1
|
Cao J, Maitirouzi A, Feng Y, Zhang H, Heng Y, Zhang J, Wang Y. Heterologous expression of Halostachys caspica pathogenesis-related protein 10 increases salt and drought resistance in transgenic Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2024; 115:5. [PMID: 39671054 DOI: 10.1007/s11103-024-01536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Pathogenesis-related proteins (PR), whose expressions are induced by biotic and abiotic stress, play important roles in plant defense. Previous research identified the salt-induced HcPR10 gene in the halophyte Halostachys caspica as a regulator of plant growth and development through interactions with cytokinin. However, the mechanisms by which HcPR10 mediates resistance to abiotic stress remain poorly understood. In this study, we found that the heterologous expression of HcPR10 significantly enhanced salt and drought tolerance in Arabidopsis, likely by increasing the activity of antioxidant enzyme systems, allowing for effective scavenging of reactive oxygen species (ROS) and thus protecting plant cells from oxidative damage. Additionally, the overexpression of HcPR10 also activated the expression of stress-related genes in Arabidopsis. Furthermore, using yeast two-hybrid technology, five proteins (HcLTPG6, HcGPX6, HcUGT73B3, HcLHCB2.2, and HcMSA1) were identified as potential interacting partners for HcPR10, which could positively regulate the salt stress response mediated by HcPR10. Our findings lay the foundation for a better understanding of the molecular mechanisms of HcPR10 in response to abiotic stress and reveal additional candidate genes for improving crop salt tolerance through genetic engineering.
Collapse
Affiliation(s)
- Jing Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Ayixianmuguli Maitirouzi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yudan Feng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Hua Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Youqiang Heng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Jinbo Zhang
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Yan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
2
|
Khanfir E, Zribi I, Dhouib H, Ghorbel M, Hamdi K, Jrad O, Yacoubi I, Brini F. Genome-Wide Identification of PR10 Family Members in Durum Wheat: Expression Profile and In Vitro Analyses of TdPR10.1 in Response to Various Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3128. [PMID: 39599337 PMCID: PMC11597350 DOI: 10.3390/plants13223128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
The functional characterization of PR10 proteins has been extensively studied in many plant species. However, little is known about the role of TdPR10 in the response of durum wheat (Triticum durum Desf.) to stress. In this study, we identified members of the T. durum PR10 family, which are divided into three major subfamilies based on phylogenetic analyses. The analysis revealed that tandem duplication was the primary driver of the expansion of the T. durum PR10 gene family. Additionally, gene structure and motif analyses showed that PR10 family genes were relatively conserved during evolution. We also identified several cis-regulatory elements in the TdPR10 promoter regions related not only to abiotic and biotic stress but also to phytohormonal responses. In response to abiotic stresses and phytohormones, several TdPR10 genes were highly expressed in the leaves and roots of durum wheat. Moreover, TdPR10.1 family members improve RNase activity, increase LDH protective activity under abiotic stress conditions, and ensure resistance to fungi in vitro. Collectively, these findings provide a basis for further functional studies of TdPR10 genes, which could be leveraged to enhance stress tolerance in durum wheat.
Collapse
Affiliation(s)
- Emna Khanfir
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia; (E.K.); (I.Z.); (K.H.); (O.J.); (I.Y.)
| | - Ikram Zribi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia; (E.K.); (I.Z.); (K.H.); (O.J.); (I.Y.)
| | - Hanen Dhouib
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia;
| | - Karama Hamdi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia; (E.K.); (I.Z.); (K.H.); (O.J.); (I.Y.)
| | - Olfa Jrad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia; (E.K.); (I.Z.); (K.H.); (O.J.); (I.Y.)
| | - Inès Yacoubi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia; (E.K.); (I.Z.); (K.H.); (O.J.); (I.Y.)
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia; (E.K.); (I.Z.); (K.H.); (O.J.); (I.Y.)
| |
Collapse
|
3
|
Berrabah F, Benaceur F, Yin C, Xin D, Magne K, Garmier M, Gruber V, Ratet P. Defense and senescence interplay in legume nodules. PLANT COMMUNICATIONS 2024; 5:100888. [PMID: 38532645 PMCID: PMC11009364 DOI: 10.1016/j.xplc.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Immunity and senescence play a crucial role in the functioning of the legume symbiotic nodules. The miss-regulation of one of these processes compromises the symbiosis leading to death of the endosymbiont and the arrest of the nodule functioning. The relationship between immunity and senescence has been extensively studied in plant organs where a synergistic response can be observed. However, the interplay between immunity and senescence in the symbiotic organ is poorly discussed in the literature and these phenomena are often mixed up. Recent studies revealed that the cooperation between immunity and senescence is not always observed in the nodule, suggesting complex interactions between these two processes within the symbiotic organ. Here, we discuss recent results on the interplay between immunity and senescence in the nodule and the specificities of this relationship during legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Fathi Berrabah
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria.
| | - Farouk Benaceur
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria
| | - Chaoyan Yin
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Dawei Xin
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Marie Garmier
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Véronique Gruber
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France.
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
5
|
Yang C, Yi Y, Wang J, Ge L, Zhang L, Liu M. Phylogenetic Analysis of the PR-4 Gene Family in Euphorbiaceae and Its Expression Profiles in Tung Tree ( Vernicia fordii). PLANTS (BASEL, SWITZERLAND) 2023; 12:3154. [PMID: 37687401 PMCID: PMC10490464 DOI: 10.3390/plants12173154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Pathogenesis-related protein-4 (PR-4) is generally believed to be involved in physiological processes. However, a comprehensive investigation of this protein in tung tree (Vernicia fordii) has yet to be conducted. In this study, we identified 30 PR-4 genes in the genomes of Euphorbiaceae species and investigated their domain organization, evolution, promoter cis-elements, expression profiles, and expression profiles in the tung tree. Sequence and structural analyses indicated that VF16136 and VF16135 in the tung tree could be classified as belonging to Class II and I, respectively. Phylogenetic and Ka/Ks analyses revealed that Hevea brasiliensis exhibited a significantly expanded number of PR-4 genes. Additionally, the analysis of promoter cis-elements suggested that two VfPR-4 genes may play a role in the response to hormones and biotic and abiotic stress of tung trees. Furthermore, the expression patterns of VfPR-4 genes and their responses to 6-BA, salicylic acid, and silver nitrate in inflorescence buds of tung trees were evaluated using qRT-PCR. Notably, the expression of two VfPR-4 genes was found to be particularly high in leaves and early stages of tung seeds. These results suggest that VF16136 and VF16135 may have significant roles in the development of leaves and seeds in tung trees. Furthermore, these genes were found to be responsive to 6-BA, salicylic acid, and silver nitrate in the development of inflorescence buds. This research provides valuable insights for future investigation into the functions of PR-4 genes in tung trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Meilan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410001, China; (C.Y.)
| |
Collapse
|
6
|
Longsaward R, Sanguankiattichai N, Viboonjun U, van der Hoorn RAL. Letter to the Editor: Cautionary Note on Ribonuclease Activity of Recombinant PR-10 Proteins. PLANT & CELL PHYSIOLOGY 2023; 64:847-849. [PMID: 37319028 PMCID: PMC10434734 DOI: 10.1093/pcp/pcad062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Rawit Longsaward
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | | | - Unchera Viboonjun
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
7
|
Du Y, Amin N, Ahmad N, Zhang H, Zhang Y, Song Y, Fan S, Wang P. Identification of the Function of the Pathogenesis-Related Protein GmPR1L in the Resistance of Soybean to Cercospora sojina Hara. Genes (Basel) 2023; 14:genes14040920. [PMID: 37107678 PMCID: PMC10137329 DOI: 10.3390/genes14040920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Pathogenesis-related proteins, often used as molecular markers of disease resistance in plants, can enable plants to obtain systemic resistance. In this study, a gene encoding a pathogenesis-related protein was identified via RNA-seq sequencing analysis performed at different stages of soybean seedling development. Because the gene sequence showed the highest similarity with PR1L sequence in soybean, the gene was named GmPR1-9-like (GmPR1L). GmPR1L was either overexpressed or silenced in soybean seedlings through Agrobacterium-mediated transformation to examine the resistance of soybean to infection caused by Cercospora sojina Hara. The results revealed that GmPR1L-overexpressing soybean plants had a smaller lesion area and improved resistance to C. sojina infection, whereas GmPR1L-silenced plants had low resistance to C. sojina infection. Fluorescent real-time PCR indicated that overexpression of GmPR1L induced the expression of genes such as WRKY, PR9, and PR14, which are more likely to be co-expressed during C. sojina infection. Furthermore, the activities of SOD, POD, CAT, and PAL were significantly increased in GmPR1L-overexpressing soybean plants after seven days of infection. The resistance of the GmPR1L-overexpressing lines OEA1 and OEA2 to C. sojina infection was significantly increased from a neutral level in wild-type plants to a moderate level. These findings predominantly reveal the positive role of GmPR1L in inducing resistance to C. sojina infection in soybean, which may facilitate the production of improved disease-resistant soybean cultivars in the future.
Collapse
Affiliation(s)
- Yeyao Du
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Nooral Amin
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanzhu Zhang
- Jilin Provincial Seed Management Station, Changchun 130033, China
| | - Ye Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130118, China
| | - Yang Song
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Sujie Fan
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Piwu Wang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
8
|
Rajendram A, Mostaffa NH, Dumin W, Oke MA, Simarani K, Somasundram C, Razali Z, Rejab NA, Al-Idrus A. Dual activity of Meloidogyne incognita-regulated Musa acuminata Pathogenesis-related-10 (MaPR-10) gene. Gene 2022; 809:146041. [PMID: 34710526 DOI: 10.1016/j.gene.2021.146041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 10/21/2021] [Indexed: 12/01/2022]
Abstract
Plant immunity to pathogen infections is a dynamic response that involves multiple organelles and defence signalling systems such as hypersensitive response (HR) and systemic acquired resistance (SAR). The latter requires the function of Pathogenesis-related (PR) proteins, a common plant protein family with diverse roles in plant innate immunity. Our previous proteomics study showed that a PR gene (ITC1587_Bchr9_P26466_MUSBA) was differentially regulated during a compatible banana-M. incognita interaction, substantiating the isolation of this gene in the current study. Here, we successfully isolated and characterised Pathogenesis-related-10 (PR10) gene with β-1,3-glucanase and ribonuclease (RNase) activities from two Musa acuminata cultivars (denoted as MaPR10) namely Berangan and Grand Naine (ITC1256). We found that MaPR10 cloned sequences possess glycine-rich loop domain and shared conserved motifs specific to PR10 gene group, confirming its identity as a member of this group. Interestingly, we also found a catalytic domain sequence for glycoside hydrolase family 16 (EXDXXE), unique only to MaPR10 cloned sequences. Two peptide variants closely related to the reference sequence ITC1587_Bchr9_P26466_MUSBA namely MaPR10-BeB5 and MaPR10-GNA5 were overexpressed and purified to test for their functionality. Here, we confirmed that both protein variants possess β-1,3-glucanase and ribonuclease (RNase) activities, and inhibit the growth of Aspergillus fumigatus, a human opportunistic pathogen. To our knowledge, this is the first PR10 plant proteins with such properties to be reported thus far.
Collapse
Affiliation(s)
- Arullthevan Rajendram
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Hikmah Mostaffa
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Walftor Dumin
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development, Wanju 55365, Republic of Korea
| | - Mushafau Adebayo Oke
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Khanom Simarani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chandran Somasundram
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zuliana Razali
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Ardiyana Rejab
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Aisyafaznim Al-Idrus
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Fujita K, Inui H. Review: Biological functions of major latex-like proteins in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110856. [PMID: 33775363 DOI: 10.1016/j.plantsci.2021.110856] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 05/23/2023]
Abstract
Major latex-like proteins (MLPs) have been identified in dicots and monocots. They are members of the birch pollen allergen Bet v 1 family as well as pathogenesis-related proteins class 10. MLPs have two main features. One is binding affinity toward various hydrophobic compounds, such as long-chain fatty acids, steroids, and systemic acquired resistance signals, via its internal hydrophobic cavity or hydrophobic residues on its surface. MLPs transport such compounds to other organs via phloem and xylem vessels and contribute to the expression of physiologically important ligands' activity in the particular organs. The second feature is responses to abiotic and biotic stresses. MLPs are involved in drought and salt tolerance through the mediation of plant hormone signaling pathways. MLPs generate resistance against pathogens by the induction of pathogenesis-related protein genes. Therefore, MLPs play crucial roles in drought and salt tolerance and resistance against pathogens. However, knowledge of MLPs is fragmented, and an overview of them is needed. Herein, we summarize the current knowledge of the biological functions of MLPs, which to our knowledge, is the first review about MLPs that has been reported.
Collapse
Affiliation(s)
- Kentaro Fujita
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
10
|
Enhanced Abiotic Stress Tolerance of Vicia faba L. Plants Heterologously Expressing the PR10a Gene from Potato. PLANTS 2021; 10:plants10010173. [PMID: 33477622 PMCID: PMC7831506 DOI: 10.3390/plants10010173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
Abstract
Pathogenesis-related (PR) proteins are known to play relevant roles in plant defense against biotic and abiotic stresses. In the present study, we characterize the response of transgenic faba bean (Vicia faba L.) plants encoding a PR10a gene from potato (Solanum tuberosum L.) to salinity and drought. The transgene was under the mannopine synthetase (pMAS) promoter. PR10a-overexpressing faba bean plants showed better growth than the wild-type plants after 14 days of drought stress and 30 days of salt stress under hydroponic growth conditions. After removing the stress, the PR10a-plants returned to a normal state, while the wild-type plants could not be restored. Most importantly, there was no phenotypic difference between transgenic and non-transgenic faba bean plants under well-watered conditions. Evaluation of physiological parameters during salt stress showed lower Na+-content in the leaves of the transgenic plants, which would reduce the toxic effect. In addition, PR10a-plants were able to maintain vegetative growth and experienced fewer photosystem changes under both stresses and a lower level of osmotic stress injury under salt stress compared to wild-type plants. Taken together, our findings suggest that the PR10a gene from potato plays an important role in abiotic stress tolerance, probably by activation of stress-related physiological processes.
Collapse
|
11
|
Besbes F, Franz-Oberdorf K, Schwab W. Phosphorylation-dependent ribonuclease activity of Fra a 1 proteins. JOURNAL OF PLANT PHYSIOLOGY 2019; 233:1-11. [PMID: 30572279 DOI: 10.1016/j.jplph.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 05/24/2023]
Abstract
Abiotic and biotic stress situations cause the upregulation of the transcription of a number of plant defence genes. They code for so-called pathogenesis-related (PR) proteins such as PR proteins of class-10 (PR-10), whose biological functions are still unclear. PR10 proteins are members of the Bet v 1 (major birch pollen allergen) superfamily including related proteins from the cultivated strawberry Fragaria × ananassa (Fra a 1 proteins). Here, we analyzed the expression of 21 Fra a 1 genes in different tissues of the strawberry plant by quantitative real-time PCR. Thirteen members were mainly expressed in roots, three in stems, two in red fruits and leaves, and one in flowers. Five genes (Fra a 1.04-1.08) were selected based on their expression profiles, heterologously expressed in Escherichia coli, and their recombinant proteins functionally characterized. Ribonuclease activity, demonstrated by in-solution and in-gel RNA degradation assays, indicated complete hydrolysis of RNA only by Fra a 1.06. Moreover, phosphorylation assays showed that except for Fra a 1.06, the remaining four recombinant proteins were phosphorylated. Consequently, we investigated whether the phosphorylation status of the proteins affects their ribonuclease activity. Using an in-solution as well as an in-gel RNase activity assay, results demonstrated that the four recombinant proteins, dephosphorylated with phosphatases, exhibited ribonucleolytic activity against total RNA. Thus, the PR10 related proteins characterized in this study harbour a phosphorylation-dependent RNase activity. The results shed new light on the assumed function of PR10 proteins in plant defence.
Collapse
Affiliation(s)
- Fatma Besbes
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Katrin Franz-Oberdorf
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany.
| |
Collapse
|
12
|
Wieczorek P, Wrzesińska B, Frąckowiak P, Przybylska A, Obrępalska-Stęplowska A. Contribution of Tomato torrado virus Vp26 coat protein subunit to systemic necrosis induction and virus infectivity in Solanum lycopersicum. Virol J 2019; 16:9. [PMID: 30642343 PMCID: PMC6332883 DOI: 10.1186/s12985-019-1117-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 01/06/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Tomato torrado virus (ToTV) infection manifests with burn-like symptoms on leaves, leaflets and upper stem parts of susceptible infected plants. The symptoms caused by ToTV may be considered as one of the most severe virus-induced forms of systemic necrosis, which spreads within the whole plant and leads to a lethal phenotype. However, to date there are no data revealing which viral genes encode for a specific pathogenicity determinant that triggers the plant necrotic response for any torradovirus. In this study we evaluated the influence of three coat protein subunits of ToTV: Vp23, Vp26 and Vp35, transiently expressed from a PVX-based vector, and checked their association with the induction of systemic necrosis in infected Solanum lycopersicum L. (cv. Beta Lux), a natural host of ToTV. METHODS To estimate how ToTV coat protein subunits might contribute in plant response to virus infection we over-expressed the proteins from PVX-based vector in tomato and analyzed enzymatic activities related with plant defense response. By doing protein qualitative analysis performed by mass spectrometry we indicated the PR10 in protein fraction with induced ribonuclease activity. RESULTS We observed that only the Vp26 enhanced PVX pathogenicity causing severe necrosis of the infected plant. Moreover, we indicated increased RNase and oxidative activities in plants infected with PVX-Vp26 chimeras only. Importantly, we suspected that this increased RNase activity is associated with increased accumulation of PR10 mRNA and products of its translation. CONCLUSIONS On the basis of the obtained results, we indicated that Vp26 acts as the elicitor of hypersensitive response-like reactions of PVX-Vp26 manifesting with enhanced pathogenicity of the recombined PVX. This might be the first described suspected necrosis determinant of torradoviruses infecting tomatoes.
Collapse
Affiliation(s)
- Przemysław Wieczorek
- Department of Entomology, Animal Pests & Biotechnology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland
| | - Barbara Wrzesińska
- Department of Entomology, Animal Pests & Biotechnology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland
| | - Patryk Frąckowiak
- Department of Entomology, Animal Pests & Biotechnology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland
| | - Arnika Przybylska
- Department of Entomology, Animal Pests & Biotechnology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Department of Entomology, Animal Pests & Biotechnology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland.
| |
Collapse
|
13
|
Peng Q, Su Y, Ling H, Ahmad W, Gao S, Guo J, Que Y, Xu L. A sugarcane pathogenesis-related protein, ScPR10, plays a positive role in defense responses under Sporisorium scitamineum, SrMV, SA, and MeJA stresses. PLANT CELL REPORTS 2017; 36:1427-1440. [PMID: 28634719 DOI: 10.1007/s00299-017-2166-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/13/2017] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE A pathogenesis-related gene, ScPR10 , was isolated from sugarcane and its bio-function was characterized, demonstrating that ScPR10 was involved in plant defense responses to Sporisorium scitamineum , SrMV, SA, and MeJA stresses. Plant fungal and viral diseases are the major concerns in sugarcane industry. Many anti-fungal and antivirus components, including pathogenesis-related (PR) proteins, have been identified. The pathogenesis-related protein 10 (PR10) is the dominant group in PR families, involved in the plant defense mechanism. In this study, ScPR10 (GenBank Acc. No. KT887884), a 701-bp-length PR10 gene with a 483 bp-length open reading frame, was isolated from sugarcane. Its transient expression in the leaves of Nicotiana benthamiana indicated that the function role of ScPR10 is likely in the nucleus, and it increased the level of H2O2 accumulation in leaf cells. Moreover, ScPR10 could also enhance the resistance of N. benthamiana leaves to infection by Pseudomonas solanacearum and Fusarium solani var. coeruleum. Quantitative real-time PCR analysis revealed that ScPR10 was not constitutively expressed in sugarcane tissues due to its high expression in the buds and scant presence in root tips. In addition, the transcript of ScPR10 could be induced by a pathogenic fungus (Sporisorium scitamineum) and a virus (Sorghum mosaic virus, SrMV) in the resistant sugarcane cultivars, while it was down-regulated in the susceptible ones. After exposure to salicylic acid (SA) and methyl jasmonate (MeJA), ScPR10 peaked at 6 and 12 h, respectively. These results suggest that ScPR10 can play a positive role in sugarcane defense responses to S. scitamineum, SrMV, SA, and MeJA stresses.
Collapse
Affiliation(s)
- Qiong Peng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Waqar Ahmad
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
14
|
Soto Sedano JC, Mora Moreno RE, Mathew B, Léon J, Gómez Cano FA, Ballvora A, López Carrascal CE. Major Novel QTL for Resistance to Cassava Bacterial Blight Identified through a Multi-Environmental Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:1169. [PMID: 28725234 PMCID: PMC5496946 DOI: 10.3389/fpls.2017.01169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/19/2017] [Indexed: 05/31/2023]
Abstract
Cassava, Manihot esculenta Crantz, has been positioned as one of the most promising crops world-wide representing the staple security for more than one billion people mainly in poor countries. Cassava production is constantly threatened by several diseases, including cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam), it is the most destructive disease causing heavy yield losses. Here, we report the detection and localization on the genetic map of cassava QTL (Quantitative Trait Loci) conferring resistance to CBB. An F1 mapping population of 117 full sibs was tested for resistance to two Xam strains (Xam318 and Xam681) at two locations in Colombia: La Vega, Cundinamarca and Arauca. The evaluation was conducted in rainy and dry seasons and additional tests were carried out under controlled greenhouse conditions. The phenotypic evaluation of the response to Xam revealed continuous variation. Based on composite interval mapping analysis, 5 strain-specific QTL for resistance to Xam explaining between 15.8 and 22.1% of phenotypic variance, were detected and localized on a high resolution SNP-based genetic map of cassava. Four of them show stability among the two evaluated seasons. Genotype by environment analysis detected three QTL by environment interactions and the broad sense heritability for Xam318 and Xam681 were 20 and 53%, respectively. DNA sequence analysis of the QTL intervals revealed 29 candidate defense-related genes (CDRGs), and two of them contain domains related to plant immunity proteins, such as NB-ARC-LRR and WRKY.
Collapse
Affiliation(s)
- Johana C. Soto Sedano
- Manihot Biotec Laboratory, Biology Department, Universidad Nacional de ColombiaBogotá, Colombia
| | - Rubén E. Mora Moreno
- Manihot Biotec Laboratory, Biology Department, Universidad Nacional de ColombiaBogotá, Colombia
| | - Boby Mathew
- Institute of Crop Science and Resource Conservation-Plant Breeding, University of BonnBonn, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation-Plant Breeding, University of BonnBonn, Germany
| | - Fabio A. Gómez Cano
- Manihot Biotec Laboratory, Biology Department, Universidad Nacional de ColombiaBogotá, Colombia
- Institute of Crop Science and Resource Conservation-Plant Breeding, University of BonnBonn, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation-Plant Breeding, University of BonnBonn, Germany
| | | |
Collapse
|
15
|
Jiao L, Zhang Y, Lu J. Overexpression of a stress-responsive U-box protein gene VaPUB affects the accumulation of resistance related proteins in Vitis vinifera 'Thompson Seedless'. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:53-63. [PMID: 28039816 DOI: 10.1016/j.plaphy.2016.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 05/25/2023]
Abstract
Many U-box proteins have been identified and characterized as important factors against environmental stresses such as chilling, heat, salinity and pathogen attack in plant. Our previous research reported the cloning of a novel U-box protein gene VaPUB from Vitis amurensis 'Zuoshanyi' grape and suggested a function of it in related to cold stress in the model plant Arabidopsis system. In this study, the role of VaPUB in response to biotic and abiotic stress was further analyzed in the homologous grapevine system by studying the transcript regulation and the protein accumulation in VaPUB transgenic vines. The expression analysis assay shown that VaPUB was significantly up-regulated 6 h after cold treatment and as early as 2 h post inoculation with Plasmopara viticola, a pathogen causing downy mildew disease in grapevine. Over-expressing VaPUB in V. Vinifera 'Thompson Seedless' affected the microstructure of leaves. The proteome assay shown that the accumulation of pathogenesis-related protein PR10 and many proteins involved in carbon and energy metabolism, oxidation reaction and protein metabolism were significantly altered in transgenic vines. In comparison with wild type plants, the expression level of PR10 family genes was significantly decreased in VaPUB transgenic vines under P. viticola treatment or cold stress. Results from this study showed that the U-box protein gene PUB quickly responded to both biotic stress and abiotic stress and significantly influenced the accumulation of resistance related proteins in grapevine.
Collapse
Affiliation(s)
- Li Jiao
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiang Lu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, China.
| |
Collapse
|
16
|
Fan S, Jiang L, Wu J, Dong L, Cheng Q, Xu P, Zhang S. A Novel Pathogenesis-Related Class 10 Protein Gly m 4l, Increases Resistance upon Phytophthora sojae Infection in Soybean (Glycine max [L.] Merr.). PLoS One 2015; 10:e0140364. [PMID: 26474489 PMCID: PMC4608668 DOI: 10.1371/journal.pone.0140364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/24/2015] [Indexed: 11/19/2022] Open
Abstract
Phytophthora root and stem rot of soybean, caused by Phytophthora sojae (P. sojae), is a destructive disease in many soybean planting regions worldwide. In a previous study, an expressed sequence tag (EST) homolog of the major allergen Pru ar 1 in apricot (Prunus armeniaca) was identified up-regulated in the highly resistant soybean 'Suinong 10' infected with P. sojae. Here, the full length of the EST was isolated using rapid amplification of cDNA ends (RACE). It showed the highest homology of 53.46% with Gly m 4 after comparison with the eight soybean allergen families reported and was named Gly m 4-like (Gly m 4l, GenBank accession no. HQ913577.1). The cDNA full length of Gly m 4l was 707 bp containing a 474 bp open reading frame encoding a polypeptide of 157 amino acids. Sequence analysis suggests that Gly m 4l contains a conserved 'P-loop' (phosphate-binding loop) motif at residues 47-55 aa and a Bet v 1 domain at residues 87-120 aa. The transcript abundance of Gly m 4l was significantly induced by P. sojae, salicylic acid (SA), NaCl, and also responded to methyl jasmonic acid (MeJA) and ethylene (ET). The recombinant Gly m 4l protein showed RNase activity and displayed directly antimicrobial activity that inhibited hyphal growth and reduced zoospore release in P. sojae. Further analyses showed that the RNase activity of the recombinant protein to degrading tRNA was significantly affected in the presence of zeatin. Over-expression of Gly m 4l in susceptible 'Dongnong 50' soybean showed enhanced resistance to P. sojae. These results indicated that Gly m 4l protein played an important role in the defense of soybean against P. sojae infection.
Collapse
Affiliation(s)
- Sujie Fan
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Liangyu Jiang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Junjiang Wu
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Collaborative Innovation Center of Grain Production Capacity Improvement in Heilongjiang Province, Harbin, 150086, Heilongjiang, People’s Republic of China
| | - Lidong Dong
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Qun Cheng
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Pengfei Xu
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Shuzhen Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| |
Collapse
|
17
|
Jiang L, Wu J, Fan S, Li W, Dong L, Cheng Q, Xu P, Zhang S. Isolation and Characterization of a Novel Pathogenesis-Related Protein Gene (GmPRP) with Induced Expression in Soybean (Glycine max) during Infection with Phytophthora sojae. PLoS One 2015; 10:e0129932. [PMID: 26114301 PMCID: PMC4482714 DOI: 10.1371/journal.pone.0129932] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023] Open
Abstract
Pathogenesis-related proteins (PR proteins) play crucial roles in the plant defense system. A novel PRP gene was isolated from highly resistant soybean infected with Phytophthora sojae (P. sojae) and was named GmPRP (GenBank accession number: KM506762). The amino acid sequences of GmPRP showed identities of 74%, 73%, 72% and 69% with PRP proteins from Vitis vinifera, Populus trichocarpa, Citrus sinensis and Theobroma cacao, respectively. Quantitative real-time reverse transcription PCR (qRT-PCR) data showed that the expression of GmPRP was highest in roots, followed by the stems and leaves. GmPRP expression was upregulated in soybean leaves infected with P. sojae. Similarly, GmPRP expression also responded to defense/stress signaling molecules, including salicylic acid (SA), ethylene (ET), abscisic acid (ABA) and jasmonic acid (JA). GmPRP was localized in the cell plasma membrane and cytoplasm. Recombinant GmPRP protein exhibited ribonuclease activity and significant inhibition of hyphal growth of P. sojae 1 in vitro. Overexpression of the GmPRP gene in T2 transgenic tobacco and T2 soybean plants resulted in enhanced resistance to Phytophthora nicotianae (P. nicotianae) and P. sojae race 1, respectively. These results indicated that the GmPRP protein played an important role in the defense of soybean against P. sojae infection.
Collapse
Affiliation(s)
- Liangyu Jiang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Junjiang Wu
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Collaborative Innovation Center of Grain Production Capacity Improvement in Heilongjiang Province, Harbin, 150086, Heilongjiang, People’s Republic of China
| | - Sujie Fan
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Wenbin Li
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Lidong Dong
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Qun Cheng
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Pengfei Xu
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Shuzhen Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| |
Collapse
|
18
|
Liu H, Sultan MARF, Liu XL, Zhang J, Yu F, Zhao HX. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum). PLoS One 2015; 10:e0121852. [PMID: 25859656 PMCID: PMC4393031 DOI: 10.1371/journal.pone.0121852] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/16/2015] [Indexed: 11/18/2022] Open
Abstract
To determine the proteomic-level responses of drought tolerant wild wheat (Triticum boeoticum), physiological and comparative proteomic analyses were conducted using the roots and the leaves of control and short term drought-stressed plants. Drought stress was imposed by transferring hydroponically grown seedlings at the 3-leaf stage into 1/2 Hoagland solution containing 20% PEG-6000 for 48 h. Root and leaf samples were separately collected at 0 (control), 24, and 48 h of drought treatment for analysis. Physiological analysis indicated that abscisic acid (ABA) level was greatly increased in the drought-treated plants, but the increase was greater and more rapid in the leaves than in the roots. The net photosynthetic rate of the wild wheat leaves was significantly decreased under short-term drought stress. The deleterious effects of drought on the studied traits mainly targeted photosynthesis. Comparative proteomic analysis identified 98 and 85 differently changed protein spots (DEPs) (corresponding to 87 and 80 unique proteins, respectively) in the leaves and the roots, respectively, with only 6 mutual unique proteins in the both organs. An impressive 86% of the DEPs were implicated in detoxification and defense, carbon metabolism, amino acid and nitrogen metabolism, proteins metabolism, chaperones, transcription and translation, photosynthesis, nucleotide metabolism, and signal transduction. Further analysis revealed some mutual and tissue-specific responses to short-term drought in the leaves and the roots. The differences of drought-response between the roots and the leaves mainly included that signal sensing and transduction-associated proteins were greatly up-regulated in the roots. Photosynthesis and carbon fixation ability were decreased in the leaves. Glycolysis was down-regulated but PPP pathway enhanced in the roots, resulting in occurrence of complex changes in energy metabolism and establishment of a new homeostasis. Protein metabolism was down-regulated in the roots, but enhanced in the leaves. These results will contribute to the existing knowledge on the complexity of root and leaf protein changes that occur in response to drought, and also provide a framework for further functional studies on the identified proteins.
Collapse
Affiliation(s)
- Hui Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | | | - Xiang li Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui xian Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
19
|
Zhang B, Xie C, Wei Y, Li J, Yang X. Purification and characterisation of an antifungal protein, MCha-Pr, from the intercellular fluid of bitter gourd (Momordica charantia) leaves. Protein Expr Purif 2015; 107:43-9. [DOI: 10.1016/j.pep.2014.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 12/31/2022]
|
20
|
Jain A, Salunke DM. Purification, identification and preliminary crystallographic studies of an allergenic protein from Solanum melongena. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2015; 71:221-5. [PMID: 25664800 DOI: 10.1107/s2053230x15000734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/13/2015] [Indexed: 11/11/2022]
Abstract
Solanum melongena (eggplant), a member of the Solanaceae family, is a widely cultivated vegetable crop and is commonly used as a food throughout the world. Allergic reactions caused by members of this family are well known. However, mechanistic analyses to understand their molecular basis have not been adequately explored. In order to address this issue, the 7S vicilin protein (SM80.1) of size 45 kDa was purified from seeds of S. melongena by ammonium sulfate fractionation and size-exclusion chromatography. Significant homology of SM80.1 to an allergy-related protein from S. lycopersicum was identified through a BLAST search. Crystallization attempts with purified protein using the hanging-drop vapour-diffusion method led to hexagonal-shaped crystals. The crystals diffracted to 2.21 Å resolution and belonged to space group P6322, with unit-cell parameters a = 117.9, c = 123.5 Å.
Collapse
Affiliation(s)
- Abha Jain
- Regional Centre for Biotechnology, 180 Udyog Vihar Phase 1, Gurgaon, Haryana 122 016, India
| | - Dinakar Masanu Salunke
- Regional Centre for Biotechnology, 180 Udyog Vihar Phase 1, Gurgaon, Haryana 122 016, India
| |
Collapse
|
21
|
Chen ZY, Rajasekaran K, Brown RL, Sayler RJ, Bhatnagar D. Discovery and confirmation of genes/proteins associated with maize aflatoxin resistance. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Maize (Zea mays L.) is one of the major crops susceptible to Aspergillus flavus infection and subsequent aflatoxin contamination. Many earlier studies indicated the roles of kernel proteins, especially constitutively expressed proteins, in maize resistance to A. flavus infection and aflatoxin production. In this review, we examined the past and current efforts in identifying maize genes and proteins from kernel, rachis, and silk tissues that may play an important role in resistance to A. flavus infection and aflatoxin contamination, as well as the efforts in determining the importance or involvement of them in maize resistance through biochemical, molecular and genetics studies. Through these studies, we gained a better understanding of host resistance mechanism: resistant lines appear to either express some stress-related and antifungal proteins at higher levels in endosperm, embryo, rachis and silk tissues before A. flavus infection or induce the expression of these proteins much faster compared to susceptible maize lines. In addition, we summarised several recent efforts in enhancing maize resistance to aflatoxin contamination using native genes from maize or heterologous and synthetic genes from other sources as well as from A. flavus. These efforts to either suppress A. flavus growth or aflatoxin production, have all shown some promising preliminary success. For example, maize plants transformed with an ?-amylase inhibitor protein from Lablab purpurea showed reduced aflatoxin levels by 56% in kernel screening assays. The antifungal potentials of transgenic maize plants expressing synthetic lytic peptides, such as cecropin-based D4E1 or tachyplesin-based AGM peptides with demonstrated anti-flavus activity (IC50 = 2.5 to 10 ?M), are yet to be assayed. Further investigation in these areas may provide a more cost-effective alternative to biocontrol in managing aflatoxin contamination in maize and other susceptible crops.
Collapse
Affiliation(s)
- Z.-Y. Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - K. Rajasekaran
- Southern Regional Research Center, USDA-ARS, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - R. L. Brown
- Southern Regional Research Center, USDA-ARS, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - R. J. Sayler
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - D. Bhatnagar
- Southern Regional Research Center, USDA-ARS, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| |
Collapse
|
22
|
Xu P, Jiang L, Wu J, Li W, Fan S, Zhang S. Isolation and characterization of a pathogenesis-related protein 10 gene (GmPR10) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae. Mol Biol Rep 2014; 41:4899-909. [PMID: 24737571 DOI: 10.1007/s11033-014-3356-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
In previous study, a cDNA library enriched for mRNAs encoding ESTs that increased in abundance during infection with Phytophthora sojae was constructed by suppression subtractive hybridization from leaf tissues of a high resistant soybean, and an EST homologous to the class 10 of pathogenesis-related (PR) proteins was identified to be up-regulated by microarray and real-time PCR. Here, the full-length cDNA (termed GmPR10, GenBank accession number FJ960440; ADC31789.1) of the EST was isolated by rapid amplification of cDNA ends, and contains an open reading frame of 474 bp. The GmPR10 protein included a "P-loop'' motif. The constitutive transcript abundance of GmPR10 in soybean was the highest in leaves, followed by roots and stems. Further analysis showed that GmPR10 mRNA abundance was increased during infection with P. sojae following leaf treatments with gibberellin (GA3), hydrogen peroxide (H2O2), salicylic acid (SA), and abscisic acid (ABA). The dialytically renatured GmPR10 protein significantly inhibited P. sojae hyphal growth and exhibited RNase activity. Transgenic tobacco and soybean plants overexpressing GmPR10 showed increased resistance to P. nicotianae Breda and P. sojae, respectively. These results suggest that the GmPR10 protein plays an important role in host defense against P. sojae infection. To the best of our knowledge, this is the first report on the functional characterization of a PR10 protein from soybean in defense against P. sojae.
Collapse
Affiliation(s)
- Pengfei Xu
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Wu WQ, Fan HY, Jiang N, Wang Y, Zhang ZY, Zhang YL, Wang XB, Li DW, Yu JL, Han CG. Infection of Beet necrotic yellow vein virus with RNA4-encoded P31 specifically up-regulates pathogenesis-related protein 10 in Nicotiana benthamiana. Virol J 2014; 11:118. [PMID: 24961274 PMCID: PMC4078943 DOI: 10.1186/1743-422x-11-118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/09/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Beet necrotic yellow vein virus (BNYVV) is the infectious agent of sugar beet rhizomania, which consists of four or five plus-sense RNAs. RNA4 of BNYVV is not essential for virus propagation in Nicotiana benthamiana but has a major effect on symptom expression. Early reports showed that RNA4-encoded P31 was associated with severe symptoms, such as curling and dwarfing, in N. benthamiana. RESULTS We discovered that the pathogenesis-related protein 10 (PR-10) gene can be up-regulated in BNYVV-infected N. benthamiana in the presence of RNA4 and that it had a close link with symptom development. Our frame-shift, deletion and substitution analysis showed that only the entire P31 could induce PR-10 up-regulation during BNYVV infection and that all the tryptophans and six cysteines (C174, C183, C186, C190, C197 and C199) in the cysteine-rich P31 had significant effects on PR-10 expression. However, P31 could not interact directly with PR-10 in yeast. CONCLUSIONS Our data demonstrated that only integrated P31 specifically induced PR-10 transcription, which coincided closely with the appearance of severe symptoms in BNYVV-infected N. benthamiana, although they could not interact directly with each other in yeast.
Collapse
Affiliation(s)
- Wen-Qi Wu
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Hui-Yan Fan
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Ning Jiang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zong-Ying Zhang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yong-Liang Zhang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Da-Wei Li
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jia-Lin Yu
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Cheng-Gui Han
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
24
|
Bai X, Long J, He X, Li S, Xu H. Molecular cloning and characterization of pathogenesis-related protein family 10 gene from spinach (SoPR10). Biosci Biotechnol Biochem 2014; 78:780-6. [PMID: 25035979 DOI: 10.1080/09168451.2014.910094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PR10 genes encode small, intracellular proteins that respond to biotic and abiotic stresses. In this study, a cDNA clone (designated as SoPR10, GenBank Accession No. KC142174) encoding a PR10 protein from spinach (Spinacia oleracea L.) was isolated and characterized. SoPR10 encoded a 161-amino acid polypeptide with a predicted molecular mass of 19.76 kDa and a pI of 4.61. Real-time quantitative analysis indicated that SoPR10 was constitutively expressed in root and shoot. The abundance of SoPR10 in salt-resistant cultivar (Chaoji) was generally greater than in salt-sensitive cultivar (Daye) under 160 mM L(-1) NO3(-) treatment for 0.5, 3, and 6 h. The expression of SoPR10 was also induced by other abiotic stresses including polyethylene glycol, NaCl, salicylic acid, and H2O2. Our results indicated that SoPR10 might play important roles under nitrate stress and other abiotic stresses.
Collapse
Affiliation(s)
- Xuegui Bai
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , China
| | | | | | | | | |
Collapse
|
25
|
He H, Liu D, Zhang N, Zheng W, Han Q, Ji B, Ge F, Chen C. The PR10 gene family is highly expressed in Lilium regale Wilson during Fusarium oxysporum f. sp. lilii infection. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0185-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Pathogenesis related-10 proteins are small, structurally similar but with diverse role in stress signaling. Mol Biol Rep 2013; 41:599-611. [PMID: 24343423 DOI: 10.1007/s11033-013-2897-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
Abstract
Pathogenesis related-10 proteins are small proteins with cytosolic localization, conserved three dimensional structures and single intron at 185 bp position. These proteins have a broad spectrum of roles significantly in biotic and abiotic stresses. The RNase activity, ligand binding activity, posttranslational modification (phosphorylation) and phytohormone signaling provide some information into the mechanism of the regulation of PR-10 proteins, however the presence of isoforms makes it difficult to decipher its exact mode of function. The involvement of phosphorylation/dephosphorylation events in its activation is interesting and provides unique and unbiased insights into the complexity of its regulation. Studies on upstream region of different PR-10 genes indicate the presence of cis-acting elements for WRKY, RAVI, bZ1P, ERF, SEBF and Pti4 transcription factors indicating their role in regulating PR-10 promoter. In this review, we discuss in detail the structure and mechanism of regulation of PR-10 proteins.
Collapse
|
27
|
Gusberti M, Gessler C, Broggini GAL. RNA-Seq analysis reveals candidate genes for ontogenic resistance in Malus-Venturia pathosystem. PLoS One 2013; 8:e78457. [PMID: 24223809 PMCID: PMC3817206 DOI: 10.1371/journal.pone.0078457] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 09/13/2013] [Indexed: 11/18/2022] Open
Abstract
Ontogenic scab resistance in apple leaves and fruits is a horizontal resistance against the plant pathogen Venturia inaequalis and is expressed as a decrease in disease symptoms and incidence with the ageing of the leaves. Several studies at the biochemical level tried to unveil the nature of this resistance; however, no conclusive results were reported. We decided therefore to investigate the genetic origin of this phenomenon by performing a full quantitative transcriptome sequencing and comparison of young (susceptible) and old (ontogenic resistant) leaves, infected or not with the pathogen. Two time points at 72 and 96 hours post-inoculation were chosen for RNA sampling and sequencing. Comparison between the different conditions (young and old leaves, inoculated or not) should allow the identification of differentially expressed genes which may represent different induced plant defence reactions leading to ontogenic resistance or may be the cause of a constitutive (uninoculated with the pathogen) shift toward resistance in old leaves. Differentially expressed genes were then characterised for their function by homology to A. thaliana and other plant genes, particularly looking for genes involved in pathways already suspected of appertaining to ontogenic resistance in apple or other hosts, or to plant defence mechanisms in general. IN THIS WORK, FIVE CANDIDATE GENES PUTATIVELY INVOLVED IN THE ONTOGENIC RESISTANCE OF APPLE WERE IDENTIFIED: a gene encoding an "enhanced disease susceptibility 1 protein" was found to be down-regulated in both uninoculated and inoculated old leaves at 96 hpi, while the other four genes encoding proteins (metallothionein3-like protein, lipoxygenase, lipid transfer protein, and a peroxidase 3) were found to be constitutively up-regulated in inoculated and uninoculated old leaves. The modulation of the five candidate genes has been validated using the real-time quantitative PCR. Thus, ontogenic resistance may be the result of the corresponding up- and down-regulation of these genes.
Collapse
Affiliation(s)
- Michele Gusberti
- Institute of Integrative Biology Zürich, Plant Pathology Group, Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Cesare Gessler
- Institute of Integrative Biology Zürich, Plant Pathology Group, Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Giovanni A. L. Broggini
- Institute of Integrative Biology Zürich, Plant Pathology Group, Swiss Federal Institute of Technology, Zürich, Switzerland
| |
Collapse
|
28
|
Garg H, Li H, Sivasithamparam K, Barbetti MJ. Differentially expressed proteins and associated histological and disease progression changes in cotyledon tissue of a resistant and susceptible genotype of brassica napus infected with Sclerotinia sclerotiorum. PLoS One 2013; 8:e65205. [PMID: 23776450 PMCID: PMC3679123 DOI: 10.1371/journal.pone.0065205] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/22/2013] [Indexed: 12/24/2022] Open
Abstract
Sclerotinia rot caused by Sclerotinia sclerotiorum is one of the most serious diseases of oilseed rape. To understand the resistance mechanisms in the Brassica napus to S. sclerotiorum, comparative disease progression, histological and proteomic studies were conducted of two B. napus genotypes (resistant cv. Charlton, susceptible cv. RQ001-02M2). At 72 and 96 h post inoculation (hpi), lesion size on cotyledons was significantly (P≤0.001) smaller in the resistant Charlton. Anatomical investigations revealed impeded fungal growth (at 24 hpi and onwards) and hyphal disintegration only on resistant Charlton. Temporal changes (12, 24, 48 and 72 hpi) in protein profile showed certain enzymes up-regulated only in resistant Charlton, such as those related to primary metabolic pathways, antioxidant defence, ethylene biosynthesis, pathogenesis related proteins, protein synthesis and protein folding, play a role in mediating defence responses against S. sclerotiorum. Similarly a eukaryotic translation initiation factor 5A enzyme with increased abundance in susceptible RQ001-02M2 and decreased levels in resistant Charlton has a role in increased susceptibility to this pathogen. This is the first time that the expression of these enzymes has been shown to be associated with mediating the defence response against S. sclerotinia in cotyledon tissue of a resistant cultivar of B. napus at a proteomics level. This study not only provides important new insights into the resistance mechanisms within B. napus against S. sclerotiorum, but opens the way for novel engineering of new B. napus varieties that over-express these key enzymes as a strategy to enhance resistance and better manage this devastating pathogen.
Collapse
Affiliation(s)
- Harsh Garg
- School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Hua Li
- School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Krishnapillai Sivasithamparam
- School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Martin J. Barbetti
- School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
- The University of Western Australia Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| |
Collapse
|
29
|
Fang X, Jost R, Finnegan PM, Barbetti MJ. Comparative Proteome Analysis of the Strawberry-Fusarium oxysporum f. sp. fragariae Pathosystem Reveals Early Activation of Defense Responses as a Crucial Determinant of Host Resistance. J Proteome Res 2013; 12:1772-88. [DOI: 10.1021/pr301117a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiangling Fang
- School of Plant Biology, Faculty
of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Ricarda Jost
- School of Plant Biology, Faculty
of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Patrick M. Finnegan
- School of Plant Biology, Faculty
of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- The UWA Institute of Agriculture,
Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Martin J. Barbetti
- School of Plant Biology, Faculty
of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- The UWA Institute of Agriculture,
Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
30
|
Fernandes H, Michalska K, Sikorski M, Jaskolski M. Structural and functional aspects of PR-10 proteins. FEBS J 2013; 280:1169-99. [PMID: 23289796 DOI: 10.1111/febs.12114] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 01/02/2023]
Abstract
Physical, chemical and biological stress factors, such as microbial infection, upregulate the transcription levels of a number of plant genes, coding for the so-called pathogenesis-related (PR) proteins. For PR proteins of class-10 (PR-10), the biological function remains unclear, despite two decades of scientific research. PR-10 proteins have a wide distribution throughout the plant kingdom and the class members share size and secondary structure organization. Throughout the years, we and other groups have determined the structures of a number of PR-10 proteins, both in the crystalline state by X-ray diffraction and in solution by NMR spectroscopy. Despite the accumulating structural information, our understanding of PR-10 function is still limited. PR-10 proteins are rather small (~ 160 amino acids) with a fold consisting of three α helices and seven antiparallel β strands. These structural elements enclose a large hydrophobic cavity that is most probably the key to their functional relevance. Also, the outer surface of these proteins is of extreme interest, as epitopes from a PR-10 subclass cause allergic reactions in humans.
Collapse
Affiliation(s)
- Humberto Fernandes
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | |
Collapse
|
31
|
Pathogenesis-Related Gene, JcPR-10a from Jatropha curcas Exhibit RNase and Antifungal Activity. Mol Biotechnol 2012; 54:412-25. [DOI: 10.1007/s12033-012-9579-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Takeuchi K, Gyohda A, Tominaga M, Kawakatsu M, Hatakeyama A, Ishii N, Shimaya K, Nishimura T, Riemann M, Nick P, Hashimoto M, Komano T, Endo A, Okamoto T, Jikumaru Y, Kamiya Y, Terakawa T, Koshiba T. RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. PLANT & CELL PHYSIOLOGY 2011; 52:1686-96. [PMID: 21828106 DOI: 10.1093/pcp/pcr105] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant roots play important roles not only in the absorption of water and nutrients, but also in stress tolerance. Previously, we identified RSOsPR10 as a root-specific pathogenesis-related (PR) protein induced by drought and salt treatments in rice. Transcripts and proteins of RSOsPR10 were strongly induced by jasmonate (JA) and the ethylene (ET) precursor 1-aminocyclopropane-1-carboxylic acid (ACC), while salicylic acid (SA) almost completely suppressed these inductions. Immunohistochemical analyses showed that RSOsPR10 strongly accumulated in cortex cells surrounding the vascular system of roots, and this accumulation was also suppressed when SA was applied simultaneously with stress or hormone treatments. In the JA-deficient mutant hebiba, RSOsPR10 expression was up-regulated by NaCl, wounding, drought and exogenous application of JA. This suggested the involvement of a signal transduction pathway that integrates JA and ET signals in plant defense responses. Expression of OsERF1, a transcription factor in the JA/ET pathway, was induced earlier than that of RSOsPR10 after salt, JA and ACC treatments. Simultaneous SA treatment strongly inhibited the induction of RSOsPR10 expression and, to a lesser extent, induction of OsERF1 expression. These results suggest that JA/ET and SA pathways function in the stress-responsive induction of RSOsPR10, and that OsERF1 may be one of the transcriptional factors in the JA/ET pathway.
Collapse
Affiliation(s)
- Kaoru Takeuchi
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Krishnaswamy S, Baral PK, James MNG, Kav NNV. Site-directed mutagenesis of histidine 69 and glutamic acid 148 alters the ribonuclease activity of pea ABR17 (PR10.4). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:958-62. [PMID: 21600779 DOI: 10.1016/j.plaphy.2010.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/12/2010] [Indexed: 05/21/2023]
Abstract
Pea abscisic acid responsive (ABR17) protein is a member of the pathogenesis-related 10 (PR10) family of proteins and its ribonuclease (RNase) activity has been reported previously. In order to investigate the amino acids important for the demonstrated ribonuclease activity of ABR17, site-directed mutants H69L and E148A were generated, expressed in Escherichia coli and purified to homogeneity. These mutations affected RNase activity differently; the H69L mutant exhibited a decreased RNase activity whereas E148A exhibited an elevated activity. A structural model for pea ABR17 has been generated using the three dimensional structure of Lupinus luteus PR10 protein in order to explain the possible effects of the H69L and the E148A mutations on substrate binding and catalysis.
Collapse
Affiliation(s)
- Sowmya Krishnaswamy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | | | | |
Collapse
|
34
|
Portal O, Izquierdo Y, De Vleesschauwer D, Sánchez-Rodríguez A, Mendoza-Rodríguez M, Acosta-Suárez M, Ocaña B, Jiménez E, Höfte M. Analysis of expressed sequence tags derived from a compatible Mycosphaerella fijiensis-banana interaction. PLANT CELL REPORTS 2011; 30:913-28. [PMID: 21279642 DOI: 10.1007/s00299-011-1008-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 05/14/2023]
Abstract
Mycosphaerella fijiensis, a hemibiotrophic fungus, is the causal agent of black leaf streak disease, the most serious foliar disease of bananas and plantains. To analyze the compatible interaction of M. fijiensis with Musa spp., a suppression subtractive hybridization (SSH) cDNA library was constructed to identify transcripts induced at late stages of infection in the host and the pathogen. In addition, a full-length cDNA library was created from the same mRNA starting material as the SSH library. The SSH procedure was effective in identifying specific genes predicted to be involved in plant-fungal interactions and new information was obtained mainly about genes and pathways activated in the plant. Several plant genes predicted to be involved in the synthesis of phenylpropanoids and detoxification compounds were identified, as well as pathogenesis-related proteins that could be involved in the plant response against M. fijiensis infection. At late stages of infection, jasmonic acid and ethylene signaling transduction pathways appear to be active, which corresponds with the necrotrophic life style of M. fijiensis. Quantitative PCR experiments revealed that antifungal genes encoding PR proteins and GDSL-like lipase are only transiently induced 30 days post inoculation (dpi), indicating that the fungus is probably actively repressing plant defense. The only fungal gene found was induced 37 dpi and encodes UDP-glucose pyrophosphorylase, an enzyme involved in the biosynthesis of trehalose. Trehalose biosynthesis was probably induced in response to prior activation of plant antifungal genes and may act as an osmoprotectant against membrane damage.
Collapse
Affiliation(s)
- Orelvis Portal
- Instituto de Biotecnología de las Plantas, Universidad Central Marta Abreu de Las Villas, Carretera a Camajuaní km 5.5, 54 830, Santa Clara, Cuba
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee OR, Sathiyaraj G, Kim YJ, In JG, Kwon WS, Kim JH, Yang DC. Defense Genes Induced by Pathogens and Abiotic Stresses in Panax ginseng C.A. Meyer. J Ginseng Res 2011. [DOI: 10.5142/jgr.2011.35.1.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
36
|
Gómez-Gómez L, Rubio-Moraga A, Ahrazem O. Molecular cloning and characterisation of a pathogenesis-related protein CsPR10 from Crocus sativus. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:297-303. [PMID: 21309976 DOI: 10.1111/j.1438-8677.2010.00359.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plants have developed many mechanisms to protect themselves against most potential microbial pathogens and diseases. Among these mechanisms, pathogenesis-related proteins are produced as part of the active defence to prevent attack. In this study, a full-length cDNA encoding the CsPR10 protein was identified in fresh saffron stigmas (Crocus sativus). The deduced amino acid sequence from the nucleotide sequence of the coding region showed homology with PR10 proteins. The clone expressed as a protein in fusion with a GST tag produced a 47-kDa protein in E. coli. CsPR10 had ribonuclease activity, with features common to class II-type ribonucleases; its specific activity was quantified as 68.8 U·mg(-1) protein, thus falling within the range of most PR10 proteins exhibiting RNase activity. Antifungal activity of CsPR10 was assayed against Verticillium dahliae, Penicillium sp. and Fusarium oxysporum. CsPR10 inhibited only F. oxysporum growth, and antifungal potency was reflected in a IC(50) of 8.3 μm. Expression analysis showed the presence of high transcript levels in anther and tepal tissues, low levels in stigmas and roots, and no signal detected in leaves. This protein seems to be involved in the active defence response through activation of the jasmonic acid pathway.
Collapse
Affiliation(s)
- L Gómez-Gómez
- Departamento de Ciencia y Tecnología Agroforestal y Genética, ETSIA, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete, Spain
| | | | | |
Collapse
|
37
|
Jia L, Wu Z, Hao X, Carrie C, Zheng L, Whelan J, Wu Y, Wang S, Wu P, Mao C. Identification of a novel mitochondrial protein, short postembryonic roots 1 (SPR1), involved in root development and iron homeostasis in Oryza sativa. THE NEW PHYTOLOGIST 2011; 189:843-855. [PMID: 21039568 DOI: 10.1111/j.1469-8137.2010.03513.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
• A rice mutant, Oryza sativa short postembryonic roots 1 (Osspr1), has been characterized. It has short postembryonic roots, including adventitious and lateral roots, and a lower iron content in its leaves. • OsSPR1 was identified by map-based cloning. It encodes a novel mitochondrial protein with the Armadillo-like repeat domain. • Osspr1 mutants exhibited decreased root cell elongation. The iron content of the mutant shoots was significantly altered compared with that of wild-type shoots. A similar pattern of alteration of manganese and zinc concentrations in shoots was also observed. Complementation of the mutant confirmed that OsSPR1 is involved in post-embryonic root elongation and iron homeostasis in rice. OsSPR1 was found to be ubiquitously expressed in various tissues throughout the plant. The transcript abundance of various genes involved in iron uptake and signaling via both strategies I and II was similar in roots of wild-type and mutant plants, but was higher in the leaves of mutant plants. • Thus, a novel mitochondrial protein that is involved in root elongation and plays a role in metal ion homeostasis has been identified.
Collapse
Affiliation(s)
- Liqiang Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Xi Hao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Chris Carrie
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, 6009 WA, Australia
- Joint Laboratory in Genomics and Nutriomics, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Libin Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, 6009 WA, Australia
- Joint Laboratory in Genomics and Nutriomics, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Shoufeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
38
|
Lebel S, Schellenbaum P, Walter B, Maillot P. Characterisation of the Vitis vinifera PR10 multigene family. BMC PLANT BIOLOGY 2010; 10:184. [PMID: 20727162 PMCID: PMC3095314 DOI: 10.1186/1471-2229-10-184] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 08/20/2010] [Indexed: 05/21/2023]
Abstract
BACKGROUND Genes belonging to the pathogenesis related 10 (PR10) group have been studied in several plant species, where they form multigene families. Until now, such an analysis has not been performed in Vitis vinifera, although three different PR10 genes were found to be expressed under pathogen attack or abiotic stress, and during somatic embryogenesis induction. We used the complete genome sequence for characterising the whole V. vinifera PR10 gene family. The expression of candidate genes was studied in various non-treated tissues and following somatic embryogenesis induction by the auxin 2,4-D. RESULTS In addition to the three V. vinifera PR10 genes already described, namely VvPR10.1, VvPR10.2 and VvPR10.3, fourteen different PR10 related sequences were identified. Showing high similarity, they form a single cluster on the chromosome 5 comprising three pseudogenes. The expression of nine different genes was detected in various tissues. Although differentially expressed in non-treated plant organs, several genes were up-regulated in tissues treated with 2,4-D, as expected for PR genes. CONCLUSIONS PR10 genes form a multigene family in V. vinifera, as found in birch, apple or peach. Seventeen closely related PR10 sequences are arranged in a tandem array on the chromosome 5, probably reflecting small-scale duplications during evolution. Various expression patterns were found for nine studied genes, highlighting functional diversification. A phylogenetic comparison of deduced proteins with PR10 proteins of other plants showed a characteristic low intraspecific variability. Particularly, a group of seven close tandem duplicates including VvPR10.1, VvPR10.2 and VvPR10.3 showed a very high similarity, suggesting concerted evolution or/and recent duplications.
Collapse
Affiliation(s)
- Sylvain Lebel
- Université de Haute Alsace, Laboratoire Vigne, Biotechnologies & Environnement, 33 rue de Herrlisheim, BP 50568, 68 008, Colmar Cedex, France
| | - Paul Schellenbaum
- Université de Haute Alsace, Laboratoire Vigne, Biotechnologies & Environnement, 33 rue de Herrlisheim, BP 50568, 68 008, Colmar Cedex, France
| | - Bernard Walter
- Université de Haute Alsace, Laboratoire Vigne, Biotechnologies & Environnement, 33 rue de Herrlisheim, BP 50568, 68 008, Colmar Cedex, France
| | - Pascale Maillot
- Université de Haute Alsace, Laboratoire Vigne, Biotechnologies & Environnement, 33 rue de Herrlisheim, BP 50568, 68 008, Colmar Cedex, France
| |
Collapse
|
39
|
Isolation and expression analysis of a novel pathogenesis-related protein 10 gene from Chinese wild Vitis pseudoreticulata induced by Uncinula necator. Biologia (Bratisl) 2010. [DOI: 10.2478/s11756-010-0056-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Xie YR, Chen ZY, Brown RL, Bhatnagar D. Expression and functional characterization of two pathogenesis-related protein 10 genes from Zea mays. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:121-30. [PMID: 19682768 DOI: 10.1016/j.jplph.2009.07.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/17/2009] [Accepted: 07/17/2009] [Indexed: 05/21/2023]
Abstract
A novel PR10 gene (ZmPR10.1) was isolated from maize and its expression and function were compared with the previous ZmPR10. ZmPR10.1 shares 89.8% and 85.7% identity to ZmPR10 at the nucleotide and amino acid sequence level, respectively. ZmPR10 and ZmPR10.1 were mainly expressed in root tissue with low expression in other tissues. ZmPR10.1 had significantly lower expression than ZmPR10 in all tissues examined. The expression of both ZmPR10 and ZmPR10.1 was induced by most abiotic stresses including SA, CuCl(2), H(2)O(2), coldness, darkness and wounding during the 16-h treatments, and biotic stresses such as Erwinia stewartii and Aspergillus flavus infection. However, ZmPR10.1 was induced only 2 HAT and down-regulated thereafter, whereas ZmPR10 remained induced during the 16-h NAA treatment. Also, inoculation with Erwinia chrysanthemi caused about 2-fold induction in ZmPR10.1 expression 60 HAT but not significant changes for ZmPR10. Both ZmPR10.1 and ZmPR10 showed RNase activity in vitro with an optimal pH and temperature of 6.5 and 55 degrees C. Their RNase activities were significantly inhibited by low concentrations (1.0mM) of Cu(2+), Ag(+), Co(2+), SDS, EDTA or DTT. However, ZmPR10.1 possessed significantly higher (8-fold) specific RNase activity than ZmPR10. Also, ZmPR10.1 showed a stronger inhibition against bacterium Pseudomonas syringae pv. tomato DC3000 in vivo and fungus A. flavus in vitro than ZmPR10, indicating that ZmPR10.1 may also play an important role in host plant defense.
Collapse
Affiliation(s)
- Yu-Rong Xie
- Department of Plant Pathology and Crop Physiology, 302 Life Sciences Building, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
41
|
Chen ZY, Brown RL, Damann KE, Cleveland TE. PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production. MOLECULAR PLANT PATHOLOGY 2010; 11:69-81. [PMID: 20078777 PMCID: PMC6640484 DOI: 10.1111/j.1364-3703.2009.00574.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Maize (Zea mays L.) is a major crop susceptible to Aspergillus flavus infection and subsequent contamination with aflatoxins, the potent carcinogenic secondary metabolites of the fungus. Protein profiles of maize genotypes resistant and susceptible to A. flavus infection and/or aflatoxin contamination have been compared, and several resistance-associated proteins have been found, including a pathogenesis-related protein 10 (PR10). In this study, RNA interference (RNAi) gene silencing technology was employed to further investigate the importance of PR10. An RNAi gene silencing vector was constructed and introduced into immature Hi II maize embryos through both bombardment and Agrobacterium infection procedures. PR10 expression was reduced by 65% to more than 99% in transgenic callus lines from bombardment. The RNAi-silenced callus lines also showed increased sensitivity to heat stress treatment. A similar reduction in PR10 transcript levels was observed in seedling leaf and root tissues developed from transgenic kernels. When inoculated with A. flavus, RNAi-silenced mature kernels produced from Agrobacterium-mediated transformation showed a significant increase in fungal colonization and aflatoxin production in 10 and six, respectively, of 11 RNAi lines compared with the non-silenced control. Further proteomic analysis of RNAi-silenced kernels revealed a significant reduction in PR10 production in eight of 11 RNAi lines that showed positive for transformation. A significant negative correlation between PR10 expression at either transcript or protein level and kernel aflatoxin production was observed. The results indicate a major role for PR10 expression in maize aflatoxin resistance.
Collapse
Affiliation(s)
- Zhi-Yuan Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| | | | | | | |
Collapse
|
42
|
Schlink K. Down-regulation of defense genes and resource allocation into infected roots as factors for compatibility between Fagus sylvatica and Phytophthora citricola. Funct Integr Genomics 2009; 10:253-64. [PMID: 19813036 DOI: 10.1007/s10142-009-0143-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 08/29/2009] [Accepted: 09/13/2009] [Indexed: 12/30/2022]
Abstract
Phytophthora citricola is a wide spread and highly aggressive pathogen of Fagus sylvatica. The hemibiotrophic oomycete infects the roots and establishes a compatible interaction with F. sylvatica. To investigate the transcriptional changes associated with P. citricola infection, 68 custom oligo-microarray measurements were conducted. Hierarchical as well as non-hierarchical clustering was carried out to analyze the expression profiles. Experimental setup includes a time scale covering the biotrophic and necrotrophic stages of interaction as well as comparative analyses of the local and systemic responses. The local reaction of F. sylvatica is characterized by a striking lack of defense gene induction leading to the conclusion that P. citricola escapes the main recognition systems and/or suppresses the host's response. The analysis of the systemic reaction revealed a massive shift in gene expression patterns during the biotrophic phase that is interpreted as evidence of resource allocation into the roots to support the increased sink caused by pathogen growth. Defense genes known to be responsive to salicylic acid (effective against biotrophs), jasmonic acid, and ethylene (effective against necrotrophs and herbivores) are represented on the arrays. All significant changes in gene expression measured for salicylic acid responsive genes were down-regulations in roots and leaves while some jasmonic acid responsive genes showed a very late up-regulation only in leaves, probably caused by the desiccation shortly before plant death. Together, these expression changes could explain the success of the pathogen.
Collapse
Affiliation(s)
- Katja Schlink
- Forest Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany.
| |
Collapse
|
43
|
Xing D, Ni S, Kennedy MA, Li QQ. Identification of a plant-specific Zn2+-sensitive ribonuclease activity. PLANTA 2009; 230:819-825. [PMID: 19636588 DOI: 10.1007/s00425-009-0986-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/08/2009] [Indexed: 05/28/2023]
Abstract
Ribonucleases (RNases) play a variety of cellular and biological roles in all three domains of life. In an attempt to perform RNA immuno-precipitation assays of Arabidopsis proteins, we found an EDTA-dependent RNase activity from Arabidopsis suspension tissue cultures. Further investigations proved that the EDTA-dependent RNase activity was plant specific. Characterization of the RNase activity indicated that it was insensitive to low pH and high concentration of NaCl. In the process of isolating the activity with cation exchange chromatography, we found that the EDTA dependency of the activity was lost. This led us to speculate that some metal ions, which inhibited the RNase activity, may be removed during cation exchange chromatography so that the nuclease activity was released. The EDTA dependency of the activity could be due to the ability of the EDTA chelating those metal ions, mimicking the effect of the cation exchange chromatography. Indeed, Zn(2+) strongly inhibited the activity, and the inhibition could be released by EDTA based on both in-solution and in-gel assays. In-gel assays identified two RNase activity bands. Mass spectrometry assays of those activity bands revealed more than 20 proteins. However, none of them has an apparent known nuclease domain, suggesting that one or more of those proteins might possess a currently uncharacterized nuclease domain. Our results may shed light on RNA metabolism in plants by introducing a novel plant-specific RNase activity.
Collapse
Affiliation(s)
- Denghui Xing
- Department of Botany, Miami University, Oxford, OH 45056, USA
| | | | | | | |
Collapse
|
44
|
Zubini P, Zambelli B, Musiani F, Ciurli S, Bertolini P, Baraldi E. The RNA hydrolysis and the cytokinin binding activities of PR-10 proteins are differently performed by two isoforms of the Pru p 1 peach major allergen and are possibly functionally related. PLANT PHYSIOLOGY 2009; 150:1235-47. [PMID: 19474212 PMCID: PMC2705045 DOI: 10.1104/pp.109.139543] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/19/2009] [Indexed: 05/20/2023]
Abstract
PR-10 proteins are a family of pathogenesis-related (PR) allergenic proteins playing multifunctional roles. The peach (Prunus persica) major allergen, Pru p 1.01, and its isoform, Pru p 1.06D, were found highly expressed in the fruit skin at the pit hardening stage, when fruits transiently lose their susceptibility to the fungal pathogen Monilinia spp. To investigate the possible role of the two Pru p 1 isoforms in plant defense, the recombinant proteins were expressed in Escherichia coli and purified. Light scattering experiments and circular dichroism spectroscopy showed that both proteins are monomers in solution with secondary structures typical of PR-10 proteins. Even though the proteins do not display direct antimicrobial activity, they both act as RNases, a function possibly related to defense. The RNase activity is different for the two proteins, and only that of Pru p 1.01 is affected in the presence of the cytokinin zeatin, suggesting a physiological correlation between Pru p 1.01 ligand binding and enzymatic activity. The binding of zeatin to Pru p 1.01 was evaluated using isothermal titration calorimetry, which provided information on the stoichiometry and on the thermodynamic parameters of the interaction. The structural architecture of Pru p 1.01 and Pru p 1.06D was obtained by homology modeling, and the differences in the binding pockets, possibly accounting for the observed difference in binding activity, were evaluated.
Collapse
Affiliation(s)
- Paola Zubini
- Department of Agri-Food Protection and Improvement, CRIOF , University of Bologna, 40127 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Schlink K. Identification and characterization of differentially expressed genes from Fagus sylvatica roots after infection with Phytophthora citricola. PLANT CELL REPORTS 2009; 28:873-882. [PMID: 19290528 DOI: 10.1007/s00299-009-0694-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 03/01/2009] [Indexed: 05/27/2023]
Abstract
Phytophthora species are major plant pathogens infecting herbaceous and woody plants including European beech, the dominant or co-dominant tree in temperate Europe and an economically important species. For the analysis of the interaction of Phytophthora citricola with Fagus sylvatica suppression subtractive hybridization was used to isolate transcripts induced during infection and 1,149 sequences were generated. Hybridizations with driver and tester populations demonstrated differential expression in infected roots as compared to controls and verify efficient enrichment of these cDNAs during subtraction. Up regulation of selected genes during pathogenesis demonstrated using RT-PCR is consistent with these results. Pathogenesis-related proteins formed the largest group among functionally categorized transcripts. Cell wall proteins and protein kinases were also frequently found. Several transcription factors were isolated that are reactive to pathogens or wounding in other plants. The library contained a number of jasmonic acid, salicylic acid and ethylene responsive genes as well as genes directly involved in signaling pathways. Besides a mechanistic interconnection among signaling pathways another factor explaining the activation of different pathways could be the hemibiotrophic life style of Phytophthora triggering different signals in both stages.
Collapse
Affiliation(s)
- Katja Schlink
- Forest Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany.
| |
Collapse
|
46
|
Fernandes H, Bujacz A, Bujacz G, Jelen F, Jasinski M, Kachlicki P, Otlewski J, Sikorski MM, Jaskolski M. Cytokinin-induced structural adaptability of a Lupinus luteus PR-10 protein. FEBS J 2009; 276:1596-609. [PMID: 19220853 DOI: 10.1111/j.1742-4658.2009.06892.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Plant pathogenesis-related (PR) proteins of class 10 are the only group among the 17 PR protein families that are intracellular and cytosolic. Sequence conservation and the wide distribution of PR-10 proteins throughout the plant kingdom are an indication of an indispensable function in plants, but their true biological role remains obscure. Crystal and solution structures for several homologues have shown a similar overall fold with a vast internal cavity which, together with structural similarities to the steroidogenic acute regulatory protein-related lipid transfer domain and cytokinin-specific binding proteins, strongly indicate a ligand-binding role for the PR-10 proteins. This article describes the structure of a complex between a classic PR-10 protein [Lupinus luteus (yellow lupine) PR-10 protein of subclass 2, LlPR-10.2B] and N,N'-diphenylurea, a synthetic cytokinin. Synthetic cytokinins have been shown in various bioassays to exhibit activity similar to that of natural cytokinins. The present 1.95 A resolution crystallographic model reveals four N,N'-diphenylurea molecules in the hydrophobic cavity of the protein and a degree of conformational changes accompanying ligand binding. The structural adaptability of LlPR-10.2B and its ability to bind different cytokinins suggest that this protein, and perhaps other PR-10 proteins as well, can act as a reservoir of cytokinin molecules in the aqueous environment of a plant cell.
Collapse
Affiliation(s)
- Humberto Fernandes
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
El-kereamy A, Jayasankar S, Taheri A, Errampalli D, Paliyath G. Expression analysis of a plum pathogenesis related 10 (PR10) protein during brown rot infection. PLANT CELL REPORTS 2009; 28:95-102. [PMID: 18815787 DOI: 10.1007/s00299-008-0612-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/03/2008] [Accepted: 09/09/2008] [Indexed: 05/26/2023]
Abstract
Plant PR10 is one of the pathogenesis related proteins, induced upon exposure to different stress conditions including fungal infection. PR10 proteins have been implicated in fungal disease resistance in some species; however its transcriptional regulation is not well understood. In the present work we cloned a PR10 gene from European plums (Prunus domestica L.) and monitored the quantitative changes in its transcript levels as a result of fungal infection in two varieties. We also studied the possible involvement of the membrane degrading enzyme phospholipase D-alpha (PLDalpha). In the susceptible variety, 'Veeblue', infection with the brown rot fungus Monilinia fructicola induced PLDalpha and PR10 expression, while in the resistant variety, 'Violette', a constitutive expression of PLDalpha and PR10 transcripts levels were observed. Resistance to M. fructicola also coincides with a sharp decrease in the expression of ABI1, a protein phosphatase and elevated hydrogen peroxide content after infection. Further, inhibition of PLDalpha by hexanal treatment, up-regulated ABI1 and decreased PR10 expression, suggesting a possible relationship between the two. We further confirm these results in Arabidopsis abi1 mutant that shows a higher level of PR10 transcripts.
Collapse
Affiliation(s)
- Ashraf El-kereamy
- Department of Plant Agriculture, University of Guelph, Vineland Station, ON, L0R2E0, Canada
| | | | | | | | | |
Collapse
|
48
|
Pungartnik C, da Silva AC, de Melo SA, Gramacho KP, de Mattos Cascardo JC, Brendel M, Micheli F, da Silva Gesteira A. High-affinity copper transport and Snq2 export permease of saccharomyces cerevisiae modulate cytotoxicity of PR-10 from Theobroma cacao. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:39-51. [PMID: 19061401 DOI: 10.1094/mpmi-22-1-0039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A pathogenesis-related (PR) protein from Theobroma cacao (TcPR-10) was identified from a cacao-Moniliophthora perniciosa interaction cDNA library. Nucleotide and amino acid sequences showed homology with other PR-10 proteins having P loop motif and Betv1 domain. Recombinant TcPR-10 showed in vitro and in vivo ribonuclease activity, and antifungal activity against the basidiomycete cacao pathogen M. perniciosa and the yeast Saccharomyces cerevisiae. Fluorescein isothiocyanate-labeled TcPR-10 was internalized by M. perniciosa hyphae and S. cerevisiae cells and inhibited growth of both fungi. Energy and temperature-dependent internalization of the TcPR-10 suggested an active importation into the fungal cells. Chronical exposure to TcPR-10 of 29 yeast mutants with single gene defects in DNA repair, general membrane transport, metal transport, and antioxidant defenses was tested. Two yeast mutants were hyperresistant compared with their respective isogenic wild type: ctr3Delta mutant, lacking the high-affinity plasma membrane copper transporter and mac1Delta, the copper-sensing transcription factor involved in regulation of high-affinity copper transport. Acute exposure of exponentially growing yeast cells revealed that TcPR-10 resistance is also enhanced in the Snq2 export permease-lacking mutant which has reduced intracellular presence of TcPR-10.
Collapse
Affiliation(s)
- Cristina Pungartnik
- UESC, Centro de Biotecnologia e Genética, Laboratório de Biologia de Fungos, Rodovia Ilhéus-Itabuna, Ilhéus-BA-Brasil
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang Y, Ma H, Liu G, Zhang D, Ban Q, Zhang G, Xu C, Yang C. Generation and analysis of expressed sequence tags from a NaHCO3-treated Limonium bicolor cDNA library. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:977-986. [PMID: 18640047 DOI: 10.1016/j.plaphy.2008.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 06/01/2008] [Accepted: 06/03/2008] [Indexed: 05/26/2023]
Abstract
Limonium bicolor, a halophytic species of Plumbaginaceae, can thrive in saline or saline-alkali (sodic) soil, demonstrating that it has developed an efficient saline-alkali resistance system, and is an ideal material for the study of saline-alkali tolerance. In order to identify and characterize the complexity of this adaptation, expressed sequence tags (ESTs) analysis and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) were conducted. We constructed a cDNA library of L. bicolor exposed to 0.4M NaHCO3 for 48h, and obtained 2358 ESTs, representing 1735 unique genes. A BLASTX search revealed that 1393 ESTs, representing 873 unique genes, showed significant similarity (E-values <10(-4)) to protein sequences in the non-redundant database. These ESTs were further grouped into 12 functional categories according to their functional annotation. The most abundant categories were metabolism (18.74%), photosynthesis (14.86%), unknown classification (12.20%), defense (12.20%), and transport facilitation (10.19%). In total, 286 putative abiotic stress related transcripts, representing 121 unique genes, were identified. Among them, the two most abundant genes encoded metallothionein (EH794553) and lipid transfer protein (EH794695), each of which accounted for 1.4% of the total ESTs. The expression of 18 putative stress-related genes were further analyzed in roots and leaves of L. bicolor using real-time RT-PCR, and 14 genes were differentially expressed by more than 2-fold as a result of the NaHCO3 stress. The results of this study may contribute to our understanding of the molecular mechanism of saline-alkali tolerance in L. bicolor.
Collapse
Affiliation(s)
- Yucheng Wang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, PR China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lawrence SD, Novak NG, Ju CJT, Cooke JEK. Potato, Solanum tuberosum, defense against Colorado potato beetle, Leptinotarsa decemlineata (Say): microarray gene expression profiling of potato by Colorado potato beetle regurgitant treatment of wounded leaves. J Chem Ecol 2008; 34:1013-25. [PMID: 18581175 DOI: 10.1007/s10886-008-9507-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/30/2008] [Accepted: 05/28/2008] [Indexed: 11/25/2022]
Abstract
Colorado potato beetle (CPB) is a leading pest of solanaceous plants. Despite the economic importance of this pest, surprisingly few studies have been carried out to characterize its molecular interaction with the potato plant. In particular, little is known about the effect of CPB elicitors on gene expression associated with the plant's defense response. In order to discover putative CPB elicitor-responsive genes, the TIGR 11,421 EST Solanaceae microarray was used to identify genes that are differentially expressed in response to the addition of CPB regurgitant to wounded potato leaves. By applying a cutoff corresponding to an adjusted P-value of <0.01 and a fold change of >1.5 or <0.67, we found that 73 of these genes are induced by regurgitant treatment of wounded leaves when compared to wounding alone, whereas 54 genes are repressed by this treatment. This gene set likely includes regurgitant-responsive genes as well as wounding-responsive genes whose expression patterns are further enhanced by the presence of regurgitant. Real-time polymerase chain reaction was used to validate differential expression by regurgitant treatment for five of these genes. In general, genes that encoded proteins involved in secondary metabolism and stress were induced by regurgitant; genes associated with photosynthesis were repressed. One induced gene that encodes aromatic amino acid decarboxylase is responsible for synthesis of the precursor of 2-phenylethanol. This is significant because 2-phenylethanol is recognized by the CPB predator Perillus bioculatis. In addition, three of the 16 type 1 and type 2 proteinase inhibitor clones present on the potato microarray were repressed by application of CPB regurgitant to wounded leaves. Given that proteinase inhibitors are known to interfere with digestion of proteins in the insect midgut, repression of these proteinase inhibitors by CPB may inhibit this component of the plant's defense arsenal. These data suggest that beyond the wound response, CPB elicitors play a role in mediating the plant/insect interaction.
Collapse
Affiliation(s)
- Susan D Lawrence
- Invasive Insect Biocontrol and Behavior Lab, USDA-ARS, BARC-West, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|