1
|
Zeng J, Huang F, Zhang N, Wu C, Lin J, Lin S, Pan Z, Lei X, Zheng J, Guo J, Hu W. Overexpression of the cassava (Manihot esculenta) PP2C26 gene decreases drought tolerance and abscisic acid responses in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun 2025; 760:151715. [PMID: 40157287 DOI: 10.1016/j.bbrc.2025.151715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Cassava (Manihot esculenta Crantz) stands as a pivotal food crop within tropical and subtropical regions. With its inherent drought-tolerant traits, cassava proves to be an ideal candidate for investigating drought tolerance mechanisms in staple crops. Although protein phosphatase 2C (PP2Cs) plays a critical role in drought stress responses in plants, the molecular mechanism of PP2Cs in cassava has yet to be elucidated. RESULTS In this research, we cloned MePP2C26, a member of group A PP2Cs, which exhibited significant upregulation following treatments with mannitol, NaCl, and ABA. Arabidopsis transgenic lines overexpressing MePP2C26 exhibited reduced drought tolerance, with survival rates of 39 %, 37 %, and 39 % for OV2, OV3, and OV6 lines, respectively, compared to 53 % in wild-type (WT) and 52 % in vector control (VC) plants. Additionally, these transgenic lines showed altered responses to exogenous ABA, as MePP2C26 overexpression significantly alleviated ABA-induced inhibition of seed germination and root growth. These lines displayed elevated levels of malondialdehyde (MDA), ion leakage (IL), and reactive oxygen species (ROS), accompanied by reduced activities of catalase (CAT) and peroxidase (POD) as well as decreased proline accumulation compared to the wild type (WT) under drought stress conditions. Furthermore, MePP2C26 was shown to downregulate the expression of genes involved in the ABA signaling pathway (including AtSnRK2.6, ABF2, ABF3, RD26, and RD29B) under drought conditions, as evidenced by the transgenic line exhibiting consistently lower expression levels of these genes (despite their drought-induced upregulation in both transgenic and wild-type plants) compared to the WT. MePP2C26 was found to be localized in the nucleus and exhibited self-activation. Moreover, a number of MePYLs (MePYL1, MePYL4-9, MePYL11-13) were found to interact with MePP2C26 in the presence or absence of ABA. CONCLUSIONS In conclusion, the results of this study indicate that MePP2C26 acts as a negative regulator in both drought tolerance and ABA signaling pathways in Arabidopsis.
Collapse
Affiliation(s)
- Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China.
| | - Feifei Huang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Ning Zhang
- Coconut Research Institute, National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Chunlai Wu
- Coconut Research Institute, National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China; The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Jiamiao Lin
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Suyan Lin
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Zimo Pan
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Xinfang Lei
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Jing Guo
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China.
| | - Wei Hu
- Coconut Research Institute, National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China.
| |
Collapse
|
2
|
Gan H, Chu J, Sun J, Wang Q. High concentration of phosphate treatment increased the tolerance of Robinia pseudoacacia roots to salt stress. PLANT CELL REPORTS 2025; 44:53. [PMID: 39937299 DOI: 10.1007/s00299-025-03446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
KEY MESSAGE High P increased the tolerance of R. pseudoacacia roots to salt stress. Salt is an important abiotic factor that restricts plant growth and development in soil. An appropriate concentration of P can increase plant tolerance to salt stress. We investigated the physiological and transcriptional regulatory effects of high P (HP) or low P (LP) on the response of R. pseudoacacia roots to salt stress. A pot experiment was carried out to grow R. pseudoacacia seedlings in vermiculite media supplemented with 0 mM, 150 mM or 300 mM NaCl under HP or LP conditions. The root dry weight and concentrations of free proline, P, ions, and phytohormones were measured, and the transcription of the genes was analyzed under NaCl stress under HP or LP conditions. The results revealed that R. pseudoacacia responds to NaCl stress by regulating the absorption and utilization of P and the levels of free proline, phytohormones and Na+, K+, Ca2+, and Mg2+ as well as changing the expression levels of key genes. Compared with those under the LP condition, the roots of the R. pseudoacacia under the HP condition presented greater P concentrations, lower JA concentrations, and more stable K+ levels when subjected to NaCl stress, which increased their tolerance to NaCl stress. Moreover, genes involved in the cell wall, root growth, root architecture regulation, biomass accumulation, stress response, osmotic regulation and ion balance maintenance were upregulated under NaCl stress under HP conditions. In addition, NaCl stress impairs N metabolism under LP conditions. Our findings provide new insights into the response of woody plants to salt stress under different P conditions and contribute to the development of scientific afforestation in saline-alkali areas.
Collapse
Affiliation(s)
- Honghao Gan
- Coastal Forestry Research Center, National Forestry and Grassland Administration, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jianmin Chu
- Coastal Forestry Research Center, National Forestry and Grassland Administration, Beijing, 100091, China.
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, 015200, China.
| | - Jia Sun
- Coastal Forestry Research Center, National Forestry and Grassland Administration, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Qian Wang
- Coastal Forestry Research Center, National Forestry and Grassland Administration, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
3
|
Liu W, Jiang Y, Lv Y, Zhang L, Liu S, Wang Z, He M, Zhang J. CmPYL7 positively regulates the cold tolerance via interacting with CmPP2C24-like in oriental melon. PHYSIOLOGIA PLANTARUM 2024; 176:e14628. [PMID: 39563615 DOI: 10.1111/ppl.14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024]
Abstract
Pyrabactin or Actin Resistance1/PYR1-Like/Regulatory Components of abscisic acid (ABA) Receptors (PYR/PYL/RCARs, referred to as PYLs) are direct receptors of ABA that function pivotally in the ABA-signaling pathway. Previously, we discovered that CmPYL7 was strongly upregulated by cold stress in oriental melon (Cucumis melo). In this study, we demonstrated that CmPYL7 was strongly induced by cold treatment (Cold), Cold+ABA, and Cold+fluridone (Flu, an ABA inhibitor) treatments, while the expression level of CmPYL7 under Cold+Flu is lower than that of cold treatment. Silencing CmPYL7 in oriental melon seedlings significantly decreased cold tolerance due to the reduced activities of antioxidant enzymes [superoxide dismutase (SOD); catalase (CAT), and ascorbate peroxidase (APX)] and the accumulation of H2O2, accompanied by higher electrolyte leakage and MDA content, but lower proline and soluble sugar content. In contrast, overexpressing CmPYL7 in Arabidopsis plants significantly increased cold tolerance owing to the enhanced activities of antioxidant enzymes (SOD, CAT, and APX) and limited H2O2, accompanied by lower electrolyte leakage and MDA content, but higher proline and soluble sugar contents. CmPYL7 was found to interact with CmPP2C24-like in vivo and in vitro, whose expression is downregulated under cold stress. Furthermore, silenced CmPP2C24-like in oriental melon plants significantly increased cold tolerance, exhibiting lower electrolyte leakage and MDA content and higher proline and soluble sugar contents. The activities of SOD, CAT, and APX were further enhanced and contents of H2O2 were significantly limited from increasing in TRV-CmPP2C24-like seedlings. These results demonstrated that CmPYL7 functions positively in the ABA-signaling pathway to regulate cold tolerance by interacting with CmPP2C24-like protein.
Collapse
Affiliation(s)
- Wei Liu
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| | - Yun Jiang
- Flower Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| | - Yanling Lv
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| | - Lili Zhang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| | - Shilei Liu
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| | - Zailiang Wang
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| | - Ming He
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| | - Jiawang Zhang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, PR China
| |
Collapse
|
4
|
Jiang J, Fan G, Wang R, Yao W, Zhou B, Jiang T. Multi-omics analysis of Populus simonii × P. nigra leaves under Hyphantria cunea stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1392433. [PMID: 39049858 PMCID: PMC11267504 DOI: 10.3389/fpls.2024.1392433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024]
Abstract
Poplar is an important greening and timber tree species in China, which has great economic and ecological values. However, the spread of Hyphantria cunea has become increasingly serious in recent years, resulting in huge economic loss of poplar production. Exploring the molecular mechanism of poplar reponse to H. cunea stress has significant implications for future development of new insect-resistant poplar varieties using genetic engineering technology. In this study, a total of 1039 differentially expressed genes (DEGs), 106 differentially expressed proteins (DEPs) and 212 differentially expressed metabolites (DEMs) were screened from Populus simonii × P. nigra leaves under H. cunea stress by transcriptome, proteomics and metabolomics analysis, respectively. GO and KEGG analysis showed that the DEGs and DEPs are associated with endopeptidase inhibitor activity, stress response, α-linolenic acid metabolism, phenylpropanoid biosynthesis and metabolic pathways, cysteine and methionine metabolism pathways and MAKP signaling pathway. Metabolomics analysis showed the most of DEMs were lipids and lipid molecules, and the pathways associated with transcriptome mainly include plant hormone signal transduction, α-linolenic acid metabolic pathway, amino sugar and nucleotide sugar metabolism, and phenylpropanoid biosynthesis. In particular, multi-omics analysis showed that several pathways such as α-linolenic acid metabolic, phenylpropanoid biosynthesis and metabolic pathway and cysteine and methionine metabolic pathway were significantly enriched in the three omics, which may play an important role in the resistance to pests in poplar.
Collapse
Affiliation(s)
- Jiahui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Gaofeng Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
Xie N, Shi H, Shang X, Zhao Z, Fang Y, Wu H, Luo P, Cui Y, Chen W. RhMED15a-like, a subunit of the Mediator complex, is involved in the drought stress response in Rosa hybrida. BMC PLANT BIOLOGY 2024; 24:351. [PMID: 38684962 PMCID: PMC11059607 DOI: 10.1186/s12870-024-05059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Rose (Rosa hybrida) is a globally recognized ornamental plant whose growth and distribution are strongly limited by drought stress. The role of Mediator, a multiprotein complex crucial for RNA polymerase II-driven transcription, has been elucidated in drought stress responses in plants. However, its physiological function and regulatory mechanism in horticultural crop species remain elusive. RESULTS In this study, we identified a Tail module subunit of Mediator, RhMED15a-like, in rose. Drought stress, as well as treatment with methyl jasmonate (MeJA) and abscisic acid (ABA), significantly suppressed the transcript level of RhMED15a-like. Overexpressing RhMED15a-like markedly bolstered the osmotic stress tolerance of Arabidopsis, as evidenced by increased germination rate, root length, and fresh weight. In contrast, the silencing of RhMED15a-like through virus induced gene silencing in rose resulted in elevated malondialdehyde accumulation, exacerbated leaf wilting, reduced survival rate, and downregulated expression of drought-responsive genes during drought stress. Additionally, using RNA-seq, we identified 972 differentially expressed genes (DEGs) between tobacco rattle virus (TRV)-RhMED15a-like plants and TRV controls. Gene Ontology (GO) analysis revealed that some DEGs were predominantly associated with terms related to the oxidative stress response, such as 'response to reactive oxygen species' and 'peroxisome'. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment highlighted pathways related to 'plant hormone signal transduction', in which the majority of DEGs in the jasmonate (JA) and ABA signalling pathways were induced in TRV-RhMED15a-like plants. CONCLUSION Our findings underscore the pivotal role of the Mediator subunit RhMED15a-like in the ability of rose to withstand drought stress, probably by controlling the transcript levels of drought-responsive genes and signalling pathway elements of stress-related hormones, providing a solid foundation for future research into the molecular mechanisms underlying drought tolerance in rose.
Collapse
Affiliation(s)
- Nanxin Xie
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haoyang Shi
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiaoman Shang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zixin Zhao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yan Fang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Huimin Wu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ping Luo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yongyi Cui
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wen Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Wang X, Wei C, Huang H, Kang J, Long R, Chen L, Li M, Yang Q. The GARP family transcription factor MtHHO3 negatively regulates salt tolerance in Medicago truncatula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108542. [PMID: 38531119 DOI: 10.1016/j.plaphy.2024.108542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/31/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
High salinity is one of the detrimental environmental factors restricting plant growth and crop production throughout the world. This study demonstrated that the GARP family transcription factor MtHHO3 is involved in response to salt stress and abscisic acid (ABA) signaling in Medicago truncatula. The transcription of MtHHO3 was repressed by salt, osmotic stress, and ABA treatment. The seed germination assay showed that, overexpression of MtHHO3 in Arabidopsis thaliana caused hypersensitivity to salt and osmotic stress, but increased resistance to ABA inhibition. Overexpression of MtHHO3 in M. truncatula resulted in decreased tolerance of salinity, while loss-of-function mutants mthho3-1 and mthho3-2 were more resistant to salt stress compared with wild-type plants. qRT-PCR analyses showed that MtHHO3 downregulated the expression of genes in stress and ABA responsive pathways. We further demonstrated that MtHHO3 repressed the transcription of the pathogenesis-related gene MtPR2 by binding to its promoter. Overall, these results indicate that MtHHO3 negatively regulates salt stress response in plants and deepen our understanding of the role of the GARP subfamily transcription factors in modulating salt stress and ABA signaling.
Collapse
Affiliation(s)
- Xue Wang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China.
| | - Chunxue Wei
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Hongmei Huang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Junmei Kang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Ruicai Long
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Lin Chen
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Mingna Li
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Qingchuan Yang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China.
| |
Collapse
|
7
|
Akter N, Islam MSU, Rahman MS, Zohra FT, Rahman SM, Manirujjaman M, Sarkar MAR. Genome-wide identification and characterization of protein phosphatase 2C (PP2C) gene family in sunflower (Helianthus annuus L.) and their expression profiles in response to multiple abiotic stresses. PLoS One 2024; 19:e0298543. [PMID: 38507444 PMCID: PMC10954154 DOI: 10.1371/journal.pone.0298543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/25/2024] [Indexed: 03/22/2024] Open
Abstract
Plant protein phosphatase 2C (PP2C) plays vital roles in responding to various stresses, stimulating growth factors, phytohormones, and metabolic activities in many important plant species. However, the PP2C gene family has not been investigated in the economically valuable plant species sunflower (Helianthus annuus L.). This study used comprehensive bioinformatics tools to identify and characterize the PP2C gene family members in the sunflower genome (H. annuus r1.2). Additionally, we analyzed the expression profiles of these genes using RNA-seq data under four different stress conditions in both leaf and root tissues. A total of 121 PP2C genes were identified in the sunflower genome distributed unevenly across the 17 chromosomes, all containing the Type-2C phosphatase domain. HanPP2C genes are divided into 15 subgroups (A-L) based on phylogenetic tree analysis. Analyses of conserved domains, gene structures, and motifs revealed higher structural and functional similarities within various subgroups. Gene duplication and collinearity analysis showed that among the 53 HanPP2C gene pairs, 48 demonstrated segmental duplications under strong purifying selection pressure, with only five gene pairs showing tandem duplications. The abundant segmental duplication was observed compared to tandem duplication, which was the major factor underlying the dispersion of the PP2C gene family in sunflowers. Most HanPP2C proteins were localized in the nucleus, cytoplasm, and chloroplast. Among the 121 HanPP2C genes, we identified 71 miRNAs targeting 86 HanPP2C genes involved in plant developmental processes and response to abiotic stresses. By analyzing cis-elements, we identified 63 cis-regulatory elements in the promoter regions of HanPP2C genes associated with light responsiveness, tissue-specificity, phytohormone, and stress responses. Based on RNA-seq data from two sunflower tissues (leaf and root), 47 HanPP2C genes exhibited varying expression levels in leaf tissue, while 49 HanPP2C genes showed differential expression patterns in root tissue across all stress conditions. Transcriptome profiling revealed that nine HanPP2C genes (HanPP2C12, HanPP2C36, HanPP2C38, HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73) exhibited higher expression in leaf tissue, and five HanPP2C genes (HanPP2C13, HanPP2C47, HanPP2C48, HanPP2C54, and HanPP2C95) showed enhanced expression in root tissue in response to the four stress treatments, compared to the control conditions. These results suggest that these HanPP2C genes may be potential candidates for conferring tolerance to multiple stresses and further detailed characterization to elucidate their functions. From these candidates, 3D structures were predicted for six HanPP2C proteins (HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73), which provided satisfactory models. Our findings provide valuable insights into the PP2C gene family in the sunflower genome, which could play a crucial role in responding to various stresses. This information can be exploited in sunflower breeding programs to develop improved cultivars with increased abiotic stress tolerance.
Collapse
Affiliation(s)
- Nasrin Akter
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Shohel Ul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - M. Manirujjaman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States of America
| | - Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
8
|
Zhong L, Shi Y, Xu S, Xie S, Huang X, Li Y, Qu C, Liu J, Liao J, Huang Y, Liang Y. Heterologous overexpression of heat shock protein 20 genes of different species of yellow Camellia in Arabidopsis thaliana reveals their roles in high calcium resistance. BMC PLANT BIOLOGY 2024; 24:5. [PMID: 38163899 PMCID: PMC10759694 DOI: 10.1186/s12870-023-04686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Yellow Camellia (Camellia sect. chrysantha) is a rare ornamental plant and an important germplasm resource globally. Camellia nitidissima thrives in normal acidic soils, while Camellia limonia can adapt to the calcareous soils found in karst areas. Our previous study on the karst adaptation of yellow camellias revealed that the expression levels of heat shock protein 20(HSP20) were higher in Camellia limonia than in Camellia nitidissima. However, the functions of the HSP20 gene of Camellia limonia remain unclear to data. In this study, the HSP20 genes of Camellia limonia (ClHSP20-OE lines) and Camellia. nitidissima (CnHSP20-OE lines) were cloned and overexpressed heterologously in Arabidopsis thaliana. Additionally, we overexpressed the HSP20 gene of Arabidopsis (AtHSP20-OE lines) was also overexpressed, and the T-DNA inserted mutants (athspmutant lines) were also used to determine the functions of HSP20 genes. Under high calcium stress, the chlorophyll, nitrogen, water content and humidity of leaves were increased in ClHSP20-OE lines, while those of other lines were declined. The size of the stomatal apertures, stomatal conductance, and the photosynthetic efficiency of ClHSP20-OE lines were higher than those of the other lines. However, the accumulation of H2O2 and O2- in the leaves of ClHSP20-OE lines was the lowest among all the lines. Energy spectrum scanning revealed that the percentage of calcium on the surfaces of the leaves of ClHSP20-OE lines was relatively low, while that of athspmutant lines was the highest. The ClHSP20 gene can also affected soil humidity and the contents of soil nitrogen, phosphorus, and potassium. Transcriptome analysis revealed that the expressions of FBA5 and AT5G10770 in ClHSP20-OE lines was significantly up-regulated compared to that of CnHSP20-OE lines. Compared to that of athspmutant lines, the expressions of DREB1A and AT3G30460 was significantly upregulated in AtHSP20-OE lines, and the expression of POL was down-regulated. Our findings suggest that the HSP20 gene plays a crucial role in maintained photosynthetic rate and normal metabolism by regulating the expression of key genes under high-calcium stress. This study elucidates the mechanisms underlying the karst adaptation in Camellia. limonia and provides novel insights for future research on karst plants.
Collapse
Affiliation(s)
- Lisha Zhong
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Yuxing Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Shaolei Xu
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Sisi Xie
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Xinhui Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Yujie Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Chaofan Qu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Jianxiu Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Jialin Liao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Yang Huang
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China.
| | - Yu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China.
| |
Collapse
|
9
|
Zeng J, Wu C, Ye X, Zhou J, Chen Y, Li L, Lin M, Wang S, Liu S, Yan Y, Tie W, Yang J, Yan F, Zeng L, Liu Y, Hu W. MePP2C24, a cassava (Manihot esculenta) gene encoding protein phosphatase 2C, negatively regulates drought stress and abscisic acid responses in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108291. [PMID: 38141400 DOI: 10.1016/j.plaphy.2023.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Abscisic acid (ABA) signaling plays a crucial role in plant development and response to abiotic/biotic stress. However, the function and regulation of protein phosphatase 2C (PP2C), a key component of abscisic acid signaling, under abiotic stress are still unknown in cassava, a drought-tolerant crop. In this study, a cassava PP2C gene (MePP2C24) was cloned and characterized. The MePP2C24 transcripts increased in response to mannitol, NaCl, and ABA. Overexpression of MePP2C24 in Arabidopsis resulted in increased sensitivity to drought stress and decreased sensitivity to exogenous ABA. This was demonstrated by transgenic lines having higher levels of malondialdehyde (MDA), ion leakage (IL), and reactive oxygen species (ROS), lower activities of catalase (CAT) and peroxidase (POD), and lower proline content than wild type (WT) under drought stress. Moreover, MePP2C24 overexpression caused decrease in expression of drought-responsive genes related to ABA signaling pathway. In addition, MePP2C24 was localized in the cell nucleus and showed self-activation. Furthermore, many MePYLs (MePYL1, MePYL4, MePYL7-9, and MePYL11-13) could interact with MePP2C24 in the presence of ABA, and MePYL1 interacted with MePP2C24 in both the presence and absence of ABA. Additionally, MebZIP11 interacted with the promoter of MePP2C24 and exerted a suppressive effect. Taken together, our results suggest that MePP2C24 acts as a negative regulator of drought tolerance and ABA response.
Collapse
Affiliation(s)
- Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China.
| | - Chunlai Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China; The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China
| | - Xiaoxue Ye
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China
| | - Jiewei Zhou
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China
| | - Yingtong Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China
| | - Lizhen Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China
| | - Man Lin
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China
| | - Shuting Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China
| | - Siwen Liu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Yan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China
| | - Weiwei Tie
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China
| | - Jinghao Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China
| | - Fei Yan
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Liwang Zeng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China.
| | - Yujia Liu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China.
| | - Wei Hu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China.
| |
Collapse
|
10
|
Nihranz CT, Guzchenko IA, Casteel CL. Silencing ZmPP2C-A10 with a foxtail mosaic virus (FoMV) derived vector benefits maize growth and development following water limitation. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:956-964. [PMID: 37658795 DOI: 10.1111/plb.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/23/2023] [Indexed: 09/05/2023]
Abstract
Global climate change is causing more frequent and severe droughts, which can have negative impacts on plant growth and crop productivity. Under drought conditions, plants produce the hormone ABA (abscisic acid), which regulates adaptive responses, such as stomatal closure and root elongation. Plant viruses have been used in the lab to convey new traits to plants and could also be used to increase production of ABA or to enhance downstream plant drought resistance responses. In this study, foxtail mosaic virus (FoMV) was used to silence ZmPP2C-A10, a negative regulator of ABA signalling, in maize (Zea mays L.). Both silenced and control plants were exposed to an 8-day drought treatment, followed by a 30-day period of rewatering, after which indicators of drought resistance were measured. After drought treatment, we observed a nearly twofold increase in expression of a stress-mitigation gene, ZmRAB17, reduced chlorophyll fluorescence changes (indicator of stress), and increased plant biomass and development in the ZmPP2C-A10-silenced maize compared to controls. These results demonstrate that the FoMV system can be used to silence endogenous expression of ZmPP2C-A10 and increase maize tolerance to drought. This could offer a useful tool to improve crop traits and reduce yield loss during the growing season.
Collapse
Affiliation(s)
- C T Nihranz
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, USA
| | - I A Guzchenko
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, USA
| | - C L Casteel
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
Huang X, Liang Y, Zhang R, Zhang B, Song X, Liu J, Lu M, Qin Z, Li D, Li S, Li Y. Genome-Wide Identification of the PP2C Gene Family and Analyses with Their Expression Profiling in Response to Cold Stress in Wild Sugarcane. PLANTS (BASEL, SWITZERLAND) 2023; 12:2418. [PMID: 37446979 DOI: 10.3390/plants12132418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Type 2C protein phosphatases (PP2Cs) represent a major group of protein phosphatases in plants, some of which have already been confirmed to play important roles in diverse plant processes. In this study, analyses of the phylogenetics, gene structure, protein domain, chromosome localization, and collinearity, as well as an identification of the expression profile, protein-protein interaction, and subcellular location, were carried out on the PP2C family in wild sugarcane (Saccharum spontaneum). The results showed that 145 PP2C proteins were classified into 13 clades. Phylogenetic analysis suggested that SsPP2Cs are evolutionarily closer to those of sorghum, and the number of SsPP2Cs is the highest. There were 124 pairs of SsPP2C genes expanding via segmental duplications. Half of the SsPP2C proteins were predicted to be localized in the chloroplast (73), with the next most common predicted localizations being in the cytoplasm (37) and nucleus (17). Analysis of the promoter revealed that SsPP2Cs might be photosensitive, responsive to abiotic stresses, and hormone-stimulated. A total of 27 SsPP2Cs showed cold-stress-induced expressions, and SsPP2C27 (Sspon.01G0007840-2D) and SsPP2C64 (Sspon.03G0002800-3D) were the potential hubs involved in ABA signal transduction. Our study presents a comprehensive analysis of the SsPP2C gene family, which can play a vital role in the further study of phosphatases in wild sugarcane. The results suggest that the PP2C family is evolutionarily conserved, and that it functions in various developmental processes in wild sugarcane.
Collapse
Affiliation(s)
- Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Yongsheng Liang
- Nanning Institute of Agricultural Sciences, Nanning 530021, China
| | - Ronghua Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Baoqing Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Xiupeng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Junxian Liu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Manman Lu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Zhenqiang Qin
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Dewei Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Song Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Yangrui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| |
Collapse
|
12
|
Guo Y, Shi Y, Wang Y, Liu F, Li Z, Qi J, Wang Y, Zhang J, Yang S, Wang Y, Gong Z. The clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. THE NEW PHYTOLOGIST 2023; 237:1728-1744. [PMID: 36444538 DOI: 10.1111/nph.18647] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Drought is a major environmental stress that threatens crop production. Therefore, identification of genes involved in drought stress response is of vital importance to decipher the molecular mechanism of stress signal transduction and breed drought tolerance crops, especially for maize. Clade A PP2C phosphatases are core abscisic acid (ABA) signaling components, regulating ABA signal transduction and drought response. However, the roles of other clade PP2Cs in drought resistance remain largely unknown. Here, we discovered a clade F PP2C, ZmPP84, that negatively regulates drought tolerance by screening a transgenic overexpression maize library. Quantitative RT-PCR indicates that the transcription of ZmPP84 is suppressed by drought stress. We identified that ZmMEK1, a member of the MAPKK family, interacts with ZmPP84 by immunoprecipitation and mass spectrometry analysis. Additionally, we found that ZmPP84 can dephosphorylate ZmMEK1 and repress its kinase activity on the downstream substrate kinase ZmSIMK1, while ZmSIMK1 is able to phosphorylate S-type anion channel ZmSLAC1 at S146 and T520 in vitro. Mutations of S146 and T520 to phosphomimetic aspartate could activate ZmSLAC1 currents in Xenopus oocytes. Taken together, our study suggests that ZmPP84 is a negative regulator of drought stress response that inhibits stomatal closure through dephosphorylating ZmMEK1, thereby repressing ZmMEK1-ZmSIMK1 signaling pathway.
Collapse
Affiliation(s)
- Yazhen Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yabo Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yalin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingbo Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071002, China
| |
Collapse
|
13
|
Jiang Y, Su S, Chen H, Li S, Shan X, Li H, Liu H, Dong H, Yuan Y. Transcriptome analysis of drought-responsive and drought-tolerant mechanisms in maize leaves under drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e13875. [PMID: 36775906 DOI: 10.1111/ppl.13875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Maize is a major crop essential for food and feed, but its production is threatened by various biotic and abiotic stresses. Drought is one of the most common abiotic stresses, causing severe crop yield reduction. Although several studies have been devoted to selecting drought-tolerant maize lines and detecting the drought-responsive mechanism of maize, the transcriptomic differences between drought-tolerant and drought-susceptible maize lines are still largely unknown. In our study, RNA-seq was performed on leaves of the drought-tolerant line W9706 and the drought-susceptible line B73 after drought treatment. We identified 3147 differentially expressed genes (DEGs) between these two lines. The upregulated DEGs in W9706 were enriched in specific processes, including ABA signaling, wax biosynthesis, CHO metabolism, signal transduction and brassinosteroid biosynthesis-related processes, while the downregulated DEGs were enriched in specific processes, such as stomatal movement. Altogether, transcriptomic analysis suggests that the different drought resistances were correlated with the differential expression of genes, while the drought tolerance of W9706 is due to the more rapid response to stimulus, higher water retention capacity and stable cellular environment under water deficit conditions.
Collapse
Affiliation(s)
- Yuan Jiang
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Shengzhong Su
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Hao Chen
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Shipeng Li
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Xiaohui Shan
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - He Li
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Hongkui Liu
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Haixiao Dong
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Yaping Yuan
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
14
|
Guo L, Lu S, Liu T, Nai G, Ren J, Gou H, Chen B, Mao J. Genome-Wide Identification and Abiotic Stress Response Analysis of PP2C Gene Family in Woodland and Pineapple Strawberries. Int J Mol Sci 2023; 24:ijms24044049. [PMID: 36835472 PMCID: PMC9961684 DOI: 10.3390/ijms24044049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Protein phosphatase 2C (PP2C) is a negative regulator of serine/threonine residue protein phosphatase and plays an important role in abscisic acid (ABA) and abiotic-stress-mediated signaling pathways in plants. The genome complexity of woodland strawberry and pineapple strawberry is different due to the difference in chromosome ploidy. This study conducted a genome-wide investigation of the FvPP2C (Fragaria vesca) and FaPP2C (Fragaria ananassa) gene family. Fifty-six FvPP2C genes and 228 FaPP2C genes were identified from the woodland strawberry and pineapple strawberry genomes, respectively. FvPP2Cs were distributed on seven chromosomes, and FaPP2Cs were distributed on 28 chromosomes. The size of the FaPP2C gene family was significantly different from that of the FvPP2C gene family, but both FaPP2Cs and FvPP2Cs were localized in the nucleus, cytoplasm, and chloroplast. Phylogenetic analysis revealed that 56 FvPP2Cs and 228 FaPP2Cs could be divided into 11 subfamilies. Collinearity analysis showed that both FvPP2Cs and FaPP2Cs had fragment duplication, and the whole genome duplication was the main cause of PP2C gene abundance in pineapple strawberry. FvPP2Cs mainly underwent purification selection, and there were both purification selection and positive selection effects in the evolution of FaPP2Cs. Cis-acting element analysis found that the PP2C family genes of woodland and pineapple strawberries mainly contained light responsive elements, hormone responsive elements, defense and stress responsive elements, and growth and development-related elements. The results of quantitative real-time PCR (qRT-PCR) showed that the FvPP2C genes showed different expression patterns under ABA, salt, and drought treatment. The expression level of FvPP2C18 was upregulated after stress treatment, which may play a positive regulatory role in ABA signaling and abiotic stress response mechanisms. This study lays a foundation for further investigation on the function of the PP2C gene family.
Collapse
|
15
|
Cheng P, Yue Q, Zhang Y, Zhao S, Khan A, Yang X, He J, Wang S, Shen W, Qian Q, Du W, Ma F, Zhang D, Guan Q. Application of γ-aminobutyric acid (GABA) improves fruit quality and rootstock drought tolerance in apple. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153890. [PMID: 36571915 DOI: 10.1016/j.jplph.2022.153890] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
GABA (γ-aminobutyric acid) plays a multifaceted role in plant growth, fruit quality, and tolerance to abiotic stresses. However, its physiological roles and mechanisms in the fruit quality and response to long-term drought stress in apple remain unelucidated. To investigate the effect of GABA on apple fruit quality and drought tolerance, we sprayed exogenous GABA on apple cultivar "Cripps Pink" and irrigated rootstock M.9-T337 with GABA, respectively. Results showed that exogenous GABA could effectively improve the fruit quality of "Cripps Pink", including increased sugar-to-acid ratio, flesh firmness, pericarp malleability, and GABA content, as well as reduced fruit acidity. In addition, pretreatment of M.9-T337 plants with GABA improved their tolerance to both long- and short-term drought stress. Specifically, 1 mM exogenous GABA increased the net photosynthetic rate, relative leaf water content, root-to-shoot ratio, and water use efficiency under long-term drought stress, and delayed the increased of the relative electrolyte leakage under short-term drought stress. RNA-seq analysis identified 1271 differentially expressed genes (DEGs) between nontreated and GABA-pretreated plants under short-term drought stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these DEGs revealed that GABA may enhance plant drought resistance by upregulating the expression of genes related to "Biosynthesis of secondary metabolites", "MAPK signaling pathway", "Glutathione metabolism", and "Carbon fixation in photosynthetic organisms". In conclusion, these results revealed that exogenous GABA can improve fruit quality and enhance drought tolerance in apple.
Collapse
Affiliation(s)
- Pengda Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qianyu Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yutian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, 22620, Pakistan
| | - Xinyue Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Qian
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wanshan Du
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
16
|
Zhang G, Zhang Z, Luo S, Li X, Lyu J, Liu Z, Wan Z, Yu J. Genome-wide identification and expression analysis of the cucumber PP2C gene family. BMC Genomics 2022; 23:563. [PMID: 35933381 PMCID: PMC9356470 DOI: 10.1186/s12864-022-08734-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Type 2C protein phosphatase (PP2C) is a negative regulator of ABA signaling pathway, which plays important roles in stress signal transduction in plants. However, little research on the PP2C genes family of cucumber (Cucumis sativus L.), as an important economic vegetable, has been conducted. Results This study conducted a genome-wide investigation of the CsPP2C gene family. Through bioinformatics analysis, 56 CsPP2C genes were identified in cucumber. Based on phylogenetic analysis, the PP2C genes of cucumber and Arabidopsis were divided into 13 groups. Gene structure and conserved motif analysis showed that CsPP2C genes in the same group had similar gene structure and conserved domains. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the cucumber PP2C genes family. In addition, the expression of CsPP2Cs under different abiotic treatments was analyzed by qRT-PCR. The results reveal that CsPP2C family genes showed different expression patterns under ABA, drought, salt, and cold treatment, and that CsPP2C3, 11–17, 23, 45, 54 and 55 responded significantly to the four stresses. By predicting the cis-elements in the promoter, we found that all CsPP2C members contained ABA response elements and drought response elements. Additionally, the expression patterns of CsPP2C genes were specific in different tissues. Conclusions The results of this study provide a reference for the genome-wide identification of the PP2C gene family in other species and provide a basis for future studies on the function of PP2C genes in cucumber. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08734-y.
Collapse
Affiliation(s)
- Guobin Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zeyu Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shilei Luo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xia Li
- Gansu Institute of Geological and Natural Disaster Prevention, Lanzhou, 730000, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zilong Wan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China. .,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
17
|
Zhang X, Liu W, Lv Y, Bai J, Li T, Yang X, Liu L, Zhou H. Comparative transcriptomics reveals new insights into melatonin-enhanced drought tolerance in naked oat seedlings. PeerJ 2022; 10:e13669. [PMID: 35782091 PMCID: PMC9248784 DOI: 10.7717/peerj.13669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/10/2022] [Indexed: 01/17/2023] Open
Abstract
The growth and development of naked oat (Avena nuda L.) seedlings, a grain recognized as nutritious and healthy, is limited by drought. Melatonin plays a positive role in plants under drought stress. However, its function is unclear in naked oats. This study demonstrated that melatonin enhances drought stress tolerance in oat seedlings. Melatonin application alleviated the declining growth parameters of two naked oat varieties, Huazao No.2 (H2) and Jizhangyou No.15 (J15), under drought stress by increasing the chlorophyll content and photosynthetic rate of leaves. Melatonin pretreatment induced differential gene expression in H2 and J15 under drought stress. Subsequently, the differential gene expression responses to melatonin in the two varieties were further analyzed. The key drought response transcription factors and the regulatory effect of melatonin on drought-related transcription factors were assessed, focusing on genes encoding proteins in the ABA signal transduction pathway, including PYL, PP2C, ABF, SNRK2, and IAA. Taken together, this study provides new insights into the effect and underlying mechanism of melatonin in alleviating drought stress in naked oat seedlings.
Collapse
Affiliation(s)
- Xinjun Zhang
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, Hebei, China
| | - Wenting Liu
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, Hebei, China
| | - Yaci Lv
- Hengshui University, Hengshui, Hebei, China
| | - Jing Bai
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, Hebei, China
| | - Tianliang Li
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, Hebei, China
| | - Xiaohong Yang
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, Hebei, China
| | - Liantao Liu
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Haitao Zhou
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, Hebei, China
| |
Collapse
|
18
|
Jiang H, Ji Y, Sheng J, Wang Y, Liu X, Xiao P, Ding H. Genome-Wide Identification of the Bcl-2 Associated Athanogene (BAG) Gene Family in Solanum lycopersicum and the Functional Role of SlBAG9 in Response to Osmotic Stress. Antioxidants (Basel) 2022; 11:598. [PMID: 35326248 PMCID: PMC8945447 DOI: 10.3390/antiox11030598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
The Bcl-2-associated athanogene (BAG) proteins are a family of multi-functional group of co-chaperones regulators, modulating diverse processes from plant growth and development to stress response. Here, 10 members of SlBAG gene family were identified based on the available tomato (Solanum lycopersicum) genomic information and named as SlBAG1-10 according to their chromosomal location. All SlBAG proteins harbor a characteristic BAG domain, categorized into two groups, and SlBAG4, SlBAG7, and SlBAG9 of group I contain a plant-specific isoleucine glutamine (IQ) calmodulin-binding motif located in the N terminus. The quantitative real-time PCR expression analysis revealed that these SlBAG genes had organ-specific expression patterns and most SlBAG genes were differentially expressed in multiple abiotic stresses including drought, salt, high temperature, cold, and cadmium stress as well as abscisic acid and H2O2. In addition, heterologous overexpression of SlBAG9 increased the sensitivity of Arabidopsis to drought, salt, and ABA during seed germination and seedling growth. The decreased tolerance may be due to the downregulation of stress-related genes expression and severe oxidative stress. The expression levels of some stress and ABA-related genes, such as ABI3, RD29A, DREB2A, and P5CS1, were significantly inhibited by SlBAG9 overexpression under osmotic stress. Meanwhile, the overexpression of SlBAG9 inhibited the expression of FSD1 and CAT1 under stress conditions and the decreased levels of superoxide dismutase and catalase enzyme activities were detected accompanying the trends in the expression of both genes, which resulted in H2O2 accumulation and lipid peroxidation. Taken together, these findings lay a foundation for the future study of the biological function of SlBAG genes in tomato.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (H.J.); (Y.J.); (J.S.); (Y.W.); (X.L.); (P.X.)
| |
Collapse
|
19
|
Transcriptome Profiling of Maize ( Zea mays L.) Leaves Reveals Key Cold-Responsive Genes, Transcription Factors, and Metabolic Pathways Regulating Cold Stress Tolerance at the Seedling Stage. Genes (Basel) 2021; 12:genes12101638. [PMID: 34681032 PMCID: PMC8535276 DOI: 10.3390/genes12101638] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023] Open
Abstract
Cold tolerance is a complex trait that requires a critical perspective to understand its underpinning mechanism. To unravel the molecular framework underlying maize (Zea mays L.) cold stress tolerance, we conducted a comparative transcriptome profiling of 24 cold-tolerant and 22 cold-sensitive inbred lines affected by cold stress at the seedling stage. Using the RNA-seq method, we identified 2237 differentially expressed genes (DEGs), namely 1656 and 581 annotated and unannotated DEGs, respectively. Further analysis of the 1656 annotated DEGs mined out two critical sets of cold-responsive DEGs, namely 779 and 877 DEGs, which were significantly enhanced in the tolerant and sensitive lines, respectively. Functional analysis of the 1656 DEGs highlighted the enrichment of signaling, carotenoid, lipid metabolism, transcription factors (TFs), peroxisome, and amino acid metabolism. A total of 147 TFs belonging to 32 families, including MYB, ERF, NAC, WRKY, bHLH, MIKC MADS, and C2H2, were strongly altered by cold stress. Moreover, the tolerant lines’ 779 enhanced DEGs were predominantly associated with carotenoid, ABC transporter, glutathione, lipid metabolism, and amino acid metabolism. In comparison, the cold-sensitive lines’ 877 enhanced DEGs were significantly enriched for MAPK signaling, peroxisome, ribosome, and carbon metabolism pathways. The biggest proportion of the unannotated DEGs was implicated in the roles of long non-coding RNAs (lncRNAs). Taken together, this study provides valuable insights that offer a deeper understanding of the molecular mechanisms underlying maize response to cold stress at the seedling stage, thus opening up possibilities for a breeding program of maize tolerance to cold stress.
Collapse
|
20
|
Genome-Wide Identification and Expression Analyses of AnSnRK2 Gene Family under Osmotic Stress in Ammopiptanthus nanus. PLANTS 2021; 10:plants10050882. [PMID: 33925572 PMCID: PMC8145913 DOI: 10.3390/plants10050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/29/2022]
Abstract
Sucrose non-fermenting-1 (SNF1)-related protein kinase 2’s (SnRK2s) are plant-specific serine/threonine protein kinases and play crucial roles in the abscisic acid signaling pathway and abiotic stress response. Ammopiptanthus nanus is a relict xerophyte shrub and extremely tolerant of abiotic stresses. Therefore, we performed genome-wide identification of the AnSnRK2 genes and analyzed their expression profiles under osmotic stresses including drought and salinity. A total of 11 AnSnRK2 genes (AnSnRK2.1-AnSnRK2.11) were identified in the A. nanus genome and were divided into three groups according to the phylogenetic tree. The AnSnRK2.6 has seven introns and others have eight introns. All of the AnSnRK2 proteins are highly conserved at the N-terminus and contain similar motif composition. The result of cis-acting element analysis showed that there were abundant hormone- and stress-related cis-elements in the promoter regions of AnSnRK2s. Moreover, the results of quantitative real-time PCR exhibited that the expression of most AnSnRK2s was induced by NaCl and PEG-6000 treatments, but the expression of AnSnRK2.3 and AnSnRK2.6 was inhibited, suggesting that the AnSnRK2s might play key roles in stress tolerance. The study provides insights into understanding the function of AnSnRK2s.
Collapse
|
21
|
Liu C, Hu J, Fan W, Zhu P, Cao B, Zheng S, Xia Z, Zhu Y, Zhao A. Heterotrimeric G-protein γ subunits regulate ABA signaling in response to drought through interacting with PP2Cs and SnRK2s in mulberry (Morus alba L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:210-221. [PMID: 33639589 DOI: 10.1016/j.plaphy.2021.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
ABA signaling plays a central role in regulating plants respond to drought. Although much progress has been made in understanding the functions of ABA signaling in drought response, very little information is available regarding woody plants. In this study, the components of ABA signaling pathway were identified in mulberry which has excellent adaptation to drought, including three PYLs, two PP2Cs, two SnRK2s, four ABFs, and an ABA responsive gene MaRD29B. The gene expression of ABA signaling components exhibited significant response to ABA and drought, and their roles in drought response were revealed using a transient transformation system in mulberry seedlings. We discovered the ABA signaling components, MaABI1/2 and MaSnRK2.1/2.4, could directly interact with G-protein γ subunits, MaGγ1 and MaGγ2, which indicated that G-protein γ subunits may mediate the signal crosstalk between G-proteins and ABA signaling. Transient activation assay in tobacco and RNAi silencing assay in mulberry further demonstrated that MaGγ1 and MaGγ2 regulated drought response by enhancing ABA signaling. This study expands the repertoire of ABA signaling controlling drought responses in plants and provides the direct evidence about the crosstalk between ABA signaling and G-proteins for the first time.
Collapse
Affiliation(s)
- Changying Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400716, PR China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Jie Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400716, PR China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400716, PR China
| | - Panpan Zhu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400716, PR China
| | - Boning Cao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400716, PR China
| | - Sha Zheng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400716, PR China
| | - Zhongqiang Xia
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400716, PR China
| | - Yingxue Zhu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400716, PR China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400716, PR China.
| |
Collapse
|
22
|
Li Y, Song J, Zhu G, Hou Z, Wang L, Wu X, Fang Z, Liu Y, Gao C. Genome-wide identification and expression analysis of ADP-ribosylation factors associated with biotic and abiotic stress in wheat ( Triticum aestivum L.). PeerJ 2021; 9:e10963. [PMID: 33717696 PMCID: PMC7934654 DOI: 10.7717/peerj.10963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
The ARF gene family plays important roles in intracellular transport in eukaryotes and is involved in conferring tolerance to biotic and abiotic stresses in plants. To explore the role of these genes in the development of wheat (Triticum aestivum L.), 74 wheat ARF genes (TaARFs; including 18 alternate transcripts) were identified and clustered into seven sub-groups. Phylogenetic analysis revealed that TaARFA1 sub-group genes were strongly conserved. Numerous cis-elements functionally associated with the stress response and hormones were identified in the TaARFA1 sub-group, implying that these TaARFs are induced in response to abiotic and biotic stresses in wheat. According to available transcriptome data and qRT-PCR analysis, the TaARFA1 genes displayed tissue-specific expression patterns and were regulated by biotic stress (powdery mildew and stripe rust) and abiotic stress (cold, heat, ABA, drought and NaCl). Protein interaction network analysis further indicated that TaARFA1 proteins may interact with protein phosphatase 2C (PP2C), which is a key protein in the ABA signaling pathway. This comprehensive analysis will be useful for further functional characterization of TaARF genes and the development of high-quality wheat varieties.
Collapse
Affiliation(s)
- Yaqian Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| | - Jinghan Song
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| | - Guang Zhu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Zehao Hou
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| | - Lin Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaoxue Wu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| | - Zhengwu Fang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| | - Yike Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| | - Chunbao Gao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
23
|
Guan C, Li X, Tian DY, Liu HY, Cen HF, Tadege M, Zhang YW. ADP-ribosylation factors improve biomass yield and salinity tolerance in transgenic switchgrass (Panicum virgatum L.). PLANT CELL REPORTS 2020; 39:1623-1638. [PMID: 32885306 DOI: 10.1007/s00299-020-02589-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
PvArf regulate proline biosynthesis by physically interacting with PvP5CS1 to improve salt tolerance in switchgrass. The genetic factors that contribute to stress resiliency are yet to be determined. Here, we identified three ADP-ribosylation factors, PvArf1, PvArf-B1C, and PvArf-related, which contribute to salinity tolerance in transgenic switchgrass (Panicum virgatum L.). Switchgrass overexpressing each of these genes produced approximately twofold more biomass than wild type (WT) under normal growth conditions. Transgenic plants accumulated modestly higher levels of proline under normal conditions, but this level was significantly increased under salt stress providing better protection to transgenic plants compared to WT. We found that PvArf genes induce proline biosynthesis genes under salt stress to positively regulate proline accumulation, and further demonstrated that PvArf physically interact with PvP5CS1. Moreover, the transcript levels of two key ROS-scavenging enzyme genes were significantly increased in the transgenic plants compared to WT, leading to reduced H2O2 accumulation under salt stress conditions. PvArf genes also protect cells against stress-induced changes in Na+ and K+ ion concentrations. Our findings uncover that ADP-ribosylation factors are key determinants of biomass yield in switchgrass, and play pivotal roles in salinity tolerance by regulating genes involved in proline biosynthesis.
Collapse
Affiliation(s)
- Cong Guan
- College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing, 100193, China
- Shandong institute of agricultural sustainable development, Jinan, China
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing, 100193, China
| | - Dan-Yang Tian
- College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing, 100193, China
| | - Hua-Yue Liu
- College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing, 100193, China
| | - Hui-Fang Cen
- College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing, 100193, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Bioscience, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Yun-Wei Zhang
- College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing, 100193, China.
- Beijing Key Laboratory for Grassland Science, China Agricultural University, Beijing, China.
- National Energy R&D Center for Biomass (NECB), Beijing, China.
- Beijing Sure Academy of Biosciences, Beijing, China.
| |
Collapse
|
24
|
Gietler M, Fidler J, Labudda M, Nykiel M. Abscisic Acid-Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses? Int J Mol Sci 2020; 21:E4607. [PMID: 32610484 PMCID: PMC7369871 DOI: 10.3390/ijms21134607] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 01/12/2023] Open
Abstract
Abscisic acid (ABA) is well-known phytohormone involved in the control of plant natural developmental processes, as well as the stress response. Although in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) its role in mechanism of the tolerance to most common abiotic stresses, such as drought, salinity, or extreme temperatures seems to be fairly well recognized, not many authors considered that changes in ABA content may also influence the sensitivity of cereals to adverse environmental factors, e.g., by accelerating senescence, lowering pollen fertility, and inducing seed dormancy. Moreover, recently, ABA has also been regarded as an element of the biotic stress response; however, its role is still highly unclear. Many studies connect the susceptibility to various diseases with increased concentration of this phytohormone. Therefore, in contrast to the original assumptions, the role of ABA in response to biotic and abiotic stress does not always have to be associated with survival mechanisms; on the contrary, in some cases, abscisic acid can be one of the factors that increases the susceptibility of plants to adverse biotic and abiotic environmental factors.
Collapse
Affiliation(s)
- Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (J.F.); (M.L.); (M.N.)
| | | | | | | |
Collapse
|
25
|
Zong N, Wang H, Li Z, Ma L, Xie L, Pang J, Fan Y, Zhao J. Maize NCP1 negatively regulates drought and ABA responses through interacting with and inhibiting the activity of transcription factor ABP9. PLANT MOLECULAR BIOLOGY 2020; 102:339-357. [PMID: 31894455 DOI: 10.1007/s11103-019-00951-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/18/2019] [Indexed: 05/06/2023]
Abstract
NCP1, a NINJA family protein lacking EAR motif, acts as a negative regulator of ABA signaling by interacting with and inhibiting the activity of transcriptional activator ABP9. The phytohormone abscisic acid plays a pivotal role in regulating plant responses to a variety of abiotic stresses including drought and salinity. Maize ABP9 is an ABRE-binding bZIP transcription activator that enhances plant tolerance to multiple stresses by positively regulating ABA signaling, but the molecular mechanism by which ABP9 is regulated in mediating ABA responses remains unknown. Here, we report the identification of an ABP9-interacting protein, named ABP Nine Complex Protein 1 (NCP1) and its functional characterization. NCP1 belongs to the recently identified NINJA family proteins, but lacks the conserved EAR motif, which is a hallmark of this class of transcriptional repressors. In vitro and in vivo assays confirmed that NCP1 physically interacts with ABP9 and that they are co-localized in the nucleus. In addition, NCP1 and ABP9 are similarly induced with similar patterns by ABA treatment and osmotic stress. Interestingly, NCP1 over-expressing Arabidopsis plants exhibited a reduced sensitivity to ABA and decreased drought tolerance. Transient assay in maize protoplasts showed that NCP1 inhibits the activity of ABP9 in activating ABRE-mediated reporter gene expression, a notion further supported by genetic analysis of drought and ABA responses in the transgenic plants over-expressing both ABP9 and NCP1. These data together suggest that NCP1 is a novel negative regulator of ABA signaling via interacting with and inhibiting the activity of ABP9.
Collapse
Affiliation(s)
- Na Zong
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Hanqian Wang
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Zaoxia Li
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Li Ma
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Li Xie
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Junling Pang
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yunliu Fan
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Jun Zhao
- Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
| |
Collapse
|
26
|
Hasan MMU, Ma F, Islam F, Sajid M, Prodhan ZH, Li F, Shen H, Chen Y, Wang X. Comparative Transcriptomic Analysis of Biological Process and Key Pathway in Three Cotton ( Gossypium spp.) Species Under Drought Stress. Int J Mol Sci 2019; 20:E2076. [PMID: 31035558 PMCID: PMC6539811 DOI: 10.3390/ijms20092076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 01/16/2023] Open
Abstract
Drought is one of the most important abiotic stresses that seriously affects cotton growth, development, and production worldwide. However, the molecular mechanism, key pathway, and responsible genes for drought tolerance incotton have not been stated clearly. In this research, high-throughput next generation sequencing technique was utilized to investigate gene expression profiles of three cotton species (Gossypium hirsutum, Gossypium arboreum, and Gossypium barbadense L.) under drought stress. A total of 6968 differentially expressed genes (DEGs) were identified, where 2053, 742, and 4173 genes were tested as statistically significant; 648, 320, and 1998 genes were up-regulated, and 1405, 422, and 2175 were down-regulated in TM-1, Zhongmian-16, and Pima4-S, respectively. Total DEGs were annotated and classified into functional groups under gene ontology analysis. The biological process was present only in tolerant species(TM-1), indicating drought tolerance condition. The Kyoto encyclopedia of genes and genomes showed the involvement of plant hormone signal transduction and metabolic pathways enrichment under drought stress. Several transcription factors associated with ethylene-responsive genes (ICE1, MYB44, FAMA, etc.) were identified as playing key roles in acclimatizing to drought stress. Drought also caused significant changes in the expression of certain functional genes linked to abscisic acid (ABA) responses (NCED, PYL, PP2C, and SRK2E), reactive oxygen species (ROS) related in small heat shock protein and 18.1 kDa I heat shock protein, YLS3, and ODORANT1 genes. These results will provide deeper insights into the molecular mechanisms of drought stress adaptation in cotton.
Collapse
Affiliation(s)
- Md Mosfeq-Ul Hasan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Examination Controller Section, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh.
| | - Fanglu Ma
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Faisal Islam
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Muhammad Sajid
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Zakaria H Prodhan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Feng Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Hao Shen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Yadong Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Xuede Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
Ma Q, Xia Z, Cai Z, Li L, Cheng Y, Liu J, Nian H. GmWRKY16 Enhances Drought and Salt Tolerance Through an ABA-Mediated Pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 9:1979. [PMID: 30740122 PMCID: PMC6357947 DOI: 10.3389/fpls.2018.01979] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/20/2018] [Indexed: 05/19/2023]
Abstract
The WRKY transcription factors (TFs) are one of the largest families of TFs in plants and play multiple roles in plant development and stress response. In the present study, GmWRKY16 encoding a WRKY transcription factor in soybean was functionally characterized in Arabidopsis. GmWRKY16 is a nuclear protein that contains a highly conserved WRKY domain and a C2H2 zinc-finger structure, and has the characteristics of transcriptional activation ability, presenting a constitutive expression pattern with relative expression levels of over fourfold in the old leaves, flowers, seeds and roots of soybean. The results of quantitative real time polymerase chain reaction (qRT-PCR) showed that GmWRKY16 could be induced by salt, alkali, ABA, drought and PEG-6000. As compared with the control, overexpression of GmWRKY16 in Arabidopsis increased the seed germination rate and root growth of seedlings in transgenic lines under higher concentrations of mannitol, NaCl and ABA. In the meantime, GmWRKY16 transgenic lines showed over 75% survival rate after rehydration and enhanced Arabidopsis tolerance to salt and drought with higher proline and lower MDA accumulation, less water loss of the detached leaves, and accumulated more endogenous ABA than the control under stress conditions. Further studies showed that AtWRKY8, KIN1, and RD29A were induced in GmWRKY16 transgenic plants under NaCl treatment. The expressions of the ABA biosynthesis gene (NCED3), signaling genes (ABI1, ABI2, ABI4, and ABI5), responsive genes (RD29A, COR15A, COR15B, and RD22) and stress-related marker genes (KIN1, LEA14, LEA76, and CER3) were regulated in transgenic lines under drought stress. In summary, these results suggest that GmWRKY16 as a WRKY TF may promote tolerance to drought and salt stresses through an ABA-mediated pathway.
Collapse
Affiliation(s)
- Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhenglin Xia
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lu Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jia Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
28
|
Shi F, Yang X, Zeng H, Guo L, Qiu D. Label-free quantitative proteomic analysis revealed a positive effect of ectopic over-expression of PeaT1 from Alternaria tenuissima on rice ( Oryza sativa) response to drought. 3 Biotech 2018; 8:480. [PMID: 30456014 PMCID: PMC6233311 DOI: 10.1007/s13205-018-1507-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/07/2018] [Indexed: 01/23/2023] Open
Abstract
The protein elicitor PeaT1 was found in Alternaria tenuissima and exerted broad spectrum resistance in wheat, cotton, and rice. Recently, we found that overexpressing PeaT1 rice (OE) could enhance plant drought tolerance. Elucidating some elevated drought stress-related proteins and associated mechanisms is inevitable for improving drought tolerance in rice. In this study, combining a label-free quantitative proteomic method, multiple proteins were differentially accumulated in OE plants. Among these, a total of 57 significant changed proteins (including 32 up-regulated and 25 down-regulated) were mainly involved in metabolic, cellular, biological progress, and stress response. Using the RT-qPCR assay, 18 proteins' relative abundance was detected mostly consistent with the proteins abundance in proteomic data. Specially, proteins involved in abiotic stress, such as OsSKIPa and OsPP2C, which were significantly induced in early after dehydration treatment in transgenic rice, and the other stress response genes (prohibitin protein, PsbP protein, msrB Protein) also changed in PeaT1 OE lines. Taken together, these results suggested that these differential proteins would be helpful for understanding the functional molecular mechanism of PeaT1 in rice.
Collapse
Affiliation(s)
- Fachao Shi
- Key Laboratory for Biological Control of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, 510316 China
| | - Xiufen Yang
- Key Laboratory for Biological Control of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hongmei Zeng
- Key Laboratory for Biological Control of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lihua Guo
- Key Laboratory for Biological Control of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dewen Qiu
- Key Laboratory for Biological Control of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
29
|
Xin L, Zheng H, Yang Z, Guo J, Liu T, Sun L, Xiao Y, Yang J, Yang Q, Guo L. Physiological and proteomic analysis of maize seedling response to water deficiency stress. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:29-38. [PMID: 29852332 DOI: 10.1016/j.jplph.2018.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 05/10/2023]
Abstract
Low water availability is a major abiotic factor limiting photosynthesis and the growth and yield of crops. Maize (Zea mays) is among the most drought-sensitive cereal crops. Herein, the physiological and proteomic changes of maize seedlings caused by polyethylene-glycol-induced water deficit were analyzed. The results showed that malondialdehyde and proline contents increased continuously in the treated seedlings. Soluble sugar content and superoxide dismutase activity were upregulated initially but became downregulated under prolonged water deficit. A total of 104 proteins were found to be differentially accumulated under water stress. The identified proteins were mainly involved in photosynthesis, carbohydrate metabolism, stress defense, energy production, and protein metabolism. Interestingly, substantial incongruence between protein and transcript levels was observed, indicating that gene expression in water-stressed maize seedlings is controlled by complex mechanisms. Finally, we propose a hypothetical model that includes the different molecular, physiological, and biochemical changes that occurred during the response and tolerance of maize seedlings to water deficiency. Our study provides valuable insight for further research into the overall mechanisms underlying drought response and tolerance in maize and other plants.
Collapse
Affiliation(s)
- Longfei Xin
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Huifang Zheng
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zongju Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiameng Guo
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Tianxue Liu
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Lei Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Xiao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianping Yang
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qinghua Yang
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Lin Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
30
|
|
31
|
Genome-Wide Expression Profiles of Hemp ( Cannabis sativa L.) in Response to Drought Stress. Int J Genomics 2018; 2018:3057272. [PMID: 29862250 PMCID: PMC5976996 DOI: 10.1155/2018/3057272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. RNA-Seq generated 9.83, 11.30, 11.66, and 11.31 M clean reads in the CK1, CK2, DS1, and DS2 libraries, respectively. A total of 1292 differentially expressed genes (DEGs), including 409 (31.66%) upregulated and 883 (68.34%) downregulated genes, were identified. The expression patterns of 12 selected genes were validated by qRT-PCR, and the results were accordant with Illumina analysis. Gene Ontology (GO) and KEGG analysis illuminated particular important biological processes and pathways, which enriched many candidate genes such as NAC, B3, peroxidase, expansin, and inositol oxygenase that may play important roles in hemp tolerance to drought. Eleven KEGG pathways were significantly influenced, the most influenced being the plant hormone signal transduction pathway with 15 differentially expressed genes. A similar expression pattern of genes involved in the abscisic acid (ABA) pathway under drought, and ABA induction, suggested that ABA is important in the drought stress response of hemp. These findings provide useful insights into the drought stress regulatory mechanism in hemp.
Collapse
|
32
|
Han L, Li J, Jin M, Su Y. Functional analysis of a type 2C protein phosphatase gene from Ammopiptanthus mongolicus. Gene 2018; 653:29-42. [PMID: 29427736 DOI: 10.1016/j.gene.2018.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/26/2022]
Abstract
In Arabidopsis and certain other plant species, the type 2C protein phosphatases (PP2Cs) of the clade A class have been demonstrated to act as negative regulators in ABA-induced stress responses, such as stomatal closure. The present study reports the identification of a PP2C ortholog from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f. (AmPP2C), which is functionally conserved over its counterparts reported from other plant species. AmPP2C was primarily expressed in leaves, with strong transcriptional accumulation being observed in the guard cells. The expression of AmPP2C was induced in response to PEG or ABA treatments, implying the potential involvement in ABA-induced stress responses. The GFP-tagging observation revealed that AmPP2C was predominantly localized to the nuclei and partly to the cytoplasm. Furthermore, BiFC assays demonstrated an interaction between AmPP2C and the typical protein kinase SnRK2.6 (AmOST1). Overexpression of AmPP2C in Arabidopsis significantly overcame the inhibition of seed germination by ABA. The transgenic Arabidopsis lines exhibited larger stomatal apertures and significantly reduced sensitivity to ABA-induced stomatal closure, which subsequently led to greater water loss and decreased biomass under PEG-simulated drought stress treatments. Under limited nitrogen or potassium supplements, plants overexpressing AmPP2C obtained a superior capability of nitrogen (N) and potassium (K) acquisition in the green parts. Therefore, the impairment of ABA-induced stomatal closure rendered by the function of PP2C helped to identify a potential survival strategy in plants suffering persistent drought stress via the maintenance of the necessary mineral nutrient acquisition driven by transpirational solute flow.
Collapse
Affiliation(s)
- Lei Han
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing 210008, China
| | - Junlin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing 210008, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Man Jin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing 210008, China
| | - Yanhua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
33
|
Jin M, Guo M, Yue G, Li J, Yang S, Zhao P, Su Y. An unusual strategy of stomatal control in the desert shrub Ammopiptanthus mongolicus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:13-26. [PMID: 29413627 DOI: 10.1016/j.plaphy.2018.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/05/2018] [Accepted: 01/22/2018] [Indexed: 05/27/2023]
Abstract
Water deficit is one of the main environmental constraints that limit plant growth. Accordingly, plants evoke rather complex strategies to respond and/or acclimate to such frustrating circumstances. Due to insufficient understandings of acclimatory mechanisms of plants' tolerance to persistent water deficit, a desert shrub of an ancient origin, Ammopiptanthus mongolicus, has recently attracted growing attentions. Differed from Arabidopsis, the opening of stomata of A. mongolicus is constrained by low external K+ concentration of the guard cells. Although as a general consequence, a raised level of ABA is also induced in A. mongolicus following water deficit, this does not accordingly result in efficient stomatal closure. In consistent with this phenomenon, the expression of genes coding for the negative regulators of the ABA signaling cascade-the type 2C protein phosphatases (PP2Cs) are notably induced, whereas the transcription of the downstream SnRK2 protein kinase genes or the destination ion fluxing channel genes remain almost unaffected under water deficit treatments. Therefore, in term of stomatal control in response to water deficit, A. mongolicus seemingly employs an unusual strategy: a constrained stomatal opening controlled by extracellular K+ concentrations rather than a prompt stomatal closure triggered by ABA-induced signaling pathway. Additionally, an acute accumulation of proline is induced by water deficit which may partly compromise the activation of antioxidant enzymes in A. mongolicus. Such strategy of stomatal control found in A. mongolicus may in certain extents, reflect the acclimatory divergence for plants' coping with persistent stress of water deficit.
Collapse
Affiliation(s)
- Man Jin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Manyuan Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guangzhen Yue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing, China
| | - Junlin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Shunying Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing, China
| | - Pengshu Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing, China.
| |
Collapse
|
34
|
Liang J, Chen X, Deng G, Pan Z, Zhang H, Li Q, Yang K, Long H, Yu M. Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance. BMC Genomics 2017; 18:775. [PMID: 29020945 PMCID: PMC5637072 DOI: 10.1186/s12864-017-4152-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Background The harsh environment on the Qinghai-Tibetan Plateau gives Tibetan hulless barley (Hordeum vulgare var. nudum) great ability to resist adversities such as drought, salinity, and low temperature, and makes it a good subject for the analysis of drought tolerance mechanism. To elucidate the specific gene networks and pathways that contribute to its drought tolerance, and for identifying new candidate genes for breeding purposes, we performed a transcriptomic analysis using two accessions of Tibetan hulless barley, namely Z772 (drought-tolerant) and Z013 (drought-sensitive). Results There were more up-regulated genes of Z772 than Z013 under both mild (5439-VS-2604) and severe (7203-VS-3359) dehydration treatments. Under mild dehydration stress, the pathways exclusively enriched in drought-tolerance genotype Z772 included Protein processing in endoplasmic reticulum, tricarboxylic acid (TCA) cycle, Wax biosynthesis, and Spliceosome. Under severe dehydration stress, the pathways that were mainly enriched in Z772 included Carbon fixation in photosynthetic organisms, Pyruvate metabolism, Porphyrin and chlorophyll metabolism. The main differentially expressed genes (DEGs) in response to dehydration stress and genes whose expression was different between tolerant and sensitive genotypes were presented in this study, respectively. The candidate genes for drought tolerance were selected based on their expression patterns. Conclusions The RNA-Seq data obtained in this study provided an initial overview on global gene expression patterns and networks that related to dehydration shock in Tibetan hulless barley. Furthermore, these data provided pathways and a targeted set of candidate genes that might be essential for deep analyzing the molecular mechanisms of plant tolerance to drought stress. Electronic supplementary material The online version of this article (10.1186/s12864-017-4152-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.,CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Xin Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.,Center Laboratory Department, The General Hospital of Chengdu Army, Chengdu, 610083, People's Republic of China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Kaijun Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.,Ganzi Tibetan Autonomous Prefecture Institute of Agricultural Science, Kangding, 626000, People's Republic of China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| |
Collapse
|
35
|
Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:122-136. [PMID: 28330556 DOI: 10.1016/j.plantsci.2017.01.018] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 05/20/2023]
Abstract
Alfalfa (Medicago sativa) is an important forage crop that is often grown in areas that frequently experience drought and water shortage. MicroRNA156 (miR156) is an emerging tool for improving various traits in plants. We tested the role of miR156d in drought response of alfalfa, and observed a significant improvement in drought tolerance of miR156 overexpression (miR156OE) alfalfa genotypes compared to the wild type control (WT). In addition to higher survival and reduced water loss, miR156OE genotypes also maintained higher stomatal conductance compared to WT during drought stress. Furthermore, we observed an enhanced accumulation of compatible solute (proline) and increased levels of abscisic acid (ABA) and antioxidants in miR156OE genotypes. Similarly, alfalfa plants with reduced expression of miR156-targeted SPL13 showed reduced water loss and enhanced stomatal conductance, chlorophyll content and photosynthetic assimilation. Several genes known to be involved in drought tolerance were differentially expressed in leaf and root of miR156 overexpression plants. Taken together, our findings reveal that miR156 improves drought tolerance in alfalfa at least partially by silencing SPL13.
Collapse
Affiliation(s)
- Muhammad Arshad
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5 V 4T3, Canada.
| | - Biruk A Feyissa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5 V 4T3, Canada; Biology Department, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.
| | - Lisa Amyot
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5 V 4T3, Canada.
| | - Banyar Aung
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5 V 4T3, Canada.
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5 V 4T3, Canada; Biology Department, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
36
|
Carvalho LC, Silva M, Coito JL, Rocheta MP, Amâncio S. Design of a Custom RT-qPCR Array for Assignment of Abiotic Stress Tolerance in Traditional Portuguese Grapevine Varieties. FRONTIERS IN PLANT SCIENCE 2017; 8:1835. [PMID: 29118776 PMCID: PMC5660995 DOI: 10.3389/fpls.2017.01835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/10/2017] [Indexed: 05/21/2023]
Abstract
Widespread agricultural losses attributed to drought, often combined with high temperatures, frequently occur in the field, namely in Mediterranean climate areas, where the existing scenarios for climate change indicate an increase in the frequency of heat waves and severe drought events in summer. Grapevine (Vitis vinifera L.) is the most cultivated fruit species in the world and the most valuable one and is a traditional Mediterranean species. Currently, viticulture must adjust to impending climate changes that are already pushing vine-growers toward the use of ancient and resilient varieties. Portugal is very rich in grapevine biodiversity, however, currently, 90% of the total producing area is planted with only 16 varieties. There is a pressing need to understand the existing genetic diversity and the physiological potential of the varieties/genotypes available to be able to respond to climate changes. With the above scenario in mind, an assembly of 65 differentially expresses genes (DEGs) previously identified as responsive to abiotic stresses in two well studied genotypes, 'Touriga Nacional' and 'Trincadeira,' was designed to scan the gene expression of leaf samples from 10 traditional Portuguese varieties growing in two regions with distinct environmental conditions. Forty-five of those DEGs proved to be associated to "abiotic stress" and were chosen to build a custom qPCR array to identify uncharacterized genotypes as sensitive or tolerant to abiotic stress. According to the experimental set-up behind the array design these DEGs can also be used as indicators of the main abiotic stress that the plant is subjected and responding to (drought, heat, or excess light).
Collapse
|
37
|
Kaneko K, Sasaki M, Kuribayashi N, Suzuki H, Sasuga Y, Shiraya T, Inomata T, Itoh K, Baslam M, Mitsui T. Proteomic and Glycomic Characterization of Rice Chalky Grains Produced Under Moderate and High-temperature Conditions in Field System. RICE (NEW YORK, N.Y.) 2016; 9:26. [PMID: 27246013 PMCID: PMC4887401 DOI: 10.1186/s12284-016-0100-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/11/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Global climate models predict an increase in global mean temperature and a higher frequency of intense heat spikes during this century. Cereals such as rice (Oryza sativa L.) are more susceptible to heat stress, mainly during the gametogenesis and flowering stages. During periods of high temperatures, grain filling often causes serious damage to the grain quality of rice and, therefore, yield losses. While the genes encoding enzymes involved in carbohydrate metabolism of chalky grains have been established, a significant knowledge gap exists in the proteomic and glycomic responses to warm temperatures in situ. Here, we studied the translucent and opaque characters of high temperature stressed chalky grains of 2009 and 2010 (ripening temperatures: 24.4 and 28.0 °C, respectively). RESULTS Appearance of chalky grains of both years showed some resemblance, and the high-temperature stress of 2010 remarkably extended the chalking of grain. Scanning electron microscopic observation showed that round-shaped starch granules with numerous small pits were loosely packed in the opaque part of the chalky grains. Proteomic analyzes of rice chalky grains revealed deregulations in the expression of multiple proteins implicated in diverse metabolic and physiological functions, such as protein synthesis, redox homeostasis, lipid metabolism, and starch biosynthesis and degradation. The glycomic profiling has shown slight differences in chain-length distributions of starches in the grains of 2009-to-2010. However, no significant changes were observed in the chain-length distributions between the translucent and opaque parts of perfect and chalky grains in both years. The glucose and soluble starch contents in opaque parts were increased by the high-temperature stress of 2010, though those in perfect grains were not different regardless of the environmental changes of 2009-to-2010. CONCLUSION Together with previous findings on the increased expression of α-amylases in the endosperm, these results suggested that unusual starch degradation rather than starch synthesis is involved in occurring of chalky grains of rice under the high-temperature stress during grain filling period.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Maiko Sasaki
- Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Nanako Kuribayashi
- Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Hiromu Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Yukiko Sasuga
- Department of Applied Biological Chemistry, Niigata University, Niigata, 950-218, Japan
| | - Takeshi Shiraya
- Department of Applied Biological Chemistry, Niigata University, Niigata, 950-218, Japan
- Present address: Niigata Crop Research Center, Niigata Agricultural Research Institute, Nagaoka, 940-0826, Japan
| | - Takuya Inomata
- Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Kimiko Itoh
- Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Marouane Baslam
- Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Toshiaki Mitsui
- Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan.
- Department of Applied Biological Chemistry, Niigata University, Niigata, 950-218, Japan.
| |
Collapse
|
38
|
Wang X, Cai X, Xu C, Wang Q, Dai S. Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics. Int J Mol Sci 2016; 17:E1706. [PMID: 27763546 PMCID: PMC5085738 DOI: 10.3390/ijms17101706] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 02/04/2023] Open
Abstract
Plant drought tolerance is a complex trait that requires a global view to understand its underlying mechanism. The proteomic aspects of plant drought response have been extensively investigated in model plants, crops and wood plants. In this review, we summarize recent proteomic studies on drought response in leaves to reveal the common and specialized drought-responsive mechanisms in different plants. Although drought-responsive proteins exhibit various patterns depending on plant species, genotypes and stress intensity, proteomic analyses show that dominant changes occurred in sensing and signal transduction, reactive oxygen species scavenging, osmotic regulation, gene expression, protein synthesis/turnover, cell structure modulation, as well as carbohydrate and energy metabolism. In combination with physiological and molecular results, proteomic studies in leaves have helped to discover some potential proteins and/or metabolic pathways for drought tolerance. These findings provide new clues for understanding the molecular basis of plant drought tolerance.
Collapse
Affiliation(s)
- Xiaoli Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaofeng Cai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Chenxi Xu
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Quanhua Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shaojun Dai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
39
|
Singh A, Pandey A, Srivastava AK, Tran LSP, Pandey GK. Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Crit Rev Biotechnol 2015; 36:1023-1035. [DOI: 10.3109/07388551.2015.1083941] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amarjeet Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India,
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India,
| | - Ashish K. Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India, and
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa, Japan
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India,
| |
Collapse
|
40
|
Singh A, Jha SK, Bagri J, Pandey GK. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis. PLoS One 2015; 10:e0125168. [PMID: 25886365 PMCID: PMC4401787 DOI: 10.1371/journal.pone.0125168] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 03/23/2015] [Indexed: 11/18/2022] Open
Abstract
Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions.
Collapse
Affiliation(s)
- Amarjeet Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Saroj K. Jha
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Jayram Bagri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| |
Collapse
|
41
|
You J, Zong W, Hu H, Li X, Xiao J, Xiong L. A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice. PLANT PHYSIOLOGY 2014; 166:2100-14. [PMID: 25318938 PMCID: PMC4256856 DOI: 10.1104/pp.114.251116] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants respond to abiotic stresses through a complexity of signaling pathways, and the dephosphorylation mediated by protein phosphatase (PP) is an important event in this process. We identified a rice (Oryza sativa) PP2C gene, OsPP18, as a STRESS-RESPONSIVE NAC1 (SNAC1)-regulated downstream gene. The ospp18 mutant was more sensitive than wild-type plants to drought stress at both the seedling and panicle development stages. Rice plants with OsPP18 suppressed through artificial microRNA were also hypersensitive to drought stress. Microarray analysis of the mutant revealed that genes encoding reactive oxygen species (ROS) scavenging enzymes were down-regulated in the ospp18 mutant, and the mutant exhibited reduced activities of ROS scavenging enzymes and increased sensitivity to oxidative stresses. Overexpression of OsPP18 in rice led to enhanced osmotic and oxidative stress tolerance. The expression of OsPP18 was induced by drought stress but not induced by abscisic acid (ABA). Although OsPP18 is a typical PP2C with enzymatic activity, it did not interact with SNF1-RELATED PROTEIN KINASE2 protein kinases, which function in ABA signaling. Meanwhile, the expression of ABA-responsive genes was not affected in the ospp18 mutant, and the ABA sensitivities of the ospp18 mutant and OsPP18-overexpressing plants were also not altered. Together, these findings suggest that OsPP18 is a unique PP2C gene that is regulated by SNAC1 and confers drought and oxidative stress tolerance by regulating ROS homeostasis through ABA-independent pathways.
Collapse
Affiliation(s)
- Jun You
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
42
|
Type 2C phosphatase 1 of Artemisia annua L. is a negative regulator of ABA signaling. BIOMED RESEARCH INTERNATIONAL 2014; 2014:521794. [PMID: 25530962 PMCID: PMC4228716 DOI: 10.1155/2014/521794] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 01/09/2023]
Abstract
The phytohormone abscisic acid (ABA) plays an important role in plant development and environmental stress response. Additionally, ABA also regulates secondary metabolism such as artemisinin in the medicinal plant Artemisia annua L. Although an earlier study showed that ABA receptor, AaPYL9, plays a positive role in ABA-induced artemisinin content improvement, many components in the ABA signaling pathway remain to be elucidated in Artemisia annua L. To get insight of the function of AaPYL9, we isolated and characterized an AaPYL9-interacting partner, AaPP2C1. The coding sequence of AaPP2C1 encodes a deduced protein of 464 amino acids, with all the features of plant type clade A PP2C. Transcriptional analysis showed that the expression level of AaPP2C1 is increased after ABA, salt, and drought treatments. Yeast two-hybrid and bimolecular fluorescence complementation assays (BiFC) showed that AaPYL9 interacted with AaPP2C1. The P89S, H116A substitution in AaPYL9 as well as G199D substitution or deletion of the third phosphorylation site-like motif in AaPP2C1 abolished this interaction. Furthermore, constitutive expression of AaPP2C1 conferred ABA insensitivity compared with the wild type. In summary, our data reveals that AaPP2C1 is an AaPYL9-interacting partner and involved in the negative modulation of the ABA signaling pathway in A. annua L.
Collapse
|
43
|
Wei K, Pan S. Maize protein phosphatase gene family: identification and molecular characterization. BMC Genomics 2014; 15:773. [PMID: 25199535 PMCID: PMC4169795 DOI: 10.1186/1471-2164-15-773] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein phosphatases (PPs) play critical roles in various cellular processes through the reversible protein phosphorylation that dictates many signal transduction pathways among organisms. Recently, PPs in Arabidopsis and rice have been identified, while the whole complement of PPs in maize is yet to be reported. RESULTS In this study, we have identified 159 PP-encoding genes in the maize genome. Phylogenetic analyses categorized the ZmPP gene family into 3 classes (PP2C, PTP, and PP2A) with considerable conservation among classes. Similar intron/exon structural patterns were observed in the same classes. Moreover, detailed gene structures and duplicative events were then researched. The expression profiles of ZmPPs under different developmental stages and abiotic stresses (including salt, drought, and cold) were analyzed using microarray and RNA-seq data. A total of 152 members were detected in 18 different tissues representing distinct stages of maize plant developments. Under salt stress, one gene was significantly up-expressed in seed root (SR) and one gene was down-expressed in primary root (PR) and crown root (CR), respectively. As for drought stress condition, 13 genes were found to be differentially expressed in leaf, out of which 10 were up-regulated and 3 exhibited down-regulation. Additionally, 13 up-regulated and 3 down-regulated genes were found in cold-tolerant line ETH-DH7. Furthermore, real-time PCR was used to confirm the expression patterns of ZmPPs. CONCLUSIONS Our results provide new insights into the phylogenetic relationships and characteristic functions of maize PPs and will be useful in studies aimed at revealing the global regulatory network in maize abiotic stress responses, thereby contributing to the maize molecular breeding with enhanced quality traits.
Collapse
Affiliation(s)
- Kaifa Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China.
| | | |
Collapse
|
44
|
Wang G, Cai G, Kong F, Deng Y, Ma N, Meng Q. Overexpression of tomato chloroplast-targeted DnaJ protein enhances tolerance to drought stress and resistance to Pseudomonas solanacearum in transgenic tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:95-104. [PMID: 24929777 DOI: 10.1016/j.plaphy.2014.05.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/22/2014] [Indexed: 05/21/2023]
Abstract
DnaJ proteins as co-chaperones have critical functions in biotic and abiotic stress responses, but their biological functions remain largely uninvestigated. This study investigates the function of a tomato (Lycopersicon esculentum) chloroplast-targeted DnaJ protein (LeCDJ2) using transgenic tobacco. Quantitative real-time polymerase chain reaction analysis showed that LeCDJ2 expression was triggered by salicylic acid (SA), drought and pathogen attack. Ectopic expression of LeCDJ2 in transgenic tobacco reduced the accumulation of superoxide anion radical (O2(-)) and hydrogen peroxide (H2O2) under drought stress. Compared with Vec plants, the maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm), net photosynthetic rate (Pn), and content of D1 protein were relatively higher in transgenic plants. The transgenic plants showes better growth, higher chlorophyll content, lower malondialdehyde (MDA) accumulation and relative electrolyte leakage (REL) under drought stress. In addition, overexpression of LeCDJ2 improved the resistance to the pathogen Pseudomonas solanacearum in transgenic tobacco. These results indicate that overexpression of a tomato chloroplast-targeted DnaJ gene enhances tolerance to drought stress and resistance to P. solanacearum in transgenic tobacco.
Collapse
Affiliation(s)
- Guodong Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Guohua Cai
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Fanying Kong
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yongsheng Deng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Nana Ma
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qingwei Meng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
45
|
Cai G, Wang G, Wang L, Liu Y, Pan J, Li D. A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1003-16. [PMID: 24974327 DOI: 10.1016/j.jplph.2014.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/18/2014] [Accepted: 02/26/2014] [Indexed: 05/09/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction modules in animals, plants and yeast. MAPK cascades are complicated networks and play vital roles in signal transduction pathways involved in biotic and abiotic stresses. In this study, a maize MAPKK gene, ZmMKK1, was characterized. Quantitative real time PCR (qRT-PCR) analysis demonstrated that ZmMKK1 transcripts were induced by diverse stresses and ABA signal molecule in maize root. Further study showed that the ZmMKK1-overexpressing Arabidopsis enhanced the tolerance to salt and drought stresses. However, seed germination, post-germination growth and stomatal aperture analysis demonstrated that ZmMKK1 overexpression was sensitive to ABA in transgenic Arabidopsis. Molecular genetic analysis revealed that the overexpression of ZmMKK1 in Arabidopsis enhanced the expression of ROS scavenging enzyme- and ABA-related genes, such as POD, CAT, RAB18 and RD29A under salt and drought conditions. In addition, heterologous overexpression of ZmMKK1 in yeast (Saccharomyces cerevisiae) improved the tolerance to salt and drought stresses. These results suggested that ZmMKK1 might act as an ABA- and ROS-dependent protein kinase in positive modulation of salt and drought tolerance. Most importantly, ZmMKK1 interacted with ZmMEKK1 as evidenced by yeast two-hybrid assay, redeeming a deficiency of MAPK interaction partners in maize.
Collapse
Affiliation(s)
- Guohua Cai
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Guodong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Li Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yang Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jiaowen Pan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Dequan Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
46
|
Zhang D, Jiang S, Pan J, Kong X, Zhou Y, Liu Y, Li D. The overexpression of a maize mitogen-activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:558-70. [PMID: 23952812 DOI: 10.1111/plb.12084] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/02/2013] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants are exposed to potential dangers, including multiple biotic and abiotic stresses. The mitogen-activated protein kinase (MAPK) is a universal signalling pathways involved in these processes. A previous study showed that maize ZmMPK5 is induced by various stimuli at transcriptional and post-translational levels. In this study, ZmMPK5 was overexpressed in tobacco to further analyse its biological functions. Under salt and oxidative stresses, ZmMPK5-overexpressing lines displayed less severe damage and stronger growth phenotypes corresponding to a series of physiological changes. In addition, the transgenic lines accumulated less reactive oxygen species (ROS) and had higher levels of antioxidant enzyme activity and metabolites than wild-type (WT) plants following NaCl treatment. Quantitative RT-PCR revealed that the expression of ROS-related and stress-responsive genes was higher in transgenic plants than in WT plants. Furthermore, transgenic lines exhibited enhanced resistance to viral pathogens, and expressed constitutively higher transcript levels of pathogenesis-related genes, such as PR1a, PR4, PR5 and EREBP. Taken together, these results demonstrated that ZmMPK5 is involved in salt stress, oxidative stress and pathogen defence signalling pathways, and its function may be at least partly devoted to efficiently eliminating ROS accumulation under salt stress.
Collapse
Affiliation(s)
- D Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Cai G, Wang G, Wang L, Pan J, Liu Y, Li D. ZmMKK1, a novel group A mitogen-activated protein kinase kinase gene in maize, conferred chilling stress tolerance and was involved in pathogen defense in transgenic tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 214:57-73. [PMID: 24268164 DOI: 10.1016/j.plantsci.2013.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/30/2013] [Accepted: 09/26/2013] [Indexed: 05/18/2023]
Abstract
As an important intracellular signaling module, the mitogen-activated protein kinase (MAPK) cascades have been previously implicated in signal transduction during plants responsing to various environmental stresses as well as pathogen attack. The mitogen-activated protein kinase kinase acts as the convergent point of MAPK cascades during a variety of stress signaling. In this study, a novel MAPKK gene, ZmMKK1, in maize (Zea mays L.) belonging to group A MAPKK was isolated and functionally characterized. ZmMKK1 was mainly localized in the cytoplasm and its constitutive kinase-active form ZmMKK1DD was localized in both cytoplasm and nucleus. QRT-PCR analysis uncovered that ZmMKK1 expression was triggered by abiotic and biotic stresses and exogenous signaling molecules. Moreover, hydrogen peroxide (H2O2) and Ca(2+) mediated 12°C-induced up-regulated expressing of ZmMKK1 at mRNA level. Ectopic expression of ZmMKK1 in tobacco (Nicotiana tabacum) conferred tolerance to chilling stress by higher antioxidant enzyme activities, more accumulation of osmoregulatory substances and more significantly up-expression of ROS-related and stress-responsive genes compared with empty vector control plants. Furthermore, ZmMKK1 played differential functions in biotrophic versus necrotrophic pathogen-induced responses. These results suggested ZmMKK1 played a crucial role in chilling stress and pathogen defense in plants.
Collapse
Affiliation(s)
- Guohua Cai
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | | | | | | | | | | |
Collapse
|
48
|
Yuan F, Wang M, Hao H, Zhang Y, Zhao H, Guo A, Xu H, Zhou X, Xie CG. Negative regulation of abscisic acid signaling by the Brassica oleracea ABI1 ortholog. Biochem Biophys Res Commun 2013; 442:202-8. [DOI: 10.1016/j.bbrc.2013.11.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 11/07/2013] [Indexed: 12/15/2022]
|
49
|
Xu P, Liu Z, Fan X, Gao J, Zhang X, Zhang X, Shen X. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress. Gene 2013; 525:26-34. [PMID: 23651590 DOI: 10.1016/j.gene.2013.04.066] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/14/2013] [Accepted: 04/22/2013] [Indexed: 12/23/2022]
Abstract
Salinity stress is one of the most serious factors that impede the growth and development of various crops. Wild Gossypium species, which are remarkably tolerant to salt water immersion, are valuable resources for understanding salt tolerance mechanisms of Gossypium and improving salinity resistance in upland cotton. To generate a broad survey of genes with altered expression during various stages of salt stress, a mixed RNA sample was prepared from the roots and leaves of Gossypium aridum plants subjected to salt stress. The transcripts were sequenced using the Illumina sequencing platform. After cleaning and quality checks, approximately 41.5 million clean reads were obtained. Finally, these reads were eventually assembled into 98,989 unigenes with a mean size of 452 bp. All unigenes were compared to known cluster of orthologous groups (COG) sequences to predict and classify the possible functions of these genes, which were classified into at least 25 molecular families. Variations in gene expression were then examined after exposing the plants to 200 mM NaCl for 3, 12, 72 or 144 h. Sequencing depths of approximately six million raw tags were achieved for each of the five stages of salt stress. There were 2634 (1513 up-regulated/1121 down-regulated), 2449 (1586 up-regulated/863 down-regulated), 2271 (946 up-regulated/1325 down-regulated) and 3352 (933 up-regulated/2419 down-regulated) genes that were differentially expressed after exposure to NaCl for 3, 12, 72 and 144 h, respectively. Digital gene expression analysis indicated that pathways involved in "transport", "response to hormone stimulus" and "signaling" play important roles during salt stress, while genes involved in "protein kinase activity" and "transporter activity" undergo major changes in expression during early and later stages of salt stress, respectively.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, PR China
| | | | | | | | | | | | | |
Collapse
|
50
|
Luo X, Bai X, Sun X, Zhu D, Liu B, Ji W, Cai H, Cao L, Wu J, Hu M, Liu X, Tang L, Zhu Y. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2155-69. [PMID: 23606412 DOI: 10.1093/jxb/ert073] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The WRKY-type transcription factors are involved in plant development and stress responses, but how the regulation of stress tolerance is related to plant development is largely unknown. GsWRKY20 was initially identified as a stress response gene using large-scale Glycine soja microarrays. Quantitative reverse transcription-PCR (qRT-PCR) showed that the expression of this gene was induced by abscisic acid (ABA), salt, cold, and drought. Overexpression of GsWRKY20 in Arabidopsis resulted in a decreased sensitivity to ABA during seed germination and early seedling growth. However, compared with the wild type, GsWRKY20 overexpression lines were more sensitive to ABA in stomatal closure, and exhibited a greater tolerance to drought stress, a decreased water loss rate, and a decreased stomatal density. Moreover, microarray and qRT-PCR assays showed that GsWRKY20 mediated ABA signalling by promoting the expression of negative regulators of ABA signalling, such as AtWRKY40, ABI1, and ABI2, while repressing the expression of the positive regulators of ABA, for example ABI5, ABI4, and ABF4. Interestingly, GsWRKY20 also positively regulates the expression of a group of wax biosynthetic genes. Further, evidence is provided to support that GsWRKY20 overexpression lines have more epicuticular wax crystals and a much thicker cuticle, which contribute to less chlorophyll leaching compared with the wild type. Taken together, the findings reveal an important role for GsWRKY20 in enhancing drought tolerance and regulating ABA signalling.
Collapse
Affiliation(s)
- Xiao Luo
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|