1
|
Xie LB, Sun LN, Zhang ZW, Chen YE, Yuan M, Yuan S. Phenotype Assessment and Putative Mechanisms of Ammonium Toxicity to Plants. Int J Mol Sci 2025; 26:2606. [PMID: 40141246 PMCID: PMC11941816 DOI: 10.3390/ijms26062606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Ammonium (NH4+) and nitrate (NO3-) are the primary inorganic nitrogen (N) sources that exert influence on plant growth and development. Nevertheless, when NH4+ constitutes the sole or dominant N source, it can inhibit plant growth, a process also known as ammonium toxicity. Over multiple decades, researchers have shown increasing interest in the primary causes, mechanisms, and detoxification strategies of ammonium toxicity. Despite this progress, the current investigations into the mechanisms of ammonium toxicity remain equivocal. This review initially presents a comprehensive assessment of phenotypes induced by ammonium toxicity. Additionally, this review also recapitulates the existing mechanisms of ammonium toxicity, such as ion imbalance, disruption of the phytohormones homeostasis, ROS (reactive oxygen species) burst, energy expenditure, and rhizosphere acidification. We conclude that alterations in carbon-nitrogen (C-N) metabolism induced by high NH4+ may be one of the main reasons for ammonium toxicity and that SnRK1 (Sucrose non-fermenting 1-related kinase) might be involved in this process. The insights proffered in this review will facilitate the exploration of NH4+ tolerance mechanisms and the development of NH4+-tolerant crops in agricultural industries.
Collapse
Affiliation(s)
- Lin-Bei Xie
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (L.-B.X.); (L.-N.S.); (Z.-W.Z.)
| | - Li-Na Sun
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (L.-B.X.); (L.-N.S.); (Z.-W.Z.)
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (L.-B.X.); (L.-N.S.); (Z.-W.Z.)
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.-E.C.); (M.Y.)
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.-E.C.); (M.Y.)
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (L.-B.X.); (L.-N.S.); (Z.-W.Z.)
| |
Collapse
|
2
|
Wang C, Cui H, Jin M, Wang J, Li C, Luo Y, Li Y, Wang Z. Effect of Combined Urea and Calcium Nitrate Application on Wheat Tiller Development, Nitrogen Use Efficiency, and Grain Yield. PLANTS (BASEL, SWITZERLAND) 2025; 14:277. [PMID: 39861630 PMCID: PMC11768312 DOI: 10.3390/plants14020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Optimizing nitrogen (N) sources has the potential to improve wheat tillering, nitrogen use efficiency (NUE), and grain yield, yet the underlying mechanisms remain unclear. This study hypothesizes that combining specific N sources can increase zeatin riboside + zeatin (ZR + ZT) content in tiller nodes and maintain a higher ZR + ZT/gibberellin A7 (GA7) ratio, thereby promoting tiller development, enhancing NUE, and increasing yield. The effects of N source treatments on two wheat cultivars, the multi-spike Shannong 28 (SN28) and the large-spike Tainong 18 (TN18), were investigated. A total of seven N treatments were tested: no nitrogen (N0), urea (N1), calcium nitrate (N2), ammonium chloride (N3), and equal doses of urea and calcium nitrate (N4), urea and ammonium chloride (N5), and calcium nitrate and ammonium chloride (N6). The results showed that treatment N4 significantly increased the levels of ZR and ZT in tiller nodes, while maintaining a higher ZR + ZT to GA7 ratio. This hormonal shift promoted tiller formation and biomass accumulation. Under N4, both cultivars exhibited the highest number of effective spikes and biomass in higher-order tillers. N4 also enhanced N accumulation in the grains, N absorption efficiency, and N translocation, while reducing N loss. Compared to N1, effective spike numbers increased by 7.8% in SN28 and 5.6% in TN18, resulting in a 6.4% increase in grain yield for SN28 and a 2.2% increase for TN18. In conclusion, the combined application of urea and calcium nitrate optimizes hormonal regulation, improves NUE, and significantly enhances wheat tillering and grain yield, providing a promising strategy for enhancing wheat productivity.
Collapse
Affiliation(s)
- Chao Wang
- Wheat Breeding State Key Laboratory, Shandong Agricultural University, Taian 271000, China; (C.W.)
- College of Agronomy, Shandong Agricultural University, Taian 271000, China
| | - Haixing Cui
- Wheat Breeding State Key Laboratory, Shandong Agricultural University, Taian 271000, China; (C.W.)
- College of Agronomy, Shandong Agricultural University, Taian 271000, China
| | - Min Jin
- Wheat Breeding State Key Laboratory, Shandong Agricultural University, Taian 271000, China; (C.W.)
- College of Agronomy, Shandong Agricultural University, Taian 271000, China
| | - Jiayu Wang
- Wheat Breeding State Key Laboratory, Shandong Agricultural University, Taian 271000, China; (C.W.)
- College of Agronomy, Shandong Agricultural University, Taian 271000, China
| | - Chunhui Li
- Wheat Breeding State Key Laboratory, Shandong Agricultural University, Taian 271000, China; (C.W.)
- College of Agronomy, Shandong Agricultural University, Taian 271000, China
| | - Yongli Luo
- Wheat Breeding State Key Laboratory, Shandong Agricultural University, Taian 271000, China; (C.W.)
- College of Agronomy, Shandong Agricultural University, Taian 271000, China
| | - Yong Li
- Wheat Breeding State Key Laboratory, Shandong Agricultural University, Taian 271000, China; (C.W.)
- College of Agronomy, Shandong Agricultural University, Taian 271000, China
| | - Zhenlin Wang
- Wheat Breeding State Key Laboratory, Shandong Agricultural University, Taian 271000, China; (C.W.)
- College of Agronomy, Shandong Agricultural University, Taian 271000, China
| |
Collapse
|
3
|
Dziewit K, Amakorová P, Novák O, Szal B, Podgórska A. Systemic strategies for cytokinin biosynthesis and catabolism in Arabidopsis roots and leaves under prolonged ammonium nutrition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108858. [PMID: 38924907 DOI: 10.1016/j.plaphy.2024.108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Cytokinins are growth-regulating plant hormones that are considered to adjust plant development under environmental stresses. During sole ammonium nutrition, a condition known to induce growth retardation of plants, altered cytokinin content can contribute to the characteristic ammonium toxicity syndrome. To understand the metabolic changes in cytokinin pools, cytokinin biosynthesis and degradation were analyzed in the leaves and roots of mature Arabidopsis plants. We found that in leaves of ammonium-grown plants, despite induction of biosynthesis on the expression level, there was no active cytokinin build-up because they were effectively routed toward their downstream catabolites. In roots, cytokinin conjugation was also induced, together with low expression of major synthetic enzymes, resulting in a decreased content of the trans-zeatin form under ammonium conditions. Based on these results, we hypothesized that in leaves and roots, cytokinin turnover is the major regulator of the cytokinin pool and does not allow active cytokinins to accumulate. A potent negative-regulator of root development is trans-zeatin, therefore its low level in mature root tissues of ammonium-grown plants may be responsible for occurrence of a wide root system. Additionally, specific cytokinin enhancement in apical root tips may evoke a short root phenotype in plants under ammonium conditions. The ability to flexibly regulate cytokinin metabolism and distribution in root and shoot tissues can contribute to adjusting plant development in response to ammonium stress.
Collapse
Affiliation(s)
- Kacper Dziewit
- Department of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| | - Petra Amakorová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic.
| | - Bożena Szal
- Department of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| | - Anna Podgórska
- Department of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| |
Collapse
|
4
|
Lodovici A, Buoso S, Miras-Moreno B, Lucini L, Garcia-Perez P, Tomasi N, Pinton R, Zanin L. Peculiarity of the early metabolomic response in tomato after urea, ammonium or nitrate supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108666. [PMID: 38723490 DOI: 10.1016/j.plaphy.2024.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Nitrogen (N) is the nutrient most applied in agriculture as fertilizer (as nitrate, Nit; ammonium, A; and/or urea, U, forms) and its availability strongly constrains the crop growth and yield. To investigate the early response (24 h) of N-deficient tomato plants to these three N forms, a physiological and molecular study was performed. In comparison to N-deficient plants, significant changes in the transcriptional, metabolomic and ionomic profiles were observed. As a probable consequence of N mobility in plants, a wide metabolic modulation occurred in old leaves rather than in young leaves. The metabolic profile of U and A-treated plants was more similar than Nit-treated plant profile, which in turn presented the lowest metabolic modulation with respect to N-deficient condition. Urea and A forms induced some changes at the biosynthesis of secondary metabolites, amino acids and phytohormones. Interestingly, a specific up-regulation by U and down-regulation by A of carbon synthesis occurred in roots. Along with the gene expression, data suggest that the specific N form influences the activation of metabolic pathways for its assimilation (cytosolic GS/AS and/or plastidial GS/GOGAT cycle). Urea induced an up-concentration of Cu and Mn in leaves and Zn in whole plant. This study highlights a metabolic reprogramming depending on the N form applied, and it also provide evidence of a direct relationship between urea nutrition and Zn concentration. The understanding of the metabolic pathways activated by the different N forms represents a milestone in improving the efficiency of urea fertilization in crops.
Collapse
Affiliation(s)
- Arianna Lodovici
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206 - 33100, Udine, Italy.
| | - Sara Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206 - 33100, Udine, Italy.
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Pascual Garcia-Perez
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Nicola Tomasi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206 - 33100, Udine, Italy.
| | - Roberto Pinton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206 - 33100, Udine, Italy.
| | - Laura Zanin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206 - 33100, Udine, Italy.
| |
Collapse
|
5
|
Ma Q, Zhao C, Hu S, Zuo K. Arabidopsis calcium-dependent protein kinase CPK6 regulates drought tolerance under high nitrogen by the phosphorylation of NRT1.1. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5682-5693. [PMID: 37463320 DOI: 10.1093/jxb/erad277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plant growth and development, and its availability is regulated to some extent by drought stress. Calcium-dependent protein kinases (CPKs) are a unique family of Ca2+ sensors with diverse functions in N uptake and drought-tolerance signaling pathways; however, how CPKs are involved in the crosstalk between drought stress and N transportation remains largely unknown. Here, we identify the drought-tolerance function of Arabidopsis CPK6 under high N conditions. CPK6 expression was induced by ABA and drought treatments. The mutant cpk6 was insensitive to ABA treatment and low N, but was sensitive to drought only under high N conditions. CPK6 interacted with the NRT1.1 (CHL1) protein and phosphorylated the Thr447 residue, which then repressed the NO3- transporting activity of Arabidopsis under high N and drought stress. Taken together, our results show that CPK6 regulates Arabidopsis drought tolerance through changing the phosphorylation state of NRT1.1, and improve our knowledge of N uptake in plants during drought stress.
Collapse
Affiliation(s)
- Qijun Ma
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyan Zhao
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi Hu
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Xiao C, Fang Y, Wang S, He K. The alleviation of ammonium toxicity in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36790049 DOI: 10.1111/jipb.13467] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plants and profoundly affects crop yields and qualities. Ammonium (NH4 + ) and nitrate (NO3 - ) are major inorganic N forms absorbed by plants from the surrounding environments. Intriguingly, NH4 + is usually toxic to plants when it serves as the sole or dominant N source. It is thus important for plants to coordinate the utilization of NH4 + and the alleviation of NH4 + toxicity. To fully decipher the molecular mechanisms underlying how plants minimize NH4 + toxicity may broadly benefit agricultural practice. In the current minireview, we attempt to discuss recent discoveries in the strategies for mitigating NH4 + toxicity in plants, which may provide potential solutions for improving the nitrogen use efficiency (NUE) and stress adaptions in crops.
Collapse
Affiliation(s)
- Chengbin Xiao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yuan Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suomin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
7
|
Lin ZH, Chen CS, Zhao SQ, Liu Y, Zhong QS, Ruan QC, Chen ZH, You XM, Shan RY, Li XL, Zhang YZ. Molecular and physiological mechanisms of tea (Camellia sinensis (L.) O. Kuntze) leaf and root in response to nitrogen deficiency. BMC Genomics 2023; 24:27. [PMID: 36650452 PMCID: PMC9847173 DOI: 10.1186/s12864-023-09112-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND As an economically important crop, tea is strongly nitrogen (N)-dependent. However, the physiological and molecular mechanisms underlying the response of N deficiency in tea are not fully understood. Tea cultivar "Chunlv2" [Camellia sinensis (L.) O. Kuntze] were cultured with a nutrient solution with 0 mM [N-deficiency] or 3 mM (Control) NH4NO3 in 6 L pottery pots containing clean river sands. RESULTS N deficiency significantly decreased N content, dry weight, chlorophyll (Chl) content, L-theanine and the activities of N metabolism-related enzymes, but increased the content of total flavonoids and polyphenols in tea leaves. N deficiency delayed the sprouting time of tea buds. By using the RNA-seq technique and subsequent bioinformatics analysis, 3050 up-regulated and 2688 down-regulated differentially expressed genes (DEGs) were isolated in tea leaves in response to N deficiency. However, only 1025 genes were up-regulated and 744 down-regulated in roots. Gene ontology (GO) term enrichment analysis showed that 205 DEGs in tea leaves were enriched in seven GO terms and 152 DEGs in tea roots were enriched in 11 GO items based on P < 0.05. In tea leaves, most GO-enriched DEGs were involved in chlorophyll a/b binding activities, photosynthetic performance, and transport activities. But most of the DEGs in tea roots were involved in the metabolism of carbohydrates and plant hormones with regard to the GO terms of biological processes. N deficiency significantly increased the expression level of phosphate transporter genes, which indicated that N deficiency might impair phosphorus metabolism in tea leaves. Furthermore, some DEGs, such as probable anion transporter 3 and high-affinity nitrate transporter 2.7, might be of great potential in improving the tolerance of N deficiency in tea plants and further study could work on this area in the future. CONCLUSIONS Our results indicated N deficiency inhibited the growth of tea plant, which might be due to altered N metabolism and expression levels of DEGs involved in the photosynthetic performance, transport activity and oxidation-reduction processes.
Collapse
Affiliation(s)
- Zheng-He Lin
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Chang-Song Chen
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Shui-Qing Zhao
- Laixi Bureau of Agriculture and Rural Affairs of Shandong Province, Laixi, 266699 China
| | - Yuan Liu
- Laixi Bureau of Agriculture and Rural Affairs of Shandong Province, Laixi, 266699 China
| | - Qiu-Sheng Zhong
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Qi-Chun Ruan
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Zhi-Hui Chen
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Xiao-Mei You
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Rui-Yang Shan
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Xin-Lei Li
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Ya-Zhen Zhang
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| |
Collapse
|
8
|
Effect of Inorganic and Organic Nitrogen Sources and Biofertilizer on Murcott Mandarin Fruit Quality. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122120. [PMID: 36556484 PMCID: PMC9786582 DOI: 10.3390/life12122120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Mandarin 'Murcott' (Citrus reticulata Blanco) trees aged five years that were grafted onto lemon 'Volkamer' (Citrus volkameriana) rootstock and grown in sandy soil under a drip irrigation system were used in this study during the growing seasons of 2018 and 2019. Ten different fertilization treatments combining inorganic, organic, and biofertilization in a completely randomized block were performed. The results revealed that fertilizing 'Murcott' mandarin trees with 75% of the recommended dose (RD) of nitrogen as inorganic nitrogen (33.5% N) in the form of NH4NO3 + 25% of RD as organic nitrogen in the form of chicken manure (3% N) per tree per year without or with a biofertilizer (Effective Microorganisms, EM1) at 150 mL/tree increased the weight, size, pulp, and peels of mandarin fruit, as well as the fruit juice volume, juice volume/fruit, and vitamin C, but reduced the total acidity in both seasons. However, fertilizing 'Murcott' mandarin trees with 100% of RD as inorganic nitrogen increased the pulp/fruit ratio, and fertilizing with 25% of RD as inorganic nitrogen + 75% of RD as organic nitrogen + biofertilizer EM1 increased the peel/fruit ratio, peel thickness, and fruit firmness. Fertilizing 'Murcott' mandarin trees with 100% organic nitrogen + biofertilizer EM1 increased total soluble solids (TSS) and total sugar contents while producing the lowest nitrate (NO3) percentage in 'Murcott' mandarin fruit compared with trees fertilized with inorganic nitrogen only. The fruit produced by 'Murcott' mandarin trees fertilized with 100% of RD as organic nitrogen with or without biofertilizer EM1 contained higher TSS, total carbohydrates, and sugars and lower nitrate percentages than those fertilized with inorganic nitrogen and biofertilizer EM1. This study contributes to reducing the use of inorganic fertilizers by adding a percentage of an organic fertilizer to obtain a healthy product that contains a lower percentage of NO3, which affects the health of the consumer, and is of high quality and suitable for export.
Collapse
|
9
|
Xing J, Cao X, Zhang M, Wei X, Zhang J, Wan X. Plant nitrogen availability and crosstalk with phytohormones signallings and their biotechnology breeding application in crops. PLANT BIOTECHNOLOGY JOURNAL 2022. [PMID: 36435985 DOI: 10.1111/pbi.13971] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/27/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N), one of the most important nutrients, limits plant growth and crop yields in sustainable agriculture system, in which phytohormones are known to play essential roles in N availability. Hence, it is not surprising that massive studies about the crosstalk between N and phytohormones have been constantly emerging. In this review, with the intellectual landscape of N and phytohormones crosstalk provided by the bibliometric analysis, we trace the research story of best-known crosstalk between N and various phytohormones over the last 20 years. Then, we discuss how N regulates various phytohormones biosynthesis and transport in plants. In reverse, we also summarize how phytohormones signallings modulate root system architecture (RSA) in response to N availability. Besides, we expand to outline how phytohormones signallings regulate uptake, transport, and assimilation of N in plants. Further, we conclude advanced biotechnology strategies, explain their application, and provide potential phytohormones-regulated N use efficiency (NUE) targets in crops. Collectively, this review provides not only a better understanding on the recent progress of crosstalk between N and phytohormones, but also targeted strategies for improvement of NUE to increase crop yields in future biotechnology breeding of crops.
Collapse
Affiliation(s)
- Jiapeng Xing
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Xiaocong Cao
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xun Wei
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Juan Zhang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Xiangyuan Wan
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| |
Collapse
|
10
|
Duarte-Aké F, Márquez-López RE, Monroy-González Z, Borbolla-Pérez V, Loyola-Vargas VM. The source, level, and balance of nitrogen during the somatic embryogenesis process drive cellular differentiation. PLANTA 2022; 256:113. [PMID: 36367589 DOI: 10.1007/s00425-022-04009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Since the discovery of somatic embryogenesis (SE), it has been evident that nitrogen (N) metabolism is essential during morphogenesis and cell differentiation. Usually, N is supplied to cultures in vitro in three forms, ammonium (NH4+), nitrate (NO3-), and amino N from amino acids (AAs). Although most plants prefer NO3- to NH4+, NH4+ is the primary form route to be assimilated. The balance of NO3- and NH4+ determines if the morphological differentiation process will produce embryos. That the N reduction of NO3- is needed for both embryo initiation and maturation is well-established in several models, such as carrot, tobacco, and rose. It is clear that N is indispensable for SE, but the mechanism that triggers the signal for embryo formation remains unknown. Here, we discuss recent studies that suggest an optimal endogenous concentration of auxin and cytokinin is closely related to N supply to plant tissue. From a molecular and biochemical perspective, we explain N's role in embryo formation, hypothesizing possible mechanisms that allow cellular differentiation by changing the nitrogen source.
Collapse
Affiliation(s)
- Fátima Duarte-Aké
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico
| | - Ruth E Márquez-López
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Santa Cruz Xoxocotlán, C.P., 71230, Oaxaca, Oaxaca, Mexico
| | - Zurisadai Monroy-González
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico
| | - Verónica Borbolla-Pérez
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico
| | - Víctor M Loyola-Vargas
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico.
| |
Collapse
|
11
|
Garnica M, Baigorri R, San Francisco S, Zamarreño AM, Garcia-Mina JM. Humic Acid Alleviates Fe Chlorosis in Graminaceous Plants Through Coordinated Fe-Dependent and Fe-Independent Mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:803013. [PMID: 35185979 PMCID: PMC8849133 DOI: 10.3389/fpls.2022.803013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Many studies have shown the close relationship between the beneficial action of soil and sedimentary humic acids on the growth of plants cultivated in calcareous soils and their ability to improve Fe plant nutrition. These results have been ascribed to the humic acid (HA) capability to improve Fe solubility and bioavailability. However, other effects more related to a humic acid action on the specific mechanisms activated in roots of plants under Fe deficiency cannot be ruled out. Although this question has been studied in dicotyledonous plants, in graminaceous plants there are no specific studies. Here we investigate the ability of a humic acid extracted from peat (HA) to improve Fe nutrition in wheat plants cultivated under Fe deficient and sufficient conditions. The results show that HA can improve the physiological status of Fe deficient wheat plants by alleviating some of the deleterious consequences of Fe deficiency on plant development and increasing the plant ability to secrete phytosiderophores to the nutrient solution. This action of HA is associated with increases in the Fe-active pool in leaves that might be related to the mobilization of the Fe complexed by HA resulting from the interaction of HA with the phytosiderophores in the nutrient solution. The Fe translocation from the root to the shoot may be favored by the action of trans-Zeatin Riboside (tZR) since the leaf concentration of this phytohormone was enhanced by HA in Fe deficient plants.
Collapse
Affiliation(s)
- Maria Garnica
- BACh Research Group, Department of Environmental Biology, Instituto de Biodiversidad y Medioambiente (BIOMA), University of Navarra, Pamplona, Spain
| | - Roberto Baigorri
- BACh Research Group, Department of Environmental Biology, Instituto de Biodiversidad y Medioambiente (BIOMA), University of Navarra, Pamplona, Spain
| | - Sara San Francisco
- BACh Research Group, Department of Environmental Biology, Instituto de Biodiversidad y Medioambiente (BIOMA), University of Navarra, Pamplona, Spain
| | - Angel M. Zamarreño
- BACh Research Group, Department of Environmental Biology, Instituto de Biodiversidad y Medioambiente (BIOMA), University of Navarra, Pamplona, Spain
| | - Jose M. Garcia-Mina
- BACh Research Group, Department of Environmental Biology, Instituto de Biodiversidad y Medioambiente (BIOMA), University of Navarra, Pamplona, Spain
- Centre Mondial de l’Innovation (CMI) – Groupe Roullier, Saint-Maló, France
| |
Collapse
|
12
|
Lv X, Ding Y, Long M, Liang W, Gu X, Liu Y, Wen X. Effect of Foliar Application of Various Nitrogen Forms on Starch Accumulation and Grain Filling of Wheat ( Triticum aestivum L.) Under Drought Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:645379. [PMID: 33841473 PMCID: PMC8030621 DOI: 10.3389/fpls.2021.645379] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Foliar nitrogen (N) fertilizer application at later stages of wheat (Triticum aestivum L.) growth is an effective method of attenuating drought stress and improving grain filling. The influences or modes of action of foliar application of various nitrogen forms on wheat growth and grain filling need further research. The objective of this study was to examine the regulatory effects of various forms of foliar nitrogen [NO3 -, NH4 +, and CO(NH2)2] on wheat grain filling under drought stress and to elucidate their underlying mechanisms. The relative effects of each nitrogen source differed in promoting grain filling. Foliar NH4 +-N application notably prolonged the grain filling period. In contrast, foliar application of CO(NH2)2 and NO3 --N accelerated the grain filling rate and regulated levels of abscisic acid (ABA), z-riboside (ZR), and ethylene (ETH) in wheat grains. Analysis of gene expression revealed that CO(NH2)2 and NO3 --N upregulated the genes involved in the sucrose-starch conversion pathway, promoting the remobilization of carbohydrates and starch synthesis in the grains. Besides, activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were increased, whereas the content of malondialdehyde (MDA) declined under foliar nitrogen application (especially NH4 +-N). Under drought stress, enhancement of carbohydrate remobilization and sink strength became key factors in grain filling, and the relative differences in the effects of three N forms became more evident. In conclusion, NH4 +-N application improved the antioxidant enzyme system and delayed photoassimilate transportation. On the other hand, foliar applications of NO3 --N and CO(NH2)2 enhanced sink capacity and alleviated drought stress injury in wheat.
Collapse
|
13
|
Bauer B, von Wirén N. Modulating tiller formation in cereal crops by the signalling function of fertilizer nitrogen forms. Sci Rep 2020; 10:20504. [PMID: 33239682 PMCID: PMC7689482 DOI: 10.1038/s41598-020-77467-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/05/2020] [Indexed: 01/17/2023] Open
Abstract
Cereal crop yield comprises interrelated components, among which the number of tillers is highly responsive to nitrogen fertilization. We addressed the hypothesis of whether the supply of different nitrogen forms can be employed to manipulate the tiller number in cereal crops. Relative to urea or ammonium, exclusive supply of nitrate increased tiller number in hydroponically-grown barley plants. Thereby, tiller number correlated positively with the root-to-shoot translocation rate of endogenous cytokinins. External supply of a synthetic cytokinin analog further stimulated tillering in nitrate-containing but not in urea-containing nutrient solution. When the cytokinin analog 6-benzylaminopurine riboside was externally supplied to roots, its translocation to shoots was 2.5 times higher in presence of nitrate than in presence of urea or ammonium, suggesting that cytokinin loading into the xylem is affected by different nitrogen forms. We then translated this finding to field scale, cultivated winter wheat in four environments, and confirmed that nitrate fertilization significantly increased tiller number in a dose-dependent manner. As assessed in 22 winter wheat cultivars, nitrogen form-dependent tiller formation was subject to substantial genotypic variation. We conclude that cytokinin-mediated signaling effects of fertilizer nitrogen forms can be employed as a management tool to regulate the tiller number in cereal crops.
Collapse
Affiliation(s)
- Bernhard Bauer
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Germany.,Crop Production and Crop Protection, Institute of Biomass Research, University of Applied Sciences Weihenstephan-Triesdorf, Markgrafenstrasse 16, 91746, Weidenbach, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Germany.
| |
Collapse
|
14
|
Shao CH, Qiu CF, Qian YF, Liu GR. Nitrate deficiency decreased photosynthesis and oxidation-reduction processes, but increased cellular transport, lignin biosynthesis and flavonoid metabolism revealed by RNA-Seq in Oryza sativa leaves. PLoS One 2020; 15:e0235975. [PMID: 32649704 PMCID: PMC7351185 DOI: 10.1371/journal.pone.0235975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
Rice cultivar "Weiyou916" (Oryza sativa L. ssp. Indica) were cultured with control (10 mM NO3-) and nitrate deficient solution (0 mM NO3-) for four weeks. Nitrogen (N) deficiency significantly decreased the content of N and P, dry weight (DW) of the shoots and roots, but increased the ratio of root to shoot in O. sativa. N deficiency decreased the photosynthesis rate and the maximum quantum yield of primary photochemistry (Fv/Fm), however, increased the intercellular CO2 concentration and primary fluorescence (Fo). N deficiency significantly increased the production of H2O2 and membrane lipid peroxidation revealed as increased MDA content in O. sativa leaves. N deficiency significantly increased the contents of starch, sucrose, fructose, and malate, but did not change that of glucose and total soluble protein in O. sativa leaves. The accumulated carbohydrates and H2O2 might further accelerate biosynthesis of lignin in O. sativa leaves under N limitation. A total of 1635 genes showed differential expression in response to N deficiency revealed by Illumina sequencing. Gene Ontology (GO) analysis showed that 195 DEGs were found to highly enrich in nine GO terms. Most of DEGs involved in photosynthesis, biosynthesis of ethylene and gibberellins were downregulated, whereas most of DEGs involved in cellular transport, lignin biosynthesis and flavonoid metabolism were upregulated by N deficiency in O. sativa leaves. Results of real-time quantitative PCR (RT-qPCR) further verified the RNA-Seq data. For the first time, DEGs involved oxygen-evolving complex, phosphorus response and lignin biosynthesis were identified in rice leaves. Our RNA-Seq data provided a global view of transcriptomic profile of principal processes implicated in the adaptation of N deficiency in O. sativa and shed light on the candidate direction in rice breeding for green and sustainable agriculture.
Collapse
Affiliation(s)
- Cai-Hong Shao
- Institute of Soil Fertilizer and Resources Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Cai-Fei Qiu
- Institute of Soil Fertilizer and Resources Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yin-Fei Qian
- Institute of Soil Fertilizer and Resources Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Guang-Rong Liu
- Institute of Soil Fertilizer and Resources Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
15
|
Wang Q, Zhu Y, Zou X, Li F, Zhang J, Kang Z, Li X, Yin C, Lin Y. Nitrogen Deficiency-Induced Decrease in Cytokinins Content Promotes Rice Seminal Root Growth by Promoting Root Meristem Cell Proliferation and Cell Elongation. Cells 2020; 9:E916. [PMID: 32283600 PMCID: PMC7226747 DOI: 10.3390/cells9040916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
Rice (Oryza sativa L.) seedlings grown under nitrogen (N) deficiency conditions show a foraging response characterized by increased root length. However, the mechanism underlying this developmental plasticity is still poorly understood. In this study, the mechanism by which N deficiency influences rice seminal root growth was investigated. The results demonstrated that compared with the control (1 mM N) treatment, N deficiency treatments strongly promoted seminal root growth. However, the N deficiency-induced growth was negated by the application of zeatin, which is a type of cytokinin (CK). Moreover, the promotion of rice seminal root growth was correlated with a decrease in CK content, which was due to the N deficiency-mediated inhibition of CK biosynthesis through the down-regulation of CK biosynthesis genes and an enhancement of CK degradation through the up-regulation of CK degradation genes. In addition, the N deficiency-induced decrease in CK content not only enhanced the root meristem cell proliferation rate by increasing the meristem cell number via the down-regulation of OsIAA3 and up-regulation of root-expressed OsPLTs, but also promoted root cell elongation by up-regulating cell elongation-related genes, including root-specific OsXTHs and OsEXPs. Taken together, our data suggest that an N deficiency-induced decrease in CK content promotes the seminal root growth of rice seedlings by promoting root meristem cell proliferation and cell elongation.
Collapse
Affiliation(s)
- Qi Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Y.Z.); (X.Z.); (F.L.); (J.Z.); (Z.K.); (X.L.)
| | - Yanchun Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Y.Z.); (X.Z.); (F.L.); (J.Z.); (Z.K.); (X.L.)
| | - Xiao Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Y.Z.); (X.Z.); (F.L.); (J.Z.); (Z.K.); (X.L.)
- National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China;
| | - Fengfeng Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Y.Z.); (X.Z.); (F.L.); (J.Z.); (Z.K.); (X.L.)
| | - Jialiang Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Y.Z.); (X.Z.); (F.L.); (J.Z.); (Z.K.); (X.L.)
| | - Ziyi Kang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Y.Z.); (X.Z.); (F.L.); (J.Z.); (Z.K.); (X.L.)
| | - Xuefei Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Y.Z.); (X.Z.); (F.L.); (J.Z.); (Z.K.); (X.L.)
| | - Changxi Yin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Y.Z.); (X.Z.); (F.L.); (J.Z.); (Z.K.); (X.L.)
- National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China;
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China;
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
González-Hernández AI, Scalschi L, García-Agustín P, Camañes G. Tomato root development and N assimilation depend on C and ABA content under different N sources. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:368-378. [PMID: 32028134 DOI: 10.1016/j.plaphy.2020.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Root plasticity is controlled by hormonal homeostasis and nutrient availability. In this work, we have determined the influence of different N regimens on growth parameters and on the expression of genes involved in auxin transport and N-assimilation in tomato seedlings. NH4+ nutrition led to an inhibitory effect on root fresh weight (FW), lateral root (LR) number and root density, while an increase in the primary root (PR) length was observed. The expression of N assimilation genes GS2 and ASN1, is affected by NH4+ nutrition. Moreover, in order to relieve the toxic effect of NH4+ on root development, glucose or 2-oxoglutarate was supplied as a C source during NH4+ treatment. The addition of 2-oxoglutarate improved root parameters compared to the NH4+ regimen. N-assimilation gene analysis showed that NH4+-fed tomato plants try to alleviate the toxic effect by concurrently upregulating ASN1 and anaplerotic PEPC2 expression, whereas when 2-oxoglutarate is supplied, ASN1 induction was not observed. The addition of both C skeletons induced the expression of the ROS-scavenging genes GSH and SOD. In addition, since ABA plays a role in root development, the ABA-synthesis-defective mutant flacca was studied under NO3- and NH4+ regimens. It displayed a decrease in LR number under NO3- conditions, whereas, the NH4+-fed seedlings showed a decrease solely in PR length that was reverted when ABA was exogenously supplied. Moreover, flacca seedlings displayed a reprogramming of the N/C assimilation genes. Altogether, these results reflect the importance of N and C sources and ABA homeostasis in root development of tomato seedlings.
Collapse
Affiliation(s)
- Ana Isabel González-Hernández
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y Del Medio Natural, ESTCE, Universitat Jaume I, 12071, Castellón, Spain.
| | - Loredana Scalschi
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y Del Medio Natural, ESTCE, Universitat Jaume I, 12071, Castellón, Spain.
| | - Pilar García-Agustín
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y Del Medio Natural, ESTCE, Universitat Jaume I, 12071, Castellón, Spain.
| | - Gemma Camañes
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y Del Medio Natural, ESTCE, Universitat Jaume I, 12071, Castellón, Spain.
| |
Collapse
|
17
|
Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. Int J Mol Sci 2020; 21:ijms21020572. [PMID: 31963138 PMCID: PMC7014335 DOI: 10.3390/ijms21020572] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Nitrogen (N) is one of the most important elements that has a central impact on plant growth and yield. N is also widely involved in plant stress responses, but its roles in host-pathogen interactions are complex as each affects the other. In this review, we summarize the relationship between N nutrition and plant disease and stress its importance for both host and pathogen. From the perspective of the pathogen, we describe how N can affect the pathogen’s infection strategy, whether necrotrophic or biotrophic. N can influence the deployment of virulence factors such as type III secretion systems in bacterial pathogen or contribute nutrients such as gamma-aminobutyric acid to the invader. Considering the host, the association between N nutrition and plant defence is considered in terms of physical, biochemical and genetic mechanisms. Generally, N has negative effects on physical defences and the production of anti-microbial phytoalexins but positive effects on defence-related enzymes and proteins to affect local defence as well as systemic resistance. N nutrition can also influence defence via amino acid metabolism and hormone production to affect downstream defence-related gene expression via transcriptional regulation and nitric oxide (NO) production, which represents a direct link with N. Although the critical role of N nutrition in plant defences is stressed in this review, further work is urgently needed to provide a comprehensive understanding of how opposing virulence and defence mechanisms are influenced by interacting networks.
Collapse
|
18
|
Barbafieri M, Morelli E, Tassi E, Pedron F, Remorini D, Petruzzelli G. Overcoming limitation of "recalcitrant areas" to phytoextraction process: The synergistic effects of exogenous cytokinins and nitrogen treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:1520-1529. [PMID: 29929315 DOI: 10.1016/j.scitotenv.2018.05.175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present work was to test the efficiency of the phytoextraction process involving the use of exogenous phytohormone (cytokinins, CKs) and fertilizer (nitrogen, N) treatments in phytotechnologies to address risk management in "recalcitrant areas". The CKs and N treatments, alone or combined (CKs + N) in a Modulated Application (MA), were tested on the crop plant Helianthus annuus, common to Mediterranean area, fast growing and with high biomass production. Plants were grown on boron (B) contaminated sediments (collected from a geothermal area located in Tuscany (Italy). Plant growth, B uptake, together with plant stress parameters were investigated. Boron is easily taken up and translocated by some crop plants, but the high phytotoxicity can dramatically impact the plant growth and consequently the applicability and efficiency of the phytoextraction process. As indicators of plant stress, oxidative balance and photosynthetic parameters were investigated to give a deeper insight of phytotoxic mechanisms. Results showed that while each treatment (CKs and N alone) had significantly positive effects on plant health, the MA treatment provided a synergistic effect on morphological parameters and biomass production as a whole. After MA treatment, plants showed antioxidant activity comparable to that of the control (unpolluted sediments) and showed an increase of net photosynthesis. Moreover, our data showed very high values of B uptake and translocation (about 800 mg kg-1 in shoots), without any alteration triggered by the treatments (CKs and N alone or combined in MA). B phytoextraction resulted increased about fivefold with the MA treatments, while each treatment alone increased only two or three folds when treated with either CKs or N. The MA treatment is not "contaminant specific", so it could be applied in other "recalcitrant areas" where different types of contaminations occur, in order to overcome limitations of plant growth.
Collapse
Affiliation(s)
- Meri Barbafieri
- National Research Council, Institute of Ecosystem Study, Section of Pisa, Via Moruzzi, 1, 56124 Pisa, Italy.
| | - Elisabetta Morelli
- National Research Council, Institute of Biophysics, Section of Pisa, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Eliana Tassi
- National Research Council, Institute of Ecosystem Study, Section of Pisa, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Francesca Pedron
- National Research Council, Institute of Ecosystem Study, Section of Pisa, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Damiano Remorini
- University of Pisa, Department of Agriculture, Food and Environment, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Gianniantonio Petruzzelli
- National Research Council, Institute of Ecosystem Study, Section of Pisa, Via Moruzzi, 1, 56124 Pisa, Italy
| |
Collapse
|
19
|
Luo Y, Tang Y, Zhang X, Li W, Chang Y, Pang D, Xu X, Li Y, Wang Z. Interactions between cytokinin and nitrogen contribute to grain mass in wheat cultivars by regulating the flag leaf senescence process. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Konishi N, Ishiyama K, Beier MP, Inoue E, Kanno K, Yamaya T, Takahashi H, Kojima S. Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:613-625. [PMID: 28007952 PMCID: PMC5441914 DOI: 10.1093/jxb/erw454] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Glutamine synthetase (GS) catalyzes a reaction that incorporates ammonium into glutamate and yields glutamine in the cytosol and chloroplasts. Although the enzymatic characteristics of the GS1 isozymes are well known, their physiological functions in ammonium assimilation and regulation in roots remain unclear. In this study we show evidence that two cytosolic GS1 isozymes (GLN1;2 and GLN1;3) contribute to ammonium assimilation in Arabidopsis roots. Arabidopsis T-DNA insertion lines for GLN1;2 and GLN1;3 (i.e. gln1;2 and gln1;3 single-mutants), the gln1;2:gln1;3 double-mutant, and the wild-type accession (Col-0) were grown in hydroponic culture with variable concentrations of ammonium to compare their growth, and their content of nitrogen, carbon, ammonium, and amino acids. GLN1;2 and GLN1;3 promoter-dependent green fluorescent protein was observed under conditions with or without ammonium supply. Loss of GLN1;2 caused significant suppression of plant growth and glutamine biosynthesis under ammonium-replete conditions. In contrast, loss of GLN1;3 caused slight defects in growth and Gln biosynthesis that were only visible based on a comparison of the gln1;2 single- and gln1;2:gln1;3 double-mutants. GLN1;2, being the most abundantly expressed GS1 isozyme, markedly increased following ammonium supply and its promoter activity was localized at the cortex and epidermis, while GLN1;3 showed only low expression at the pericycle, suggesting their different physiological contributions to ammonium assimilation in roots. The GLN1;2 promoter-deletion analysis identified regulatory sequences required for controlling ammonium-responsive gene expression of GLN1;2 in Arabidopsis roots. These results shed light on GLN1 isozyme-specific regulatory mechanisms in Arabidopsis that allow adaptation to an ammonium-replete environment.
Collapse
Affiliation(s)
- Noriyuki Konishi
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan
| | - Keiki Ishiyama
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan
- RIKEN Plant Science Center, Yokohama, Japan
| | - Marcel Pascal Beier
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan
| | - Eri Inoue
- RIKEN Plant Science Center, Yokohama, Japan
| | - Keiichi Kanno
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan
| | - Tomoyuki Yamaya
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan
- RIKEN Plant Science Center, Yokohama, Japan
| | - Hideki Takahashi
- RIKEN Plant Science Center, Yokohama, Japan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Soichi Kojima
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan
- RIKEN Plant Science Center, Yokohama, Japan
| |
Collapse
|
21
|
Sun C, Li Y, Zhao W, Song X, Lu M, Li X, Li X, Liu R, Yan L, Zhang X. Integration of Hormonal and Nutritional Cues Orchestrates Progressive Corolla Opening. PLANT PHYSIOLOGY 2016; 171:1209-29. [PMID: 27208289 PMCID: PMC4902604 DOI: 10.1104/pp.16.00209] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/24/2016] [Indexed: 05/19/2023]
Abstract
Flower opening is essential for pollination and thus successful sexual reproduction; however, the underlying mechanisms of its timing control remain largely elusive. We identify a unique cucumber (Cucumis sativus) line '6457' that produces normal ovaries when nutrients are under-supplied, and super ovaries (87%) with delayed corolla opening when nutrients are oversupplied. Corolla opening in both normal and super ovaries is divided into four distinct phases, namely the green bud, green-yellow bud, yellow bud, and flowering stages, along with progressive color transition, cytological tuning, and differential expression of 14,282 genes. In the super ovary, cell division and cell expansion persisted for a significantly longer period of time; the expressions of genes related to photosynthesis, protein degradation, and signaling kinases were dramatically up-regulated, whereas the activities of most transcription factors and stress-related genes were significantly down-regulated; concentrations of cytokinins (CKs) and gibberellins were higher in accordance with reduced cytokinin conjugation and degradation and increased expression of gibberellin biosynthesis genes. Exogenous CK application was sufficient for the genesis of super ovaries, suggesting a decisive role of CKs in controlling the timing of corolla opening. Furthermore, 194 out of 11,127 differentially expressed genes identified in pairwise comparisons, including critical developmental, signaling, and cytological regulators, contained all three types of cis-elements for CK, nitrate, and phosphorus responses in their promoter regions, indicating that the integration of hormone modulation and nutritional regulation orchestrated the precise control of corolla opening in cucumber. Our findings provide a valuable framework for dissecting the regulatory pathways for flower opening in plants.
Collapse
Affiliation(s)
- Chengzhen Sun
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Yanqiang Li
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Wensheng Zhao
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xiaofei Song
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Man Lu
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xiaoli Li
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xuexian Li
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Renyi Liu
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Liying Yan
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xiaolan Zhang
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| |
Collapse
|
22
|
Roche J, Love J, Guo Q, Song J, Cao M, Fraser K, Huege J, Jones C, Novák O, Turnbull MH, Jameson PE. Metabolic changes and associated cytokinin signals in response to nitrate assimilation in roots and shoots of Lolium perenne. PHYSIOLOGIA PLANTARUM 2016; 156:497-511. [PMID: 26661753 DOI: 10.1111/ppl.12412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/14/2015] [Accepted: 11/16/2015] [Indexed: 05/11/2023]
Abstract
The efficiency of inorganic nitrogen (N) assimilation is a critical component of fertilizer use by plants and of forage production in Lolium perenne, an important pasture species worldwide. We present a spatiotemporal description of nitrate use efficiency in terms of metabolic responses and carbohydrate remobilization, together with components of cytokinin signal transduction following nitrate addition to N-impoverished plants. Perennial ryegrass (L. perenne cv. Grasslands Nui) plants were grown for 10 weeks in unfertilized soil and then treated with nitrate (5 mM) hydroponically. Metabolomic analysis by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry revealed a dynamic interaction between N and carbon metabolism over a week-long time course represented by the relative abundance of amino acids, tricarboxylic acid intermediates and stored water-soluble carbohydrates (WSCs). The initial response to N addition was characterized by a rapid remobilization of carbon stores from the low-molecular weight WSC, along with an increase in N content and assimilation into free amino acids. Subsequently, the shoot became the main source of carbon through remobilization of a large pool of high-molecular weight WSC. Associated quantification of cytokinin levels and expression profiling of putative cytokinin response regulator genes by quantitative reverse transcription polymerase chain reaction support a role for cytokinin in the mediation of the response to N addition in perennial ryegrass. The presence of high levels of cis-zeatin-type cytokinins is discussed in the context of hormonal homeostasis under the stress of steady-state N deficiency.
Collapse
Affiliation(s)
- Jessica Roche
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Jonathan Love
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Qianqian Guo
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Jiancheng Song
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- School of Life Sciences, Yantai University, Yantai, 264005, China
| | - Mingshu Cao
- AgResearch Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, New Zealand
| | - Karl Fraser
- AgResearch Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, New Zealand
| | - Jan Huege
- AgResearch Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, New Zealand
| | - Chris Jones
- AgResearch Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, New Zealand
| | - Ondřej Novák
- Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Matthew H Turnbull
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Paula E Jameson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|
23
|
Vega-Mas I, Marino D, Sánchez-Zabala J, González-Murua C, Estavillo JM, González-Moro MB. CO2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:32-44. [PMID: 26706056 DOI: 10.1016/j.plantsci.2015.09.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/02/2015] [Accepted: 09/23/2015] [Indexed: 05/23/2023]
Abstract
Ammonium (NH4(+)) toxicity typically occurs in plants exposed to high environmental NH4(+) concentration. NH4(+) assimilating capacity may act as a biochemical mechanism avoiding its toxic accumulation but requires a fine tuning between nitrogen assimilating enzymes and carbon anaplerotic routes. In this work, we hypothesized that extra C supply, exposing tomato plants cv. Agora Hybrid F1 to elevated atmospheric CO2, could improve photosynthetic process and thus ameliorate NH4(+) assimilation and tolerance. Plants were grown under nitrate (NO3(-)) or NH4(+) as N source (5-15mM), under two atmospheric CO2 levels, 400 and 800ppm. Growth and gas exchange parameters, (15)N isotopic signature, C and N metabolites and enzymatic activities were determined. Plants under 7.5mM N equally grew independently of the N source, while higher ammonium supply resulted toxic for growth. However, specific stomatal closure occurred in 7.5mM NH4(+)-fed plants under elevated CO2 improving water use efficiency (WUE) but compromising plant N status. Elevated CO2 annulled the induction of TCA anaplerotic enzymes observed at non-toxic NH4(+) nutrition under ambient CO2. Finally, CO2 enrichment benefited tomato growth under both nutritions, and although it did not alleviate tomato NH4(+) tolerance it did differentially regulate plant metabolism in N-source and -dose dependent manner.
Collapse
Affiliation(s)
- Izargi Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain; Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain.
| | - Joseba Sánchez-Zabala
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
| | - Jose María Estavillo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
| | - María Begoña González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
| |
Collapse
|
24
|
Saiz-Fernández I, De Diego N, Sampedro MC, Mena-Petite A, Ortiz-Barredo A, Lacuesta M. High nitrate supply reduces growth in maize, from cell to whole plant. JOURNAL OF PLANT PHYSIOLOGY 2015; 173:120-9. [PMID: 25462086 DOI: 10.1016/j.jplph.2014.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/07/2014] [Accepted: 06/29/2014] [Indexed: 05/09/2023]
Abstract
Nitrogen (N) is an essential macronutrient that limits agricultural productivity, and both low and high N supply have been suggested to alter plant growth. The overall aim of this work is to study the impact of nitrate (NO3(-)) in maize yield and the possible causes that induce this alteration. High NO3(-) doses did not increase the yield of maize grown neither in the field nor under controlled conditions. In fact, plants grown under controlled conditions for 45 days with NO3(-) concentrations over 5mM showed a decrease in biomass production. This reduction was perceptible in shoots prior to roots, where phytomer expansion was reduced. Cell size and number were also reduced in the leaves of plants with high NO3(-). This alteration was correlated with the increase of 1-aminocyclopropane-1-carboxylic acid in leaves, which was probably translocated from the roots in order to synthesize ethylene. Cytokinins (CKs) also showed a relevant role in this inhibitory effect, increasing in high NO3(-) plants with a reduction in root and shoot growth, inhibition of apical dominance and a strong decrease of leaf expansion, symptoms described previously as "CK syndrome". We propose that high NO3(-) inhibits maize growth by causing hormonal alterations that modify plant growth from cell to whole plant.
Collapse
Affiliation(s)
- Iñigo Saiz-Fernández
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of Basque Country UPV/EHU, P° de la Universidad 7, Vitoria-Gasteiz E-01006, Spain.
| | - Nuria De Diego
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of Basque Country UPV/EHU, P° de la Universidad 7, Vitoria-Gasteiz E-01006, Spain; Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
| | - Maria Carmen Sampedro
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Basque Country UPV/EHU, Vitoria-Gasteiz E-01006, Spain.
| | - Amaia Mena-Petite
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of Basque Country UPV/EHU, E-48080 Leioa, Spain.
| | - Amaia Ortiz-Barredo
- Department of Plant Production and Protection, Research Institute for Agricultural Development, Basque Country, NEIKER-Tecnalia, Ap. 46, E-01080 Vitoria-Gasteiz, Álava, Basque Country, Spain.
| | - Maite Lacuesta
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of Basque Country UPV/EHU, P° de la Universidad 7, Vitoria-Gasteiz E-01006, Spain.
| |
Collapse
|
25
|
Piñero MC, Houdusse F, Garcia-Mina JM, Garnica M, Del Amor FM. Regulation of hormonal responses of sweet pepper as affected by salinity and elevated CO2 concentration. PHYSIOLOGIA PLANTARUM 2014; 151:375-89. [PMID: 24152078 DOI: 10.1111/ppl.12119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/03/2013] [Accepted: 10/16/2013] [Indexed: 05/05/2023]
Abstract
This study examines the extent to which the predicted CO2 -protective effects on the inhibition of growth, impairment of photosynthesis and nutrient imbalance caused by saline stress are mediated by an effective adaptation of the endogenous plant hormonal balance. Therefore, sweet pepper plants (Capsicum annuum, cv. Ciclón) were grown at ambient or elevated [CO2] (400 or 800 µmol mol(-1)) with a nutrient solution containing 0 or 80 mM NaCl. The results show that, under saline conditions, elevated [CO2] increased plant dry weight, leaf area, leaf relative water content and net photosynthesis compared with ambient [CO2], whilst the maximum potential quantum efficiency of photosystem II was not modified. In salt-stressed plants, elevated [CO2 ] increased leaf NO3(-) concentration and reduced Cl(-) concentration. Salinity stress induced ABA accumulation in the leaves but it was reduced in the roots at high [CO2], being correlated with the stomatal response. Under non-stressed conditions, IAA was dramatically reduced in the roots when high [CO2] was applied, which resulted in greater root DW and root respiration. Additionally, the observed high CK concentration in the roots (especially tZR) could prevent downregulation of photosynthesis at high [CO2], as the N level in the leaves was increased compared with the ambient [CO2], under salt-stress conditions. These results demonstrate that the hormonal balance was altered by the [CO2], which resulted in significant changes at the growth, gas exchange and nutritional levels.
Collapse
Affiliation(s)
- María Carmen Piñero
- Equipo de Calidad Alimentaria, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150, Murcia, Spain
| | | | | | | | | |
Collapse
|
26
|
Mochizuki S, Jikumaru Y, Nakamura H, Koiwai H, Sasaki K, Kamiya Y, Ichikawa H, Minami E, Nishizawa Y. Ubiquitin ligase EL5 maintains the viability of root meristems by influencing cytokinin-mediated nitrogen effects in rice. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2307-18. [PMID: 24663342 PMCID: PMC4036501 DOI: 10.1093/jxb/eru110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Root formation is dependent on meristematic activity and is influenced by nitrogen supply. We have previously shown that ubiquitin ligase, EL5, in rice (Oryza sativa) is involved in the maintenance of root meristematic viability. When mutant EL5 protein is overexpressed to dominantly inhibit the endogenous EL5 function in rice, primordial and meristematic necrosis ia observed. Here, we analysed the cause of root cell death in transgenic rice plants (mEL5) overexpressing EL5V162A, which encodes a partly inactive ubiquitin ligase. The mEL5 mutants showed increased sensitivity to nitrogen that was reflected in the inhibition of root formation. Treatment of mEL5 with nitrate or nitrite caused meristematic cell death accompanied by browning. Transcriptome profiling of whole roots exhibited overlaps between nitrite-responsive genes in non-transgenic (NT) rice plants and genes with altered basal expression levels in mEL5. Phytohormone profiling of whole roots revealed that nitrite treatment increased cytokinin levels, but mEL5 constitutively contained more cytokinin than NT plants and showed increased sensitivity to exogenous cytokinin. More superoxide was detected in mEL5 roots after treatment with nitrite or cytokinin, and treatment with an inhibitor of superoxide production prevented mEL5 roots from both nitrite- and cytokinin-induced meristematic cell death. These results indicate a nitrogen-triggered pathway that leads to changes in root formation through the production of cytokinin and superoxide, on which EL5 acts to prevent meristematic cell death.
Collapse
Affiliation(s)
- Susumu Mochizuki
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan
| | - Yusuke Jikumaru
- Growth Regulation Research Group, RIKEN Plant Science Center, Suehiro-cho 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Hidemitsu Nakamura
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan
| | - Hanae Koiwai
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan
| | - Keisuke Sasaki
- National Institute of Livestock and Grassland Science, Ikenodai 2, Tsukuba, Ibaraki, 305-0901 Japan
| | - Yuji Kamiya
- Growth Regulation Research Group, RIKEN Plant Science Center, Suehiro-cho 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Hiroaki Ichikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan
| | - Eiichi Minami
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan
| | - Yoko Nishizawa
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan Growth Regulation Research Group, RIKEN Plant Science Center, Suehiro-cho 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan National Institute of Livestock and Grassland Science, Ikenodai 2, Tsukuba, Ibaraki, 305-0901 Japan
| |
Collapse
|
27
|
Kamada-Nobusada T, Makita N, Kojima M, Sakakibara H. Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: the role of glutamine metabolism as an additional signal. PLANT & CELL PHYSIOLOGY 2013; 54:1881-93. [PMID: 24058148 PMCID: PMC3814184 DOI: 10.1093/pcp/pct127] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/09/2013] [Indexed: 05/18/2023]
Abstract
Cytokinin activity in plants is closely related to nitrogen availability, and an Arabidopsis gene for adenosine phosphate-isopentenyltransferase (IPT), IPT3, is regulated by inorganic nitrogen sources in a nitrate-specific manner. In this study, we have identified another regulatory system of cytokinin de novo biosynthesis in response to nitrogen status. In rice, OsIPT4, OsIPT5, OsIPT7 and OsIPT8 were up-regulated in response to exogenously applied nitrate and ammonium, with accompanying accumulation of cytokinins. Pre-treatment of roots with l-methionine sulfoximine, a potent inhibitor of glutamine synthetase, abolished the nitrate- and ammonium-dependent induction of OsIPT4 and OsIPT5, while glutamine application induced their expression. Thus, neither nitrate nor ammonium, but glutamine or a related metabolite, is essential for the induction of these IPT genes in rice. On the other hand, glutamine-dependent induction of IPT3 occurs in Arabidopsis, at least to some extent. In transgenic lines repressing the expression of OsIPT4, which is the dominant IPT in rice roots, the nitrogen-dependent increase of cytokinin in the xylem sap was significantly reduced, and seedling shoot growth was retarded despite sufficient nitrogen. We conclude that plants possess multiple regulation systems for nitrogen-dependent cytokinin biosynthesis to modulate growth in response to nitrogen availability.
Collapse
|
28
|
Avalbaev AM, Somov KA, Yuldashev RA, Shakirova FM. Cytokinin oxidase is key enzyme of cytokinin degradation. BIOCHEMISTRY (MOSCOW) 2013; 77:1354-61. [PMID: 23244730 DOI: 10.1134/s0006297912120024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytokinin oxidase (EC 1.5.99.12) is an enzyme that catalyzes the irreversible degradation of cytokinin phytohormones that are extremely necessary for growth, development, and differentiation of plants. Cytokinin oxidase plays an important role in the regulation of quantitative level of cytokinins and their distribution in plant tissues. This review generalizes the available information on the structure, properties, and functional role of this enzyme in plant ontogeny under conditions of normal growth and under the influence of unfavorable environmental factors.
Collapse
Affiliation(s)
- A M Avalbaev
- Institute of Biochemistry and Genetics, Ufa Research Center of the Russian Academy of Sciences, pr. Oktyabrya 71, 450054 Ufa, Bashkortostan Republic, Russia
| | | | | | | |
Collapse
|
29
|
Hachiya T, Watanabe CK, Fujimoto M, Ishikawa T, Takahara K, Kawai-Yamada M, Uchimiya H, Uesono Y, Terashima I, Noguchi K. Nitrate Addition Alleviates Ammonium Toxicity Without Lessening Ammonium Accumulation, Organic Acid Depletion and Inorganic Cation Depletion in Arabidopsis thaliana Shoots. ACTA ACUST UNITED AC 2012; 53:577-91. [DOI: 10.1093/pcp/pcs012] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Analytical methods for tracing plant hormones. Anal Bioanal Chem 2012; 403:55-74. [PMID: 22215246 DOI: 10.1007/s00216-011-5623-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/27/2011] [Accepted: 11/28/2011] [Indexed: 12/22/2022]
Abstract
Plant hormones play important roles in regulating numerous aspects of plant growth, development, and response to stress. In the past decade, more analytical methods for the accurate identification and quantitative determination of trace plant hormones have been developed to better our understanding of the molecular mechanisms of plant hormones. As sample preparation is often the bottleneck in analysis of plant hormones in biological samples, this review firstly discusses sample preparation techniques after a brief introduction to the classes, roles, and methods used in the analysis of plant hormones. The analytical methods, especially chromatographic techniques and immuno-based methods, are reviewed in detail, and their corresponding advantages, limitations, applications, and prospects are also discussed. This review mainly covers reports published from 2000 to the present on methods for the analysis of plant hormones.
Collapse
|