1
|
Yu P, Gao Z, Hua Z. Contrasting Impacts of Ubiquitin Overexpression on Arabidopsis Growth and Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1485. [PMID: 38891294 PMCID: PMC11174952 DOI: 10.3390/plants13111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
In plants, the ubiquitin (Ub)-26S proteasome system (UPS) regulates numerous biological functions by selectively targeting proteins for ubiquitylation and degradation. However, the regulation of Ub itself on plant growth and development remains unclear. To demonstrate a possible impact of Ub supply, as seen in animals and flies, we carefully analyzed the growth and developmental phenotypes of two different poly-Ub (UBQ) gene overexpression plants of Arabidopsis thaliana. One is transformed with hexa-6His-UBQ (designated 6HU), driven by the cauliflower mosaic virus 35S promoter, while the other expresses hexa-6His-TEV-UBQ (designated 6HTU), driven by the endogenous promoter of UBQ10. We discovered that 6HU and 6HTU had contrasting seed yields. Compared to wildtype (WT), the former exhibited a reduced seed yield, while the latter showed an increased seed production that was attributed to enhanced growth vigor and an elevated silique number per plant. However, reduced seed sizes were common in both 6HU and 6HTU. Differences in the activity and size of the 26S proteasome assemblies in the two transgenic plants were also notable in comparison with WT, suggestive of a contributory role of UBQ expression in proteasome assembly and function. Collectively, our findings demonstrated that exogenous expression of recombinant Ub may optimize plant growth and development by influencing the UPS activities via structural variance, expression patterns, and abundance of free Ub supply.
Collapse
Affiliation(s)
- Peifeng Yu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA; (P.Y.); (Z.G.)
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Zhenyu Gao
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA; (P.Y.); (Z.G.)
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA; (P.Y.); (Z.G.)
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
2
|
Barqawi AA, Abulfaraj AA. Salt Stress-Related Mechanisms in Leaves of the Wild Barley Hordeum spontaneum Generated from RNA-Seq Datasets. Life (Basel) 2023; 13:1454. [PMID: 37511829 PMCID: PMC10381474 DOI: 10.3390/life13071454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
This study aims to detect salt stress-related genes and mechanisms of the wild barley Hordeum spontaneum. Among the generated RNA-Seq datasets, several regulated transcripts are influenced by levels of cellular carbon, nitrogen and oxygen. Some of the regulated genes act on photorespiration and ubiquitination processes, as well as promoting plant growth and development under salt stress. One of the genes, encoding alanine:glyoxylate aminotransferase (AGT), participates in signaling transduction and proline biosynthesis, while the gene encoding asparagine synthetase (ASN) influences nitrogen storage and transport in plants under stress. Meanwhile, the gene encoding glutamate dehydrogenase (GDH) promotes shoot and root biomass production as well as nitrate assimilation. The upregulated genes encoding alpha-aminoadipic semialdehyde synthase (AASAS) and small auxin-up RNA 40 (SAUR40) participate in the production of proline and signaling compounds, respectively, while the gene encoding E3 ubiquitin-protein ligase regulates the carbon/nitrogen-nutrient response and pathogen resistance, in addition to some physiological processes under biotic and abiotic stresses via signal transduction. The gene encoding the tetratricopeptide repeat (TPR)-domain suppressor of STIMPY (TSS) negatively regulates the carbon level in the cell. In conclusion, this study sheds light on possible molecular mechanisms underlying salt stress tolerance in wild barley that can be utilized further in genomics-based breeding programs of cultivated species.
Collapse
Affiliation(s)
- Aminah A Barqawi
- Department of Chemistry, Al-Leith University College, Umm Al-Qura University, Makkah 28434, Saudi Arabia
| | - Aala A Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| |
Collapse
|
3
|
Li S, Yao X, Zhang B, Tang H, Lu L. Genome-wide characterization of the U-box gene in Camellia sinensis and functional analysis in transgenic tobacco under abiotic stresses. Gene 2023; 865:147301. [PMID: 36813060 DOI: 10.1016/j.gene.2023.147301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Plants U-box genes are crucial for plant survival, and they extensively regulate plant growth, reproduction and development as well as coping with stress and other processes. In this study, we identified 92 CsU-box genes through genome-wide analysis in the tea plant (Camellia sinensis), all of them contained the conserved U-box domain and were divided into 5 groups, which supported by the further genes structure analysis. The expression profiles in eight tea plant tissues and under abiotic and hormone stresses were analyzed using the TPIA database. 7 CsU-box genes (CsU-box27/28/39/46/63/70/91) were selected to verify and analyze expression patterns under PEG-induced drought and heat stress in tea plant respectively, the qRT-PCR results showed consistent with transcriptome datasets; and the CsU-box39 were further heterologous expressed in tobacco to perform gene function analysis. Phenotypic analyses of overexpression transgenic tobacco seedlings and physiological experiments revealed that CsU-box39 positively regulated the plant response to drought stress. These results lay a solid foundation for studying the biological function of CsU-box, and will provide breeding strategy basis for tea plant breeders.
Collapse
Affiliation(s)
- Shiyu Li
- College of Tea Sciences, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Sciences, Guizhou University, Guiyang 550025, China
| | - Baohui Zhang
- Institute of Agricultural Bioengineering/College of Life Sciences, Key Laboratory of Mountain Plant Resources Conservation and Germplasm Innovation, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agricultural Bioengineering, Guiyang 550025, China
| | - Hu Tang
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; Institute of Agricultural Bioengineering/College of Life Sciences, Key Laboratory of Mountain Plant Resources Conservation and Germplasm Innovation, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agricultural Bioengineering, Guiyang 550025, China.
| | - Litang Lu
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; Institute of Agricultural Bioengineering/College of Life Sciences, Key Laboratory of Mountain Plant Resources Conservation and Germplasm Innovation, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agricultural Bioengineering, Guiyang 550025, China.
| |
Collapse
|
4
|
Liu G, Wang Y, Lian B, Ma Z, Xiang X, Wu J, Luo C, Ma D, Chen Y, Yu C, Zhong F, Wei H, Zhang J. Molecular responses to salinity stress in Salix matsudana (Koidz) females and males. FRONTIERS IN PLANT SCIENCE 2023; 14:1122197. [PMID: 36778681 PMCID: PMC9911873 DOI: 10.3389/fpls.2023.1122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Sexual dimorphism has commonly been found in many species. The phenotypes of Salix matsudana females and males are different under salinity stress. An F1 population was selected to compare the differences between males and females. As a result, males showed stronger roots and heavier dry weights than females. The unique molecular mechanisms of males and females under salinity stress were further analyzed based on the root transcriptome of males and females. Both males and females up-regulated systemic acquired resistance genes, such as ADH and oxygenase-related genes, to resist salt. Moreover, many other abiotic stress response genes were up-regulated in males to adjust to salinity stress, while females showed more down-regulation of nitrogen metabolism-related genes to decrease the harm from salinity stress. The research on salinity tolerance in Salix matsudana males and females would help to further understand sexual dimorphism under selection pressure and provide benefits to the ecological environment.
Collapse
Affiliation(s)
- Guoyuan Liu
- School of Life Science, Nantong University, Nantong, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Yuqing Wang
- School of Life Science, Nantong University, Nantong, China
| | - Bolin Lian
- School of Life Science, Nantong University, Nantong, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Ziqi Ma
- School of Life Science, Nantong University, Nantong, China
| | - Xiaoting Xiang
- School of Life Science, Nantong University, Nantong, China
| | - Jing Wu
- School of Life Science, Nantong University, Nantong, China
| | - Chunying Luo
- School of Life Science, Nantong University, Nantong, China
| | - Duojin Ma
- School of Life Science, Nantong University, Nantong, China
| | - Yanhong Chen
- School of Life Science, Nantong University, Nantong, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Chunmei Yu
- School of Life Science, Nantong University, Nantong, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Fei Zhong
- School of Life Science, Nantong University, Nantong, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Hui Wei
- School of Life Science, Nantong University, Nantong, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Jian Zhang
- School of Life Science, Nantong University, Nantong, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| |
Collapse
|
5
|
Huang X, Gu P, Wu H, Wang Z, Huang S, Luo X, Zheng Z. Shift of calcium-induced Microcystis aeruginosa colony formation mechanism: From cell adhesion to cell division. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:119997. [PMID: 35995295 DOI: 10.1016/j.envpol.2022.119997] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Colony formation is an essential stage of cyanobacterial blooms. High calcium concentration can promote Microcystis aeruginosa aggregation behavior, but the mechanism of colony formation caused by calcium has rarely been reported. In this study, high calcium-induced colony formation was identified as a shift from cell adhesion to cell division, rather than only cell adhesion as previously thought. Algae responded to this calcium-induced environmental pressure by aggregating and forming colonies. Algal cells initially secreted large quantities of extracellular polysaccharides (EPS) and rapidly aggregated by cell adhesion. The highest aggregation proportion was up to 68.93%. However, high calcium concentrations cannot completely inhibit algal cell growth, but only delay the algae into the rapid growth phase. With adaption to calcium and existing high EPS content, the daughter cells reduced EPS synthesis and the aggregation proportion decreased. The increasing growth rate was also responsible for the decreased xylose content in EPS. The mechanism of colony formation changed to cell division. The downregulation of genes related to EPS secretion also supported this hypothesis. Overall, these results can benefit for our understanding of cyanobacterial bloom formation.
Collapse
Affiliation(s)
- Xuhui Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214000, PR China
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Zhikai Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Suzhen Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Xingzhang Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
6
|
Singh M, Singh A, Yadav N, Yadav DK. Current perspectives of ubiquitination and SUMOylation in abiotic stress tolerance in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:993194. [PMID: 36212351 PMCID: PMC9533872 DOI: 10.3389/fpls.2022.993194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Post-translational modification (PTM) is a critical and rapid mechanism to regulate all the major cellular processes through the modification of diverse protein substrates. Substrate-specific covalent attachment of ubiquitin and Small Ubiquitin-Like Modifier (SUMO) with the target proteins, known as ubiquitination and SUMOylation, respectively, are crucial PTMs that regulate almost every process in the cell by modulating the stability and fidelity of the proteins. Ubiquitination and SUMOylation play a very significant role to provide tolerance to the plants in adverse environmental conditions by activating/deactivating the pre-existing proteins to a great extent. We reviewed the importance of ubiquitination and SUMOylation in plants, implicating its prospects in various abiotic stress regulations. An exhaustive study of molecular mechanisms of ubiquitination and SUMOylation of plant proteins and their role will contribute to the understanding of physiology underlying mitigation of the abiotic stresses and survival in plants. It will be helpful to strategize the improvement of crops for abiotic stress tolerance.
Collapse
Affiliation(s)
- Madhavi Singh
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Ananya Singh
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Neelam Yadav
- Department of Botany, University of Allahabad, Prayagraj, India
| | - Dinesh Kumar Yadav
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| |
Collapse
|
7
|
Tang X, Ghimire S, Liu W, Fu X, Zhang H, Sun F, Zhang N, Si H. Genome-wide identification of U-box genes and protein ubiquitination under PEG-induced drought stress in potato. PHYSIOLOGIA PLANTARUM 2022; 174:e13475. [PMID: 34114235 DOI: 10.1111/ppl.13475] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Protein ubiquitination is one of the most important posttranslational modifications in eukaryotic cells, and it is involved in a variety of biological processes, including abiotic stress response. The ubiquitination modification is highly specific, which depends on the accurate recognition of substrate proteins by ubiquitin ligase. Plant U-box (PUB) proteins are a class of ubiquitin ligases, multiple members of which have shown to participate in water-deficit stress in Arabidopsis and rice. U-box gene family and large-scale profiling of the ubiquitome in potato has not been reported to date, although it is one of the most important food crops. The identified 66 U-box genes from the potato genome database were unevenly distributed on 10 chromosomes. These StPUBs have a large number of tandem repeat sequences. Analysis of gene expression characteristics revealed that many StPUBs responded to abiotic stress. Three hundred and fourteen lys modification sites were identified under PEG-induced drought stress, which were distributed on 200 proteins, with 25 differential ubiquitination modification sites, most of which were up-regulated. The ubiquitination modification in potato protein was enhanced under PEG-induced drought stress, and U-box ubiquitin ligase was involved. This study provides an overall strategy and rich data set to clarify the effects of ubiquitination on potatoes under PEG-induced drought stress and the ubiquitination modification involved in potato U-box genes in response to PEG-induced drought stress.
Collapse
Affiliation(s)
- Xun Tang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shantwana Ghimire
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Weigang Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xue Fu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huanhuan Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Fujun Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
Azri W, Jardak R, Cosette P, Guillou C, Riahi J, Mliki A. Physiological and proteomic analyses of Tunisian local grapevine (Vitis vinifera) cultivar Razegui in response to drought stress. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:25-39. [PMID: 34794542 DOI: 10.1071/fp21026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Drought is one of the major environmental constraints threatening viticulture worldwide. Therefore, it is critical to reveal the molecular mechanisms underlying grapevine (Vitis vinifera L.) drought stress tolerance useful to select new species with higher tolerance/resilience potentials. Drought-tolerant Tunisian local grapevine cultivar Razegui was exposed to water deficit for 16days. Subsequent proteomic analysis revealed 49 differentially accumulated proteins in leaves harvested on the drought-stressed vines. These proteins were mainly involved in photosynthesis, stress defence, energy and carbohydrate metabolism, protein synthesis/turnover and amino acid metabolism. Physiological analysis revealed that reduction of photosynthesis under drought stress was attributed to the downregulation of the light-dependent reactions, Calvin cycle and key enzymes of the photorespiration pathway. The accumulation of proteins involved in energy and carbohydrate metabolism indicate enhanced need of energy during active stress acclimation. Accumulation of protein amino acids seems to play a protective role under drought stress due to their osmoprotectant and ROS scavenging potential. Reduced protein synthesis and turnover help plants preserving energy to fight drought stress. Proteins related to stress defence might scavenge ROS and transmit the ROS signal as an oxidative signal transducer in drought-stress signalling. All of these original results represent valuable information towards improving drought tolerance of grapevine and promoting sustainable viticulture under climate change conditions.
Collapse
Affiliation(s)
- Wassim Azri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, P.O. Box 901, 2050 Hammam-Lif, Tunisia
| | - Rahma Jardak
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, P.O. Box 901, 2050 Hammam-Lif, Tunisia
| | - Pascal Cosette
- Laboratory of Polymers Biopolymers Surfaces, UMR 6270 CNRS, University of Rouen, 76821 Mont-Saint-Aignan, France; and Proteomic Platform PISSARO, University of Rouen, 76821 Mont-Saint-Aigan, France
| | - Clément Guillou
- Laboratory of Polymers Biopolymers Surfaces, UMR 6270 CNRS, University of Rouen, 76821 Mont-Saint-Aignan, France; and Proteomic Platform PISSARO, University of Rouen, 76821 Mont-Saint-Aigan, France
| | - Jawaher Riahi
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, P.O. Box 901, 2050 Hammam-Lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, P.O. Box 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
9
|
Kim MS, Kang KK, Cho YG. Molecular and Functional Analysis of U-box E3 Ubiquitin Ligase Gene Family in Rice ( Oryzasativa). Int J Mol Sci 2021; 22:ijms222112088. [PMID: 34769518 PMCID: PMC8584879 DOI: 10.3390/ijms222112088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023] Open
Abstract
Proteins encoded by U-box type ubiquitin ligase (PUB) genes in rice are known to play an important role in plant responses to abiotic and biotic stresses. Functional analysis has revealed a detailed molecular mechanism involving PUB proteins in relation to abiotic and biotic stresses. In this study, characteristics of 77 OsPUB genes in rice were identified. Systematic and comprehensive analyses of the OsPUB gene family were then performed, including analysis of conserved domains, phylogenetic relationships, gene structure, chromosome location, cis-acting elements, and expression patterns. Through transcriptome analysis, we confirmed that 16 OsPUB genes show similar expression patterns in drought stress and blast infection response pathways. Numerous cis-acting elements were found in promoter sequences of 16 OsPUB genes, indicating that the OsPUB genes might be involved in complex regulatory networks to control hormones, stress responses, and cellular development. We performed qRT-PCR on 16 OsPUB genes under drought stress and blast infection to further identify the reliability of transcriptome and cis-element analysis data. It was confirmed that the expression pattern was similar to RNA-sequencing analysis results. The transcription of OsPUB under various stress conditions indicates that the PUB gene might have various functions in the responses of rice to abiotic and biotic stresses. Taken together, these results indicate that the genome-wide analysis of OsPUB genes can provide a solid basis for the functional analysis of U-box E3 ubiquitin ligase genes. The molecular information of the U-box E3 ubiquitin ligase gene family in rice, including gene expression patterns and cis-acting regulatory elements, could be useful for future crop breeding programs by genome editing.
Collapse
Affiliation(s)
- Me-Sun Kim
- Department of Crop Science, College of Agriculture and Life & Environment Sciences, Chungbuk National University, Cheongju 28644, Korea;
| | - Kwon-Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea;
| | - Yong-Gu Cho
- Department of Crop Science, College of Agriculture and Life & Environment Sciences, Chungbuk National University, Cheongju 28644, Korea;
- Correspondence:
| |
Collapse
|
10
|
Zhang Y, Xia G, Zhu Q. Conserved and Unique Roles of Chaperone-Dependent E3 Ubiquitin Ligase CHIP in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:699756. [PMID: 34305988 PMCID: PMC8299108 DOI: 10.3389/fpls.2021.699756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/17/2021] [Indexed: 05/09/2023]
Abstract
Protein quality control (PQC) is essential for maintaining cellular homeostasis by reducing protein misfolding and aggregation. Major PQC mechanisms include protein refolding assisted by molecular chaperones and the degradation of misfolded and aggregated proteins using the proteasome and autophagy. A C-terminus of heat shock protein (Hsp) 70-interacting protein [carboxy-terminal Hsp70-interacting protein (CHIP)] is a chaperone-dependent and U-box-containing E3 ligase. CHIP is a key molecule in PQC by recognizing misfolded proteins through its interacting chaperones and targeting their degradation. CHIP also ubiquitinates native proteins and plays a regulatory role in other cellular processes, including signaling, development, DNA repair, immunity, and aging in metazoans. As a highly conserved ubiquitin ligase, plant CHIP plays an important role in response to a broad spectrum of biotic and abiotic stresses. CHIP protects chloroplasts by coordinating chloroplast PQC both outside and inside the important photosynthetic organelle of plant cells. CHIP also modulates the activity of protein phosphatase 2A (PP2A), a crucial component in a network of plant signaling, including abscisic acid (ABA) signaling. In this review, we discuss the structure, cofactors, activities, and biological function of CHIP with an emphasis on both its conserved and unique roles in PQC, stress responses, and signaling in plants.
Collapse
Affiliation(s)
| | | | - Qianggen Zhu
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, China
| |
Collapse
|
11
|
Dou L, Sun Y, Li S, Ge C, Shen Q, Li H, Wang W, Mao J, Xiao G, Pang C. Transcriptomic analyses show that 24-epibrassinolide (EBR) promotes cold tolerance in cotton seedlings. PLoS One 2021; 16:e0245070. [PMID: 33524020 PMCID: PMC7850480 DOI: 10.1371/journal.pone.0245070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
In plants, brassinosteroids (BRs) are a class of steroidal hormones that are involved in numerous physiological responses. However, the function of BRs in cold tolerance in cotton has not been explored. In this study, cotton seedlings were treated with five concentrations (0, 0.05, 0.1, 0.2, 0.5 and 1.0 mg/L) of 24-Epibrassinolide (EBR) at 4°C. We measured the electrolyte leakage, malondialdehyde (MDA) content, proline content, and net photosynthesis rate (Pn) of the seedlings, which showed that EBR treatment increased cold tolerance in cotton in a dose-dependent manner, and that 0.2 mg/L is an optimum concentration for enhancing cold tolerance. The function of EBR in cotton cotyledons was investigated in the control 0 mg/L (Cold+water) and 0.2 mg/L (Cold+EBR) treatments using RNA-Seq. A total of 4,001 differentially expressed genes (DEGs), including 2,591 up-regulated genes and 1,409 down-regulated genes were identified. Gene Ontology (GO) and biochemical pathway enrichment analyses showed that EBR is involved in the genetic information process, secondary metabolism, and also inhibits abscisic acid (ABA) and ethylene (ETH) signal transduction. In this study, physiological experiments showed that EBR can increase cold tolerance in cotton seedlings, and the comprehensive RNA-seq data shed light on the mechanisms through which EBR increases cold tolerance in cotton seedlings.
Collapse
Affiliation(s)
- Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi, China
| | - Yaru Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Shuye Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Huaizhu Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi, China
| | - Wenbo Wang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi, China
| | - Jiayi Mao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- * E-mail: (GX); (CP)
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- * E-mail: (GX); (CP)
| |
Collapse
|
12
|
Protective Roles of Cytosolic and Plastidal Proteasomes on Abiotic Stress and Pathogen Invasion. PLANTS 2020; 9:plants9070832. [PMID: 32630761 PMCID: PMC7412383 DOI: 10.3390/plants9070832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/18/2023]
Abstract
Protein malfunction is typically caused by abiotic stressors. To ensure cell survival during conditions of stress, it is important for plant cells to maintain proteins in their respective functional conformation. Self-compartmentalizing proteases, such as ATP-dependent Clp proteases and proteasomes are designed to act in the crowded cellular environment, and they are responsible for degradation of misfolded or damaged proteins within the cell. During different types of stress conditions, the levels of misfolded or orphaned proteins that are degraded by the 26S proteasome in the cytosol and nucleus and by the Clp proteases in the mitochondria and chloroplasts increase. This allows cells to uphold feedback regulations to cellular-level signals and adjust to altered environmental conditions. In this review, we summarize recent findings on plant proteolytic complexes with respect to their protective functions against abiotic and biotic stressors.
Collapse
|
13
|
Vanani FR, Shabani L, Sabzalian MR, Dehghanian F, Winner L. Comparative physiological and proteomic analysis indicates lower shock response to drought stress conditions in a self-pollinating perennial ryegrass. PLoS One 2020; 15:e0234317. [PMID: 32555744 PMCID: PMC7302502 DOI: 10.1371/journal.pone.0234317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/22/2020] [Indexed: 12/05/2022] Open
Abstract
We investigated the physiological and proteomic changes in the leaves of three Lolium perenne genotypes, one Iranian putative self-pollinating genotype named S10 and two commercial genotypes of Vigor and Speedy, subjected to drought stress conditions. The results of this study indeed showed higher RWC (relative water content), SDW (shoot dry weight), proline, ABA (abscisic acid), nitrogen and amino acid contents, and antioxidant enzymes activities of S10 under drought stress in comparison with the two other genotypes. A total of 915 proteins were identified using liquid chromatography-mass spectrometry (LC/MS) analysis, and the number of differentially abundant proteins between normal and stress conditions was 467, 456, and 99 in Vigor, Speedy, and S10, respectively. Proteins involved in carbon and energy metabolism, photosynthesis, TCA cycle, redox, and transport categories were up-regulated in the two commercial genotypes. We also found that some protein inductions, including those involved in amino acid and ABA metabolisms, aquaporin, HSPs, photorespiration, and increases in the abundance of antioxidant enzymes, are essential responses of the two commercial genotypes to drought stress. In contrast, we observed only slight changes in the protein profile of the S10 genotype under drought stress. Higher homozygosity due to self-pollination in the genetic background of the S10 genotype may have led to a lower variation in response to drought stress conditions.
Collapse
Affiliation(s)
- Fatemeh Raeisi Vanani
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Leila Shabani
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Mohammad R. Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Lisa Winner
- Core Facility Proteomics, Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Wang B, Wang G, Zhu S. DNA Damage Inducible Protein 1 is Involved in Cold Adaption of Harvested Cucumber Fruit. FRONTIERS IN PLANT SCIENCE 2020; 10:1723. [PMID: 32038689 PMCID: PMC6992665 DOI: 10.3389/fpls.2019.01723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Chilling stress can cause cellular DNA damage, affecting the faithful transmission of genetic information. Cold acclimation enhances chilling tolerance, but it is not clear that the process of cold adaption involves DNA damage responses, as cold acclimation does not form real chilling stress. Here we showed with cucumber fruit that pre-storage cold acclimation (PsCA) reduces chilling injury and upregulates DNA damage inducible protein1 (CsDDI1), suggesting that the chilling tolerance induced by cold acclimation involves CsDDI1 transcription. Application of nitric oxide (NO), abscisic acid (ABA) or H2O2 biosynthesis inhibitor before PsCA treatment downregulates CsDDI1 and aggravates chilling injury, while H2O2 generation inhibition plus exogenous NO or ABA application before PsCA treatment restores chilling tolerance, but does not restore CsDDI1 expression, suggesting H2O2 plays a crucial role in triggering cold adaption. CsDDI1 overexpression Arabidopsis lines show faster growth, stronger chilling tolerance, lower reactive oxygen species levels, enhanced catalase and superoxide dismutase activities and higher expression of nine other Arabidopsis defense genes under chilling stress, suggesting CsDDI1 strengthens defenses against chilling stress by enhancing antioxidant defense system. Taken together, CsDDI1 positively regulates chilling tolerance induced by cold acclimation in cucumber. In addition, H2O2 is involved in initiation of cold acclimation. While CsDDI1 upregulation requires H2O2 as a key signaling molecule, the upregulation of CsDDI1 activates an antioxidant system to reduce biotoxic accumulation of H2O2 and helps in DNA repair.
Collapse
Affiliation(s)
- Bin Wang
- Guangdong Province Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- College of Ying-Tong Agricultural Science and Engineering, Shaoguan University, Shaoguan, China
| | - Guang Wang
- Guangdong Province Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shijiang Zhu
- Guangdong Province Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Role of the Ubiquitin Proteasome System in Plant Response to Abiotic Stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 343:65-110. [PMID: 30712675 DOI: 10.1016/bs.ircmb.2018.05.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitination is a prevalent post-translation modification system that is involved in almost all aspects of eukaryotic biology. It involves the attachment of ubiquitin, a small, highly conserved protein to selected substrates. The most notable function of ubiquitin is the targeting of modified proteins to the multi-proteolytic 26S proteasome complex for degradation. The ubiquitin proteasome system (UPS) regulates the abundance of numerous enzymes, structural and regulatory proteins ensuring proper cellular function. Plants utilize the UPS to facilitate cellular changes required to respond to and tolerate adverse growth conditions. In this review, the regulatory role of the UPS in responses to abiotic stress is discussed, particularly the function of ubiquitin-dependent degradation in the suppression, activation and attenuation or termination of stress signaling.
Collapse
|
16
|
MPSR1 is a cytoplasmic PQC E3 ligase for eliminating emergent misfolded proteins in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:E10009-E10017. [PMID: 29087340 PMCID: PMC5699081 DOI: 10.1073/pnas.1713574114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The essential roles of cytoplasmic E3 ligases in the protein quality control (PQC) pathways have been increasingly highlighted in yeast and animal studies. However, in plants, only CHIP E3 ligase has been characterized, while the knowledge of cytoplasmic PQC E3 ligases remains rudimentary. Misfolded Protein Sensing RING E3 ligase 1 (MPSR1), a self-regulatory sensor system that functions only in the occurrence of misfolded proteins, is an identified cytoplasmic PQC E3 ligase in plants that directly recognizes emergent misfolded proteins independently of chaperones. In addition, MPSR1 sustains the integrity and activity of the 26S proteasome under proteotoxic stress. Given that MPSR1 RING E3 ligase is well conserved in eukaryotes, this study sheds light on a PQC pathway that is present particularly in plants and beyond. Ubiquitin E3 ligases are crucial for eliminating misfolded proteins before they form cytotoxic aggregates that threaten cell fitness and survival. However, it remains unclear how emerging misfolded proteins in the cytoplasm can be selectively recognized and eliminated by E3 ligases in plants. We found that Misfolded Protein Sensing RING E3 ligase 1 (MPSR1) is an indispensable E3 ligase required for plant survival after protein-damaging stress. Under no stress, MPSR1 is prone to rapid degradation by the 26S proteasome, concealing its protein quality control (PQC) E3 ligase activity. Upon proteotoxic stress, MPSR1 directly senses incipient misfolded proteins and tethers ubiquitins for subsequent degradation. Furthermore, MPSR1 sustains the structural integrity of the proteasome complex at the initial stage of proteotoxic stress. Here, we suggest that the MPSR1 pathway is a constitutive mechanism for proteostasis under protein-damaging stress, as a front-line surveillance system in the cytoplasm.
Collapse
|
17
|
Hasan MK, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ, Qi ZY. Responses of Plant Proteins to Heavy Metal Stress-A Review. FRONTIERS IN PLANT SCIENCE 2017; 8:1492. [PMID: 28928754 PMCID: PMC5591867 DOI: 10.3389/fpls.2017.01492] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/11/2017] [Indexed: 05/17/2023]
Abstract
Plants respond to environmental pollutants such as heavy metal(s) by triggering the expression of genes that encode proteins involved in stress response. Toxic metal ions profoundly affect the cellular protein homeostasis by interfering with the folding process and aggregation of nascent or non-native proteins leading to decreased cell viability. However, plants possess a range of ubiquitous cellular surveillance systems that enable them to efficiently detoxify heavy metals toward enhanced tolerance to metal stress. As proteins constitute the major workhorses of living cells, the chelation of metal ions in cytosol with phytochelatins and metallothioneins followed by compartmentalization of metals in the vacuoles as well as the repair of stress-damaged proteins or removal and degradation of proteins that fail to achieve their native conformations are critical for plant tolerance to heavy metal stress. In this review, we provide a broad overview of recent advances in cellular protein research with regards to heavy metal tolerance in plants. We also discuss how plants maintain functional and healthy proteomes for survival under such capricious surroundings.
Collapse
Affiliation(s)
- Md. Kamrul Hasan
- Department of Horticulture, Zhejiang UniversityHangzhou, China
- Department of Agricultural Chemistry, Sylhet Agricultural UniversitySylhet, Bangladesh
| | - Yuan Cheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | | | - Xian-Yao Chu
- Zhejiang Institute of Geological Survey, Geological Research Center for Agricultural Applications, China Geological SurveyBeijing, China
| | | | - Zhen-Yu Qi
- Agricultural Experiment Station, Zhejiang UniversityHangzhou, China
| |
Collapse
|
18
|
da Silva MD, de Oliveira Silva RL, Ferreira Neto JRC, Benko-Iseppon AM, Kido EA. Genotype-dependent regulation of drought-responsive genes in tolerant and sensitive sugarcane cultivars. Gene 2017; 633:17-27. [PMID: 28855118 DOI: 10.1016/j.gene.2017.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022]
Abstract
Drought is the most damaging among the major abiotic stresses. Transcriptomic studies allow a global overview of expressed genes, providing the basis for molecular markers development. Here, the HT-SuperSAGE technique allowed the evaluation of four drought-tolerant cultivars and four-sensitive cultivars, after 24h of irrigation suppression. We identified 9831 induced unitags from roots of the tolerant cultivars with different regulations by the -sensitive cultivars after the applied stress. These unitags allowed a proposal of 15 genes, whose expressed profiles were validated by RT-qPCR, evaluating each cultivar independently. These genes covered broad metabolic processes: ethylene stress attenuation (ACCD); root growth (β-EXP8); protein degradation [ubiquitination pathway (E2, 20SPβ4); plant proteases (AP, C13)]; oxidative detoxification (TRX); fatty acid synthesis (ACC); amino acid transport (AAT), and carbohydrate metabolism [glycolysis (PFK, TPI, FBA); TCA cycle (LDP, MDH); pentose phosphate pathway (TKT)]. The expressed profiles showed a genotype-dependent regulation of the target genes. Two drought-tolerant cultivars (SP83-2847; CTC6) presented each one, nine of the induced genes. Among the -sensitive cultivars, CTC13 induced only one, while SP90-1636 induced two genes. These genes should help breeders to identify accessions managing drought stress tolerance responses, showing better ethylene stress attenuation, energy allocation, amino acid transport, and protein homeostasis.
Collapse
Affiliation(s)
- Manassés Daniel da Silva
- Federal University of Pernambuco (UFPE), Bioscience Center, Department of Genetics, 50670-420 Recife, PE, Brazil
| | | | | | - Ana Maria Benko-Iseppon
- Federal University of Pernambuco (UFPE), Bioscience Center, Department of Genetics, 50670-420 Recife, PE, Brazil
| | - Ederson Akio Kido
- Federal University of Pernambuco (UFPE), Bioscience Center, Department of Genetics, 50670-420 Recife, PE, Brazil.
| |
Collapse
|
19
|
Bernardo L, Morcia C, Carletti P, Ghizzoni R, Badeck FW, Rizza F, Lucini L, Terzi V. Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae. J Proteomics 2017; 169:21-32. [PMID: 28366879 DOI: 10.1016/j.jprot.2017.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) are plant growth promoters that ameliorate plant-water relations and the nutrient uptake of wheat. In this work, two cultivars of Triticum spp., a bread and a durum wheat, grown under drought stress and inoculated or not by AMF, are evaluated through a shotgun proteomic approach. The AMF association had beneficial effects as compared to non-mycorrhizal roots, in both bread and durum wheat. The beneficial symbiosis was confirmed by measuring morphological and physiological traits. In our work, we identified 50 statistically differential proteins in the bread wheat cultivar and 66 differential proteins in the durum wheat cultivar. The findings highlighted a modulation of proteins related to sugar metabolism, cell wall rearrangement, cytoskeletal organization and sulphur-containing proteins, as well as proteins related to plant stress responses. Among differentially expressed proteins both cultivars evidenced a decrease in sucrose:fructan 6-fructosyltransferas. In durum wheat oxylipin signalling pathway was involved with two proteins: increased 12-oxo-phytodienoic acid reductase and decreased jasmonate-induced protein, both related to the biosynthesis of jasmonic acid. Interactome analysis highlighted the possible involvement of ubiquitin although not evidenced among differentially expressed proteins. The AMF association helps wheat roots reducing the osmotic stress and maintaining cellular integrity. BIOLOGICAL SIGNIFICANCE Drought is one of the major constraints that plants must face in some areas of the world, associated to climate change, negatively affecting the worldwide plant productivity. The adoption of innovative agronomic protocols may represent a winning strategy in facing this challenge. The arbuscular mycorrhizal fungi (AMF) inoculation may represent a natural and sustainable way to mitigate the negative effects due to drought in several crop, ameliorating plant growth and development. Studies on the proteomic responses specific to AMF in drought-stressed plants will help clarify how mycorrhization elicits plant growth, nutrient uptake, and stress-tolerance responses. Such studies also offer the potential to find biological markers and genetic targets to be used during breeding for new drought-resistant varieties.
Collapse
Affiliation(s)
- Letizia Bernardo
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy.
| | - Caterina Morcia
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| | - Paolo Carletti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale dell'Università, 16, I-35020 Legnaro, PD, Italy
| | - Roberta Ghizzoni
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| | - Franz W Badeck
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| | - Fulvia Rizza
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| | - Luigi Lucini
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, I-29122 PC, Italy
| | - Valeria Terzi
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| |
Collapse
|
20
|
Wang X, Cai X, Xu C, Wang Q, Dai S. Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics. Int J Mol Sci 2016; 17:E1706. [PMID: 27763546 PMCID: PMC5085738 DOI: 10.3390/ijms17101706] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 02/04/2023] Open
Abstract
Plant drought tolerance is a complex trait that requires a global view to understand its underlying mechanism. The proteomic aspects of plant drought response have been extensively investigated in model plants, crops and wood plants. In this review, we summarize recent proteomic studies on drought response in leaves to reveal the common and specialized drought-responsive mechanisms in different plants. Although drought-responsive proteins exhibit various patterns depending on plant species, genotypes and stress intensity, proteomic analyses show that dominant changes occurred in sensing and signal transduction, reactive oxygen species scavenging, osmotic regulation, gene expression, protein synthesis/turnover, cell structure modulation, as well as carbohydrate and energy metabolism. In combination with physiological and molecular results, proteomic studies in leaves have helped to discover some potential proteins and/or metabolic pathways for drought tolerance. These findings provide new clues for understanding the molecular basis of plant drought tolerance.
Collapse
Affiliation(s)
- Xiaoli Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaofeng Cai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Chenxi Xu
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Quanhua Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shaojun Dai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
21
|
Nongpiur RC, Singla-Pareek SL, Pareek A. Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants. Curr Genomics 2016; 17:343-57. [PMID: 27499683 PMCID: PMC4955028 DOI: 10.2174/1389202917666160331202517] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022] Open
Abstract
Salinity is one of the major factors which reduces crop production worldwide. Plant responses to salinity are highly complex and involve a plethora of genes. Due to its multigenicity, it has been difficult to attain a complete understanding of how plants respond to salinity. Genomics has progressed tremendously over the past decade and has played a crucial role towards providing necessary knowledge for crop improvement. Through genomics, we have been able to identify and characterize the genes involved in salinity stress response, map out signaling pathways and ultimately utilize this information for improving the salinity tolerance of existing crops. The use of new tools, such as gene pyramiding, in genetic engineering and marker assisted breeding has tremendously enhanced our ability to generate stress tolerant crops. Genome editing technologies such as Zinc finger nucleases, TALENs and CRISPR/Cas9 also provide newer and faster avenues for plant biologists to generate precisely engineered crops.
Collapse
Affiliation(s)
- Ramsong Chantre Nongpiur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067,India
| | - Sneh Lata Singla-Pareek
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067,India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067,India
| |
Collapse
|
22
|
Kang H, Zhang M, Zhou S, Guo Q, Chen F, Wu J, Wang W. Overexpression of wheat ubiquitin gene, Ta-Ub2, improves abiotic stress tolerance of Brachypodium distachyon. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 248:102-15. [PMID: 27181952 DOI: 10.1016/j.plantsci.2016.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/16/2016] [Accepted: 04/26/2016] [Indexed: 05/11/2023]
Abstract
Ubiquitination plays an important role in regulating plant's development and adaptability to abiotic stress. To investigate the possible functions of a wheat monoubiquitin gene Ta-Ub2 in abiotic stress in monocot and compare it with that in dicot, we generated transgenic Brachypodium plants overexpressing Ta-Ub2 under the control of CaMV35s and stress-inducible RD29A promoters. The constitutive expression of Ta-Ub2 displayed slight growth inhibition in the growth of transgenic Brachypodium distachyon under the control conditions. However, this inhibition was minimized by expression of Ta-Ub2 under the control of stress-inducible RD29A promoter. Compared with WT, the transgenic plants preserved more water and showed higher enzymatic antioxidants under drought stress, which might be related to the change in the expression of some antioxidant genes. The expression of C-repeat binding factors transcription factor genes in the transgenic B. distachyon lines were upregulated under water stress. Salt and cold tolerances of transgenic B. distachyon were also improved. Although the phenotypic changes in the transgenic plants were different, overexpression of Ta-Ub2 improved the abiotic stress tolerance in both dicot and monocot plants. The improvement in Ta-Ub2 transgenic plants in abiotic stress tolerance might be, at least partly, through regulating the gene expression and increasing the enzymatic antioxidants.
Collapse
Affiliation(s)
- Hanhan Kang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Meng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Shumei Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Qifang Guo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Fengjuan Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
23
|
Cho SK, Bae H, Ryu MY, Wook Yang S, Kim WT. PUB22 and PUB23 U-BOX E3 ligases directly ubiquitinate RPN6, a 26S proteasome lid subunit, for subsequent degradation in Arabidopsis thaliana. Biochem Biophys Res Commun 2015; 464:994-999. [PMID: 26188517 DOI: 10.1016/j.bbrc.2015.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 11/17/2022]
Abstract
Drought stress strongly affects plant growth and development, directly connected with crop yields, accordingly. However, related to the function of U-BOX E3 ligases, the underlying molecular mechanisms of desiccation stress response in plants are still largely unknown. Here we report that PUB22 and PUB23, two U-box E3 ligase homologs, tether ubiquitins to 19S proteasome regulatory particle (RP) subunit RPN6, leading to its degradation. RPN6 was identified as an interacting substrate of PUB22 by yeast two-hybrid screening, and in vitro pull-down assay confirmed that RPN6 interacts not only with PUB22, but also with PUB23. Both PUB22 and PUB23 were able to conjugate ubiquitins on RPN6 in vitro. Furthermore, RPN6 showed a shorter protein half-life in PUB22 overexpressing plants than in wild-type, besides RPN6 was significantly stabilized in pub22pub23 double knockout plants. Taken together, these results solidify a notion that PUB22 and PUB23 can alter the activity of 26S proteasome in response to drought stress.
Collapse
Affiliation(s)
- Seok Keun Cho
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Hansol Bae
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Moon Young Ryu
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Seong Wook Yang
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | - Woo TaeK Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, South Korea.
| |
Collapse
|
24
|
Tian F, Gong J, Zhang J, Feng Y, Wang G, Guo Q, Wang W. Overexpression of monoubiquitin improves photosynthesis in transgenic tobacco plants following high temperature stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 226:92-100. [PMID: 25113454 DOI: 10.1016/j.plantsci.2014.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/10/2014] [Accepted: 03/01/2014] [Indexed: 05/11/2023]
Abstract
The ubiquitin/26S proteasome system (Ub/26S) is implicated in abiotic stress responses in plants. In this paper, transgenic tobacco plants overexpressing Ta-Ub2 from wheat were used to study the functions of Ub in the improvement of photosynthesis under high temperature (45°C) stress. We observed higher levels of Ub conjugates in transgenic plants under high temperature stress conditions compared to wild type (WT) as a result of the constitutive overexpression of Ta-Ub2, suggesting increased protein degradation by the 26S proteasome system under high temperature stress. Overexpressing Ub increased the photosynthetic rate (Pn) of transgenic tobacco plants, consistent with the improved ATPase activity in the thylakoid membrane and enhanced efficiency of PSII photochemistry. The higher D1 protein levels following high temperature stress in transgenic plants than WT were also observed. These findings imply that Ub may be involved in tolerance of photosynthesis to high temperature stress in plants. Compared with WT, the transgenic plants showed lower protein carbonylation and malondialdehyde (MDA) levels, less reactive oxygen species (ROS) accumulation, but higher antioxidant enzyme activity under high temperature stress. These findings suggest that the improved antioxidant capacity of transgenic plants may be one of the most important mechanisms underlying Ub-regulated high temperature tolerance.
Collapse
Affiliation(s)
- Fengxia Tian
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China; College of Life Science and Technology, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| | - Jiangfeng Gong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 8 Xiangshan Road, Beijing 100091, China
| | - Yanan Feng
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Guokun Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Qifang Guo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China.
| |
Collapse
|
25
|
Feng Y, Zhang M, Guo Q, Wang G, Gong J, Xu Y, Wang W. Manipulation of monoubiquitin improves chilling tolerance in transgenic tobacco (Nicotiana tabacum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 75:138-44. [PMID: 24445300 DOI: 10.1016/j.plaphy.2013.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/07/2013] [Indexed: 05/06/2023]
Abstract
Ubiquitin (Ub) is a multifunctional protein that mainly functions to tag proteins for selective degradation by the 26S proteasome. We cloned an Ub gene TaUb2 from wheat (Triticum aestivum L.) previously. To study the function of TaUB2 in chilling stress, sense and antisense Ub transgenic tobacco plants (Nicotiana tabacum L.), as well as wild type (WT) and vector control β-glucuronidase (T-GUS) plants, were used. Under stress, leaf wilting in sense plants was significantly less than in controls, but more severe in antisense plants. Meanwhile, the net photosynthetic rate (Pn) and the maximal photochemical efficiency of PSII (Fv/Fm) in sense plants were greater than controls, but lower in antisense plants during chilling stress and recovery. Less wilting in sense plants resulted from improved water status, which may be related to the accumulation of proline and solute sugar. Furthermore, as indicated by electrolyte leakage, membrane damage under stress was less in sense plants and more severe in antisense plants than controls. Consistent with electrolyte leakage, the malondialdehyde (MDA) content was less in sense plants, but more in antisense plants compared to controls. Meanwhile, the less accumulation of reactive oxygen species (ROS) and the greater antioxidant enzyme activity in sense plants implied the improved antioxidant competence by the overexpression of monoubiquitin gene Ta-Ub2 from wheat. We suggest that overexpressing Ub is a useful strategy to promote chilling tolerance. The improvement of ROS scavenging may be an important mechanism underlying the role of Ub in promoting plants tolerant to chilling stress.
Collapse
Affiliation(s)
- Yanan Feng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Meng Zhang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qifang Guo
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Guokun Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jiangfeng Gong
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Ying Xu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
26
|
Zhou J, Zhang Y, Qi J, Chi Y, Fan B, Yu JQ, Chen Z. E3 ubiquitin ligase CHIP and NBR1-mediated selective autophagy protect additively against proteotoxicity in plant stress responses. PLoS Genet 2014; 10:e1004116. [PMID: 24497840 PMCID: PMC3907298 DOI: 10.1371/journal.pgen.1004116] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/27/2013] [Indexed: 11/19/2022] Open
Abstract
Plant stress responses require both protective measures that reduce or restore stress-inflicted damage to cellular structures and mechanisms that efficiently remove damaged and toxic macromolecules, such as misfolded and damaged proteins. We have recently reported that NBR1, the first identified plant autophagy adaptor with a ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting stress-induced, ubiquitinated protein aggregates for degradation by autophagy. Here we report a comprehensive genetic analysis of CHIP, a chaperone-associated E3 ubiquitin ligase from Arabidopsis thaliana implicated in mediating degradation of nonnative proteins by 26S proteasomes. We isolated two chip knockout mutants and discovered that they had the same phenotypes as the nbr1 mutants with compromised tolerance to heat, oxidative and salt stresses and increased accumulation of insoluble proteins under heat stress. To determine their functional interactions, we generated chip nbr1 double mutants and found them to be further compromised in stress tolerance and in clearance of stress-induced protein aggregates, indicating additive roles of CHIP and NBR1. Furthermore, stress-induced protein aggregates were still ubiquitinated in the chip mutants. Through proteomic profiling, we systemically identified heat-induced protein aggregates in the chip and nbr1 single and double mutants. These experiments revealed that highly aggregate-prone proteins such as Rubisco activase and catalases preferentially accumulated in the nbr1 mutant while a number of light-harvesting complex proteins accumulated at high levels in the chip mutant after a relatively short period of heat stress. With extended heat stress, aggregates for a large number of intracellular proteins accumulated in both chip and nbr1 mutants and, to a greater extent, in the chip nbr1 double mutant. Based on these results, we propose that CHIP and NBR1 mediate two distinct but complementary anti-proteotoxic pathways and protein's propensity to aggregate under stress conditions is one of the critical factors for pathway selection of protein degradation. Environmental stresses such as heat cause generation of misfolded and damaged proteins, which are highly toxic and must be efficiently removed. In plants, NBR1, the first isolated autophagy receptor with an ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting ubiquitinated protein aggregates under stress conditions for degradation by autophagy. To study how stress-induced misfolded and damaged proteins are detected and ubiquitinated in plant cells, we analyzed the chaperone-associated E3 ubiquitin ligase CHIP from Arabidopsis thaliana for its role in protection against proteotoxicity in plant stress responses. Disruption of Arabidopsis CHIP caused increased sensitivity to a spectrum of abiotic stresses as found in the Arabidopsis nbr1 mutants. Disruption of both Arabidopsis CHIP and NBR1 further compromised plant stress tolerance, indicating that their roles are additive. Furthermore, in the chip nbr1 double mutant, compromised heat tolerance was associated with increased accumulation of insoluble proteins derived mostly from heat-sensitive but biologically important proteins such as Rubisco activase, catalases and proteins required for protein synthesis and folding. Importantly, stress-induced protein aggregates were still highly ubiquitinated in the chip mutants. These results strongly suggest that CHIP and NBR1 function in two distinct but complementary anti-proteotoxic pathways in plant stress responses.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Yan Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingxia Qi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yingjin Chi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zhixiang Chen
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
27
|
Stone SL. The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. FRONTIERS IN PLANT SCIENCE 2014; 5:135. [PMID: 24795732 PMCID: PMC3997020 DOI: 10.3389/fpls.2014.00135] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/21/2014] [Indexed: 05/18/2023]
Abstract
Ubiquitin is a small, highly conserved, ubiquitously expressed eukaryotic protein with immensely important and diverse regulatory functions. A well-studied function of ubiquitin is its role in selective proteolysis by the ubiquitin-proteasome system (UPS). The UPS has emerged as an integral player in plant response and adaptation to environmental stresses such as drought, salinity, cold and nutrient deprivation. The UPS has also been shown to influence the production and signal transduction of stress-related hormones such as abscisic acid. Understanding UPS function has centered mainly on defining the role of E3 ubiquitin ligases, which are the substrate-recruiting component of the ubiquitination pathway. The recent identification of stress signaling/regulatory proteins that are the subject of ubiquitin-dependent degradation has increased our knowledge of how the UPS facilitates responses to adverse environmental conditions. A brief overview is provided on role of the UPS in modulating protein stability during abiotic stress signaling. E3 ubiquitin ligases for which stress-related substrate proteins have been identified are discussed.
Collapse
Affiliation(s)
- Sophia L. Stone
- *Correspondence: Sophia L. Stone, Department of Biology, Dalhousie University, 1355 Oxford Street, P.O. BOX 15000, Halifax, NS B3H 4R2, Canada e-mail:
| |
Collapse
|
28
|
Li F, Han Y, Feng Y, Xing S, Zhao M, Chen Y, Wang W. Expression of wheat expansin driven by the RD29 promoter in tobacco confers water-stress tolerance without impacting growth and development. J Biotechnol 2013; 163:281-91. [PMID: 23183383 DOI: 10.1016/j.jbiotec.2012.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/13/2012] [Accepted: 11/16/2012] [Indexed: 12/13/2022]
Abstract
Expansins are the key regulators of cell wall extension during plant growth. Previously, we produced transgenic tobacco plants with increased tolerance to water stress by overexpressing the wheat expansin gene TaEXPB23 driven by the constitutive 35S cauliflower mosaic virus (CaMV) promoter. However, the growth and development of 35S::TaEXPB23 transgenic tobacco plants were altered under normal growth conditions, with a faster growth rate at the seedling stage, earlier flowering and maturation, and a shorter plant height compared to WT. In the current study, we determined that cellular characteristics and carbohydrate metabolism were altered in 35S::TaEXPB23 transgenic tobacco plants. We also generated transgenic Arabidopsis plants using the same vector. The transgenic Arabidopsis plants had the same phenotype as the transgenic tobacco plants, which may have resulted from the altered expression of several flowering-related genes. We then produced TaEXPB23 transgenic tobacco plants using the stress-inducible RD29A promoter. The use of this promoter reduced the negative effects of TaEXPB23 on plant growth and development. The RD29A::TaEXPB23 transgenic tobacco plants had greater tolerance to water stress than WT, as determined by examining physiological and biochemical parameters. Therefore, the use of stress-inducible promoters, such as RD29A, may minimize the negative effects of constitutive transgene expression and improve the water-stress tolerance of plants.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang GK, Zhang M, Gong JF, Guo QF, Feng YN, Wang W. Increased gibberellin contents contribute to accelerated growth and development of transgenic tobacco overexpressing a wheat ubiquitin gene. PLANT CELL REPORTS 2012; 31:2215-27. [PMID: 22926030 DOI: 10.1007/s00299-012-1331-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/28/2012] [Accepted: 08/02/2012] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE Overexpressing TaUb2 promoted stem growth and resulted in early flowering in transgenic tobacco plants. Ubiquitin are involved in the production, metabolism and proper function of gibberellin. The ubiquitin-26S proteasome system (UPS), in which ubiquitin (Ub) functions as a marker, is a post-translational regulatory system that plays a prominent role in various biological processes. To investigate the impact of different Ub levels on plant growth and development, transgenic tobacco (Nicotiana tabacum L.) plants were engineered to express an Ub gene (TaUb2) from wheat (Triticum aestivum L.) under the control of cauliflower mosaic virus 35S promoter. Transgenic tobacco plants overexpressing TaUb2 demonstrated an accelerated growth rate at early stage and an early flowering phenotype in development. The preceding expression of MADS-box genes also corresponded to the accelerated developmental phenotypes of the transgenic tobacco plants compared to that of wild-type (WT). Total gibberellin (GA) and active GA contents in transgenic tobacco plants were higher than those in WT at the corresponding developmental stages, and some GA metabolism genes were upregulated. Treatment with GA(3) conferred a similarly accelerated grown rate in WT plants to that of transgenic tobacco plants, while growth was inhibited when transgenic tobacco plants were treated with a GA biosynthesis inhibitor. Thus, the results suggest that Ub are involved in the production, metabolism and proper function of GA, which is important in the regulation of plant growth and development.
Collapse
Affiliation(s)
- Guo-Kun Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Albiski F, Najla S, Sanoubar R, Alkabani N, Murshed R. In vitro screening of potato lines for drought tolerance. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2012; 18:315-21. [PMID: 24082493 PMCID: PMC3550549 DOI: 10.1007/s12298-012-0127-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fresh water resources are limited and their use in agricultural production is expected to come under increasing constraints. Eighteen Syrian lines of potato (Solanum tuberosum L.) were screened for drought tolerance by measuring aerial and root growth in vitro. Drought stress was evaluated by adding 2, 4, 6, 8 and 10 % (w:v) of sorbitol to Murashige- Skoog medium and compared to 0 % for the control. Water potential of media ranged from -0.58 MPa to -2.5 MPa. Water-stress in culture adversely affected plant growth, and genotypes differed for their responses. Plant length and stem thickness, leaf area, root number length and thickness, and plant fresh and dry weights and plant water content were measured and all decreased due to drought. Grouping lines by cluster analysis for response to drought resulted in: (1) a tolerant group of six lines, (2) a moderately tolerant group of seven lines, and (3) a susceptible group of five lines. The variation in germplasm indicated that potato varieties can be developed for production under some levels of drought.
Collapse
Affiliation(s)
- Fahed Albiski
- />NCBT (National Commission for Biotechnology), Damascus, P. O. Box: 301902, Syria
| | - Safaa Najla
- />Department of Horticultural Sciences, Faculty of Agriculture, University of Damascus, Damascus, P. O. Box: 30621, Syria
| | - Rabab Sanoubar
- />Department of Horticultural Sciences, Faculty of Agriculture, University of Damascus, Damascus, P. O. Box: 30621, Syria
| | - Nour Alkabani
- />NCBT (National Commission for Biotechnology), Damascus, P. O. Box: 301902, Syria
| | - Ramzi Murshed
- />Department of Horticultural Sciences, Faculty of Agriculture, University of Damascus, Damascus, P. O. Box: 30621, Syria
| |
Collapse
|
31
|
Begcy K, Mariano ED, Gentile A, Lembke CG, Zingaretti SM, Souza GM, Menossi M. A novel stress-induced sugarcane gene confers tolerance to drought, salt and oxidative stress in transgenic tobacco plants. PLoS One 2012; 7:e44697. [PMID: 22984543 PMCID: PMC3439409 DOI: 10.1371/journal.pone.0044697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. METHODOLOGY/PRINCIPAL FINDINGS In a previous study, we evaluated the transcriptome of drought-stressed plants to better understand sugarcane responses to drought. Among the up-regulated genes was Scdr1 (sugarcane drought-responsive 1). The aim of the research reported here was to characterize this gene. Scdr1 encodes a putative protein containing 248 amino acids with a large number of proline (19%) and cysteine (13%) residues. Phylogenetic analysis showed that ScDR1is in a clade with homologs from other monocotyledonous plants, separate from those of dicotyledonous plants. The expression of Scdr1 in different varieties of sugarcane plants has not shown a clear association with drought tolerance. CONCLUSIONS/SIGNIFICANCE The overexpression of Scdr1 in transgenic tobacco plants increased their tolerance to drought, salinity and oxidative stress, as demonstrated by increased photosynthesis, water content, biomass, germination rate, chlorophyll content and reduced accumulation of ROS. Physiological parameters, such as transpiration rate (E), net photosynthesis (A), stomatal conductance (gs) and internal leaf CO(2) concentration, were less affected by abiotic stresses in transgenic Scdr1 plants compared with wild-type plants. Overall, our results indicated that Scdr1 conferred tolerance to multiple abiotic stresses, highlighting the potential of this gene for biotechnological applications.
Collapse
Affiliation(s)
- Kevin Begcy
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Eduardo D. Mariano
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Agustina Gentile
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Carolina G. Lembke
- Laboratório de Transdução de Sinal, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Sonia Marli Zingaretti
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Glaucia M. Souza
- Laboratório de Transdução de Sinal, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Menossi
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
32
|
Zhang J, Guo QF, Feng YN, Li F, Gong JF, Fan ZY, Wang W. Manipulation of monoubiquitin improves salt tolerance in transgenic tobacco. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:315-24. [PMID: 22187972 DOI: 10.1111/j.1438-8677.2011.00512.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ubiquitin (Ub) is regarded as a stress protein involved in many stress responses. In this paper, sense and antisense transgenic tobacco plants, as well as the wild type and vector control, were used to study the role of Ub in salt tolerance of plants. In sense Ta-Ub2 transgenic tobacco plants, there was higher expression of Ub protein conjugates than in the wild type and vector control, but the reverse trend was observed in antisense Nt-Ub1 transgenic plants. The germination rate of tobacco seed, growth status and photosynthesis of the tobacco plants suggested that over-expressing Ub promoted the growth of transgenic tobacco plants and enhanced their salt tolerance, but the opposite effect was seen in plants with repressed Ub expression. Changes in antioxidant capacity may be one of the mechanisms underlying Ub-regulated salt tolerance. Furthermore, improved tolerance to a combination of stresses was also observed in the sense transgenic tobacco plants. These findings imply that Ub is involved in the tolerance of plants to abiotic stress.
Collapse
Affiliation(s)
- J Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences/College of Agriculture, Shandong Agricultural University, Tai'an, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Lyzenga WJ, Stone SL. Abiotic stress tolerance mediated by protein ubiquitination. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:599-616. [PMID: 22016431 DOI: 10.1093/jxb/err310] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant growth and development is largely influenced by ubiquitin-mediated regulation of protein stability. Specificity of the ubiquitination pathway is controlled mainly by the substrate-recruiting E3 ubiquitin ligases, and consequently, E3 ligases control numerous cellular processes. Recent evidence that ubiquitination plays a critical role in regulating plant responses to abiotic stresses has launched intensive efforts to identify E3 ligases that mediate plant tolerance of adverse environmental conditions. Most stress-related E3 ligases identified to date facilitate responses to environmental stimuli by modulating the abundance of key downstream stress-responsive transcription factors. In this review, the regulatory roles of ubiquitin during the plant's response to abiotic stress are summarized and highlighted.
Collapse
Affiliation(s)
- Wendy J Lyzenga
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | |
Collapse
|
34
|
Begcy K, Mariano ED, Mattiello L, Nunes AV, Mazzafera P, Maia IG, Menossi M. An Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants. PLoS One 2011; 6:e23776. [PMID: 21912606 PMCID: PMC3166057 DOI: 10.1371/journal.pone.0023776] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 07/26/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plants are challenged by a large number of environmental stresses that reduce productivity and even cause death. Both chloroplasts and mitochondria produce reactive oxygen species under normal conditions; however, stress causes an imbalance in these species that leads to deviations from normal cellular conditions and a variety of toxic effects. Mitochondria have uncoupling proteins (UCPs) that uncouple electron transport from ATP synthesis. There is evidence that UCPs play a role in alleviating stress caused by reactive oxygen species overproduction. However, direct evidence that UCPs protect plants from abiotic stress is lacking. METHODOLOGY/PRINCIPAL FINDINGS Tolerances to salt and water deficit were analyzed in transgenic tobacco plants that overexpress a UCP (AtUCP1) from Arabidopsis thaliana. Seeds of AtUCP1 transgenic lines germinated faster, and adult plants showed better responses to drought and salt stress than wild-type (WT) plants. These phenotypes correlated with increased water retention and higher gas exchange parameters in transgenic plants that overexpress AtUCP1. WT plants exhibited increased respiration under stress, while transgenic plants were only slightly affected. Furthermore, the transgenic plants showed reduced accumulation of hydrogen peroxide in stressed leaves compared with WT plants. CONCLUSIONS/SIGNIFICANCE Higher levels of AtUCP1 improved tolerance to multiple abiotic stresses, and this protection was correlated with lower oxidative stress. Our data support previous assumptions that UCPs reduce the imbalance of reactive oxygen species. Our data also suggest that UCPs may play a role in stomatal closure, which agrees with other evidence of a direct relationship between these proteins and photosynthesis. Manipulation of the UCP protein expression in mitochondria is a new avenue for crop improvement and may lead to crops with greater tolerance for challenging environmental conditions.
Collapse
Affiliation(s)
- Kevin Begcy
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Eduardo D. Mariano
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Lucia Mattiello
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Alessandra V. Nunes
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ivan G. Maia
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | - Marcelo Menossi
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
35
|
Li F, Xing S, Guo Q, Zhao M, Zhang J, Gao Q, Wang G, Wang W. Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:960-6. [PMID: 21316798 DOI: 10.1016/j.jplph.2010.11.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 11/12/2010] [Accepted: 11/17/2010] [Indexed: 05/24/2023]
Abstract
Expansins are proteins that are the key regulators of wall extension during plant growth. To investigate the role of TaEXPB23, a wheat expansin gene, we analyzed TaEXPB23 mRNA expression levels in response to water stress in wheat and examined the drought resistance of transgenic tobaccos over-expressing TaEXPB23. We found that the expression of TaEXPB23 corresponded to wheat coleoptile growth and the response to water stress. The results also indicated that the transgenic tobacco lines lost water more slowly than the wild-type (WT) plants under drought stress; their cells could sustain a more integrated structure under water stress than that of WT. Other physiological and biochemical parameters under water stress, such as electrolyte leakage, malondialdehyde (MDA) level, photosynthetic rate, F(v)/F(m) and ΦPSII, also suggested that the transgenic tobaccos were more drought resistant than WT plants.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ashraf M. Inducing drought tolerance in plants: Recent advances. Biotechnol Adv 2010; 28:169-83. [DOI: 10.1016/j.biotechadv.2009.11.005] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 12/25/2022]
|
37
|
Kurepa J, Wang S, Li Y, Smalle J. Proteasome regulation, plant growth and stress tolerance. PLANT SIGNALING & BEHAVIOR 2009; 4:924-7. [PMID: 19826220 PMCID: PMC2801354 DOI: 10.4161/psb.4.10.9469] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 05/19/2023]
Abstract
Plant cells contain a mixture of 26S and 20S proteasomes that mediate ubiquitin-dependent and ubiquitin-independent proteolysis, respectively. The 26S proteasome contains the 20S proteasome and one or two regulatory particles that are required for ubiquitin-dependent degradation. Comparative analyses of Arabidopsis proteasome mutants revealed that a decrease in 26S proteasome biogenesis causes heat shock hypersensitivity and reduced cell division rates that are compensated by increased cell expansion. Loss of 26S proteasome function also leads to an increased 20S proteasome biogenesis, which in turn enhances the cellular capacity to degrade oxidized proteins and thus increases oxidative stress tolerance. These findings suggest the intriguing possibility that 26S and 20S proteasome activities are regulated to control plant development and stress responses. This mini-review highlights some of the recent studies on proteasome regulation in plants.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|