1
|
Peng P, Yan X, Zhou X, Chen L, Li X, Miao Y, Zhao F. Enhancing degradation of antibiotic-combined pollutants by a hybrid system containing advanced oxidation and microbial treatment, a review. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136300. [PMID: 39471633 DOI: 10.1016/j.jhazmat.2024.136300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Antibiotics often co-exist with other pollutants, posing a significant threat to ecosystems. This review first examines the applications and limitations of microbial treatments for various types of antibiotic-combined pollutants. Then, it explores the mechanisms and application of hybrid systems that integrate advanced oxidation with microbial treatment, categorized into two-stage and intimately hybrid systems. Finally, the review highlights key knowledge gaps in hybrid systems and provides new insight into the removal of combined pollutants.
Collapse
Affiliation(s)
- Pin Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xinyu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xudong Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China
| | - Lixiang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China
| | - Xiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yijing Miao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, Fujian 361021, China.
| |
Collapse
|
2
|
Bano A, Aziz MK, Ameen F, Singh K, Prasad B, Nandan, Dave H, Ravi R, Manjhi J, Kumari M, Prasad KS. Adsorptive removal of naproxen onto nano magnesium oxide-modified castor wood biochar: Treatment of pharmaceutical wastewater via sequential Fenton's-adsorption process. IUBMB Life 2024; 76:1106-1124. [PMID: 39283051 DOI: 10.1002/iub.2912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/25/2024] [Indexed: 11/22/2024]
Abstract
This current investigation explored the thermal conversion process of castor wood into biochar, which was subsequently harnessed for removing naproxen from pharmaceutical industrial effluent via adsorption. Surface composition analyses conducted through scanning electron microscopy-energy dispersive X-ray, laser-induced breakdown spectroscopy, and Fourier-transform infrared studies unveiled the presence of nano MgO particles within the adsorbent material. Employing optimization techniques such as response surface methodology facilitated a refined approach to batch study. The optimized conditions for batch naproxen sodium (NPX) adsorption on nano-MgO-modified biochar were identified as pH 4, 1.5 g/L adsorbent dosage, and a 120-min contact time maintaining a constant NPX concentration of 10 mg/L. The adsorption capacity was calculated to be 123.34 mg/g for a nano-magnesium oxide-modified castor wood biochar (modified biochar) and 99.874 mg/g for pristine castor wood biochar (pristine biochar). Fenton's reagents comprising 15 mM of FeSO4 (7H2O) and 25 mM of H2O2 have been scrutinized under conditions of pH 3.0, a reaction time of 30 min, a temperature of 30°C, and stirring at 120 rpm, followed by batch adsorption treatment. The COD, NH3-N, NO3 -, PO4 3-, and NPX removal percentages was found to be 90%, 87%, 79%, 80%, and 90%, respectively. Thus nano MgO-modified biochar holds promise of treatment of pharmaceutical effluent.
Collapse
Affiliation(s)
- Amreen Bano
- Centre of Environmental Studies, Institute of Inter-Disciplinary Studies, University of Allahabad, Prayagraj, India
| | - Mohd Kashif Aziz
- Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kavita Singh
- Centre of Environmental Studies, Institute of Inter-Disciplinary Studies, University of Allahabad, Prayagraj, India
| | - Bablu Prasad
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Nandan
- Project Scientist "C", ICAR HQ, Ministry of Agriculture, KrishiBhawan, Delhi, India
| | - Hemen Dave
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, India
| | - Rajesh Ravi
- School of Biological Engineering & Life Science, Shobhit Institute of Engineering and Technology, Meerut, India
| | - Jayanand Manjhi
- School of Biological Engineering & Life Science, Shobhit Institute of Engineering and Technology, Meerut, India
| | - Madhu Kumari
- Department of Botany, B. R. A. Bihar University, Muzaffarpur, India
| | - Kumar Suranjit Prasad
- Centre of Environmental Studies, Institute of Inter-Disciplinary Studies, University of Allahabad, Prayagraj, India
| |
Collapse
|
3
|
Dolatimehr A, Mahyar A, Barough SPH, Mahmoodi M. Insights into the efficiencies of different biological treatment systems for pharmaceuticals removal: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11153. [PMID: 39539062 DOI: 10.1002/wer.11153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/29/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
This review presents a comprehensive analysis of current research on biological treatment processes for removing pharmaceutical compounds (PhCs) from wastewater. Unlike previous studies on this topic, our study specifically delves into the effectiveness and drawbacks of various treatment approaches such as traditional wastewater treatment facilities (WWTP), membrane bioreactors (MBRs), constructed wetlands (CW), and moving bed biofilm reactors (MBBR). Through the examination and synthesis of information gathered from more than 200 research studies, we have created a comprehensive database that delves into the effectiveness of eliminating 19 particular PhCs, including commonly studied compounds such as acetaminophen, ibuprofen, diclofenac, naproxen, ketoprofen, indomethacin, salicylic acid, codeine, and fenoprofen, amoxicillin, azithromycin, ciprofloxacin, ofloxacin, tetracycline, atenolol, propranolol, and metoprolol. This resource provides a depth and scope of information that was previously lacking in this area of study. Notably, among these pharmaceuticals, azithromycin demonstrated the highest removal rates across all examined treatment systems, with the exception of WWTPs, while carbamazepine consistently exhibited the lowest removal efficiencies across various systems. The analysis showcases the diverse results in removal efficiency impacted by factors such as system configuration, operation specifics, and environmental circumstances. The findings emphasize the critical need for continued innovation and research, specifically recommending the integration of advanced oxidation processes (AOPs) with existing biological treatment methods to improve the breakdown of recalcitrant compounds like carbamazepine. PRACTITIONER POINTS: Persistent pharmaceuticals harm aquatic ecosystems and human health. Biological systems show varying pharmaceutical removal efficiencies. Enhancing HRT and SRT improves removal but adds complexity and costs. Tailored treatment approaches needed based on contaminants and conditions.
Collapse
Affiliation(s)
- Armin Dolatimehr
- Master of Water and Hydraulics, Independent Researcher, Islamic Azad University, Berlin, Germany
| | - Ali Mahyar
- Brandenburg University of Technology (Cottbus-Senftenberg) Volmerstr, Berlin, Germany
| | | | - Mohammadreza Mahmoodi
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Nong G, Huang W, Meng L, Gao Y, Tian C, Zhang X, Lu L. Pretreatment of 3-hydroxyacetophenone in pharmaceutical wastewater using combined salting-out crystallization+ Fenton system and subsequent impact analysis of effluent water. ENVIRONMENTAL TECHNOLOGY 2024; 45:5259-5275. [PMID: 38009063 DOI: 10.1080/09593330.2023.2287025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/11/2023] [Indexed: 11/28/2023]
Abstract
Selecting a suitable pretreatment process for pharmaceutical wastewater that is difficult to treat biochemically so that it can enter the subsequent biochemical treatment. In this study, pharmaceutical wastewater consisting of 45 g/L sodium bisulfate, 9 g/L 3-hydroxyacetophenone (3-HAP), and 36.75 g/L sulfuric acids,which is a kind of typical pharmaceutical wastewater, was used for the pretreatment case study, and the process was screened by technology. A salting-out crystallization+Fenton system(SC-F) was developed for the treatment of this wastewater. The salting-out agent is formed by the pH adjustment process without additional additions and the salting-out crystallization effect is significant for the precipitation of 3-HAP from the wastewater. Subsequently, the optimal operating conditions for SC-F were derived from experiments as H2O2 of 0.4692 mol/L, n(H2O2):n(Fe2+)=30:1, pH=3. Under optimal conditions, the reaction time of 2 h achieved a COD removal rate of 90% and a BOD/COD value of 0.56, confirming the effectiveness of the technology in treating this wastewater. Additionally, it was discovered that the Fenton treatment was not significantly impacted by the inorganic components of the effluent. Analysis of effluent properties and possible effects on subsequent treatment by LC-MS and toxicity analysis. The results show that the biodegradability are enhanced by the pretreatment technology. However, the effluent still suffers from high acidity and high salt content, and this study proposes a solution to this problem. Furthermore, research on the treatment of 3-HAP wastewater has not been reported and this study provides a new case study in the field of wastewater treatment.
Collapse
Affiliation(s)
- Guoyou Nong
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Wenyu Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, People's Republic of China
| | - Lijie Meng
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Yufan Gao
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Chengyue Tian
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Xinyun Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Lihai Lu
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, People's Republic of China
| |
Collapse
|
5
|
Mokhtariazar A, Hassani AH, Borghei M, Massoudinejad M. A comparative study on performance of the conventional and fixed-bed membrane bioreactors for treatment of Naproxen from pharmaceutical wastewater. Sci Rep 2024; 14:9944. [PMID: 38688946 PMCID: PMC11061303 DOI: 10.1038/s41598-024-52872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/24/2024] [Indexed: 05/02/2024] Open
Abstract
Here, a comparative study was designed to survey the treatment efficiency of pharmaceutical wastewater containing Naproxen by Membrane bioreactor (MBR) and MBR with fixed-bed packing media (FBMBR). To this end, the performance of MBR and FBMBR in different aeration conditions including average DO (1.9-3.8 mg/L), different organic loading (OLR) (0.86, 1.14 and 1.92 kg COD per cubic meter per day), and Naproxen removal efficiency. The BOD5 removal efficiency, effluent quality and membrane fouling were monitored within 140 days. The results obtained from the present study indicated that COD removal efficiency for FBMBR (96.46%) was higher than that for MBR (95.33%). In addition, a high COD removal efficiency was experienced in both MBR and FBMBR in operational conditions 3 and 4, even where OLR increased from 1.14 to 1.92 kgCOD/m3 d and DO decreased from 4 to < 1 mg/L. Furthermore, the higher Naproxen removal efficiency was observed in FBMBR (94.17%) compared to that for MBR (92.76%). Therefore, FBMBR is a feasible and promising method for efficient treatment of pharmaceuptical wastewater with high concentrations of emerging contaminant, especially, the Naproxen.
Collapse
Affiliation(s)
- Akbar Mokhtariazar
- Department of Environmental Engineering, Islamic Azad University, West Tehran Branch, Tehran, Iran
| | - Amir Hessam Hassani
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdi Borghei
- Department of Biochemical Engineering and Environmental Control Research Center, Sharif University of Technology, Tehran, Iran
| | - Mohamadreza Massoudinejad
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Behashti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Cerro-Lopez M, Castro-Pastrana LI, Campos-Delgado J, Rubio-Rosas E, Bustos E, Martínez-Huitle CA. Mesostructured lead dioxide grown on titania nanotubes for diclofenac water removal through electrocatalytic and photoelectrocatalytic processes. ENVIRONMENTAL RESEARCH 2023; 231:116094. [PMID: 37201700 DOI: 10.1016/j.envres.2023.116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/08/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Mesostructured PbO2/TiO2 materials were synthesized to perform electrocatalysis (as electrooxidation, EO) and photoelectrocatalysis for removing diclofenac (DCF), 15 ppm concentration in 0.1 M NaSO4 solutions, at different pH conditions (3.0, 6.0 and 9.0) by applying 30 mA cm-2. Titania nanotubes (TiO2NTs)-based materials were prepared to synthetize with a massive PbO2 deposit on this support to obtain TiO2NTs/PbO2 and a TiO2NTs:PbO2 material consisting in a dispersed PbO2 deposit on TiO2-NTs that allowed the formation of a heterostructured surface of combined composition (TiO2 and PbO2). Organics removal (DCF and byproducts) was monitored through UV-vis spectrophotometry and high-performance liquid chromatography (HPLC) during degradation tests. TiO2NTs/PbO2 electrode was tested in both processes, removing DCF at neutral and alkaline solution conditions in EO while an unimportant photoactivity was registered at this material. Conversely, TiO2NTs:PbO2 was used as electrocatalytic material in EO experiments, achieving more than 50% of DCF removal at pH 6.0 by applying 30 mA cm-2. Also, for first time, the synergic effect was investigated when it was exposed to UV irradiation in photoelectrocatalytic experiments, enhancing its efficacy (⁓more than 20%) to remove DCF from a solution with 15 ppm over performance removals achieved (56%) when EO was applied under similar conditions. Chemical Oxygen Demand (COD) analyses showed that significantly higher DCF degradation is reached under photoelectrocatalysis, since COD values decrease a 76% against a 42% decrease achieved with electrocatalysis. Scavenging experiments showed a significant participation on the pharmaceutical oxidation process through the generation of photoholes (h+), hydroxyl radicals and sulfate-based oxidants.
Collapse
Affiliation(s)
- Monica Cerro-Lopez
- Universidad de Las Américas-Puebla, Depto. Cs. Quimico Biológicas, Lab. de Electrocatálisis, Sta. Catarina Mártir S/N, Cholula, 72810, Puebla, Mexico.
| | - Lucila I Castro-Pastrana
- Universidad de Las Américas-Puebla, Depto. Cs. Quimico Biológicas, Lab. de Electrocatálisis, Sta. Catarina Mártir S/N, Cholula, 72810, Puebla, Mexico
| | - Jessica Campos-Delgado
- Benemérita Universidad Autónoma de Puebla, Instituto de Física, Av. San Claudio y Blvd. 18 Sur, Ciudad Universitaria, Col. San Manuel, 72570, Puebla, Puebla, Mexico
| | - Efrain Rubio-Rosas
- Benemérita Universidad Autónoma de Puebla, Centro Universitario de Vinculación y Transferencia de Tecnología, Prolongación 24 Sur, Esquina con Av. San Claudio, Ciudad Universitaria, Col. Sn. Manuel, 72540; Puebla, Puebla. Mexico
| | - Erika Bustos
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S.C. Parque Tecnológico Querétaro S/n, Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Carlos A Martínez-Huitle
- Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry, Universidade Federal do Río Grande do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal, 59078-900, RN, Brazil
| |
Collapse
|
7
|
Efremenko E, Stepanov N, Senko O, Maslova O, Lyagin I, Aslanli A. Progressive Biocatalysts for the Treatment of Aqueous Systems Containing Pharmaceutical Pollutants. Life (Basel) 2023; 13:841. [PMID: 36983996 PMCID: PMC10052509 DOI: 10.3390/life13030841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The review focuses on the appearance of various pharmaceutical pollutants in various water sources, which dictates the need to use various methods for effective purification and biodegradation of the compounds. The use of various biological catalysts (enzymes and cells) is discussed as one of the progressive approaches to solving problems in this area. Antibiotics, hormones, pharmaceuticals containing halogen, nonsteroidal anti-inflammatory drugs, analgesics and antiepileptic drugs are among the substrates for the biocatalysts in water purification processes that can be carried out. The use of enzymes in soluble and immobilized forms as effective biocatalysts for the biodegradation of various pharmaceutical compounds (PCPs) has been analyzed. Various living cells (bacteria, fungi, microalgae) taken as separate cultures or components of natural or artificial consortia can be involved in biocatalytic processes under aerobic or anaerobic conditions. Cells as biocatalysts introduced into water treatment systems in suspended or immobilized form are used for deep biodegradation of PCPs. The potential of combinations of biocatalysts with physical-chemical methods of wastewater treatment is evaluated in relation to the effective removing of PCPs. The review analyzes recent results and the main current trends in the development of biocatalytic approaches to biodegradation of PCPs, the pros and cons of the processes and the biocatalysts used.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
8
|
khalidi-idrissi A, Madinzi A, Anouzla A, Pala A, Mouhir L, Kadmi Y, Souabi S. Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-22. [PMID: 37360558 PMCID: PMC10019435 DOI: 10.1007/s13762-023-04867-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
Pharmaceuticals and personal care products present potential risks to human health and the environment. In particular, wastewater treatment plants often detect emerging pollutants that disrupt biological treatment. The activated sludge process is a traditional biological method with a lower capital cost and limited operating requirements than more advanced treatment methods. In addition, the membrane bioreactor combines a membrane module and a bioreactor, widely used as an advanced method for treating pharmaceutical wastewater with good pollution performance. Indeed, the fouling of the membrane remains a major problem in this process. In addition, anaerobic membrane bioreactors can treat complex pharmaceutical waste while recovering energy and producing nutrient-rich wastewater for irrigation. Wastewater characterizations have shown that wastewater's high organic matter content facilitates the selection of low-cost, low-nutrient, low-surface-area, and effective anaerobic methods for drug degradation and reduces pollution. However, to improve the biological treatment, researchers have turned to hybrid processes in which all physical, chemical, and biological treatment methods are integrated to remove various emerging contaminants effectively. Hybrid systems can generate bioenergy, which helps reduce the operating costs of the pharmaceutical waste treatment system. To find the most effective treatment technique for our research, this work lists the different biological treatment techniques cited in the literature, such as activated sludge, membrane bioreactor, anaerobic treatment, and hybrid treatment, combining physicochemical and biological techniques.
Collapse
Affiliation(s)
- A. khalidi-idrissi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Madinzi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Anouzla
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Pala
- Environmental Research and Development Center (CEVMER), Dokuz Eylul University, Izmir, Turkey
| | - L. Mouhir
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - Y. Kadmi
- CNRS, UMR 8516 - LASIR, University Lille, 59000 Lille, France
| | - S. Souabi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| |
Collapse
|
9
|
Shokri A, Nasernejad B, Sanavi Fard M. Challenges and Future Roadmaps in Heterogeneous Electro-Fenton Process for Wastewater Treatment. WATER, AIR, AND SOIL POLLUTION 2023; 234:153. [PMID: 36844633 PMCID: PMC9942065 DOI: 10.1007/s11270-023-06139-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/26/2023] [Indexed: 06/10/2023]
Abstract
The efficiency of heterogeneous electro-Fenton technology on the degradation of recalcitrant organic pollutants in wastewater is glaringly obvious. This green technology can be effectively harnessed for addressing ever-increasing water-related challenges. Due to its outstanding performance, eco-friendliness, easy automation, and operability over a wide range of pH, it has garnered significant attention from different wastewater treatment research communities. This review paper briefly discusses the principal mechanism of the electro-Fenton process, the crucial properties of a highly efficient heterogeneous catalyst, the heterogeneous electro-Fenton system enabled with Fe-functionalized cathodic materials, and its essential operating parameters. Moreover, the authors comprehensively explored the major challenges that prevent the commercialization of the electro-Fenton process and propose future research pathways to countervail those disconcerting challenges. Synthesizing heterogeneous catalysts by application of advanced materials for maximizing their reusability and stability, the full realization of H2O2 activation mechanism, conduction of life-cycle assessment to explore environmental footprints and potential adverse effects of side-products, scale-up from lab-scale to industrial scale, and better reactor design, fabrication of electrodes with state-of-the-art technologies, using the electro-Fenton process for treatment of biological contaminants, application of different effective cells in the electro-Fenton process, hybridization of the electro-Fenton with other wastewater treatments technologies and full-scale analysis of economic costs are key recommendations which deserve considerable scholarly attention. Finally, it concludes that by implementing all the abovementioned gaps, the commercialization of electro-Fenton technology would be a realistic goal. Graphical Abstract
Collapse
Affiliation(s)
- Aref Shokri
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413 Iran
- Jundi-Shapur Research Institute, Jundishapur University of Technology, Dezful, Iran
| | - Bahram Nasernejad
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413 Iran
| | - Mahdi Sanavi Fard
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|
10
|
Scaria J, Nidheesh PV. Pre-treatment of real pharmaceutical wastewater by heterogeneous Fenton and persulfate oxidation processes. ENVIRONMENTAL RESEARCH 2023; 217:114786. [PMID: 36395865 DOI: 10.1016/j.envres.2022.114786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
This study compares the pre-oxidation of pharmaceutical wastewater by hydroxyl radical based advanced oxidation (HR-AOP) and a sulfate radical based advanced oxidation process (SR-AOP). The heterogeneous Fenton process is chosen as a model HR-AOP and persulfate (PS) activation as a model SR-AOP. The pre-treatment efficacy of both processes in terms of TOC, and COD removals using Fe3O4-rGO catalyst were considered. Under the investigated experimental conditions, both processes yielded fluctuating COD values with time. The heterogeneous Fenton process discovered to be the most efficient to remove 68.7% TOC in 180 min of treatment, when Fe3O4-rGO: H2O2 = 300 mg L-1:150 mM H2O2 was used at pH 3. Notably, the heterogeneous Fenton system was not considerably inhibited at the natural pH of pharmaceutical wastewater (6.75), as the process successfully removed 64.6% TOC. On the other hand, in persulfate activation studies, Fe3O4-rGO: PS = 400 mg L-1: 5 mM was the ideal condition for removing 59.5% TOC in 180 min at pH 3. Whereas the natural pH condition significantly inhibited the TOC removal, as only 20.8% TOC removal was feasible. The wastewater characterisation before and after Fenton treatment reveals that Fenton oxidation leads to an increase in inorganics (chlorides: 160 ± 15 mg L-1, nitrates: 63.14 ± 3.08 mg L-1, sulfates: 266.31 ± 31.39 mg L-1) necessitating an additional treatment step to reduce COD and inorganics further.
Collapse
Affiliation(s)
- Jaimy Scaria
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Sharma J, Joshi M, Bhatnagar A, Chaurasia AK, Nigam S. Pharmaceutical residues: One of the significant problems in achieving 'clean water for all' and its solution. ENVIRONMENTAL RESEARCH 2022; 215:114219. [PMID: 36057333 DOI: 10.1016/j.envres.2022.114219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
With the rapid emergence of various metabolic and multiple-drug-resistant infectious diseases, new pharmaceuticals are continuously being introduced in the market. The excess production and use of pharmaceuticals and their untreated/unmetabolized release in the environment cause the contamination of aquatic ecosystem, and thus, compromise the environment and human-health. The present review provides insights into the classification, sources, occurrence, harmful impacts, and existing technologies to curb these problems. A comprehensive detail of various biological and nanotechnological strategies for the removal of pharmaceutical residues from water is critically discussed focusing on their efficiencies, and current limitations to design improved-technologies for their lab-to-field applications. Furthermore, the review highlights and suggests the scope of integrated bionanotechnological methods for enhanced removal of pharmaceutical residues from water to fulfill the United Nations Sustainable Development Goal (UN-SDG) for providing clean potable water for all.
Collapse
Affiliation(s)
- Jyoti Sharma
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Monika Joshi
- Amity Institute of Nanotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Akhilesh K Chaurasia
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| | - Subhasha Nigam
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| |
Collapse
|
12
|
Pandya K, T S AS, Kodgire P, Simon S. Combined ultrasound cavitation and persulfate for the treatment of pharmaceutical wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2157-2174. [PMID: 36378172 DOI: 10.2166/wst.2022.304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years industrialization has caused magnificent leaps in the high profitable growth of pharmaceutical industries, and simultaneously given rise to environmental pollution. Pharmaceutical processes like extraction, purification, formulation, etc., generate a large volume of wastewater that contains high chemical oxygen demand (COD), biological oxygen demand, auxiliary chemicals, and different pharmaceutical substances or their metabolites in their active or inactive form. Its metabolites impart non-biodegradable toxic pollutants as a byproduct and intense color, which increases ecotoxicity into the water, thus this requires proper treatment before being discharged. This study focuses on the feasibility analysis of the utilization of ultrasound cavitation (20 kHz frequency) together with a persulfate oxidation approach for the treatment of complex pharmaceutical effluent. Process parameters like pH, amplitude intensity, oxidant dosage were optimized for COD removal applying response surface methodology-based Box-Behnken design. The optimum value observed for pH, amplitude intensity and oxidant dosage are 5, 20% and 100 mg/L respectively with 39.5% removal of COD in 60 min of fixed processing time. This study confirms that a combination of ultrasound cavitation and persulfate is a viable option for the treatment of pharmaceutical wastewater and can be used as an intensification technology in existing effluent treatment plants to achieve the highest amount of COD removal.
Collapse
Affiliation(s)
- Karan Pandya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India E-mail:
| | - Anantha Singh T S
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India E-mail: ; Department of Civil Engineering, National Institute of Technology Calicut, Calicut, India
| | - Pravin Kodgire
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Saji Simon
- Department of Civil Engineering, National Institute of Technology Calicut, Calicut, India
| |
Collapse
|
13
|
Antonopoulou M. Homogeneous and Heterogeneous Photocatalysis for the Treatment of Pharmaceutical Industry Wastewaters: A Review. TOXICS 2022; 10:toxics10090539. [PMID: 36136504 PMCID: PMC9503482 DOI: 10.3390/toxics10090539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 05/14/2023]
Abstract
Pharmaceuticals are biologically active compounds used for therapeutical purposes in humans and animals. Pharmaceuticals enter water bodies in various ways and are detected at concentrations of ng L-1-μg L-1. Their presence in the environment, and especially long-term pollution, can cause toxic effects on the aquatic ecosystems. The pharmaceutical industry is one of the main sources introducing these compounds in aquatic systems through the disposal of untreated or partially treated wastewaters produced during the different procedures in the manufacturing process. Pharmaceutical industry wastewaters contain numerous pharmaceutical compounds and other chemicals and are characterized by high levels of total dissolved solids (TDS), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). The toxic and recalcitrant nature of this type of wastewater hinders conventional biological processes, leading to its ineffective treatment. Consequently, there is an urgent demand for the development and application of more efficient methods for the treatment of pharmaceutical industry wastewaters. In this context, advanced oxidation processes (AOPs) have emerged as promising technologies for the treatment of pharmaceutical industry wastewaters through contaminant removal, toxicity reduction as well as biodegradability improvement. Therefore, a comprehensive literature study was conducted to review the recent published works dealing with the application of heterogeneous and homogeneous photocatalysis for pharmaceutical industry wastewater treatment as well as the advances in the field. The efficiency of the studied AOPs to treat the wastewaters is assessed. Special attention is also devoted to the coupling of these processes with other conventional methods. Simultaneously with their efficiency, the cost estimation of individual and integrated processes is discussed. Finally, the advantages and limitations of the processes, as well as their perspectives, are addressed.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Environmental Engineering, University of Patras, 30100 Agrinio, Greece
| |
Collapse
|
14
|
Zhu J, Zhu Y, Chen Z, Wu S, Fang X, Yao Y. Progress in the Preparation and Modification of Zinc Ferrites Used for the Photocatalytic Degradation of Organic Pollutants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10710. [PMID: 36078426 PMCID: PMC9518589 DOI: 10.3390/ijerph191710710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Zinc ferrite is a type of photocatalytic material with high physicochemical stability, narrow band gap, high carrier separation efficiency, high porosity, and paramagnetism, which makes it easy to recover. Thus, zinc ferrite is widely used as a photocatalyst in water treatment. In this paper, the preparation principles as well as the advantages and disadvantages of typical methods used to prepare zinc ferrite including hydrothermal, co-precipitation, sol-gel, and other novel methods such as biosynthesis have been summarized. Modification methods such as elemental doping, composite formation, and morphological modification have been highlighted. Using these modification methods, the catalytic activity of zinc ferrite toward the photocatalytic degradation of organic pollutants in water has been enhanced. Biosynthesis is regarded as a promising preparation method that uses biological materials instead of chemical materials to achieve the large-scale preparation of zinc ferrite using low cost, energy efficient, and environmentally friendly processes. Meanwhile, the combination of multiple modification techniques to enhance the photocatalytic performance of zinc ferrite will be an important research trend in the future.
Collapse
Affiliation(s)
- Jinyuan Zhu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Yingying Zhu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Zhen Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Sijia Wu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Xiaojian Fang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Yan Yao
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
15
|
Negarestani M, Farimaniraad H, Mollahosseini A, Kheradmand A, Shayesteh H. Facile preparation of sisal-Fe/Zn layered double hydroxide bio-nanocomposites for the efficient removal of rifampin from aqueous solution: kinetic, equilibrium, and thermodynamic studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:586-597. [PMID: 35786106 DOI: 10.1080/15226514.2022.2093834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present study, sisal-Fe/Zn LDH bio-nanocomposite for efficiently removing rifampin was synthesized using a simple co-precipitation method. SEM, XRD, and FTIR analyses were applied to characterize the prepared composite. In the following, different factors that are affecting the adsorption of rifampin, including contact time, initial rifampin concentration, adsorbent dosage, and temperature were evaluated. Also, the kinetic, isotherm, and thermodynamic studies were investigated. The results indicated that Freundlich (R2 = 0.9976) was a suitable model for describing the adsorption equilibrium and adsorption kinetic showed that the data are in maximum agreement with the pseudo-second-order kinetic model (R2 = 0.9931). According to the Langmuir isotherm model, the maximum adsorption capacity of rifampin was found to be 40.00 mg/g. The main mechanisms for rifampin elimination were introduced as electrostatic attraction and physical adsorption. Moreover, the spontaneity and nature of the reaction were analyzed by elucidating thermodynamic factors that indicated the adsorption process was exothermic and spontaneous. Also, the batch process design indicated that for treating 10 L wastewater containing 100 mg/L rifampin with a removal efficiency of 96%, the needed amount of sisal-Fe/Zn LDH is 51.6 g. This study revealed that the sisal-Fe/Zn LDH bio-nanocomposites as a low-cost adsorbent have promising adsorption potential.
Collapse
Affiliation(s)
- Mehrdad Negarestani
- Department of Civil and Environmental Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | | | - Afsaneh Mollahosseini
- Research Laboratory of Spectroscopy & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Asiyeh Kheradmand
- Department of Civil and Environmental Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Hadi Shayesteh
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
16
|
Liu S, Wu D, Hu J, Zhao L, Zhao L, Yang M, Feng Q. Electrospun flexible core-sheath PAN/PU/β-CD@Ag nanofiber membrane decorated with ZnO: enhance the practical ability of semiconductor photocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39638-39648. [PMID: 35107732 DOI: 10.1007/s11356-022-18928-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
It is necessary to effectively separate photocatalytic materials from water bodies and reuse catalysts for industrial wastewater treatment. Herein, a novel nanofiber membrane with enhanced light absorption and reusability of photocatalytic materials was prepared. The three-dimensional porous structure of the nanofibers helps the photocatalyst efficiently degrade pollutants. Specifically, a high-efficiency photocatalyst carrier with a nanofiber structure (PAN/PU/β-CD@Ag nanofiber membrane) was prepared by electrospinning and a simple silver plating process, and then ZnO NPs were synthesized in situ on the nanofiber membrane during the hydrothermal process. Under visible-light irradiation, the ZnO-loaded PAN/PU/β-CD@Ag nanofiber membranes exhibited excellent photocatalytic performance for the degradation of methylene blue (MB, 71.5%) and tetracycline hydrochloride (TCH, 70.5%). Additionally, a possible pathway of charge migration in this system was proposed. This design may provide a new idea for the preparation of visible-light photocatalytic nanofiber membranes and their treatments of wastewater containing dyes and hormones.
Collapse
Affiliation(s)
- Suo Liu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Dingsheng Wu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Lingling Zhao
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Lei Zhao
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Maohuan Yang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Quan Feng
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| |
Collapse
|
17
|
Song R, Yao J, Yang M, Ye Z, Xie Z, Zeng X. Active site regulated Z-scheme MIL-101(Fe)/Bi 2WO 6/Fe(III) with the synergy of hydrogen peroxide and visible-light-driven photo-Fenton degradation of organic contaminants. NANOSCALE 2022; 14:7055-7074. [PMID: 35475488 DOI: 10.1039/d1nr07915h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water pollution control is one of the major challenges currently faced. With the development of photocatalytic technology, an increasing number of new and efficient catalysts have been developed, but most of the catalysts have limited light capture ability and catalytic degradation efficiency. Therefore, in this work, hydrogen peroxide was further introduced to establish a photo-Fenton system to improve the photocatalytic effect by constructing a Z-scheme, and the degradation ability of the catalyst was maximized. Moreover, we successfully adhered bismuth tungstate nanosheets onto the surface of a MIL-101(Fe) framework and changed the number of active sites with iron ions of different doping amounts. We found that the number of active sites in the photo-Fenton system does not increase linearly, but increases and decreases regularly, which is similar to the change in band structure after doping. In addition, the results of the radical scavenger experiment and electron paramagnetic resonance (EPR) revealed that both hydroxide radical (˙OH) and superoxide radical (˙O2-) participated in methylene blue (MB) degradation, of which ˙OH was the main active species for pollutant degradation. Based on high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis, the possible degradation pathways were proposed. We believed that this work will provide insights into the heterojunction photo-Fenton system.
Collapse
Affiliation(s)
- Rutong Song
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Jun Yao
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Mei Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, People's Republic of China
| | - Zhongbin Ye
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
- Chengdu Technological University, Chengdu, 611730, People's Republic of China
| | - Zhuang Xie
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Xiang Zeng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| |
Collapse
|
18
|
Bajpai M, Katoch SS, Kadier A, Singh A. A review on electrocoagulation process for the removal of emerging contaminants: theory, fundamentals, and applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15252-15281. [PMID: 34978675 DOI: 10.1007/s11356-021-18348-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Electrocoagulation (EC) is an excellent and promising technology in wastewater treatment, as it combines the benefits of coagulation, flotation, and electrochemistry. During the last decade, extensive researches have focused on removal of emerging contaminants by using electrocoagualtion, due to its several advantages like compactness, cost-effectiveness, efficiency, low sludge production, and eco-friendness. Emerging contaminants (ECs) are micropollutants found in trace amounts that discharging into conventional wastewater treatment (WWT) plants entering surface waters and imposing a high threat to human and aquatic life. Various studies reveal that about 90% of emerging contaminants are disposed unscientifically into water bodies, creating problems to public health and environment. The studies on removal of emerging contaminants from wastewater are by global researchers are critically reviewed. The core findings proved that still more research required into optimization of parameters, system design, and economic feasibility to explore the potential of EC combined systems. This review has introduced an innovative collection of current knowledge on electro-coagulation for the removal of emerging contaminants.
Collapse
Affiliation(s)
- Mukul Bajpai
- Environmental Engineering Laboratory, Civil Engineering Department, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, 177005, India.
| | - Surjit Singh Katoch
- Environmental Engineering Laboratory, Civil Engineering Department, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, 177005, India
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Adarsh Singh
- Civil Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
19
|
Zou R, Tang K, Hambly AC, Wünsch UJ, Andersen HR, Angelidaki I, Zhang Y. When microbial electrochemistry meets UV: The applicability to high-strength real pharmaceutical industry wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127151. [PMID: 34536845 DOI: 10.1016/j.jhazmat.2021.127151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Wastewater from pharmaceutical and related industries contains many residual pharmaceutical components rich in color and high COD contents, which cannot be removed through the traditional wastewater treatment processes. Recently, microbial electrolysis ultraviolet cell (MEUC) process has shown its promising potential to remove recalcitrant organics because of its merits of wide pH range, iron-free, and without complications of iron sludge production. However, its application to the real pharmaceutical-rich industrial wastewater is still unknown. In this study, the MEUC process was validated with real ciprofloxacin-rich (6863.79 ± 2.21 µg L-1) industrial wastewater (6840 ± 110 mg L-1 of COD). The MEUC process achieved 100% removal of ciprofloxacin, 100% decolorization, and 99.1% removal of COD within 12, 60 and 30 h, respectively, when it was operated at pH-controlled at 7.8, applied voltage of 0.6 V, UV intensity of 10 mW cm-2, and cathodic aeration velocity of 0.005 mL min-1 mL-1. Moreover, fluorescence analysis showed that protein- and humic-like substances in such wastewater were effectively removed, providing further evidence of its high treatment efficiency. Furthermore, eco-toxicity testing with luminescent bacteria Vibro Feschri confirmed that the treated effluent was utterly non-toxic. The results demonstrated the broad application potential of MEUC technology for treating industrial wastewater.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Adam C Hambly
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Urban J Wünsch
- National Institute of Aquatic Resources, Section for Oceans and Arctic, Technical University of Denmark, Kemitorvet, Building 201, 2800 Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
20
|
Appia FTA, Pohan LAG, Berté M, Ouattara L. Electrochemical comparative study of Ti/Ta
2
O
5
/Pt‐RuO
2
‐IrO
2
and Ti/Ta
2
O
5
/Pt anodes: Stability, service lifetime, and electrooxidation performance. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Foffié Thiery Auguste Appia
- Laboratoire de constitution et de réaction de la matière, UFR SSMT Université Félix Houphouët Boigny de Cocody Abidjan Côte d'Ivoire
| | | | - Mohamed Berté
- Laboratoire de constitution et de réaction de la matière, UFR SSMT Université Félix Houphouët Boigny de Cocody Abidjan Côte d'Ivoire
| | - Lassiné Ouattara
- Laboratoire de constitution et de réaction de la matière, UFR SSMT Université Félix Houphouët Boigny de Cocody Abidjan Côte d'Ivoire
| |
Collapse
|
21
|
Su T, Wang Z, Zhou K, Chen X, Cheng Y, Zhang G, Wu DW, Sun SP. Advanced treatment of secondary effluent organic matters (EfOM) from an industrial park wastewater treatment plant by Fenton oxidation combining with biological aerated filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147204. [PMID: 33905940 DOI: 10.1016/j.scitotenv.2021.147204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the advanced treatment of secondary effluent organic matters (EfOM) from an industrial park wastewater treatment plant (IPWTP) by Fenton oxidation process and its combination with biological aerated filter (BAF). The constituents of EfOM were characterized by using fluorescence excitation-emission matrix, and the results showed that the major components included aromatic proteins, soluble microbial products, humic and fulvic acid-like substances, and compounds associated with fluorescent region of Ex 250-300 nm/Em 600-700 nm. The EfOM was strongly resistant to biodegradation (biochemical oxygen demand (BOD5):chemical oxygen demand (COD) ratio at 0.11), resulting in less than 15% dissolved organic carbon (DOC) removal efficiency by the BAF reactor. The advanced treatment of EfOM by Fenton oxidation process led to maximum ~50% mineralization efficiency of EfOM under the optimal conditions of 2.0 mM FeII, 10 mM H2O2, pH 3.0 and 3.0 h of the reaction time. Particularly, Fenton oxidation treatment effectively improved the biodegradability of EfOM in the IPWTP secondary effluents, e.g., increasing the BOD5:COD ratio from 0.11 to 0.42. A synergistic combination of Fenton oxidation process with the BAF reactor offered desirable mineralization efficiencies of EfOM (>70%) at lower dosages of Fenton's reagents. The present results suggest that Fenton oxidation process combining with the BAF reactor can be a promising strategy for the advanced treatment of EfOM in IPWTP secondary effluents. This study provides guidance for the characterization and advanced treatment of EfOM in IPWTP secondary effluents for practical purpose.
Collapse
Affiliation(s)
- Ting Su
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhenkai Wang
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kang Zhou
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinan Chen
- Ningbo Sentrol Environmental Conservation Equipment Co. Ltd., Ningbo, Zhejiang 315000, China
| | - Yan Cheng
- Ningbo Sentrol Environmental Conservation Equipment Co. Ltd., Ningbo, Zhejiang 315000, China
| | - Guicheng Zhang
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Duo Winston Wu
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sheng-Peng Sun
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
22
|
Yang J, Chen X, Zhang J, Wang Y, Wen H, Xie J. Role of chitosan-based hydrogels in pollutants adsorption and freshwater harvesting: A critical review. Int J Biol Macromol 2021; 189:53-64. [PMID: 34390747 DOI: 10.1016/j.ijbiomac.2021.08.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
The shortage of freshwater resources is an urgent problem worldwide, especially for some areas that lack rainfall conditions. The development of reliable wastewater treatment and freshwater harvesting equipment has become an urgent demand. Hydrogel is a porous 3D network structure with good pollutant adsorption capacity, water holding capacity, water adsorption capacity, and reversible swelling ability, which has been widely used in water treatment. Chitosan (CH), as the abundant bioactive material in nature, is commonly used to prepare hydrogels with low-cost, favorable stability, good antimicrobial activity, high mechanical properties, biodegradability, and environmental friendliness. Therefore, this review presents a comprehensive review of the various applications of CH-based hydrogels in water treatment including various pollutant adsorption, oil-water separation, seawater desalination, and atmospheric condensation. The relevant mechanisms, application potential, and challenge are also illustrated. This review aims to provide a viable idea to address the shortage of freshwater resources.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiahui Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Huiliang Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330200, China.
| |
Collapse
|
23
|
Berkün Olgun Ö, Palas B, Atalay S, Ersöz G. Photocatalytic oxidation and catalytic wet air oxidation of real pharmaceutical wastewater in the presence of Fe and LaFeO3 doped activated carbon catalysts. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Mir-Tutusaus JA, Jaén-Gil A, Barceló D, Buttiglieri G, Gonzalez-Olmos R, Rodriguez-Mozaz S, Caminal G, Sarrà M. Prospects on coupling UV/H 2O 2 with activated sludge or a fungal treatment for the removal of pharmaceutically active compounds in real hospital wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145374. [PMID: 33582328 DOI: 10.1016/j.scitotenv.2021.145374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Conventional active sludge (AS) process at municipal centralized wastewater treatment facilities may exhibit little pharmaceuticals (PhACs) removal efficiencies when treating hospital wastewater (HWW). Therefore, a dedicated efficient wastewater treatment at the source point is recommended. In this sense, advanced oxidation processes (AOPs) and fungal treatment (FG) have evidenced promising results in degrading PhACs. The coupling of the AOP based on UV/H2O2 treatment with biological treatment (AS or FG) treating a real non-sterile HWW, was evaluated in this work. In addition, a coagulation-flocculation pretreatment was applied to improve the efficiency of all approaches. Twenty-two PhACs were detected in raw HWW, which were effectively removed (93-95%) with the combination of any of the biological treatment followed by UV/H2O2 treatment. Similar removal results (94%) were obtained when placing UV/H2O2 treatment before FG, while a lower removal (83%) was obtained in the combination of UV/H2O2 followed by AS. However, the latest was the only treatment combination that achieved a decrease in the toxicity of water. Moreover, deconjugation of conjugated PhACs has been suggested for ofloxacin and lorazepam after AS treatment, and for ketoprofen after fungal treatment. Monitoring of carbamazepine and its transformation products along the treatment allowed to identify the same carbamazepine degradation pathway in UV/H2O2 and AS treatments, unlike fungal treatment, which followed another degradation route.
Collapse
Affiliation(s)
- Josep Anton Mir-Tutusaus
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Adrián Jaén-Gil
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003 Girona, Spain; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain; University of Girona, Girona, Spain
| | - Gianluigi Buttiglieri
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Rafael Gonzalez-Olmos
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Sara Rodriguez-Mozaz
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Glòria Caminal
- Institut de Química Avançada de Catalunya (IQAC) CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Montserrat Sarrà
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
25
|
Guadie A, Han JL, Liu W, Ding YC, Minale M, Ajibade FO, Zhai S, Wang HC, Cheng H, Ren N, Wang A. Evaluating the effect of fenton pretreated pyridine wastewater under different biological conditions: Microbial diversity and biotransformation pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112297. [PMID: 33706088 DOI: 10.1016/j.jenvman.2021.112297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Pyridine contamination poses a significant threat to human and environmental health. Due to the presence of nitrogen atom in the pyridine ring, the pi bond electrons are attracted toward it and make difficult for pyridine treatment with biological and chemical methods. In this study, coupling Fenton treatment with different biological process was designed to enhance pyridine biotransformation and further mineralization. After Fenton oxidation process optimized, pretreated pyridine was evaluated under three biological (anaerobic, aerobic and microaerobic) operating conditions. Under optimum Fenton oxidation, pyridine (30-75%) and TOC (5-25%) removal efficiencies were poor. Biological process alone also showed insignificant removal efficiency, particularly anaerobic (pyridine = 8.2%; TOC = 5.3%) culturing condition. However, combining Fenton pretreatment with biological process increased pyridine (93-99%) and TOC (87-93%) removals, suggesting that hydroxyl radical generated during Fenton oxidation enhanced pyridine hydroxylation and further mineralization in the biological (aerobic > microaerobic > anaerobic) process. Intermediates were analyzed with UPLC-MS and showed presence of maleic acid, pyruvic acid, glutaric dialdehyde, succinic semialdehyde and 4-formylamino-butyric acid. High-throughput sequencing analysis also indicated that Proteobacteria (35-43%) followed by Chloroflexi (10.6-24.3%) and Acidobacteria (8.0-29%) were the dominant phyla detected in the three biological treatment conditions. Co-existence of dominant genera under aerobic/microaerobic (Nitrospira > Dokdonella > Caldilinea) and anaerobic (Nitrospira > Caldilinea > Longilinea) systems most probably play significant role in biotransformation of pyridine and its intermediate products. Overall, integrating Fenton pretreatment with different biological process is a promising technology for pyridine treatment, especially the combined system enhanced anaerobic (>10 times) microbial pyridine biotransformation activity.
Collapse
Affiliation(s)
- Awoke Guadie
- Key Laboratory of Environmental Biotechnology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch 21, Ethiopia
| | - Jing-Long Han
- School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yang-Cheng Ding
- Key Laboratory of Environmental Biotechnology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mengist Minale
- UNEP-Tongji Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Fidelis O Ajibade
- Key Laboratory of Environmental Biotechnology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hong-Cheng Wang
- Key Laboratory of Environmental Biotechnology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haoyi Cheng
- Key Laboratory of Environmental Biotechnology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nanqi Ren
- School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
26
|
Jose J, Philip L. Continuous flow pulsed power plasma reactor for the treatment of aqueous solution containing volatile organic compounds and real pharmaceutical wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112202. [PMID: 33618319 DOI: 10.1016/j.jenvman.2021.112202] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The degradation of four recalcitrant and toxic VOCs (volatile organic compounds) present in pharmaceutical wastewater was studied using a continuous flow plasma reactor, along with evaluating its potential for real effluent treatment. The wastewater was sprayed into the plasma zone of the reactor, and it was re-circulated for better performance. The effect of different HRTs (hydraulic retention time) and initial concentrations of VOCs on the degradation efficiency were evaluated. In continuous reactor, complete removal of 200 mg/L of chloroform, chlorobenzene, and toluene was achieved at a HRT of 33.3 min, with an energy consumption of 22.4 kWh/m3. The study on the effect of different inlet loading rates of VOCs on elimination capacity showed that, the removal was limited initially by diffusion of reactive species and at higher loads, it was limited by insufficient amount of reactive species produced. During degradation of VOC mixture, more than 90% removal of chloroform, chlorobenzene and toluene was achieved at HRT of 33.3 min, and the TOC removal was 78.3%. The degradation efficiency of VOC mixture reduced slightly compared to that of individual compounds, due to insufficient amount of reactive species produced. The COD and BOD removal achieved after 140 min of direct plasma treatment of real pharmaceutical wastewater in batch reactor was 92.7% and 95.2%, respectively. Coagulation pre-treatment did not have a significant effect on the plasma treatment of real wastewater. When pharmaceutical effluent treatment was carried out in continuous flow reactor, 91.8% COD removal, 90.9% BOD removal and more than 90% degradation of all VOCs were achieved at a HRT of 150 min. Plasma treatment alone was capable of effectively treating the real pharmaceutical wastewater without any pre-treatment.
Collapse
Affiliation(s)
- Jerin Jose
- Department of Civil Engineering, Indian Institute of Technology Madras, 600036, India.
| | - Ligy Philip
- Department of Civil Engineering, Indian Institute of Technology Madras, 600036, India
| |
Collapse
|
27
|
Cai QQ, Lee BCY, Ong SL, Hu JY. Fluidized-bed Fenton technologies for recalcitrant industrial wastewater treatment-Recent advances, challenges and perspective. WATER RESEARCH 2021; 190:116692. [PMID: 33279748 DOI: 10.1016/j.watres.2020.116692] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
In recent years, fluidized-bed Fenton (FBR-Fenton) process has gained more attention in treating recalcitrant industrial wastewater. FBR-Fenton combines the effectiveness of homogeneous Fenton and sludge reduction of heterogeneous Fenton. Comparing to other modified Fenton processes, FBR-Fenton has greater economical and scaling up potential. However, large consumption of Fenton reagents and strict pH control are still the bottlenecks hampering the full-scale application of FBR-Fenton. While prior reviews mainly focused on the operation and performance of FBR-Fenton process, the present study critically discussed the challenges and bottlenecks for its full-scale industrial application. This study also comprehensively reviewed the development strategies for tackling these drawbacks, mainly over the recent five years. Homogeneous FBR-Fenton, heterogeneous FBR-Fenton and heterogeneous FBR-photo-Fenton processes were classified for the first time according to their reaction mechanisms and system designs. Important operational and design parameters affecting the cost-effectiveness of all FBR-Fenton technologies were reviewed, including the fundamentals, common practices and even innovative steps for enhancing the process performance. Up-to-date applications of FBR-Fenton technologies in recalcitrant wastewater/compounds treatment were also summarized, and it was found that upscaling of heterogeneous FBR-Fenton and heterogeneous FBR-photo-Fenton processes was still very challenging. Strategies to overcome the key technical limitations and enhance process cost-effectiveness were discussed in the future perspective part. Furthermore, modelling techniques such as computational fluid dynamics model and artificial neural network were suggested to be promising modelling techniques for speeding up the full-scale applications of FBR-Fenton technologies.
Collapse
Affiliation(s)
- Q Q Cai
- Sembcorp-NUS Corporate Laboratory, National University of Singapore, Sembcorp-NUS Corporate Laboratory c/o FoE, Block E1A, #04-01, 1 Engineering Drive 2 117576, Singapore; Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-01, 1 Engineering Drive 2 117576, Singapore
| | - B C Y Lee
- Sembcorp-NUS Corporate Laboratory, National University of Singapore, Sembcorp-NUS Corporate Laboratory c/o FoE, Block E1A, #04-01, 1 Engineering Drive 2 117576, Singapore; Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-01, 1 Engineering Drive 2 117576, Singapore
| | - S L Ong
- Sembcorp-NUS Corporate Laboratory, National University of Singapore, Sembcorp-NUS Corporate Laboratory c/o FoE, Block E1A, #04-01, 1 Engineering Drive 2 117576, Singapore; Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-01, 1 Engineering Drive 2 117576, Singapore
| | - J Y Hu
- Sembcorp-NUS Corporate Laboratory, National University of Singapore, Sembcorp-NUS Corporate Laboratory c/o FoE, Block E1A, #04-01, 1 Engineering Drive 2 117576, Singapore; Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-01, 1 Engineering Drive 2 117576, Singapore.
| |
Collapse
|
28
|
Nidheesh PV, Couras C, Karim AV, Nadais H. A review of integrated advanced oxidation processes and biological processes for organic pollutant removal. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2020.1864626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Catia Couras
- Department of Environment and Planning & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Ansaf V. Karim
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - Helena Nadais
- Department of Environment and Planning & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
29
|
Ganjali MR, Badiei A, Mouradzadegun A, Vatanpour V, Khadem SSM, Munir MT, Habibzadeh S, Saeb MR, Koyuncu I. Erbium (III) molybdate as a new nanofiller for fabrication of antifouling polyethersulfone membranes. MATERIALS TODAY COMMUNICATIONS 2020; 25:101379. [DOI: 10.1016/j.mtcomm.2020.101379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
|
30
|
Suzuki M, Suzuki Y, Uzuka K, Kawase Y. Biological treatment of non-biodegradable azo-dye enhanced by zero-valent iron (ZVI) pre-treatment. CHEMOSPHERE 2020; 259:127470. [PMID: 32603967 DOI: 10.1016/j.chemosphere.2020.127470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Zero-valent iron (ZVI) pre-treatment in sequential strategy for removal of non-biodegradable azo-dye Orange II by activated-sludge was quantitatively examined. The decolorization and TOC (total organic carbon) removal of Orange II by ZVI pre-treatment were examined in the ranges of pH from 3 to 11 and ZVI dosage from 500 to 2000 mgL-1. While the decolorization was enhanced with decreasing pH and the optimal pH for decolorization was found at pH 3, the TOC removal rate at pH 3 remained at 22.2% and the maximum TOC removal rate of 78.2% was obtained at pH 4. The decolorization and TOC removal of Orange II were monotonously increased with increasing ZVI dosage. To quantify the ZVI pre-treatment, the contributions of redox degradation, complexation/precipitation and adsorption to TOC removal by ZVI were defined. Novel kinetic models for the ZVI pre-treatment and activated-sludge post-treatment were developed. The proposed kinetic models satisfactorily predicted the transitional behaviors of the ZVI pre-treatment and activated-sludge post-treatment and the contributions of redox degradation, complexation/precipitation and adsorption to TOC removal by the ZVI pre-treatment. The complete removal of non-biodegradable azo-dye Orange II of 300 mgL-1 was accomplished by 78.2% removal after 360 min ZVI pre-treatment with the ZVI dosage of 1000 mgL-1 at pH 4 and subsequently 21.8% removal after 480 min activated-sludge post-treatment. The ZVI pre-treatment integrated with activated-sludge post-treatment was proved to be an effective strategy for treating non-biodegradable pollutants.
Collapse
Affiliation(s)
- Moe Suzuki
- Research Center of Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, 350-8585, Japan
| | - Yutaka Suzuki
- Research Center of Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, 350-8585, Japan
| | - Kei Uzuka
- Research Center of Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, 350-8585, Japan
| | - Yoshinori Kawase
- Research Center of Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, 350-8585, Japan.
| |
Collapse
|
31
|
Tan C, Wu H, He H, Lu X, Gao H, Deng J, Chu W. Anti-inflammatory drugs degradation during LED-UV 365 photolysis of free chlorine: roles of reactive oxidative species and formation of disinfection by-products. WATER RESEARCH 2020; 185:116252. [PMID: 32763529 DOI: 10.1016/j.watres.2020.116252] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Light-emitting diode (LED) is environmentally friendly with longer life compared with traditionally mercury lamps. This study investigated the non-steroidal anti-inflammatory drugs (NSAIDs)- phenacetin (PNT) and acetaminophen (ACT)- removal during LED-UV (365 nm) photolysis of free available chlorine (FAC). Degradation of PNT and ACT during LED-UV365/FAC treatment at pH 5.5-8.5 followed the pseudo-first order kinetics. The presence of hydroxyl radicals (·OH), reactive chlorine species (RCS), and ozone (O3, transformed from O (3P)) were screened by using scavengers of ethanol (EtOH), tert-Butanol (TBA), and 3-buten-2ol, and 4-hydroxy-2,2,6,6-tetramethylpiperidine (TEMP), and quantified by competition kinetics with probing compounds of nitrobenzene (NB), benzoate acid (BA), 1,4-dimethoxybenzene (DMOB). Higher pH would lead to decrease of ·OH contribution and an increase of FAC contribution to PNT and ACT degradation. It has been determined that the contribution of O3 to degradation of PNT and ACT was less than 5% for all pHs, and O3(P) reacts toward EtOH with second-order constant of 1.52 × 109 M-1s-1. LED-UV365/FAC system reduced the formation of five typical CX3-R type disinfection by-products (DBPs) as well as the cytotoxicity and genotoxicity of water samples at pH 5.5 and 8.5, compared with FAC alone. The decrease of DBPs formation resulted from fast FAC decomposition upon LED-UV365 irradiation. A feasible reaction pathway of DBPs formation in the LED-UV365/FAC system was examined with density functional theory (DFT). For FAC decay during LED-UV365/FAC with effluent from wastewater, the residual FAC in 15 min was 0.8 mg/L (lower than limit of 0.2 mg/L) once initial FAC was 2.0 mg/L. The results indicate that more tests on the balance of target pollutant removal efficiency, residual FAC and cost should be explored in LED-UV365/FAC system for application.
Collapse
Affiliation(s)
- Chaoqun Tan
- School of Civil Engineering, Southeast University, Nanjing 210096, China; Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China.
| | - Haotian Wu
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Huan He
- Depart of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195-2007, United States
| | - Xu Lu
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Haiying Gao
- School of Civil Engineering, Southeast University, Nanjing 210096, China; Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Jing Deng
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenhai Chu
- Key laboratory of Yangze River Water Environment, Tongji University, Shanghai 200092, China
| |
Collapse
|
32
|
Hung YT, Aziz HA, Ramli SF, Paul HH, Huhnke CR, Adesanmi BM. Chemical waste and allied products. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1504-1509. [PMID: 32659868 DOI: 10.1002/wer.1399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
This paper reviews the related literature reported in 2019 about various types of wastewaters associated with chemical and allied products. The subjects comprise wastewaters produced from various activities in agricultural, chemical, dye, petrochemical, and pharmaceutical. PRACTITIONER POINTS: Bioflocculant chitosan was used for sludge dewatering and the treatment of water and wastewater, and polishing of sanitary landfill leachate. Alkaline lignin-based flocculants were used to achieve excellent color removal for paper mill sludge. Powdered activated coke was used to remove COD (chemical oxygen demand) from chemical industry wastewater effluents.
Collapse
Affiliation(s)
- Yung-Tse Hung
- Department of Civil and Environmental Engineering, Cleveland State University, Cleveland, Ohio
| | - Hamidi Abdul Aziz
- School of Civil Engineering Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
- Solid Waste Management Cluster Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Siti Fatihah Ramli
- School of Civil Engineering Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Howard H Paul
- Department of Information Systems, Cleveland State University, Cleveland, Ohio
| | | | - Bukola M Adesanmi
- Department of Civil and Environmental Engineering, Cleveland State University, Cleveland, Ohio
| |
Collapse
|
33
|
Modified electrochemical processes for industrial-scale treatment of wastewater having high TKN content. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Hu D, Luo K, Ma H, Min H, Zhao Y, Cui Y, Wang S, Ning N, Zhang L, Liu W. A sustainability anti-infective pharmaceutical wastewater treatment technology: multi-stage vertical variable diameter membrane bioreactor with DO online controlling. BIORESOURCE TECHNOLOGY 2020; 311:123507. [PMID: 32413642 DOI: 10.1016/j.biortech.2020.123507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The proper choice of dissolved oxygen (DO) is important in aerobic treatment. In this paper, a multi-stage vertical variable diameter membrane bioreactor was developed to treat pharmaceutical wastewater containing 6-APA and ceftriaxone sodium. In the 180 days of operation, the performance of COD, BOD5, 6-APA, ceftriaxone sodium removal, sludge index, and microbial enzyme activity under different DOs (from 0.5 to 6.0 mg/L) were investigated. The results showed that the optimal range of DO was 1.5-2.1 mg/L, and the highest removal rates of COD and BOD5 were observed 87.3%±2.4% and 95.3%±1.8%, the corresponding effluent COD and BOD5 were 189 mg/L and 24 mg/L, respectively. To reduce the energy consumption and ensure stability of DO in the reactor, a control strategy based on an improved differential evolution BP fuzzy neural network was built and found that the performance and cost of the controlled DO were improved effectively than that of uncontrolled DO.
Collapse
Affiliation(s)
- Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Kongyan Luo
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Haitao Ma
- College of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 13000, PR China.
| | - Hongchao Min
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Yuanyi Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Shanshan Wang
- College of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 13000, PR China
| | - Nan Ning
- College of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 13000, PR China
| | - Lufeng Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Wenyu Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| |
Collapse
|
35
|
Efficient Malathion Removal in Constructed Wetlands Coupled to UV/H2O2 Pretreatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intensive agriculture has led to the increasing application of pesticides, such as malathion, thus generating large volumes of untreated cropland wastewater (CropWW). In this work, a hybrid system constructed wetlands (CW) coupled in continuous with an optimized UV/H2O2 pretreatment was evaluated for the efficient removal of malathion contained in CropWW. In the first stage, 90 min UV irradiation time (UV IR) and 65 mM hydrogen peroxide (H2O2) were identified as optimal operation parameters through a central composite design. The second stage consisted of CW planted with Phragmites australis collected from the agricultural discharge area and operated as a piston flow reactor. Furthermore, CW hydraulic residence times (HRT) of 1, 2 and 3 days, including hydraulic coupling, were evaluated. The removal efficiencies obtained in the first stage (UV/H2O2) were 94 ± 2.5% of malathion and 45 ± 2.5% of total organic carbon (TOC). In stage two (CW) 65 ± 9.6% TOC removal was achieved during the first 17 days, from which around 24% was associated to the biosorption of malathion byproducts. Subsequently, and until the operation ends, CW removed about 80% of TOC for 2 and 3 days HRT, with no significant differences (p > 0.2), which is higher than those reported in several studies involving only advanced oxidation processes (AOP) with UV IR times above 240 min and even for systems using catalysts. The results obtained indicate that the system UV/H2O2-CW is a technically suitable option for the treatment of CropWW with a high content of malathion mainly found in developing countries. Moreover, the hybrid system proposed also represent significant reduction in the size of the treatment plant.
Collapse
|
36
|
Zaied BK, Rashid M, Nasrullah M, Zularisam AW, Pant D, Singh L. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138095. [PMID: 32481207 DOI: 10.1016/j.scitotenv.2020.138095] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 05/28/2023]
Abstract
The pharmaceuticals are emergent contaminants, which can create potential threats for human health and the environment. All the pharmaceutical contaminants are becoming enormous in the environment as conventional wastewater treatment cannot be effectively implemented due to toxic and intractable action of pharmaceuticals. For this reason, the existence of pharmaceutical contaminants has brought great awareness, causing significant concern on their transformation, occurrence, risk, and fate in the environments. Electrocoagulation (EC) treatment process is effectively applied for the removal of contaminants, radionuclides, pesticides, and also harmful microorganisms. During the EC process, an electric current is employed directly, and both electrodes are dissoluted partially in the reactor under the special conditions. This electrode dissolution produces the increased concentration of cation, which is finally precipitated as hydroxides and oxides. Different anode materials usage like aluminum, stainless steel, iron, etc. are found more effective in EC operation for efficient removal of pharmaceutical contaminants. Due to the simple procedure and less costly material, EC method is extensively recognized for pharmaceutical wastewater treatment over further conventional treatment methods. The EC process has more usefulness to destabilize the pharmaceutical contaminants with the neutralization of charge and after that coagulating those contaminants to produce flocs. Thus, the review places particular emphasis on the application of EC process to remove pharmaceutical contaminants. First, the operational parameters influencing EC efficiency with the electroanalysis techniques are described. Second, in this review emerging challenges, current developments and techno-economic concerns of EC are highlighted. Finally, future recommendations and prospective on EC are envisioned.
Collapse
Affiliation(s)
- B K Zaied
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Pahang, Malaysia
| | - Mamunur Rashid
- Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang (UMP), 26600 Pekan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Pahang, Malaysia; Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300, Kuantan, Pahang, Malaysia
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Pahang, Malaysia
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Lakhveer Singh
- Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh - 522502, India.
| |
Collapse
|
37
|
Huang Y, Jiang J, Ma L, Wang Y, Liang M, Zhang Z, Li L. Iron foam combined ozonation for enhanced treatment of pharmaceutical wastewater. ENVIRONMENTAL RESEARCH 2020; 183:109205. [PMID: 32035408 DOI: 10.1016/j.envres.2020.109205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/27/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
In this study, iron foam combined ozonation was employed as an advanced oxidation process to treat the organic contaminants in real pharmaceutical wastewater. It was found that this procedure worked well in a wide range of pH, the existence of iron foam in ozonation system markedly elevated the mineralization level of organic contaminants. Within the reaction time of 120 min, iron foam combined ozonation achieved 53% of DOC removal percentage, which was 21% higher than that of ozone alone. Meanwhile, the biodegradability of the pharmaceutical wastewater was improved, a large part of the organic pollutants containing benzene rings and amino groups were effectively degraded, and a certain amount of phosphate and nitrogen also get removed. In iron foam combined ozonation, zero valent iron played the role as an activator. It was oxidized into iron oxides and oxyhydroxides, the electrons transferring among different valences of iron stimulated the decomposition of ozone and the generation of hydroxyl radicals, which accounted for most of the organic contaminants degradation.
Collapse
Affiliation(s)
- Yuanxing Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516 Jungong Rd., Shanghai, 200093, PR China.
| | - Jiewen Jiang
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516 Jungong Rd., Shanghai, 200093, PR China.
| | - Luming Ma
- Department of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Yaowei Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516 Jungong Rd., Shanghai, 200093, PR China.
| | - Manli Liang
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516 Jungong Rd., Shanghai, 200093, PR China.
| | - Zhiguo Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516 Jungong Rd., Shanghai, 200093, PR China.
| | - Liang Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516 Jungong Rd., Shanghai, 200093, PR China.
| |
Collapse
|
38
|
|
39
|
Affiliation(s)
- Hiba Kais
- Laboratory of Chemical Engineering, Faculty of Mechanical and Chemical Engineering, USTHB, Algiers, Algeria
| | - Nacèra Yeddou Mezenner
- Laboratory of Chemical Engineering, Faculty of Mechanical and Chemical Engineering, USTHB, Algiers, Algeria
| | - Mohamed Trari
- Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, Algiers, Algeria
| |
Collapse
|