1
|
Wen J, Xiang Q, Guo J, Zhang J, Yang N, Huang Y, Chen Y, Hu T, Rao C. Pharmacological activities of Zanthoxylum L. plants and its exploitation and utilization. Heliyon 2024; 10:e33207. [PMID: 39022083 PMCID: PMC11252797 DOI: 10.1016/j.heliyon.2024.e33207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The study aims to provide an up-to-date review at the advancements of the investigations on the ethnopharmacology, phytochemistry, pharmacological effect and exploitation and utilizations of Zanthoxylum L. Besides, the possible tendency and perspective for future research of this plant are discussed, as well. This article uses "Zanthoxylum L." "Zanthorylum bungeanum" as the keywords and collects relevant information on Zanthoxylum L. plants through electronic searches (Elsevier, PubMed, ACS, Web of Science, Science Direct, CNKI, Google Scholar), relevant books, and classic literature about Chinese herb. The plants of this genus are rich in volatile oils, alkaloids, amides, lignans, coumarins and organic acids, and has a wide range of pharmacological activities, including but not limited to anti-inflammatory, analgesic, anti-tumor, hypoglycemic, hypolipidemic, antioxidant and anti-infectious. This article reviewed both Chinese and international research progress on the active ingredients and pharmacological activities of Zanthoxylum L. as well as the applications of this genus in the fields of food, medicinal and daily chemicals, and clarified the material basis of its pharmacological activities. Based on traditional usage, phytochemicals, and pharmacological properties, of Zanthoxylum L. species, which indicate that they possess diverse bioactive metabolites with interesting bioactivities. Zanthoxylum L. is a potential medicinal and edible plant with diverse pharmacological effects. Due to its various advantages, it may have vast application potential in the food and medicinal industries and daily chemicals. Nonetheless, the currently available data has several gaps in understanding the herbal utilization of Zanthoxylum L. Thus, further research into their toxicity, mechanisms of actions of the isolated bioactive metabolites, as well as scientific connotations between the traditional medicinal uses and pharmacological properties is required to unravel their efficacy in therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
2
|
Ivane NMA, Haruna SA, Wang W, Ma Q, Wang J, Liu Y, Sun J. Characterization, antioxidant activity and potential application fractionalized Szechuan pepper on fresh beef meat as natural preservative. Meat Sci 2024; 208:109383. [PMID: 37948957 DOI: 10.1016/j.meatsci.2023.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The pericarp of Szechuan pepper is rich in phenols and alkylamides, making it a potential source of antioxidant compounds. Despite being recognized as the primary antioxidants in Szechuan pepper, there is still limited knowledge about their application in real food systems. This study aims to identify, separate, and apply polyphenol and alkylamide fractions derived from Szechuan extracts to beef meat. Using HPLC-MS2, we identified 5 phenols and 11 alkylamides in Szechuan extracts. The quality of the minced meat was evaluated based on color, thiobarbituric acid reactive substances (TBARS), conjugated dienes, carbonyl content, Sulfhydryl content, microbiological content, and total volatile basic nitrogen content (TVB-N). Compared to the polyphenol fraction (1.25 mg/mL), alkylamide fraction (25 mg/mL), and control samples, beef samples incorporated with the polyphenol fraction (6.25 mg/mL) significantly reduced carbonyl content, TBARS, and TVB-N values at the end of storage. Furthermore, they exhibited a significant slowdown in microbial development, improved meat color stability, and preserved pH. Therefore, the use of Szechuan pepper fractions as natural preservatives in meat and meat products is an important area of research and has the potential to enhance the safety and quality of meat products.
Collapse
Affiliation(s)
- Ngouana Moffo A Ivane
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China; Hebei Technology Innovation Center of Potato Processing, Hebei 076576, China
| | - Suleiman A Haruna
- Department of Food Science and Technology, Kano University of Science and Technology, Wudil, P.M.B 3244, Kano, Kano State, Nigeria
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China.
| |
Collapse
|
3
|
Huang X, Yuan Z, Liu X, Wang Z, Lu J, Wu L, Lin X, Zhang Y, Pi W, Cai D, Chu F, Wang P, Lei H. Integrative multi-omics unravels the amelioration effects of Zanthoxylum bungeanum Maxim. on non-alcoholic fatty liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154576. [PMID: 36610127 DOI: 10.1016/j.phymed.2022.154576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The effect of Zanthoxylum bungeanum Maxim. (ZBM) on anti-obesity, lipid-lowering and liver protection has been identified, but the effect on the development of NAFLD induced by high-fat diet remains unclear. PURPOSE To evaluate the alleviation effect of ZBM on NAFLD in vivo and explore the mechanisms by analyzing the liver transcriptome, microbiota and fecal metabolites. METHODS NAFLD model was induced in C57BL/6J mice by feeding with high-fat diet (HFD). The potential mechanism of ZBM in improving NAFLD was studied by liver transcriptome analysis, real-time PCR, immunofluorescence, 16s rRNA sequencing and non-targeted metabonomics. RESULTS ZBM has alleviation effects on HFD-induced NAFLD. The liver transcriptome, real-time PCR and immunofluorescence analysis showed that ZBM could efficiently regulate fatty acid and cholesterol metabolism. The 16S rRNA sequencing and LC-MS based metabonomic demonstrated that ZBM could rebalance gut microbiota dysbiosis and regulate metabolic profiles in HFD-induced NAFLD mice. Spearman correlation analysis revealed a strong correlation between gut microbiota and biochemical, pathological indexes and differential metabolic biomarkers. CONCLUSION ZBM ameliorates HFD-induced NAFLD by regulating fatty acid and cholesterol metabolism, gut microbiota and metabolic profile.
Collapse
Affiliation(s)
- Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhihua Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaojing Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhijia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Linying Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoyu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yaozhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenmin Pi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Desheng Cai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Fuhao Chu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
4
|
Zhang T, Zhang Q, Zheng W, Tao T, Li RL, Wang LY, Peng W, Wu CJ. Fructus Zanthoxyli extract improves glycolipid metabolism disorder of type 2 diabetes mellitus via activation of AMPK/PI3K/Akt pathway: Network pharmacology and experimental validation. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:543-560. [PMID: 35965234 DOI: 10.1016/j.joim.2022.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/13/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE This study investigated the potential mechanisms behind the beneficial effects of Fructus Zanthoxyli (FZ) against type 2 diabetes mellitus (T2DM) based on network pharmacology and experimental validation. METHODS Ultra-high-performance liquid chromatography coupled with hybrid quadrupole-orbitrap high-resolution mass spectrometry, and gas chromatography-mass spectrometry were used to identify the constituents of FZ. Next, the differentially expressed genes linked to the treatment of diabetes with FZ were screened using online databases (including Gene Expression Omnibus database and Swiss Target Prediction online database), and the overlapping genes and their enrichment were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the pathway was verified by in vitro experiments, and cell staining with oil red and Nile red showed that the extract of FZ had a therapeutic effect on T2DM. RESULTS A total of 43 components were identified from FZ, and 39 differentially expressed overlapping genes were screened as the possible targets of FZ in T2DM. The dug component-target network indicated that PPARA, PPARG, PIK3R3, JAK2 and GPR88 might be the core genes targeted by FZ in the treatment of T2DM. Interestingly, the enrichment analysis of KEGG showed that effects of FZ against T2DM were closely correlated with the adenosine monophosphate-activated protein kinase (AMPK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathways. In vitro experiments further confirmed that FZ significantly inhibited palmitic acid-induced lipid formation in HepG2 cells. Moreover, FZ treatment was able to promote the AMPK and PI3K/Akt expressions in HepG2 cells. CONCLUSION Network pharmacology combined with experimental validation revealed that FZ extract can improve the glycolipid metabolism disorder of T2DM via activation of the AMPK/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ting Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Wei Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Ting Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Li-Yu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| |
Collapse
|
5
|
Ivane NMA, Haruna SA, Zekrumah M, Roméo Elysé FK, Hassan MO, Hashim SB, Tahir HE, Zhang D. Composition, mechanisms of tingling paresthesia, and health benefits of Sichuan pepper: A review of recent progress. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
She J, Gu T, Pang X, Liu Y, Tang L, Zhou X. Natural Products Targeting Liver X Receptors or Farnesoid X Receptor. Front Pharmacol 2022; 12:772435. [PMID: 35069197 PMCID: PMC8766425 DOI: 10.3389/fphar.2021.772435] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Nuclear receptors (NRs) are a superfamily of transcription factors induced by ligands and also function as integrators of hormonal and nutritional signals. Among NRs, the liver X receptors (LXRs) and farnesoid X receptor (FXR) have been of significance as targets for the treatment of metabolic syndrome-related diseases. In recent years, natural products targeting LXRs and FXR have received remarkable interests as a valuable source of novel ligands encompassing diverse chemical structures and bioactive properties. This review aims to survey natural products, originating from terrestrial plants and microorganisms, marine organisms, and marine-derived microorganisms, which could influence LXRs and FXR. In the recent two decades (2000-2020), 261 natural products were discovered from natural resources such as LXRs/FXR modulators, 109 agonists and 38 antagonists targeting LXRs, and 72 agonists and 55 antagonists targeting FXR. The docking evaluation of desired natural products targeted LXRs/FXR is finally discussed. This comprehensive overview will provide a reference for future study of novel LXRs and FXR agonists and antagonists to target human diseases, and attract an increasing number of professional scholars majoring in pharmacy and biology with more in-depth discussion.
Collapse
Affiliation(s)
- Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tanwei Gu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
7
|
Okagu IU, Ndefo JC, Aham EC, Udenigwe CC. Zanthoxylum Species: A Comprehensive Review of Traditional Uses, Phytochemistry, Pharmacological and Nutraceutical Applications. Molecules 2021; 26:molecules26134023. [PMID: 34209371 PMCID: PMC8272177 DOI: 10.3390/molecules26134023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Zanthoxylum species (Syn. Fagara species) of the Rutaceae family are widely used in many countries as food and in trado-medicinal practice due to their wide geographical distribution and medicinal properties. Peer reviewed journal articles and ethnobotanical records that reported the traditional knowledge, phytoconstituents, biological activities and toxicological profiles of Z. species with a focus on metabolic and neuronal health were reviewed. It was observed that many of the plant species are used as food ingredients and in treating inflammation, pain, hypertension and brain diseases. Over 500 compounds have been isolated from Z. species, and the biological activities of both the plant extracts and their phytoconstituents, including their mechanisms of action, are discussed. The phytochemicals responsible for the biological activities of some of the species are yet to be identified. Similarly, biological activities of some isolated compounds remain unknown. Taken together, the Z. species extracts and compounds possess promising biological activities and should be further explored as potential sources of new nutraceuticals and drugs.
Collapse
Affiliation(s)
- Innocent Uzochukwu Okagu
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (I.U.O.); (E.C.A.)
| | - Joseph Chinedu Ndefo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
- Correspondence: (J.C.N.); (C.C.U.)
| | - Emmanuel Chigozie Aham
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (I.U.O.); (E.C.A.)
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (J.C.N.); (C.C.U.)
| |
Collapse
|
8
|
Wang R, You YM, Liu X. Effect of Zanthoxylum alkylamides on lipid metabolism and its mechanism in rats fed with a high-fat diet. J Food Biochem 2020; 45:e13548. [PMID: 33270233 DOI: 10.1111/jfbc.13548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 01/14/2023]
Abstract
This research aimed at exploring the effect of Zanthoxylum alkylamides on lipid metabolism and its potential mechanisms using high-fat diet rat model. Treatment with Zanthoxylum alkylamides for 6 weeks, food efficiency and atherogenic index of the low, medium, and high doses of Zanthoxylum alkylamides-treated groups were significantly reduced. Meanwhile, the histopathological structure of the livers showed that hepatic steatosis in the groups treated with Zanthoxylum alkylamides was reduced, particularly the HD group. Moreover, the related genes were studied, such as, liver X receptor (LXR), cholesterol 7 alpha-hydroxylase (CYP7A1), hepatic 3-hydroxyl-2-methylglutaryl CoA (HMG-CoA) reductase, sterol regulatory element-binding protein 2 (SREBP-2), ileal bile acid-binding protein (IBABP), sodium-dependent bile acid transporter (ASBT), and transient receptor potential vanilloid subtype1 (TRPV1). These results demonstrated that Zanthoxylum alkylamides could ameliorate abnormal lipid metabolism in rats fed with a high-fat diet. The underlying mechanism may be the downregulation of the expression levels of cholesterol synthesis and bile acid reabsorption-related genes, reduction of endogenous cholesterol synthesis, and increase in bile acid and neutral sterol excretion. PRACTICAL APPLICATIONS: High-energy diet is a potential risk of lipid metabolic disorder. Many studies have shown that hyperlipidemia can lead to atherosclerosis and even hemangioma, cerebral thrombosis, coronary heart disease, and other diseases, which seriously threaten human health. Therefore, seeking an effective and safe way to prevent the obesity-related disease is necessary. This research found that Zanthoxylum alkylamide could ameliorate abnormal lipid metabolism in rats fed with a high-fat diet. The underlying mechanism may be the downregulation of the expression levels of cholesterol synthesis and ileal absorption of bile acid genes, reduction of endogenous cholesterol synthesis, and increase in bile acid and neutral sterol excretion. Therefore, Zanthoxylum alkylamide has the potential for preventing or alleviating high-energy intake-related obesity.
Collapse
Affiliation(s)
- Rui Wang
- College of Food Science, Southwest University, Chongqing, China.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Yu-Ming You
- College of Forestry and Life Sciences, Chongqing University of Arts and Sciences, Chongqing, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Hydroxy- α-sanshool Possesses Protective Potentials on H 2O 2-Stimulated PC12 Cells by Suppression of Oxidative Stress-Induced Apoptosis through Regulation of PI3K/Akt Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3481758. [PMID: 32695254 PMCID: PMC7368233 DOI: 10.1155/2020/3481758] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/06/2020] [Accepted: 06/24/2020] [Indexed: 01/02/2023]
Abstract
Zanthoxylum bungeanum pericarp is a commonly used herbal medicine in China with effects of anti-inflammatory and analgesic, improving learning and memory ability, while hydroxy-α-sanshool (HAS) is the most important active ingredient of Z. bungeanum pericarps. The purpose of this study was to investigate the neuroprotective effect of HAS and its related possible mechanisms using a H2O2-stimulated PC12 cell model. CCK-8 assay results showed that HAS had a significant protective effect on H2O2-stimulated PC12 cells without obvious cytotoxicity on normal PC12 cells. Flow cytometry and fluorescence microscope (DAPI staining and DCFH-DA staining) indicated that HAS could reduce the H2O2-induced apoptosis in PC12 cells via reduction of intracellular ROS and increase of mitochondrial membrane potential (MMP). Subsequently, results of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) determination suggested that HAS could increase the enzyme activities of SOD, CAT, and GSH-Px whereas it could decrease the MDA contents in H2O2-stimulated PC12 cells. Furthermore, the western blotting assays showed that HAS could upregulate the expressions of p-PI3k, Akt, p-Akt, and Bcl-2, while it could downregulate the expressions of cleaved caspase-3 and Bax in H2O2-stimulated PC12 cells. Collectively, it could be concluded according to our results that HAS possesses protective potentials on H2O2-stimulated PC12 cells through suppression of oxidative stress-induced apoptosis via regulation of PI3K/Akt signal pathway.
Collapse
|
10
|
Antiobesity, Regulation of Lipid Metabolism, and Attenuation of Liver Oxidative Stress Effects of Hydroxy- α-sanshool Isolated from Zanthoxylum bungeanum on High-Fat Diet-Induced Hyperlipidemic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5852494. [PMID: 31534622 PMCID: PMC6732614 DOI: 10.1155/2019/5852494] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/24/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023]
Abstract
Zanthoxylum bungeanum is a traditional Chinese medicine (TCM) used to relieve pain, dispel dampness, stop diarrhea, and prevent itching. The aim of this study was to investigate the antiobesity and hypolipidemic effects of hydroxy-α-sanshool (HAS) isolated from Z. bungeanum on hyperlipidemic rats. Wistar rats (n = 48) were randomly divided into six groups: (1) normal diet rats (ND), (2) high-fat diet- (HFD-) treated rats, (3) HFD+fenofibrate-treated rats (HFD+FNB), (4) HFD+low dose of HAS-treated rats (HFD+LD, 9 mg/kg), (5) HFD+middle dose of HAS-treated rats (HFD+MD, 18 mg/kg), and (6) HFD+high dose of HAS-treated rats (HFD+HD, 36 mg/kg). The body weight and food intake of the rats were recorded during the treatment period. After 4 weeks of HAS treatment, abdominal adipose tissues were observed and total cholesterol (T-CHO), triglycerides (TG), high-density lipoprotein (HDL) cholesterol (HDL-C), and low-density lipoprotein (LDL) cholesterol (LDL-C) of serum and liver tissues were determined. Furthermore, histochemical examinations using oil red O and hematoxylin-eosin staining (H&E) were carried out and levels of malondialdehyde (MDA) and glutathione (GSH) and activities of superoxide dismutase (SOD) in the liver were determined. After HFD feeding, the body weight gain and food efficiency ratio of HFD rats were significantly enhanced (p < 0.05vs. ND rats) and HAS treatment (18 and 36 mg/kg) significantly decreased the body weight gain and food efficiency ratio (p < 0.05vs. HFD rats). In addition, HAS treatment could decrease the abdominal adipose tissues and liver adipocytes. Furthermore, HAS treatment significantly decreased the T-CHO, TG, and LDL-C, whereas it increased HDL-C (p < 0.05vs. HFD rats) in serum and the liver. HAS treatment increased the GSH level and SOD activity in the liver (p < 0.05vs. HFD rats), whereas it decreased the levels of MDA (p < 0.05vs. HFD rats). mRNA analyses suggested that HAS treatment increases the expression of Pparg (proliferator-activated receptor γ) and Apoe (peroxisome apolipoprotein E). Immunohistochemistry and Western blotting indicated that HAS stimulation increased the levels of PPARγ and APOE in the liver, as a stress response of the body defense system. These results revealed that HAS exerts antiobesity and hypolipidemic activities in HFD rats by reducing liver oxidative stress and thus could be considered as a potential candidate drug to cure or prevent obesity and hyperlipidemia.
Collapse
|
11
|
Molecular basis of neurophysiological and antioxidant roles of Szechuan pepper. Biomed Pharmacother 2019; 112:108696. [DOI: 10.1016/j.biopha.2019.108696] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 01/18/2023] Open
|
12
|
Aguillín-Osma J, Loango-Chamorro N, Landazuri P. Modelos celulares hepáticos para el estudio del metabolismo de los lípidos. Revisión de literatura. REVISTA DE LA FACULTAD DE MEDICINA 2019. [DOI: 10.15446/revfacmed.v67n1.64964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. El hígado juega un papel importante en la homeostasis lipídica, especialmente en la síntesis de ácidos grasos y triglicéridos. Una amplia variedad de modelos celulares ha sido utilizada para investigar el metabolismo lipídico hepático y para elucidar detalles específicos de los mecanismos bioquímicos del desarrollo y progresión de enfermedades relacionadas, brindando información para tratamientos que reduzcan su impacto. Los modelos celulares hepáticos poseen un alto potencial en la investigación del metabolismo de lípidos y de agentes farmacológicos o principios activos que permiten la reducción de la acumulación de lípidos.Objetivo. Comparar algunos modelos celulares hepáticos utilizados para el estudio del metabolismo lipídico, sus características y los resultados más relevantes de investigación en ellos.Materiales y métodos. Se realizó una búsqueda sistemática en bases de datos sobre los modelos celulares hepáticos de mayor uso para el estudio del metabolismo de lípidos.Resultados. Se exponen los cinco modelos celulares más utilizados para este tipo de investigaciones, destacando su origen, aplicación, ventajas y desventajas al momento de estimular el metabolismo lipídico.Conclusión. Para seleccionar el modelo celular, el investigador debe tener en cuenta cuáles son los requerimientos y el proceso que desea evidenciar, sin olvidar que los resultados obtenidos solo serán aproximaciones de lo que en realidad podría suceder a nivel del hígado como órgano.
Collapse
|
13
|
Han T, Lv Y, Wang S, Hu T, Hong H, Fu Z. PPARγ overexpression regulates cholesterol metabolism in human L02 hepatocytes. J Pharmacol Sci 2019; 139:1-8. [DOI: 10.1016/j.jphs.2018.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/17/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023] Open
|
14
|
6-Gingerol Ameliorates Behavioral Changes and Atherosclerotic Lesions in ApoE−/− Mice Exposed to Chronic Mild Stress. Cardiovasc Toxicol 2018; 18:420-430. [DOI: 10.1007/s12012-018-9452-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Zhang M, Wang J, Zhu L, Li T, Jiang W, Zhou J, Peng W, Wu C. Zanthoxylum bungeanum Maxim. (Rutaceae): A Systematic Review of Its Traditional Uses, Botany, Phytochemistry, Pharmacology, Pharmacokinetics, and Toxicology. Int J Mol Sci 2017; 18:E2172. [PMID: 29057808 PMCID: PMC5666853 DOI: 10.3390/ijms18102172] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 11/16/2022] Open
Abstract
Zanthoxylum bungeanum Maxim. (Rutaceae) is a popular food additive and traditional Chinese herbal medicine commonly named HuaJiao in China. This plant is widely distributed in Asian countries. The aim of this paper is to provide a systematic review on the traditional usages, botany, phytochemistry, pharmacology, pharmacokinetics, and toxicology of this plant. Furthermore, the possible development and perspectives for future research on this plant are also discussed. To date, over 140 compounds have been isolated and identified from Z. bungeanum, including alkaloids, terpenoids, flavonoids, and free fatty acids. The extracts and compounds have been shown to possess wide-ranging biological activity, such as anti-inflammatory and analgesic effects, antioxidant and anti-tumor effects, antibacterial and antifungal effects, as well as regulatory effects on the gastrointestinal system and nervous system, and other effects. As a traditional herbal medicine, Z. bungeanum has been widely used to treat many diseases, especially digestive disorders, toothache, stomach ache, and diarrhea. Many traditional usages of this plant have been validated by present investigations. However, further research elucidating the structure-function relationship among chemical compounds, understanding the mechanism of unique sensation, as well as exploring new clinical effects and establishing criteria for quality control for Z. bungeanum should be further studied.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jiaolong Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lei Zhu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Tao Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Weidong Jiang
- Sichuan Institute for Food and Drug Control, Chengdu 611731, China.
| | - Juan Zhou
- Sichuan Institute for Food and Drug Control, Chengdu 611731, China.
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunjie Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
16
|
Hong L, Jing W, Qing W, Anxiang S, Mei X, Qin L, Qiuhui H. Inhibitory effect of Zanthoxylum bungeanum essential oil (ZBEO) on Escherichia coli and intestinal dysfunction. Food Funct 2017; 8:1569-1576. [PMID: 28281719 DOI: 10.1039/c6fo01739h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The inhibitory effects of Zanthoxylum bungeanum essential oil (ZBEO) on Escherichia coli (E. coli) in vitro and in vivo were investigated, as well as its function of improvement of intestinal health. The results of in vitro studies, such as minimal inhibitory concentration (MIC) analysis, agar disc diffusion test and growth curve analysis of E. coli, showed that ZBEO had an excellent inhibitory effect on the growth of E. coli, which may be related to the loss of the normal shape of the cell membranes and the leakage of intracellular constituents, on the basis of SEM observation and cell constituents' release assay. ZBEO also had an inhibitory effect on enteritis and intestinal dysfunction induced by infection of E. coli in vivo, and histopathological observation indicated that ZBEO could markedly ameliorate the structural destruction of intestinal tissues, which might be related to its inhibitory effect on the gene expression of inflammatory cytokines (TLR2, TLR4, TNFα and IL-8). In conclusion, ZBEO showed an excellent inhibitory effect on E. coli both in vitro and in vivo, suggesting the potential application of ZBEO as a kind of functional component having the effects of improving intestinal function and health.
Collapse
Affiliation(s)
- Lei Hong
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhang Y, Dong H, Zhang J, Zhang L. Inhibitory effect of hyperoside isolated from Zanthoxylum bungeanum leaves on SW620 human colorectal cancer cells via induction of the p53 signaling pathway and apoptosis. Mol Med Rep 2017; 16:1125-1132. [PMID: 29067453 PMCID: PMC5562015 DOI: 10.3892/mmr.2017.6710] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 04/06/2017] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to demonstrate the antiproliferative effect of hyperoside from Zanthoxylum bungeanum leaves (HZL) and explain the underlying molecular mechanisms in the SW620 human colorectal cancer cell line. The cytotoxic effects of HZL were determined using a3‑(4,5‑dimethylthiazol‑2‑yl)2,5‑diphenyltetrazolium bromide assay. Apoptosis and cell cycle were detected using flow cytometry. Reactive oxygen species (ROS) levels and mitochondrial membrane potential (∆Ψm) were assessed using 2',7'‑dichlorofluorescin diacetate and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl carbocyanine iodide fluorescence spectrophotometry, respectively. Western blot analysis was used to quantify the expression levels of apoptosis‑associated proteins. Reverse transcription‑quantitative polymerase chain reaction analysis was used to determine the mRNA expression of glutathione peroxidase (GSH‑Px) and catalase (CAT). HZL had a marked anti‑proliferative effect on the SW620 human colorectal cancer cells by inducing cell cycle G2/M phase arrest and apoptosis, which was associated with an increase in the expression of p53 and p21. Further mechanistic investigations revealed that the induction of apoptosis was associated with increased generation of ROS, reduced ∆Ψm, and upregulation of B‑cell lymphoma 2‑associated X protein, cytochrome c, caspase‑9, apoptotic protease activating factor 1 and caspase‑3. The antitumor potency of HZL was also attributed to inhibition of the mRNA expression levels of GSH‑Px and CAT. These data indicated that HZL may be involved in the pro‑apoptotic signaling of SW620 human colorectal cancer cells via induction of the caspase‑dependent apoptosis and p53 signaling pathways.
Collapse
Affiliation(s)
- Yali Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Huanhuan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Jingfang Zhang
- College of Forestry, Northwest A&F University, Xianyang, Shaanxi 712100, P.R. China
| | - Liyu Zhang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 710002, P.R. China
| |
Collapse
|
18
|
Ren T, Zhu Y, Kan J. Zanthoxylum alkylamides activate phosphorylated AMPK and ameliorate glycolipid metabolism in the streptozotocin-induced diabetic rats. Clin Exp Hypertens 2017; 39:330-338. [DOI: 10.1080/10641963.2016.1259332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tingyuan Ren
- College of Food Science, Southwest University, Chongqing, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation, Ministry of Agriculture, Chongqing, China
| | - Yuping Zhu
- Institute of Biological Engineering, Chongqing University, Chongqing, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation, Ministry of Agriculture, Chongqing, China
| |
Collapse
|
19
|
Wang Y, Zhong L, Liu X, Zhu YZ. ZYZ-772 Prevents Cardiomyocyte Injury by Suppressing Nox4-Derived ROS Production and Apoptosis. Molecules 2017; 22:molecules22020331. [PMID: 28230797 PMCID: PMC6155929 DOI: 10.3390/molecules22020331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 01/17/2023] Open
Abstract
Nox-dependent signaling plays critical roles in the development of heart failure, cardiac hypertrophy, and myocardial infarction. NADPH oxidase 4 (Nox4) as a major source of oxidative stress in the heart offers a new therapeutic target in cardiovascular disease. In the present work, a novel flavonoid was isolated from Zanthoxylum bungeanum. Its structure was elucidated as Quercetin-3-O-(6′′-O-α-l-rhamnopyransoyl)-β-d-glucopyranoside-7-O-β-d-glucopyranoside (ZYZ-772) for the first time. ZYZ-772 exhibited significant cardio-protective property against CoCl2 induced H9c2 cardiomyocyte cells injury. In CoCl2 stimulated cardiomyocyte injury, ZYZ-772 inhibited expression of Nox4, and alleviated ROS overproduction. Importantly, ROS triggered MAPKs phosphorylation and P53 signaling mediated apoptosis were restored by ZYZ-772. Our findings present the first piece of evidence for the therapeutic properties of ZYZ-772 in preventing cardiomyocyte injury, which could be attributed to the suppression of Nox4/MAPKs/P53 axis. This will offer a novel therapeutic strategy for the treatment of cardiac ischemia disease.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Liangjie Zhong
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Xinhua Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yi Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
- School of Pharmacy, Macao University of Science and Technology, Macao.
| |
Collapse
|
20
|
Lee KS, Kwon YS, Kim S, Moon DS, Kim HJ, Nam KS. Regulatory mechanism of mineral-balanced deep sea water on hypocholesterolemic effects in HepG2 hepatic cells. Biomed Pharmacother 2017; 86:405-413. [DOI: 10.1016/j.biopha.2016.12.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/01/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022] Open
|
21
|
Danesi F, Gómez-Caravaca AM, de Biase D, Verardo V, Bordoni A. New insight into the cholesterol-lowering effect of phytosterols in rat cardiomyocytes. Food Res Int 2016; 89:1056-1063. [DOI: 10.1016/j.foodres.2016.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Danesi F, Govoni M, D'Antuono LF, Bordoni A. The molecular mechanism of the cholesterol-lowering effect of dill and kale: The influence of the food matrix components. Electrophoresis 2016; 37:1805-13. [PMID: 27028988 PMCID: PMC5215634 DOI: 10.1002/elps.201600033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/09/2016] [Accepted: 03/18/2016] [Indexed: 12/22/2022]
Abstract
Foods are complex matrices containing many different compounds, all of which contribute to the overall effect of the food itself, although they have different mechanisms of action. While evaluating the effect of bioactive compounds, it is important to consider that the use of a single compound can hide the effects of the other molecules that can act synergistically or antagonistically in the same food. The aim of the present study was to evaluate the influence of food matrix components by comparing two edible plants (dill and kale) with cholesterol-lowering potential and similar contents of their most representative bioactive, quercetin. The molecular effects of the extracts were evaluated in HepG2 cells by measuring the expression of sterol-regulatory element-binding proteins (SREBPs), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and low density lipoprotein receptor (LDLR) at the mRNA and protein level. The results reported here show that both extracts reduced the cellular cholesterol level with a similar trend and magnitude. It is conceivable that the slightly different results are due to the diverse composition of minor bioactive compounds, indicating that only by considering food as a whole is it possible to understand the complex relationship between food, nutrition, and health in a foodomics vision.
Collapse
Affiliation(s)
- Francesca Danesi
- Department of Agri-Food Science and Technology (DISTAL), University of Bologna, Cesena, FC, Italy
| | - Marco Govoni
- BioEngLab, Health Science and Technology - Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano dell'Emilia BO, Italy
| | - Luigi Filippo D'Antuono
- Department of Agri-Food Science and Technology (DISTAL), University of Bologna, Cesena, FC, Italy
| | - Alessandra Bordoni
- Department of Agri-Food Science and Technology (DISTAL), University of Bologna, Cesena, FC, Italy
| |
Collapse
|