020; 13:ph13090216. [PMID: 32872140 PMCID: PMC7557837 DOI: 10.3390/ph13090216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
This work aimed at developing a mouthwash based on liposomes loading Citrus limon var. pompia essential oil or citral to treat oropharyngeal diseases. Vesicles were prepared by dispersing phosphatidylcholine and pompia essential oil or citral at increasing amounts (12, 25 and 50 mg/mL) in water. Transparent vesicle dispersions were obtained by direct sonication avoiding the use of organic solvents. Cryogenic transmission electron microscopy (cryo-TEM) confirmed the formation of unilamellar, spherical and regularly shaped vesicles. Essential oil and citral loaded liposomes were small in size (~110 and ~100 nm, respectively) and negatively charged. Liposomes, especially those loading citral, were highly stable as their physico-chemical properties did not change during storage. The formulations were highly biocompatible against keratinocytes, were able to counteract the damages induced in cells by using hydrogen peroxide, and able to increase the rate of skin repair. In addition, liposomes loading citral at higher concentrations inhibited the proliferation of cariogenic bacterium.
Collapse
|
22
|
Hanuš LO, Hod Y. Terpenes/Terpenoids in Cannabis: Are They Important? Med Cannabis Cannabinoids 2020; 3:25-60. [PMID: 34676339 PMCID: PMC8489319 DOI: 10.1159/000509733] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
Cannabis sativa plant has not only cannabinoids as crucial compounds but also the other compounds that play important role as synergistic and/or entourage compound. Cannabis/hemp plant materials and essential oils were analyzed with the help of gas chromatography/mass spectrometry detector for the content of terpenes and terpenoids. The main terpenes/terpenoids and their abundance in the samples were evaluated. Results of this study will be helpful in the next evaluation of these compound in mixture with cannabinoids and their importance in medical treatment.
Collapse
Affiliation(s)
- Lumír Ondřej Hanuš
- Lumir Lab, Asana Bio Group Ltd., The Hadassah Medical Center, Hebrew University Biotechnology Park, Ein Kerem, Jerusalem, Israel
| | | |
Collapse
|
23
|
Ju J, Xie Y, Yu H, Guo Y, Cheng Y, Qian H, Yao W. Analysis of the synergistic antifungal mechanism of eugenol and citral. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109128] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Gonçalves ECD, Baldasso GM, Bicca MA, Paes RS, Capasso R, Dutra RC. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020; 25:E1567. [PMID: 32235333 PMCID: PMC7181184 DOI: 10.3390/molecules25071567] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Medicinal use of Cannabis sativa L. has an extensive history and it was essential in the discovery of phytocannabinoids, including the Cannabis major psychoactive compound-Δ9-tetrahydrocannabinol (Δ9-THC)-as well as the G-protein-coupled cannabinoid receptors (CBR), named cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R), both part of the now known endocannabinoid system (ECS). Cannabinoids is a vast term that defines several compounds that have been characterized in three categories: (i) endogenous, (ii) synthetic, and (iii) phytocannabinoids, and are able to modulate the CBR and ECS. Particularly, phytocannabinoids are natural terpenoids or phenolic compounds derived from Cannabis sativa. However, these terpenoids and phenolic compounds can also be derived from other plants (non-cannabinoids) and still induce cannabinoid-like properties. Cannabimimetic ligands, beyond the Cannabis plant, can act as CBR agonists or antagonists, or ECS enzyme inhibitors, besides being able of playing a role in immune-mediated inflammatory and infectious diseases, neuroinflammatory, neurological, and neurodegenerative diseases, as well as in cancer, and autoimmunity by itself. In this review, we summarize and critically highlight past, present, and future progress on the understanding of the role of cannabinoid-like molecules, mainly terpenes, as prospective therapeutics for different pathological conditions.
Collapse
Affiliation(s)
- Elaine C. D. Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Gabriela M. Baldasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Maíra A. Bicca
- Neurosurgery Department, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Rodrigo S. Paes
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80,055 Portici, Italy
| | - Rafael C. Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
25
|
Targets and pathways involved in the antitumor activity of citral and its stereo-isomers. Eur J Pharmacol 2020; 871:172945. [PMID: 31981590 DOI: 10.1016/j.ejphar.2020.172945] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
This review provides a comprehensive analysis of the anticancer potential of the natural product citral (CIT) found in many plants and essential oils, and extensively used in the food and cosmetic industry. CIT is composed of two stereoisomers, the trans-isomer geranial being a more potent anticancer compound than the cis-isomer neral. CIT inhibits cancer cell proliferation and induces cancer cell apoptosis. Its pluri-factorial mechanism of anticancer activity is essentially based on three pillars: (i) a drug-induced accumulation of reactive oxygen species in cancer cells leading to an oxidative burst and DNA damages, (ii) a colchicine-like inhibition of tubulin polymerization and promotion of microtubule depolymerization, associated with an inhibition of the microtubule affinity-regulating kinase MARK4, and (iii) a potent inhibition of the aldehyde dehydrogenase isoform ALDH1A3 which is associated with cancer stem cell proliferation and chemoresistance. This unique combination of targets and pathways confers a significant anticancer potential. However, the intrinsic potency of CIT is limited, mainly because the drug is not very stable and has a low bioavailability and it does not present a high selectivity for cancer cells versus non-tumor cells. Stable formulations of CIT, using cyclodextrins, biodegradable polymers, or various nano-structured particles have been designed to enhance the bioavailability, to increase the effective doses window and to promote the anticancer activity. The lack of tumor cell selectivity is more problematic and limits the use of the drug in cancer therapy. Nevertheless, CIT offers interesting perspectives to design more potent analogues and drug combinations with a reinforced antitumor potential.
Collapse
|
26
|
Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, Oluwaseun Adetunji C, El Omari N, Balahbib A, Taheri Y, Bouyahya A, Martorell M, Martins N, Cho WC. Natural Products and Synthetic Analogs as a Source of Antitumor Drugs. Biomolecules 2019; 9:E679. [PMID: 31683894 PMCID: PMC6920853 DOI: 10.3390/biom9110679] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer is a heterogeneous disease and one of the major issues of health concern, especially for the public health system globally. Nature is a source of anticancer drugs with abundant pool of diverse chemicals and pharmacologically active compounds. In recent decade, some natural products and synthetic analogs have been investigated for the cancer treatment. This article presents the utilization of natural products as a source of antitumor drugs.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University, Iyamho, Edo State 300271, Nigeria.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco.
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco.
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10106, Morocco.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion 4070386, Chile.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.
| |
Collapse
|