1
|
Sharma R, Kumar D, Parkirti P, Singh A, Sharma A, Langeh K, Singh A, Sharma M, Mir NR, Khajuria A, Kapoor N, Bhardwaj R, Ohri P. Membrane transporters in Plants: Key players in abiotic and biotic stress tolerance and nutritional transport. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 227:110084. [PMID: 40449185 DOI: 10.1016/j.plaphy.2025.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/10/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025]
Abstract
Various abiotic and biotic stressors, including water extremes, temperature fluctuations, salinity, and heavy metals, pathogens and diseases significantly reduce global crop yields. Rapid plant responses are essential for adapting and minimizing metabolic losses. In this context, plant transporters (PTs) are essential for modulating stress responses by enabling the passage of diverse molecules and ions through the plasma membrane. Plant transporters play a pivotal role in regulating water and facilitating nutrient uptake, maintaining cellular equilibrium including osmotic regulation, detoxification, biofortification and orchestrating source-to-sink dynamics across different environmental stages in plants. In this review, we delved into recent discoveries concerning diverse transporter families such as ABC, MATE, NRAMP, SWEET, Symporters, STP, KUP, COPT/Ctr, NPF, NRT, PHT, YSL, ZIP and STP. Understanding the functions of these transporters is paramount for elucidating stress tolerance mechanisms and enhancing crop resilience through breeding and gene editing. These specialized plant membrane transporters play a crucial role in securing sustainable economic yields and maintaining high-quality produce, particularly in challenging growth conditions. We explored their contributions to plant robust growth via their crucial role in NPK and secondary metabolite transport. Through an integrated analysis of transporter dynamics during stress, we unveiled the nexus between nutrient management and stress resilience. We also clustered promising techniques that has been achieved to identify PTs such as function-driven screens, phenotype-driven screens and in silico-based approaches and provide a comprehensive overview of these transporters, offering valuable insights for the research community. This review also discusses future prospects for the use of bioinformatic computational tools in constructing signaling networks to improve our understanding of the behavior of transporters under abiotic and biotic stress. In this review, we highlight examples with case studies that illustrated how new technology and computational tools has been utilized in advanced identification and characterization of PTs functions. By strategically manipulating these transporters, we can pave the way for the development of "Plants for the Future."
Collapse
Affiliation(s)
- Roohi Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Parkirti Parkirti
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Anchita Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Alisha Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kamini Langeh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amandeep Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Manu Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Nahida Rehman Mir
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Anjali Khajuria
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Nitika Kapoor
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
2
|
Boukhari M, Asencio-Vicedo R, Cerdán M, Sánchez-Sánchez A, Jordá JD, Ferrández-Gómez B. Foliar Application of Equisetum arvense Extract Enhances Growth, Alleviates Lipid Peroxidation and Reduces Proline Accumulation in Tomato Plants Under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:488. [PMID: 39943048 PMCID: PMC11820460 DOI: 10.3390/plants14030488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025]
Abstract
Salinity is a major abiotic stress that affects physiological and biochemical processes in plants, reducing the growth, yield, and quality of crops. This problem has been intensified with the reduction of the cultivated area. This study evaluated the response of hydroponically grown tomato plants under salt stress to foliar applications of E. arvense extracts. Macro- and micronutrients, as well as silicon and phenolic compounds, were extracted using magnetic stirring and water reflux methods, the latter being the most effective. To evaluate the efficacy of E. arvense extracts, spraying was applied at two different doses: EQ-R-1 (23.6 mg·L-1 Si and 0.5 mM phenolic compounds) and EQ-R-2 (5.9 mg·L-1 Si and 0.125 mM phenolic compounds). Foliar application of both extracts alleviated salinity effects by reducing sodium uptake. E. arvense extracts mitigated oxidative stress by a decrease in electrolyte leakage by 29% and malondialdehyde and H2O2 concentrations by 69% and 39%, respectively, for the extract with the lowest dose. In addition, EQ-R-2 was also more effective by reducing 51.5% proline accumulation. These findings showed the potential use of E. arvense extracts as biostimulants to enhance plant tolerance to salinity providing new perspectives in agricultural systems.
Collapse
Affiliation(s)
- Messaouda Boukhari
- Department of Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry, Faculty of Sciences, University of Alicante, 03080 Alicante, Spain; (M.B.); (R.A.-V.); (M.C.); (A.S.-S.); (J.D.J.)
| | - Rocío Asencio-Vicedo
- Department of Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry, Faculty of Sciences, University of Alicante, 03080 Alicante, Spain; (M.B.); (R.A.-V.); (M.C.); (A.S.-S.); (J.D.J.)
| | - Mar Cerdán
- Department of Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry, Faculty of Sciences, University of Alicante, 03080 Alicante, Spain; (M.B.); (R.A.-V.); (M.C.); (A.S.-S.); (J.D.J.)
| | - Antonio Sánchez-Sánchez
- Department of Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry, Faculty of Sciences, University of Alicante, 03080 Alicante, Spain; (M.B.); (R.A.-V.); (M.C.); (A.S.-S.); (J.D.J.)
| | - Juana D. Jordá
- Department of Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry, Faculty of Sciences, University of Alicante, 03080 Alicante, Spain; (M.B.); (R.A.-V.); (M.C.); (A.S.-S.); (J.D.J.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, 03080 Alicante, Spain
| | - Borja Ferrández-Gómez
- Department of Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry, Faculty of Sciences, University of Alicante, 03080 Alicante, Spain; (M.B.); (R.A.-V.); (M.C.); (A.S.-S.); (J.D.J.)
| |
Collapse
|
3
|
Rachappanavar V, Kumar M, Negi N, Chowdhury S, Kapoor M, Singh S, Rustagi S, Rai AK, Shreaz S, Negi R, Yadav AN. Silicon derived benefits to combat biotic and abiotic stresses in fruit crops: Current research and future challenges. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108680. [PMID: 38701606 DOI: 10.1016/j.plaphy.2024.108680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Fruit crops are frequently subjected to biotic and abiotic stresses that can significantly reduce the absorption and translocation of essential elements, ultimately leading to a decrease in crop yield. It is imperative to grow fruits and vegetables in areas prone to drought, salinity, and extreme high, and low temperatures to meet the world's minimum nutrient demand. The use of integrated approaches, including supplementation of beneficial elements like silicon (Si), can enhance plant resilience under various stresses. Silicon is the second most abundant element on the earth crust, following oxygen, which plays a significant role in development and promote plant growth. Extensive efforts have been made to explore the advantages of Si supplementation in fruit crops. The application of Si to plants reinforces the cell wall, providing additional support through enhancing a mechanical and biochemical processes, thereby improving the stress tolerance capacity of crops. In this review, the molecular and physiological mechanisms that explain the beneficial effects of Si supplementation in horticultural crop species have been discussed. The review describes the role of Si and its transporters in mitigation of abiotic stress conditions in horticultural plants.
Collapse
Affiliation(s)
- Vinaykumar Rachappanavar
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India; Department of Seed Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India.
| | - Manish Kumar
- Department of Seed Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Narender Negi
- ICAR-National Bureau of Plant Genetic Resources-Regional Station, Shimla, Phagli Shimla, Himachal Pradesh, India
| | - Sohini Chowdhury
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Monit Kapoor
- Centre of Research Impact and Outcome, University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, 13109, Safat, Kuwait
| | - Rajeshwari Negi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India.
| |
Collapse
|
4
|
Greger M, Landberg T. Equisetum arvense as a silica fertilizer. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108606. [PMID: 38615440 DOI: 10.1016/j.plaphy.2024.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
The aim was to use the agricultural weed and silica (Si) hyperaccumulator Equisetum arvense as Si fertilizer in plant cultivation. We investigated (1) the Si uptake in various Equisetum species, (2) where Si accumulates in the Equisetum plant, (3) processing methods to release as much Si as possible from dried, ground E. arvense plants and (4) which treatment yields gives the highest uptake of Si in young wheat plants cultivated in soil containing ground E. arvense. The results showed that E. arvense containes 22% Si and was among the best Si accumulators. Equisetum arvense accumulates Si as both soluble and firmly bound fractions. Amorphous silica (SiO2) accumulates in the outer cell walls of epidermis of the entire plant. Regarding the processing method, a longer treatment time, greater concentration of Equisetum, boiling, and the addition of sodium bicarbonate increased the Si availability in ground, dried E. arvense. The addition of untreated, ground, dried E. arvense to the soil, corresponding to 160 kg Si ha-1, increased the available Si in the soil and the Si uptake in wheat plants by five-fold, compared with the control. Boiling the ground E. arvense increased the Si uptake by 10 times, and the of sodium bicarbonate increased the availability and uptake by 40 times, compared with the control. In conclusion, dried, ground E. arvense can be used as a Si fertilizer as is, after boiling for a slightly better effect, or with sodium bicarbonate (up to a similar amount as the ground material) for best effect.
Collapse
Affiliation(s)
- Maria Greger
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, 10691, Stockholm, Sweden.
| | - Tommy Landberg
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
5
|
Thakral V, Raturi G, Sudhakaran S, Mandlik R, Sharma Y, Shivaraj SM, Tripathi DK, Sonah H, Deshmukh R. Silicon, a quasi-essential element: Availability in soil, fertilizer regime, optimum dosage, and uptake in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108459. [PMID: 38484684 DOI: 10.1016/j.plaphy.2024.108459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
The essentiality of silicon (Si) has always been a matter of debate as it is not considered crucial for the lifecycles of most plants. But beneficial effects of endogenous Si and its supplementation have been observed in many plants. Silicon plays a pivotal role in alleviating the biotic and abiotic stress in plants by acting as a physical barrier as well as affecting molecular pathways involved in stress tolerance, thus widely considered as "quasi-essential". In soil, most of Si is found in complex forms as mineral silicates which is not available for plant uptake. Monosilicic acid [Si(OH)4] is the only plant-available form of silicon (PAS) present in the soil. The ability of a plant to uptake Si is positively correlated with the PAS concentration of the soil. Since many cultivated soils often lack a sufficient amount of PAS, it has become common practice to supplement Si through the use of Si-based fertilizers in various crop cultivation systems. This review outlines the use of natural and chemical sources of Si as fertilizer, different regimes of Si fertilization, and conclude by identifying the optimum concentration of Si required to observe the beneficial effects in plants. Also, the different mathematical models defining the mineral dynamics for Si uptake at whole plant scale considering various natural factors like plant morphology, mineral distribution, and transporter expression have been discussed. Information provided here will further help in increasing understanding of Si role and thereby facilitate efficient exploration of the element as a fertilizer in crop production.
Collapse
Affiliation(s)
- Vandana Thakral
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gaurav Raturi
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Sreeja Sudhakaran
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Rushil Mandlik
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Yogesh Sharma
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - S M Shivaraj
- Department of Science, Alliance University, Bengaluru, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Biology Lab, Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, Uttar Pradesh, India
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, India.
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, India.
| |
Collapse
|
6
|
Hassan MU, Lihong W, Nawaz M, Ali B, Tang H, Rasheed A, Zain M, Alqahtani FM, Hashem M, Qari SH, Zaid A. Silicon a key player to mitigate chromium toxicity in plants: Mechanisms and future prospective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108529. [PMID: 38507837 DOI: 10.1016/j.plaphy.2024.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/10/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Chromium is a serious heavy metal (HM) and its concentration in plant-soil interface is soaring due to anthropogenic activities, unregulated disposals, and lack of efficient treatments. High concentration of Cr is toxic to ecosystems and human health. Cr stress also diminishes the plant performance by changing the plant's vegetative and reproductive development that ultimately affects sustainable crop production. Silicon (Si) is the second-most prevalent element in the crust of the planet, and has demonstrated a remarkable potential to minimize the HM toxicity. Amending soils with Si mitigates adverse effects of Cr by improving plant physiological, biochemical, and molecular functioning and ensuring better Cr immobilization, compartmentation, and co-precipitation. However, there is no comprehensive review on the role of Si to mitigate Cr toxicity in plants. Thus, in this present review; the discussion has been carried on; 1) the source of Cr, 2) underlying mechanisms of Cr uptake by plants, 3) how Si affects the plant functioning to reduce Cr toxicity, 4) how Si can cause immobilization, compartmentation, and co-precipitation 5) strategies to improve Si accumulation in plants to counter Cr toxicity. We also discussed the knowledge gaps and future research needs. The present review reports up-to-date knowledge about the role of Si to mitigate Cr toxicity and it will help to get better crop productivity in Cr-contaminated soils. The findings of the current review will educate the readers on Si functions in reducing Cr toxicity and will offer new ideas to develop Cr tolerance in plants through the use of Si.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wang Lihong
- College of Tourism and Geographic Science, Baicheng Normal University, Baicheng, Jilin, China.
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 62400, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 62400, Pakistan
| | - Haiying Tang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Adnan Rasheed
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Fatmah M Alqahtani
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Abbu Zaid
- Department of Botany, Govt. Gandhi Memorial Science College, Cluster University, Canal Road, 180001, Jammu, Jammu and Kashmir, India.
| |
Collapse
|
7
|
Dabravolski SA, Isayenkov SV. The Physiological and Molecular Mechanisms of Silicon Action in Salt Stress Amelioration. PLANTS (BASEL, SWITZERLAND) 2024; 13:525. [PMID: 38498577 PMCID: PMC10893008 DOI: 10.3390/plants13040525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Salinity is one of the most common abiotic stress factors affecting different biochemical and physiological processes in plants, inhibiting plant growth, and greatly reducing productivity. During the last decade, silicon (Si) supplementation was intensively studied and now is proposed as one of the most convincing methods to improve plant tolerance to salt stress. In this review, we discuss recent papers investigating the role of Si in modulating molecular, biochemical, and physiological processes that are negatively affected by high salinity. Although multiple reports have demonstrated the beneficial effects of Si application in mitigating salt stress, the exact molecular mechanism underlying these effects is not yet well understood. In this review, we focus on the localisation of Si transporters and the mechanism of Si uptake, accumulation, and deposition to understand the role of Si in various relevant physiological processes. Further, we discuss the role of Si supplementation in antioxidant response, maintenance of photosynthesis efficiency, and production of osmoprotectants. Additionally, we highlight crosstalk of Si with other ions, lignin, and phytohormones. Finally, we suggest some directions for future work, which could improve our understanding of the role of Si in plants under salt stress.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Baidi-Vyshneveckogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
8
|
Asgher M, Rehaman A, Nazar Ul Islam S, Khan NA. Multifaceted roles of silicon nano particles in heavy metals-stressed plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122886. [PMID: 37952923 DOI: 10.1016/j.envpol.2023.122886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Heavy metal (HM) contamination has emerged as one of the most damaging abiotic stress factors due to their prominent release into the environment through industrialization and urbanization worldwide. The increase in HMs concentration in soil and the environment has invited attention of researchers/environmentalists to minimize its' impact by practicing different techniques such as application of phytohormones, gaseous molecules, metalloids, and essential nutrients etc. Silicon (Si) although not considered as the essential nutrient, has received more attention in the last few decades due to its involvement in the amelioration of wide range of abiotic stress factors. Silicon is the second most abundant element after oxygen on earth, but is relatively lesser available for plants as it is taken up in the form of mono-silicic acid, Si(OH)4. The scattered information on the influence of Si on plant development and abiotic stress adaptation has been published. Moreover, the use of nanoparticles for maintenance of plant functions under limited environmental conditions has gained momentum. The current review, therefore, summarizes the updated information on Si nanoparticles (SiNPs) synthesis, characterization, uptake and transport mechanism, and their effect on plant growth and development, physiological and biochemical processes and molecular mechanisms. The regulatory connect between SiNPs and phytohormones signaling in counteracting the negative impacts of HMs stress has also been discussed.
Collapse
Affiliation(s)
- Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, 185234, India
| | - Abdul Rehaman
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, 185234, India
| | - Syed Nazar Ul Islam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, 185234, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
9
|
Sheng H, Li Y, Feng J, Liu Y. Regulation of thermodynamics and kinetics of silica nucleation during the silicification process in higher plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107674. [PMID: 37018864 DOI: 10.1016/j.plaphy.2023.107674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
The formation mechanism of SiO2 aggregates is controversial because two contrasting hypotheses are often proposed to explain plant silicification. In this review, we summarize the physicochemical fundamentals of amorphous silica nucleation and discuss how plants regulate the process of silicification by influencing the thermodynamics and kinetics of silica nucleation. At silicification positions, plants overcome the thermodynamic barrier by establishing the supersaturation of the H4SiO4 solution and reducing the interfacial free energy. Among the thermodynamic-drivers, the establishment of supersaturation of H4SiO4 solution mainly depends on the expression of Si transporters for H4SiO4 supply, evapotranspiration for concentrating Si, and the other solutes in H4SiO4 solution for influencing the dissolution equilibrium of SiO2; while the interfacial free energy was reduced seemingly by the overexpression Na+/H+ antiporter SOS1 in high NaCl-stressed rice. Moreover, some kinetic-drivers, such as silicification-related proteins (Slp1 and PRP1) and new cell wall components, are actively expressed or synthesized by plants to interact with silicic acid, thereby reducing the kinetic barrier. According to classical nucleation theory, when the thermodynamic barrier is overcome, the super-saturated silicic acid solution (such as H4SiO4 in xylem sap) does not necessarily have to precipitate, just has the potential ability to precipitation. Thus, based on the mediators of SiO2 deposition at the thermodynamic-driven stage, it is difficult to evaluate whether the process of plant silicification is active or passive. We conclude that the characteristics of kinetic-drivers determine the mechanism of plant silicification.
Collapse
Affiliation(s)
- Huachun Sheng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China.
| | - Ying Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China
| | - Jingqiu Feng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China.
| | - Yuan Liu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, 610225, PR China.
| |
Collapse
|
10
|
Mehmood S, Mahmood M, Núñez-Delgado A, Alatalo JM, Elrys AS, Rizwan M, Weng J, Li W, Ahmed W. A green method for removing chromium (VI) from aqueous systems using novel silicon nanoparticles: Adsorption and interaction mechanisms. ENVIRONMENTAL RESEARCH 2022; 213:113614. [PMID: 35710023 DOI: 10.1016/j.envres.2022.113614] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
In the present study, we used the horsetail plant (Equisetum arvense) as a green source to synthesize silicon nanoparticles (GS-SiNPs), considering that it could be an effective adsorbent for removing chromium (Cr (VI)) from aqueous solutions. The characterization of GS-SiNPs was performed via Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photo electron spectroscopy (XPS) techniques. The batch test results of Cr (VI) adsorption on GS-SiNPs showed a high adsorption capacity, reaching 87.9% of the amount added. The pseudo-second order kinetic model was able to comprehensively explain the adsorption kinetics and provided a maximum Cr (VI) adsorption capacity (Qe) of 3.28 mg g-1 (R2 = 90.68), indicating fast initial adsorption by the diffusion process. The Langmuir isotherm model fitted the experimental data, and accurately simulated the adsorption of Cr (VI) on GS-SiNPs (R2 = 97.79). FTIR and XPS spectroscopy gave further confirmation that the main mechanism was ion exchange with Cr and surface complexation through -OH and -COOH. Overall, the results of the research can be of relevance as regards a green and new alternative for the removal of Cr (VI) pollution from affected environments.
Collapse
Affiliation(s)
- Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, Campus Univ. s/n, 27002, Lugo, Univ. Santiago de Compostela, Spain
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Muhammad Rizwan
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Jiechang Weng
- Hainan Provincial Ecological and Environmental Monitoring Center, 571126, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China.
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China.
| |
Collapse
|
11
|
Akhter MS, Noreen S, Ummara U, Aqeel M, Saleem N, Ahmed MM, Mahmood S, Athar HUR, Alyemeni MN, Kaushik P, Ahmad P. Silicon-Induced Mitigation of NaCl Stress in Barley ( Hordeum vulgare L.), Associated with Enhanced Enzymatic and Non-Enzymatic Antioxidant Activities. PLANTS (BASEL, SWITZERLAND) 2022; 11:2379. [PMID: 36145782 PMCID: PMC9503217 DOI: 10.3390/plants11182379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 01/03/2023]
Abstract
Salt stress obstructs plant's growth by affecting metabolic processes, ion homeostasis and over-production of reactive oxygen species. In this regard silicon (Si) has been known to augment a plant's antioxidant defense system to combat adverse effects of salinity stress. In order to quantify the Si-mediated salinity tolerance, we studied the role of Si (200 ppm) applied through rooting media on antioxidant battery system of barley genotypes; B-10008 (salt-tolerant) and B-14011 (salt-sensitive) subjected to salt stress (200 mM NaCl). A significant decline in the accumulation of shoot (35-74%) and root (30-85%) biomass was observed under salinity stress, while Si application through rooting media enhancing biomass accumulation of shoots (33-49%) and root (32-37%) under salinity stress. The over-accumulation reactive oxygen species i.e., hydrogen peroxide (H2O2) is an inevitable process resulting into lipid peroxidation, which was evident by enhanced malondialdehyde levels (13-67%) under salinity stress. These events activated a defense system, which was marked by higher levels of total soluble proteins and uplifted activities of antioxidants enzymatic (SOD, POD, CAT, GR and APX) and non-enzymatic (α-tocopherol, total phenolics, AsA, total glutathione, GSH, GSSG and proline) in roots and leaves under salinity stress. The Si application through rooting media further strengthened the salt stressed barley plant's defense system by up-regulating the activities of enzymatic and non-enzymatic antioxidant in order to mitigate excessive H2O2 efficiently. The results revealed that although salt-tolerant genotype (B-10008) was best adopted to tolerate salt stress, comparably the response of salt-sensitive genotype (B-14011) was more prominent (accumulation of antioxidant) after application of Si through rooting media under salinity stress.
Collapse
Affiliation(s)
- Muhammad Salim Akhter
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.S.A.); (N.S.); (S.M.); (H.-u.-R.A.)
| | - Sibgha Noreen
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.S.A.); (N.S.); (S.M.); (H.-u.-R.A.)
| | - Ume Ummara
- Department of Botany, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, Rahim Yar Khan 64200, Pakistan;
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, China;
| | - Nawishta Saleem
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.S.A.); (N.S.); (S.M.); (H.-u.-R.A.)
| | | | - Seema Mahmood
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.S.A.); (N.S.); (S.M.); (H.-u.-R.A.)
| | - Habib-ur-Rehman Athar
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.S.A.); (N.S.); (S.M.); (H.-u.-R.A.)
| | | | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama 192301, Jammu and Kashmir, India
| |
Collapse
|
12
|
Saitoh Y, Suga M. Structure and function of a silicic acid channel Lsi1. FRONTIERS IN PLANT SCIENCE 2022; 13:982068. [PMID: 36172553 PMCID: PMC9510833 DOI: 10.3389/fpls.2022.982068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 05/26/2023]
Abstract
Silicon is a beneficial element for plant growth and production, especially in rice. Plant roots take up silicon in the form of silicic acid. Silicic acid channels, which belong to the NIP subfamily of aquaporins, are responsible for silicic acid uptake. Accumulated experimental results have deepened our understanding of the silicic acid channel for its uptake mechanism, physiological function, localization, and other aspects. However, how the silicic acid channel efficiently and selectively permeates silicic acid remains to be elucidated. Recently reported crystal structures of the silicic acid channel enabled us to discuss the mechanism of silicic acid uptake by plant roots at an atomic level. In this mini-review, we focus on the crystal structures of the silicic acid channel and provide a detailed description of the structural determinants of silicic acid permeation and its transport mechanism, which are crucial for the rational creation of secure and sustainable crops.
Collapse
Affiliation(s)
- Yasunori Saitoh
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
13
|
Kovács S, Kutasy E, Csajbók J. The Multiple Role of Silicon Nutrition in Alleviating Environmental Stresses in Sustainable Crop Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:1223. [PMID: 35567224 PMCID: PMC9104186 DOI: 10.3390/plants11091223] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 05/25/2023]
Abstract
In addition to the application of macronutrients (N, P, K), there has been an increasing interest in studying the effects of different micronutrients on growth and development in plant populations under abiotic and biotic stresses. Experimental results have demonstrated the role of silicon in mitigating environmental stresses on plants (especially in silicon accumulating plant species). Furthermore, as the silicon content of soils available to plants can vary greatly depending on soil type, the many positive results have led to increased interest in silicon as a nutrient in sustainable agriculture over the last decade. The grouping of plant species according to silicon accumulation is constantly changing as a result of new findings. There are also many new research results on the formation of phytoliths and their role in the plants. The use of silicon as a nutrient is becoming more widespread in crop production practices based on research results reporting beneficial effects. Controversial results have also been obtained on the use of different Si-containing materials as fertilizers. Many questions remain to be clarified about the uptake, transport, and role of silicon in plant life processes, such as stress management. Future research is needed to address these issues. This review discusses the role and beneficial effects of silicon in plants as a valuable tool for regulating biological and abiotic stresses. Our aim was to provide an overview of recent research on the role and importance of silicon in sustainable crop production and to highlight possible directions for further research.
Collapse
|
14
|
Advances in Understanding Silicon Transporters and the Benefits to Silicon-Associated Disease Resistance in Plants. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Silicon (Si) is the second most abundant element after oxygen in the earth’s crust and soil. It is available for plant growth and development, and it is considered as quasi-essential for plant growth. The uptake and transport of Si is mediated by Si transporters. With the study of the molecular mechanism of Si uptake and transport in higher plants, different proteins and coding genes with different characteristics have been identified in numerous plants. Therefore, the accumulation, uptake and transport mechanisms of Si in various plants appear to be quite different. Many studies have reported that Si is beneficial for plant survival when challenged by disease, and it can also enhance plant resistance to pathogens, even at low Si accumulation levels. In this review, we discuss the distribution of Si in plants, as well as Si uptake, transport and accumulation, with a focus on recent advances in the study of Si transporters in different plants and the beneficial roles of Si in disease resistance. Finally, the application prospects are reviewed, leading to an exploration of the benefits of Si uptake for plant resistance against pathogens.
Collapse
|
15
|
Verma KK, Song XP, Lin B, Guo DJ, Singh M, Rajput VD, Singh RK, Singh P, Sharma A, Malviya MK, Chen GL, Li YR. Silicon Induced Drought Tolerance in Crop Plants: Physiological Adaptation Strategies. SILICON 2022; 14. [PMCID: PMC7982764 DOI: 10.1007/s12633-021-01071-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Bo Lin
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
- College of Agriculture, Guangxi University, Nanning, 530004 Guangxi China
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, 226 007 India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006 Russia
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Gan-Lin Chen
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| |
Collapse
|
16
|
Yamaji N, Ma JF. Metalloid transporters and their regulation in plants. PLANT PHYSIOLOGY 2021; 187:1929-1939. [PMID: 35235670 PMCID: PMC8644474 DOI: 10.1093/plphys/kiab326] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 05/27/2023]
Abstract
Transport of metalloids including B, Si, and As is mediated by a combination of channels and efflux transporters in plants, which are strictly regulated in response to environmental changes.
Collapse
Affiliation(s)
- Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
17
|
Ahire ML, Mundada PS, Nikam TD, Bapat VA, Penna S. Multifaceted roles of silicon in mitigating environmental stresses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:291-310. [PMID: 34826705 DOI: 10.1016/j.plaphy.2021.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/23/2021] [Accepted: 11/09/2021] [Indexed: 05/28/2023]
Abstract
Food security relies on plant productivity and plant's resilience to climate change driven environmental stresses. Plants employ diverse adaptive mechanisms of stress-signalling pathways, antioxidant defense, osmotic adjustment, nutrient homeostasis and phytohormones. Over the last few decades, silicon has emerged as a beneficial element for enhancing plant growth productivity. Silicon ameliorates biotic and abiotic stress conditions by regulating the physiological, biochemical and molecular responses. Si-uptake and transport are facilitated by specialized Si-transporters (Lsi1, Lsi2, Lsi3, and Lsi6) and, the differential root anatomy has been shown to reflect in the varying Si-uptake in monocot and dicot plants. Silicon mediates a number of plant processes including osmotic, ionic stress responses, metabolic processes, stomatal physiology, phytohormones, nutrients and source-sink relationship. Further studies on the transcriptional and post-transcriptional regulation of the Si transporter genes are required for better uptake and transport in spatial mode and under different stress conditions. In this article, we present an account of the availability, uptake, Si transporters and, the role of Silicon to alleviate environmental stress and improve plant productivity.
Collapse
Affiliation(s)
- M L Ahire
- Department of Botany, Yashavantrao Chavan Institute of Science, Satara, 415 001, Maharashtra, India
| | - P S Mundada
- Department of Botany, Savitribai Phule Pune University, Pune, 411 007, Maharashtra, India; Department of Biotechnology, Yashavantrao Chavan Institute of Science, Satara, 415 001, Maharashtra, India
| | - T D Nikam
- Department of Botany, Savitribai Phule Pune University, Pune, 411 007, Maharashtra, India
| | - V A Bapat
- Department of Biotechnology, Shivaji University, Kolhapur, 416 004, Maharashtra, India
| | - Suprasanna Penna
- Homi Bhabha National Institute, Bhabha Atomic Research Centre, Mumbai, 400 094, Maharashtra, India.
| |
Collapse
|
18
|
Coskun D, Deshmukh R, Shivaraj SM, Isenring P, Bélanger RR. Lsi2: A black box in plant silicon transport. PLANT AND SOIL 2021; 466:1-20. [PMID: 34720209 PMCID: PMC8550040 DOI: 10.1007/s11104-021-05061-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/22/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Silicon (Si) is widely considered a non-essential but beneficial element for higher plants, providing broad protection against various environmental stresses (both biotic and abiotic), particularly in species that can readily absorb the element. Two plasma-membrane proteins are known to coordinate the radial transport of Si (in the form of Si(OH)4) from soil to xylem within roots: the influx channel Lsi1 and the efflux transporter Lsi2. From a structural and mechanistic perspective, much more is known about Lsi1 (a member of the NIP-III subgroup of the Major Intrinsic Proteins) compared to Lsi2 (a putative Si(OH)4/H+ antiporter, with some homology to bacterial anion transporters). SCOPE Here, we critically review the current state of understanding regarding the physiological role and molecular characteristics of Lsi2. We demonstrate that the structure-function relationship of Lsi2 is largely uncharted and that the standing transport model requires much better supportive evidence. We also provide (to our knowledge) the most current and extensive phylogenetic analysis of Lsi2 from all fully sequenced higher-plant genomes. We end by suggesting research directions and hypotheses to elucidate the properties of Lsi2. CONCLUSIONS Given that Lsi2 is proposed to mediate xylem Si loading and thus root-to-shoot translocation and biosilicification, it is imperative that the field of Si transport focus its efforts on a better understanding of this important topic. With this review, we aim to stimulate and advance research in the field of Si transport and thus better exploit Si to improve crop resilience and agricultural output. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11104-021-05061-1.
Collapse
Affiliation(s)
- Devrim Coskun
- Département de Phytologie, Faculté Des Sciences de L’Agriculture Et de L’Alimentation (FSAA), Université Laval, Québec, Québec Canada
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - S. M. Shivaraj
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- CSIR-National Chemical Laboratory, Pune, India
| | - Paul Isenring
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec Canada
| | - Richard R. Bélanger
- Département de Phytologie, Faculté Des Sciences de L’Agriculture Et de L’Alimentation (FSAA), Université Laval, Québec, Québec Canada
| |
Collapse
|
19
|
Song XP, Verma KK, Tian DD, Zhang XQ, Liang YJ, Huang X, Li CN, Li YR. Exploration of silicon functions to integrate with biotic stress tolerance and crop improvement. Biol Res 2021; 54:19. [PMID: 34238380 PMCID: PMC8265040 DOI: 10.1186/s40659-021-00344-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 12/04/2022] Open
Abstract
In the era of climate change, due to increased incidences of a wide range of various environmental stresses, especially biotic and abiotic stresses around the globe, the performance of plants can be affected by these stresses. After oxygen, silicon (Si) is the second most abundant element in the earth's crust. It is not considered as an important element, but can be thought of as a multi-beneficial quasi-essential element for plants. This review on silicon presents an overview of the versatile role of this element in a variety of plants. Plants absorb silicon through roots from the rhizospheric soil in the form of silicic or monosilicic acid. Silicon plays a key metabolic function in living organisms due to its relative abundance in the atmosphere. Plants with higher content of silicon in shoot or root are very few prone to attack by pests, and exhibit increased stress resistance. However, the more remarkable impact of silicon is the decrease in the number of seed intensities/soil-borne and foliar diseases of major plant varieties that are infected by biotrophic, hemi-biotrophic and necrotrophic pathogens. The amelioration in disease symptoms are due to the effect of silicon on a some factors involved in providing host resistance namely, duration of incubation, size, shape and number of lesions. The formation of a mechanical barrier beneath the cuticle and in the cell walls by the polymerization of silicon was first proposed as to how this element decreases plant disease severity. The current understanding of how this element enhances resistance in plants subjected to biotic stress, the exact functions and mechanisms by which it modulates plant biology by potentiating the host defence mechanism needs to be studied using genomics, metabolomics and proteomics. The role of silicon in helping the plants in adaption to biotic stress has been discussed which will help to plan in a systematic way the development of more sustainable agriculture for food security and safety in the future.
Collapse
Affiliation(s)
- Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Dan-Dan Tian
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Xiao-Qiu Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Yong-Jian Liang
- Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, 532200, Guangxi, China
| | - Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Chang-Ning Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China.
| |
Collapse
|
20
|
Ali S, Tyagi A, Bae H. Ionomic Approaches for Discovery of Novel Stress-Resilient Genes in Plants. Int J Mol Sci 2021; 22:7182. [PMID: 34281232 PMCID: PMC8267685 DOI: 10.3390/ijms22137182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Plants, being sessile, face an array of biotic and abiotic stresses in their lifespan that endanger their survival. Hence, optimized uptake of mineral nutrients creates potential new routes for enhancing plant health and stress resilience. Recently, minerals (both essential and non-essential) have been identified as key players in plant stress biology, owing to their multifaceted functions. However, a realistic understanding of the relationship between different ions and stresses is lacking. In this context, ionomics will provide new platforms for not only understanding the function of the plant ionome during stresses but also identifying the genes and regulatory pathways related to mineral accumulation, transportation, and involvement in different molecular mechanisms under normal or stress conditions. This article provides a general overview of ionomics and the integration of high-throughput ionomic approaches with other "omics" tools. Integrated omics analysis is highly suitable for identification of the genes for various traits that confer biotic and abiotic stress tolerance. Moreover, ionomics advances being used to identify loci using qualitative trait loci and genome-wide association analysis of element uptake and transport within plant tissues, as well as genetic variation within species, are discussed. Furthermore, recent developments in ionomics for the discovery of stress-tolerant genes in plants have also been addressed; these can be used to produce more robust crops with a high nutritional value for sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| | - Anshika Tyagi
- National Institute for Plant Biotechnology, New Delhi 110012, India;
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
21
|
Ranjan A, Sinha R, Bala M, Pareek A, Singla-Pareek SL, Singh AK. Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:15-25. [PMID: 33799014 DOI: 10.1016/j.plaphy.2021.03.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/16/2021] [Indexed: 05/21/2023]
Abstract
Silicon (Si) is a beneficial macronutrient for plants. The Si supplementation to growth media mitigates abiotic and biotic stresses by regulating several physiological, biochemical and molecular mechanisms. The uptake of Si from the soil by root cells and subsequent transport are facilitated by Lsi1 (Low silicon1) belonging to nodulin 26-like major intrinsic protein (NIP) subfamily of aquaporin protein family, and Lsi2 (Low silicon 2) belonging to putative anion transporters, respectively. The soluble Si in the cytosol enhances the production of jasmonic acid, enzymatic and non-enzymatic antioxidants, secondary metabolites and induces expression of genes in plants under stress conditions. Silicon has been found beneficial in conferring tolerance against biotic and abiotic stresses by scavenging the reactive oxygen species (ROS) and regulation of different metabolic pathways. In the present review, Si transporters identified in various plant species and mechanisms of Si-mediated abiotic and biotic stress tolerance have been presented. In addition, role of Si in regulating gene expression under various abiotic and biotic stresses as revealed by transcriptome level studies has been discussed. This provides a deeper understanding of various mechanisms of Si-mediated stress tolerance in plants and may help in devising strategies for stress resilient agriculture.
Collapse
Affiliation(s)
- Alok Ranjan
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834010, India
| | - Ragini Sinha
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834010, India
| | - Meenu Bala
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834010, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | - Anil Kumar Singh
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834010, India.
| |
Collapse
|
22
|
Deshmukh R, Rana N, Liu Y, Zeng S, Agarwal G, Sonah H, Varshney R, Joshi T, Patil GB, Nguyen HT. Soybean transporter database: A comprehensive database for identification and exploration of natural variants in soybean transporter genes. PHYSIOLOGIA PLANTARUM 2021; 171:756-770. [PMID: 33231322 DOI: 10.1111/ppl.13287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Transporters, a class of membrane proteins that facilitate exchange of solutes including diverse molecules and ions across the cellular membrane, are vital component for the survival of all organisms. Understanding plant transporters is important to get insight of the basic cellular processes, physiology, and molecular mechanisms including nutrient uptake, signaling, response to external stress, and many more. In this regard, extensive analysis of transporters predicted in soybean and other plant species was performed. In addition, an integrated database for soybean transporter protein, SoyTD, was developed that will facilitate the identification, classification, and extensive characterization of transporter proteins by integrating expression, gene ontology, conserved domain and motifs, gene structure organization, and chromosomal distribution features. A comprehensive analysis was performed to identify highly confident transporters by integrating various prediction tools. Initially, 7541 transmembrane (TM) proteins were predicted in the soybean genome; out of these, 3306 non-redundant transporter genes carrying two or more transmembrane domains were selected for further analysis. The identified transporter genes were classified according to a standard transporter classification (TC) system. Comparative analysis of transporter genes among 47 plant genomes provided insights into expansion and duplication of transporter genes in land plants. The whole genome resequencing (WGRS) and tissue-specific transcriptome datasets of soybean were integrated to investigate the natural variants and expression profile associated with transporter(s) of interest. Overall, SoyTD provides a comprehensive interface to study genetic and molecular function of soybean transporters. SoyTD is publicly available at http://artemis.cyverse.org/soykb_dev/SoyTD/.
Collapse
Affiliation(s)
- Rupesh Deshmukh
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Nitika Rana
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Yang Liu
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, Missouri, USA
| | - Shuai Zeng
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, Missouri, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Gaurav Agarwal
- Department of Plant Pathology, University of Georgia, Tifton, Georgia, USA
| | - Humira Sonah
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rajeev Varshney
- Center of Excellence in Genomics and System Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Trupti Joshi
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, Missouri, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Gunvant B Patil
- Department of Plant and Soil Sciences, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, USA
| | - Henry T Nguyen
- Division of Plant Science, National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
23
|
Kumar S, Singhal A, Narang U, Mishra S, Kumari P. Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Curr Med Chem 2021; 27:6015-6056. [PMID: 30585536 DOI: 10.2174/0929867326666181224143734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Nanotechnology offers promising tools in interdisciplinary research areas and getting an upsurge of interest in cancer therapeutics. Organic nanomaterials and inorganic nanomaterials bring revolutionary advancement in cancer eradication process. Oncology is achieving new heights under nano technological platform by expediting chemotherapy, radiotherapy, photo thermodynamic therapy, bio imaging and gene therapy. Various nanovectors have been developed for targeted therapy which acts as "Nano-bullets" for tumor cells selectively. Recently combinational therapies are catching more attention due to their enhanced effect leading towards the use of combined organicinorganic nano platforms. The current review covers organic, inorganic and their hybrid nanomaterials for various therapeutic action. The technological aspect of this review emphasizes on the use of inorganic-organic hybrids and combinational therapies for better results and also explores the future opportunities in this field.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, India,Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Anchal Singhal
- Department of chemistry, St. Joseph College, Banglore, India
| | - Uma Narang
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Sweta Mishra
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| |
Collapse
|
24
|
Hu AY, Xu SN, Qin DN, Li W, Zhao XQ. Role of Silicon in Mediating Phosphorus Imbalance in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 10:E51. [PMID: 33383611 PMCID: PMC7824163 DOI: 10.3390/plants10010051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 11/16/2022]
Abstract
The soil bioavailability of phosphorus (P) is often low because of its poor solubility, strong sorption and slow diffusion in most soils; however, stress due to excess soil P can occur in greenhouse production systems subjected to high levels of P fertilizer. Silicon (Si) is a beneficial element that can alleviate multiple biotic and abiotic stresses. Although numerous studies have investigated the effects of Si on P nutrition, a comprehensive review has not been published. Accordingly, here we review: (1) the Si uptake, transport and accumulation in various plant species; (2) the roles of phosphate transporters in P acquisition, mobilization, re-utilization and homeostasis; (3) the beneficial role of Si in improving P nutrition under P deficiency; and (4) the regulatory function of Si in decreasing P uptake under excess P. The results of the reviewed studies suggest the important role of Si in mediating P imbalance in plants. We also present a schematic model to explain underlying mechanisms responsible for the beneficial impact of Si on plant adaption to P-imbalance stress. Finally, we highlight the importance of future investigations aimed at revealing the role of Si in regulating P imbalance in plants, both at deeper molecular and broader field levels.
Collapse
Affiliation(s)
- An Yong Hu
- School of Geographical Science, Nantong University, Nantong 226019, China; (A.Y.H.); (S.N.X.); (D.N.Q.); (W.L.)
| | - Shu Nan Xu
- School of Geographical Science, Nantong University, Nantong 226019, China; (A.Y.H.); (S.N.X.); (D.N.Q.); (W.L.)
| | - Dong Ni Qin
- School of Geographical Science, Nantong University, Nantong 226019, China; (A.Y.H.); (S.N.X.); (D.N.Q.); (W.L.)
| | - Wen Li
- School of Geographical Science, Nantong University, Nantong 226019, China; (A.Y.H.); (S.N.X.); (D.N.Q.); (W.L.)
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Ahanger MA, Bhat JA, Siddiqui MH, Rinklebe J, Ahmad P. Integration of silicon and secondary metabolites in plants: a significant association in stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6758-6774. [PMID: 32585681 DOI: 10.1093/jxb/eraa291] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/16/2020] [Indexed: 05/03/2023]
Abstract
As sessile organisms, plants are unable to avoid being subjected to environmental stresses that negatively affect their growth and productivity. Instead, they utilize various mechanisms at the morphological, physiological, and biochemical levels to alleviate the deleterious effects of such stresses. Amongst these, secondary metabolites produced by plants represent an important component of the defense system. Secondary metabolites, namely phenolics, terpenes, and nitrogen-containing compounds, have been extensively demonstrated to protect plants against multiple stresses, both biotic (herbivores and pathogenic microorganisms) and abiotic (e.g. drought, salinity, and heavy metals). The regulation of secondary metabolism by beneficial elements such as silicon (Si) is an important topic. Silicon-mediated alleviation of both biotic and abiotic stresses has been well documented in numerous plant species. Recently, many studies have demonstrated the involvement of Si in strengthening stress tolerance through the modulation of secondary metabolism. In this review, we discuss Si-mediated regulation of the synthesis, metabolism, and modification of secondary metabolites that lead to enhanced stress tolerance, with a focus on physiological, biochemical, and molecular aspects. Whilst mechanisms involved in Si-mediated regulation of pathogen resistance via secondary metabolism have been established in plants, they are largely unknown in the case of abiotic stresses, thus leaving an important gap in our current knowledge.
Collapse
Affiliation(s)
| | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Manzer H Siddiqui
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal, Germany
- Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| |
Collapse
|
26
|
Ligaba-Osena A, Guo W, Choi SC, Limmer MA, Seyfferth AL, Hankoua BB. Silicon Enhances Biomass and Grain Yield in an Ancient Crop Tef [ Eragrostis tef (Zucc.) Trotter]. FRONTIERS IN PLANT SCIENCE 2020; 11:608503. [PMID: 33329679 PMCID: PMC7732538 DOI: 10.3389/fpls.2020.608503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Silicon (Si) is one of the beneficial plant mineral nutrients which is known to improve biotic and abiotic stress resilience and productivity in several crops. However, its beneficial role in underutilized or "orphan" crop such as tef [Eragrostis tef (Zucc.) Trotter] has never been studied before. In this study, we investigated the effect of Si application on tef plant performance. Plants were grown in soil with or without exogenous application of Na2SiO3 (0, 1.0, 2.0, 3.0, 4.0, and 5.0 mM), and biomass and grain yield, mineral content, chlorophyll content, plant height, and expression patterns of putative Si transporter genes were studied. Silicon application significantly increased grain yield (100%) at 3.0 mM Si, and aboveground biomass yield by 45% at 5.0 mM Si, while it had no effect on plant height. The observed increase in grain yield appears to be due to enhanced stress resilience and increased total chlorophyll content. Increasing the level of Si increased shoot Si and Na content while it significantly decreased the content of other minerals including K, Ca, Mg, P, S, Fe, and Mn in the shoot, which is likely due to the use of Na containing Si amendment. A slight decrease in grain Ca, P, S, and Mn was also observed with increasing Si treatment. The increase in Si content with increasing Si levels prompted us to analyze the expression of Si transporter genes. The tef genome contains seven putative Si transporters which showed high homology with influx and efflux Lsi transporters reported in various plant species including rice. The tef Lsi homologs were deferentially expressed between tissues (roots, leaves, nodes, and inflorescences) and in response to Si, suggesting that they may play a role in Si uptake and/or translocation. Taken together, these results show that Si application improves stress resilience and yield and regulates the expression of putative Si transporter genes. However, further study is needed to determine the physiological function of the putative Si transporters, and to study the effect of field application of Si on tef productivity.
Collapse
Affiliation(s)
- Ayalew Ligaba-Osena
- Laboratory of Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Wanli Guo
- Laboratory of Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
- Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sang Chul Choi
- Laboratory of Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Matthew Alan Limmer
- Department of Plant and Soil Sciences, The University of Delaware, Newark, DE, United States
| | - Angelia L. Seyfferth
- Department of Plant and Soil Sciences, The University of Delaware, Newark, DE, United States
| | - Bertrand B. Hankoua
- Plant Biotechnology Lab, Department of Agriculture and Natural Resources, College of Agriculture, Sciences and Technology, Delaware State University, Dover, DE, United States
| |
Collapse
|
27
|
Nawaz MA, Azeem F, Zakharenko AM, Lin X, Atif RM, Baloch FS, Chan TF, Chung G, Ham J, Sun S, Golokhvast KS. In-silico Exploration of Channel Type and Efflux Silicon Transporters and Silicification Proteins in 80 Sequenced Viridiplantae Genomes. PLANTS 2020; 9:plants9111612. [PMID: 33233677 PMCID: PMC7709012 DOI: 10.3390/plants9111612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
Silicon (Si) accumulation protects plants from biotic and abiotic stresses. It is transported and distributed within the plant body through a cooperative system of channel type (e.g., OsLsi1) and efflux (Lsi2s e.g., OsLsi2) Si transporters (SITs) that belong to Noduline-26 like intrinsic protein family of aquaporins and an uncharacterized anion transporter family, respectively. Si is deposited in plant tissues as phytoliths and the process is known as biosilicification but the knowledge about the proteins involved in this process is limited. In the present study, we explored channel type SITs and Lsi2s, and siliplant1 protein (Slp1) in 80 green plant species. We found 80 channel type SITs and 133 Lsi2s. The channel type SITs characterized by the presence of two NPA motifs, GSGR or STAR selectivity filter, and 108 amino acids between two NPA motifs were absent from Chlorophytes, while Streptophytes evolved two different types of channel type SITs with different selectivity filters. Both channel type SITs and Lsi2s evolved two types of gene structures each, however, Lsi2s are ancient and were also found in Chlorophyta. Homologs of Slp1 (225) were present in almost all Streptophytes regardless of their Si accumulation capacity. In Si accumulator plant species, the Slp1s were characterized by the presence of H, D-rich domain, P, K, E-rich domain, and P, T, Y-rich domain, while moderate Si accumulators lacked H, D-rich domain and P, T, Y-rich domains. The digital expression analysis and coexpression networks highlighted the role of channel type and Lsi2s, and how Slp1 homologs were ameliorating plants’ ability to withstand different stresses by co-expressing with genes related to structural integrity and signaling. Together, the in-silico exploration made in this study increases our knowledge of the process of biosilicification in plants.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Laboratory of Bio-Economics and Biotechnology, Department of Bio-Economics and Food Safety, School of Economics and Management, Far Eastern Federal University, 690950 Vladivostok, Russia;
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | | | - Xiao Lin
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong SAR, Hong Kong 999077, China; (X.L.); (T.-F.C.)
| | - Rana Muhammad Atif
- US-Pakistan Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Turkey;
| | - Ting-Fung Chan
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong SAR, Hong Kong 999077, China; (X.L.); (T.-F.C.)
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea;
| | - Junghee Ham
- Department of Health Policy and Management, Wonkwang University, Iksan, Jeonbuk 54538, Korea;
| | - Sangmi Sun
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea;
- Correspondence: (S.S.); (K.S.G.)
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 42, 44 Bolshaya Morskaya Street, 190000 St. Petersburg, Russia;
- Education and Scientific Center of Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia
- Pacific Geographical Institute, FEB RAS, 7 Radio street, 690014 Vladivostok, Russia
- Correspondence: (S.S.); (K.S.G.)
| |
Collapse
|
28
|
Gaur S, Kumar J, Kumar D, Chauhan DK, Prasad SM, Srivastava PK. Fascinating impact of silicon and silicon transporters in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110885. [PMID: 32650140 DOI: 10.1016/j.ecoenv.2020.110885] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 05/06/2023]
Abstract
Silicon (Si) is a metalloid which is gaining worldwide attention of plant scientists due to its ameliorating impact on plants' growth and development. The beneficial response of Si is observed predominantly under numerous abiotic and biotic stress conditions. However, under favorable conditions, most of the plant can grow without it. Therefore, Si has yet not been fully accepted as essential element rather it is being considered as quasi-essential for plants' growth. Si is also known to enhance resilience in plants by reducing the plant's stress. Besides its second most abundance on the earth crust, most of the soils lack plant available form of Si i.e. silicic acid. In this regard, understanding the role of Si in plant metabolism, its uptake from roots and transport to aerial tissues along with its ionomics and proteomics under different circumstances is of great concern. Plants have evolved a well-optimized Si-transport system including various transporter proteins like Low silicon1 (Lsi1), Low silicon2 (Lsi2), Low silicon3 (Lsi3) and Low silicon6 (Lsi6) at specific sub-cellular locations along with the expression profiling that creates precisely coordinated network among these transporters, which also facilitate uptake and accumulation of Si. Though, an ample amount of information is available pertinent to the solute specificity, active sites, transcriptional and post-transcriptional regulation of these transporter genes. Similarly, the information regarding transporters involved in Si accumulation in different organelles is also available particularly in silica cells occurred in poales. But in this review, we have attempted to compile studies related to plants vis à vis Si, its role in abiotic and biotic stress, its uptake in various parts of plants via different types of Si-transporters, expression pattern, localization and the solute specificity. Besides these, this review will also provide the compiled knowledge about the genetic variation among crop plants vis à vis enhanced Si uptake and related benefits.
Collapse
Affiliation(s)
- Shweta Gaur
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India.
| | - Jitendra Kumar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India; Institute of Engineering and Technology, Dr. Shakuntla Misra National Rehabilitation University, Mohaan Road, Lucknow, U.P, 226017, India.
| | - Dharmendra Kumar
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India
| | - Devendra Kumar Chauhan
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India.
| | - Prabhat Kumar Srivastava
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, U.P, 211002, India; Department of Botany, KS Saket PG College, Ayodhya U.P, 224123., India.
| |
Collapse
|
29
|
Thorne SJ, Hartley SE, Maathuis FJM. Is Silicon a Panacea for Alleviating Drought and Salt Stress in Crops? FRONTIERS IN PLANT SCIENCE 2020; 11:1221. [PMID: 32973824 PMCID: PMC7461962 DOI: 10.3389/fpls.2020.01221] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/27/2020] [Indexed: 05/04/2023]
Abstract
Salinity affects around 20% of all arable land while an even larger area suffers from recurrent drought. Together these stresses suppress global crop production by as much as 50% and their impacts are predicted to be exacerbated by climate change. Infrastructure and management practices can mitigate these detrimental impacts, but are costly. Crop breeding for improved tolerance has had some success but is progressing slowly and is not keeping pace with climate change. In contrast, Silicon (Si) is known to improve plant tolerance to a range of stresses and could provide a sustainable, rapid and cost-effective mitigation method. The exact mechanisms are still under debate but it appears Si can relieve salt stress via accumulation in the root apoplast where it reduces "bypass flow of ions to the shoot. Si-dependent drought relief has been linked to lowered root hydraulic conductance and reduction of water loss through transpiration. However, many alternative mechanisms may play a role such as altered gene expression and increased accumulation of compatible solutes. Oxidative damage that occurs under stress conditions can be reduced by Si through increased antioxidative enzymes while Si-improved photosynthesis has also been reported. Si fertilizer can be produced relatively cheaply and to assess its economic viability to improve crop stress tolerance we present a cost-benefit analysis. It suggests that Si fertilization may be beneficial in many agronomic settings but may be beyond the means of smallholder farmers in developing countries. Si application may also have disadvantages, such as increased soil pH, less efficient conversion of crops into biofuel and reduced digestibility of animal fodder. These issues may hamper uptake of Si fertilization as a routine agronomic practice. Here, we critically evaluate recent literature, quantifying the most significant physiological changes associated with Si in plants under drought and salinity stress. Analyses show that metrics associated with photosynthesis, water balance and oxidative stress all improve when Si is present during plant exposure to salinity and drought. We further conclude that most of these changes can be explained by apoplastic roles of Si while there is as yet little evidence to support biochemical roles of this element.
Collapse
Affiliation(s)
- Sarah J. Thorne
- Department of Biology, University of York, York, United Kingdom
| | - Susan E. Hartley
- Department of Biology, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
30
|
Singh S, Bhatt V, Kumar V, Kumawat S, Khatri P, Singla P, Shivaraj S, Nadaf A, Deshmukh R, Sharma TR, Sonah H. Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea. PLANTS 2020; 9:plants9060799. [PMID: 32604788 PMCID: PMC7355465 DOI: 10.3390/plants9060799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2023]
Abstract
Aquaporins (AQPs) play a pivotal role in the cellular transport of water and many other small solutes, influencing many physiological and developmental processes in plants. In the present study, extensive bioinformatics analysis of AQPs was performed in Aquilegia coerulea L., a model species belonging to basal eudicots, with a particular focus on understanding the AQPs role in the developing petal nectar spur. A total of 29 AQPs were identified in Aquilegia, and their phylogenetic analysis performed with previously reported AQPs from rice, poplar and Arabidopsis depicted five distinct subfamilies of AQPs. Interestingly, comparative analysis revealed the loss of an uncharacterized intrinsic protein II (XIP-II) group in Aquilegia. The absence of the entire XIP subfamily has been reported in several previous studies, however, the loss of a single clade within the XIP family has not been characterized. Furthermore, protein structure analysis of AQPs was performed to understand pore diversity, which is helpful for the prediction of solute specificity. Similarly, an AQP AqcNIP2-1 was identified in Aquilegia, predicted as a silicon influx transporter based on the presence of features such as the G-S-G-R aromatic arginine selectivity filter, the spacing between asparagine-proline-alanine (NPA) motifs and pore morphology. RNA-seq analysis showed a high expression of tonoplast intrinsic proteins (TIPs) and plasma membrane intrinsic proteins (PIPs) in the developing petal spur. The results presented here will be helpful in understanding the AQP evolution in Aquilegia and their expression regulation, particularly during floral development.
Collapse
Affiliation(s)
- Shweta Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - Vacha Bhatt
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra 411007, India; (V.B.); (A.N.)
| | - Virender Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Praveen Khatri
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - Pankaj Singla
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - S.M. Shivaraj
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - Altaf Nadaf
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra 411007, India; (V.B.); (A.N.)
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi 110001, India
- Correspondence: (T.R.S.); (H.S.); Tel.: +91-172-522-1181 (H.S.)
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
- Correspondence: (T.R.S.); (H.S.); Tel.: +91-172-522-1181 (H.S.)
| |
Collapse
|
31
|
Al Murad M, Khan AL, Muneer S. Silicon in Horticultural Crops: Cross-talk, Signaling, and Tolerance Mechanism under Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:E460. [PMID: 32268477 PMCID: PMC7238200 DOI: 10.3390/plants9040460] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 11/24/2022]
Abstract
Agricultural land is extensively affected by salinity stress either due to natural phenomena or by agricultural practices. Saline stress possesses two major threats to crop growth: osmotic stress and oxidative stress. The response of these changes is often accompanied by variety of symptoms, such as the decrease in leaf area and internode length and increase in leaf thickness and succulence, abscission of leaves, and necrosis of root and shoot. Salinity also delays the potential physiological activities, such as photosynthesis, transpiration, phytohormonal functions, metabolic pathways, and gene/protein functions. However, crops in response to salinity stress adopt counter cascade mechanisms to tackle salinity stress incursion, whilst continuous exposure to saline stress overcomes the defense mechanism system which results in cell death and compromises the function of essential organelles in crops. To overcome the salinity, a large number of studies have been conducted on silicon (Si); one of the beneficial elements in the Earth's crust. Si application has been found to mitigate salinity stress and improve plant growth and development, involving signaling transduction pathways of various organelles and other molecular mechanisms. A large number of studies have been conducted on several agricultural crops, whereas limited information is available on horticultural crops. In the present review article, we have summarized the potential role of Si in mitigating salinity stress in horticultural crops and possible mechanism of Si-associated improvements in them. The present review also scrutinizes the need of future research to evaluate the role of Si and gaps to saline stress in horticultural crops for their improvement.
Collapse
Affiliation(s)
- Musa Al Murad
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil Nadu 632014, India;
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil Nadu 632014, India;
| |
Collapse
|
32
|
Bokor B, Soukup M, Vaculík M, Vd’ačný P, Weidinger M, Lichtscheidl I, Vávrová S, Šoltys K, Sonah H, Deshmukh R, Bélanger RR, White PJ, El-Serehy HA, Lux A. Silicon Uptake and Localisation in Date Palm ( Phoenix dactylifera) - A Unique Association With Sclerenchyma. FRONTIERS IN PLANT SCIENCE 2019; 10:988. [PMID: 31456812 PMCID: PMC6701203 DOI: 10.3389/fpls.2019.00988] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/12/2019] [Indexed: 05/20/2023]
Abstract
Date palm (Phoenix dactylifera) can accumulate as much as 1% silicon (Si), but not much is known about the mechanisms inherent to this process. Here, we investigated in detail the uptake, accumulation and distribution of Si in date palms, and the phylogeny of Si transporter genes in plants. We characterized the PdNIP2 transporter following heterologous expression in Xenopus oocytes and used qPCR to determine the relative expression of Si transporter genes. Silicon accumulation and distribution was investigated by light microscopy, scanning electron microscopy coupled with X-ray microanalysis and Raman microspectroscopy. We proved that PdNIP2-1 codes for a functional Si-permeable protein and demonstrated that PdNIP2 transporter genes were constitutively expressed in date palm. Silicon aggregates/phytoliths were found in specific stegmata cells present in roots, stems and leaves and their surfaces were composed of pure silica. Stegmata were organized on the outer surface of the sclerenchyma bundles or associated with the sclerenchyma of the vascular bundles. Phylogenetic analysis clustered NIP2 transporters of the Arecaceae in a sister position to those of the Poaceae. It is suggested, that Si uptake in date palm is mediated by a constitutively expressed Si influx transporter and accumulated as Si aggregates in stegmata cells abundant in the outer surface of the sclerenchyma bundles (fibers).
Collapse
Affiliation(s)
- Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Bratislava, Slovakia
| | - Milan Soukup
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Vd’ačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Marieluise Weidinger
- Core Facility of Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Irene Lichtscheidl
- Core Facility of Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Silvia Vávrová
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarína Šoltys
- Comenius University Science Park, Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Humira Sonah
- Department of Plant Science, Université Laval, Quebec, QC, Canada
| | - Rupesh Deshmukh
- Department of Plant Science, Université Laval, Quebec, QC, Canada
| | | | - Philip J. White
- The James Hutton Institute, Dundee, United Kingdom
- Distinguished Scientist Fellowship Program, King Saud University, Riyadh, Saudi Arabia
| | - Hamed A. El-Serehy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Bratislava, Slovakia
| |
Collapse
|
33
|
Nawaz MA, Zakharenko AM, Zemchenko IV, Haider MS, Ali MA, Imtiaz M, Chung G, Tsatsakis A, Sun S, Golokhvast KS. Phytolith Formation in Plants: From Soil to Cell. PLANTS (BASEL, SWITZERLAND) 2019; 8:E249. [PMID: 31357485 PMCID: PMC6724085 DOI: 10.3390/plants8080249] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/19/2023]
Abstract
Silica is deposited extra- and intracellularly in plants in solid form, as phytoliths. Phytoliths have emerged as accepted taxonomic tools and proxies for reconstructing ancient flora, agricultural economies, environment, and climate. The discovery of silicon transporter genes has aided in the understanding of the mechanism of silicon transport and deposition within the plant body and reconstructing plant phylogeny that is based on the ability of plants to accumulate silica. However, a precise understanding of the process of silica deposition and the formation of phytoliths is still an enigma and the information regarding the proteins that are involved in plant biosilicification is still scarce. With the observation of various shapes and morphologies of phytoliths, it is essential to understand which factors control this mechanism. During the last two decades, significant research has been done in this regard and silicon research has expanded as an Earth-life science superdiscipline. We review and integrate the recent knowledge and concepts on the uptake and transport of silica and its deposition as phytoliths in plants. We also discuss how different factors define the shape, size, and chemistry of the phytoliths and how biosilicification evolved in plants. The role of channel-type and efflux silicon transporters, proline-rich proteins, and siliplant1 protein in transport and deposition of silica is presented. The role of phytoliths against biotic and abiotic stress, as mechanical barriers, and their use as taxonomic tools and proxies, is highlighted.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Education and Scientific Center of Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia
| | | | | | - Muhammad Sajjad Haider
- Department of Forestry, College of Agriculture, University of Sargodha, 40100 Sargodha, Pakistan
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, 38040 Faisalabad, Pakistan
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, 38040 Faisalabad, Pakistan
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, 38040 Faisalabad, Pakistan
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, 59626 Yeosu-Si, Korea
| | - Aristides Tsatsakis
- Department of Toxicology and Forensics, School of Medicine, University of Crete, Heraklion GR-71003, Crete, Greece
| | - Sangmi Sun
- Department of Biotechnology, Chonnam National University, 59626 Yeosu-Si, Korea.
| | - Kirill Sergeyevich Golokhvast
- Education and Scientific Center of Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia.
- Pacific Geographical Institute, FEB RAS, 7 Radio street, Vladivostok 690014, Russia.
| |
Collapse
|
34
|
Role of Silicon in Mediating Salt Tolerance in Plants: A Review. PLANTS 2019; 8:plants8060147. [PMID: 31159197 PMCID: PMC6630593 DOI: 10.3390/plants8060147] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
Salt stress is a major threat for plant growth worldwide. The regulatory mechanisms of silicon in alleviating salt stress have been widely studied using physiological, molecular genetics, and genomic approaches. Recently, progresses have been made in elucidating the alleviative effects of silicon in salt-induced osmotic stress, Na toxicity, and oxidative stress. In this review, we highlight recent development on the impact of silicon application on salt stress responses. Emphasis will be given to the following aspects. (1) Silicon transporters have been experimentally identified in different plant species and their structure feature could be an important molecular basis for silicon permeability. (2) Silicon could mediate salt-induced ion imbalance by (i) regulating Na+ uptake, transport, and distribution and (ii) regulating polyamine levels. (3) Si-mediated upregulation of aquaporin gene expression and osmotic adjustment play important roles in alleviating salinity-induced osmotic stress. (4) Silicon application direct/indirectly mitigates oxidative stress via regulating the antioxidant defense and polyamine metabolism. (5) Omics studies reveal that silicon could regulate plants' response to salt stress by modulating the expression of various genes including transcription factors and hormone-related genes. Finally, research areas that require further investigation to provide a deeper understanding of the role of silicon in plants are highlighted.
Collapse
|
35
|
Kaur H, Greger M. A Review on Si Uptake and Transport System. PLANTS (BASEL, SWITZERLAND) 2019; 8:E81. [PMID: 30934978 PMCID: PMC6524041 DOI: 10.3390/plants8040081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Silicon (Si) was long listed as a non-essential component for plant growth and development because of its universal availability. However, there has been a resurgence of interest in studying the underlying uptake and transport mechanism of silicon in plants because of the reported dynamic role of silicon in plants under stressed environmental conditions. This uptake and transport mechanism is greatly dependent upon the uptake ability of the plant's roots. Plant roots absorb Si in the form of silicic acid from the soil solution, and it is moved through different parts of the plant using various influx and efflux transporters. Both these influx and efflux transporters are mostly found in the plasma membrane; however, their location and pattern of expression varies among different plants. The assessment of these features provides a new understanding of different species-dependent Si accumulations, which have been studied in monocots but are poorly understood in other plant groups. Therefore, the present review provides insight into the most recent research exploring the use of Si transporters in angiosperms and cryptogams. This paper presents an extensive representation of data from different families of angiosperms, including monocots and eudicots. Eudicots (previously referred to as dicots) have often been neglected in the literature, because they are categorized as low/intermediate Si accumulators. However, in this review, we attempt to highlight the accumulating species of different plant groups in which Si uptake is mediated through transporters.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Ecology, Environment and Plant Sciences Stockholm University, 10691 Stockholm, Sweden.
| | - Maria Greger
- Department of Ecology, Environment and Plant Sciences Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
36
|
Zargar SM, Mahajan R, Bhat JA, Nazir M, Deshmukh R. Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech 2019; 9:73. [PMID: 30800584 PMCID: PMC6368905 DOI: 10.1007/s13205-019-1613-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/02/2019] [Indexed: 10/27/2022] Open
Abstract
Silicon (Si) being considered as a non-essential element for plant growth and development finds its role in providing several benefits to the plant, especially under stress conditions. Thus, Si can be regarded as "multi-talented" quasi-essential element. It is the most abundant element present in the earth's crust after oxygen predominantly as a silicon dioxide (SiO2), a form plants cannot utilize. Plants take up Si into their root from the soil in the plant-available forms (PAF) such as silicic acid or mono silicic acid [Si(OH)4 or H4SiO4]. Nevertheless, besides being abundantly available, the PAF of Si in the soil is mostly a limiting factor. To improve Si-uptake and derived benefits therein in plants, understanding the molecular basis of Si-uptake and transport within the tissues has great importance. Numerous Si-transporters (influx and efflux) have been identified in both monocot and dicot plants. A difference in the root anatomy of both monocot and dicot plants leads to a difference in the Si-uptake mechanism. In the present review, Si-transporters identified in different species, their evolution and the Si-uptake mechanism have been addressed. Further, the role of Si in biotic and abiotic stress tolerance has been discussed. The information provided here will help to plan the research in a better way to develop more sustainable cropping system by harnessing Si-derived benefits.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, J&K 190025 India
| | - Reetika Mahajan
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, J&K 180009 India
| | - Javaid A. Bhat
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, J&K 180009 India
| | - Muslima Nazir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, J&K 190025 India
| | - Rupesh Deshmukh
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab India
| |
Collapse
|
37
|
Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR. The controversies of silicon's role in plant biology. THE NEW PHYTOLOGIST 2019; 221:67-85. [PMID: 30007071 DOI: 10.1111/nph.15343] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/05/2018] [Indexed: 05/21/2023]
Abstract
Contents Summary 67 I. Introduction 68 II. Silicon transport in plants: to absorb or not to absorb 69 III. The role of silicon in plants: not just a matter of semantics 71 IV. Silicon and biotic stress: beyond mechanical barriers and defense priming 76 V. Silicon and abiotic stress: a proliferation of proposed mechanisms 78 VI. The apoplastic obstruction hypothesis: a working model 79 VII. Perspectives and conclusions 80 Acknowledgements 81 References 81 SUMMARY: Silicon (Si) is not classified as an essential plant nutrient, and yet numerous reports have shown its beneficial effects in a variety of species and environmental circumstances. This has created much confusion in the scientific community with respect to its biological roles. Here, we link molecular and phenotypic data to better classify Si transport, and critically summarize the current state of understanding of the roles of Si in higher plants. We argue that much of the empirical evidence, in particular that derived from recent functional genomics, is at odds with many of the mechanistic assertions surrounding Si's role. In essence, these data do not support reports that Si affects a wide range of molecular-genetic, biochemical and physiological processes. A major reinterpretation of Si's role is therefore needed, which is critical to guide future studies and inform agricultural practice. We propose a working model, which we term the 'apoplastic obstruction hypothesis', which attempts to unify the various observations on Si's beneficial influences on plant growth and yield. This model argues for a fundamental role of Si as an extracellular prophylactic agent against biotic and abiotic stresses (as opposed to an active cellular agent), with important cascading effects on plant form and function.
Collapse
Affiliation(s)
- Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Rupesh Deshmukh
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Humira Sonah
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - James G Menzies
- Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Olivia Reynolds
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
- Graham Centre for Agricultural Innovation, Wagga Wagga, NSW, 2650, Australia
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Vic., 3010, Australia
| | - Richard R Bélanger
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
38
|
Wiche O, Székely B, Moschner C, Heilmeier H. Germanium in the soil-plant system-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31938-31956. [PMID: 30218330 DOI: 10.1007/s11356-018-3172-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/06/2018] [Indexed: 04/15/2023]
Abstract
Germanium (Ge) is widespread in the Earth's crust. As a cognate element to silicon (Si), Ge shows very similar chemical characteristics. Recent use of Ge/Si to trace Si cycles and changes in weathering over time, growing demand for Ge as raw material, and consequently an increasing interest in Ge phytomining have contributed to a growing interest in this previously rather scarcely considered element in geochemical studies. This review deals with the distribution of Ge in primary minerals and surface soils as well as the factors influencing the mobility of Ge in soils including the sequestration of Ge in secondary mineral phases and soil organic matter. Furthermore, the uptake and accumulation of Ge in plants and effects of plant-soil relationships on the availability of Ge in soils and the biogeochemical cycling of Ge are discussed. The formation of secondary soil minerals and soil organic matter are of particular importance for the concentration of Ge in plant-available forms. The transfer from soil to plant is usually low and shows clear differences between species belonging to the functional groups of grasses and forbs. Possible uptake mechanisms in the rhizosphere are discussed. However, the processes that are involved in the formation of plant-available Ge pools in soils and consequently its biogeochemical cycling are not yet well understood. There is, therefore, a need for future studies on the uptake mechanisms and stoichiometry of Ge uptake under field conditions and plant-soil-microbe interactions in the rhizosphere as well as the chemical speciation in different plant parts.
Collapse
Affiliation(s)
- Oliver Wiche
- Institute for Biosciences, Biology/Ecology Group, TU Bergakademie Freiberg, Freiberg, Germany.
- Interdisciplinary Environmental Centre, TU Bergakademie Freiberg, Freiberg, Germany.
| | - Balázs Székely
- Interdisciplinary Environmental Centre, TU Bergakademie Freiberg, Freiberg, Germany
- Department of Geophysics and Space Science, Eötvös University, Budapest, Hungary
- Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria
| | - Christin Moschner
- Institute for Biosciences, Biology/Ecology Group, TU Bergakademie Freiberg, Freiberg, Germany
| | - Hermann Heilmeier
- Institute for Biosciences, Biology/Ecology Group, TU Bergakademie Freiberg, Freiberg, Germany
- Interdisciplinary Environmental Centre, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
39
|
Pekmezci E, Dundar C, Turkoglu M. Proprietary Herbal Extract Downregulates the Gene Expression of IL-1α in HaCaT Cells: Possible Implications Against Nonscarring Alopecia. ACTA ACUST UNITED AC 2018; 72:136-140. [PMID: 30302033 PMCID: PMC6126931 DOI: 10.5455/medarh.2018.72.136-140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Currently while, topical minoxidil and oral finasteride are the only medications approved in androgenetic alopecia (AGA), the cause oriented treatment and immunsupressive treatment are being performed in telogen effluvium (TE) and alopecia areata (AA) respectively. Considering the inflammatory factors in the pathogenesis of these three nonscarring alopecia forms, we have formulated a mixture for topical usage composed of six different herbal extracts (HE) which have already known antiinflammatory and antioxidant features. Materials and Methods In addition to performing the phytochemical analysis of HE, we detected the gene expression level of IL-1α, the crucial hair loss mediator, for the putative efficacy in nonscarring alopecia. Cell proliferation assay was performed by XTT reagent. After determination of non-cytotoxic concentration, HaCaT cells were treated with HE. RNA isolations were carried out from both non-treated and treated cell groups by using TRI-reagent. Gene expressions of IL-1α and as control GAPDH were determined by RT-qPCR analysis. Results Results were represented as “IL-1α/GAPDH Fold Change”. HE solution caused statistically significant downregulation of IL-1α gene expressions (p<0.0001), compared to untreated control cells. HE treatment ended up with 0.1900 fold change for IL-1α. Conclusion IL-1α is a direct growth inhibitory agent in hair follicles and an important actor in the pathogenesis of AGA , TE, and AA. Considering together the vitamins, flavonoids, and trace elements identified in the phytochemical analyses and downregulation of IL-1α in HaCaT cells, our HE may be an auxiliary agent in the therapy of these three nonscarring alopecia forms.
Collapse
Affiliation(s)
- Erkin Pekmezci
- Department of Dermatology, Gozde Hospital, Malatya, Turkey
| | - Cihat Dundar
- Biota Laboratories, R&D Center, Sancaktepe, Istanbul, Turkey
| | - Murat Turkoglu
- Biota Laboratories, R&D Center, Sancaktepe, Istanbul, Turkey
| |
Collapse
|
40
|
Genome-Wide Identification and Characterization of Aquaporins and Their Role in the Flower Opening Processes in Carnation ( Dianthus caryophyllus). Molecules 2018; 23:molecules23081895. [PMID: 30060619 PMCID: PMC6222698 DOI: 10.3390/molecules23081895] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Aquaporins (AQPs) are associated with the transport of water and other small solutes across biological membranes. Genome-wide identification and characterization will pave the way for further insights into the AQPs’ roles in the commercial carnation (Dianthus caryophyllus). This study focuses on the analysis of AQPs in carnation (DcaAQPs) involved in flower opening processes. Thirty DcaAQPs were identified and grouped to five subfamilies: nine PIPs, 11 TIPs, six NIPs, three SIPs, and one XIP. Subsequently, gene structure, protein motifs, and co-expression network of DcaAQPs were analyzed and substrate specificity of DcaAQPs was predicted. qRT-PCR, RNA-seq, and semi-qRTRCR were used for DcaAQP genes expression analysis. The analysis results indicated that DcaAQPs were relatively conserved in gene structure and protein motifs, that DcaAQPs had significant differences in substrate specificity among different subfamilies, and that DcaAQP genes’ expressions were significantly different in roots, stems, leaves and flowers. Five DcaAQP genes (DcaPIP1;3, DcaPIP2;2, DcaPIP2;5, DcaTIP1;4, and DcaTIP2;2) might play important roles in flower opening process. However, the roles they play are different in flower organs, namely, sepals, petals, stamens, and pistils. Overall, this study provides a theoretical basis for further functional analysis of DcaAQPs.
Collapse
|
41
|
Garneau AP, Marcoux A, Frenette‐Cotton R, Bélanger R, Isenring P. A new gold standard approach to characterize the transport of Si across cell membranes in animals. J Cell Physiol 2018; 233:6369-6376. [DOI: 10.1002/jcp.26476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Alexandre P. Garneau
- The Nephrology Research Group, Department of Medicine Laval University Québec Canada
- Cardiometabolic Research Group, Department of Kinesiology University of Montréal Montreal Canada
| | - Andrée‐Anne Marcoux
- The Nephrology Research Group, Department of Medicine Laval University Québec Canada
| | | | - Richard Bélanger
- Horticulture Research Group, Phytology Department Laval University, Pavillon Paul‐Comtois Québec Canada
| | - Paul Isenring
- The Nephrology Research Group, Department of Medicine Laval University Québec Canada
| |
Collapse
|
42
|
Pekmezci E, Dündar C, Türkoğlu M. A proprietary herbal extract against hair loss in androgenetic alopecia and telogen effluvium: a placebo-controlled, single-blind, clinical-instrumental study. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2018. [DOI: 10.15570/actaapa.2018.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Sonah H, Deshmukh RK, Labbé C, Bélanger RR. Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Sci Rep 2017; 7:2771. [PMID: 28584277 PMCID: PMC5459863 DOI: 10.1038/s41598-017-02877-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/19/2017] [Indexed: 01/11/2023] Open
Abstract
Aquaporins (AQPs) are of vital importance in the cellular transport system of all living organisms. In this study, genome-wide identification, distribution, and characterization of AQPs were determined in Arabidopsis lyrata, Capsella grandiflora, C. rubella, Eutrema salsugineum, Brassica rapa, B. oleracea, and B. napus (canola). Classification and phylogeny of AQPs revealed the loss of XIPs and NIP-IIIs in all species. Characterization of distinctive AQP features showed a high level of conservation in spacing between NPA-domains, and selectivity filters. Interestingly, TIP3s were found to be highly expressed in developing seeds, suggesting their role in seed desiccation. Analysis of available RNA-seq data obtained under biotic and abiotic stresses led to the identification of AQPs involved in stress tolerance mechanisms in canola. In addition, analysis of the effect of ploidy level, and resulting gene dose effect performed with the different combinations of Brassica A and C genomes revealed that more than 70% of AQPs expression were dose-independent, thereby supporting their role in stress alleviation. This first in-depth characterization of Brassicaceae AQPs highlights transport mechanisms and related physiological processes that could be exploited in breeding programs of stress-tolerant cultivars.
Collapse
Affiliation(s)
- Humira Sonah
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Rupesh K Deshmukh
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Caroline Labbé
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Richard R Bélanger
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
44
|
Nazaralian S, Majd A, Irian S, Najafi F, Ghahremaninejad F, Landberg T, Greger M. Comparison of silicon nanoparticles and silicate treatments in fenugreek. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:25-33. [PMID: 28300729 DOI: 10.1016/j.plaphy.2017.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 05/03/2023]
Abstract
Silicon (Si) fertilization improves crop cultivation and is commonly added in the form of soluble silicates. However, most natural plant-available Si originates from plant formed amorphous SiO2 particles, phytoliths, similar to SiO2-nanoparticles (SiNP). In this work we, therefore, compared the effect by sodium silicate and that of SiNP on Si accumulation, activity of antioxidative stress enzymes catalase, peroxidase, superoxide dismutase, lignification of xylem cell walls and activity of phenylalanine ammonia-lyase (PAL) as well as expression of genes for the putative silicon transporter (PST), defensive (Tfgd 1) and phosphoenolpyruvate carboxykinase (PEPCK) and protein in fenugreek (Trigonella foenum-graecum L.) grown in hydroponics. The results showed that Si was taken up from both silicate and SiNP treatments and increasing sodium silicate addition increased the translocation of Si to the shoot, while this was not shown with increasing SiNP addition. The silicon transporter PST was upregulated at a greater level when sodium silicate was added compared with SiNP addition. There were no differences in effects between sodium silicate and SiNP treatments on the other parameters measured. Both treatments increased the uptake and accumulation of Si, xylem cell wall lignification, cell wall thickness, PAL activity and protein concentration in seedlings, while there was no effect on antioxidative enzyme activity. Tfgd 1 expression was strongly downregulated in leaves at Si addition. The similarity in effects by silicate and SiNP would be due to that SiNP releases silicate, which may be taken up, shown by a decrease in SiNP particle size with time in the medium.
Collapse
Affiliation(s)
- Sanam Nazaralian
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran.
| | - Ahmad Majd
- Department of Biology, Faculty of Science, North Tehran Branch of Islamic Azad University, 16679-34783, Tehran, Iran
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran
| | - Farzaneh Najafi
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran
| | - Farrokh Ghahremaninejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran
| | - Tommy Landberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Maria Greger
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
45
|
Liu J, Zhu J, Zhang P, Han L, Reynolds OL, Zeng R, Wu J, Shao Y, You M, Gurr GM. Silicon Supplementation Alters the Composition of Herbivore Induced Plant Volatiles and Enhances Attraction of Parasitoids to Infested Rice Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1265. [PMID: 28769965 PMCID: PMC5515826 DOI: 10.3389/fpls.2017.01265] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/05/2017] [Indexed: 05/06/2023]
Abstract
Silicon (Si) is important in plant defenses that operate in a direct manner against herbivores, and work in rice (Oryza sativa) has established that this is mediated by the jasmonate signaling pathway. Plant defenses also operate indirectly, by the production of herbivore induced plant volatiles (HIPVs) that attract predators and parasitoids of herbivores. These indirect defenses too are mediated by the jasmonate pathway but no earlier work has demonstrated an effect of Si on HIPVs. In this study, we tested the effect of Si supplementation versus Si deprivation to rice plants on subsequent HIPV production following feeding by the important pest, rice leaffolder (Cnaphalocrocis medinalis). Gas chromatography-mass spectrometry analyses showed lower production of α-bergamotene, β-sesquiohellandrene, hexanal 2-ethyl, and cedrol from +Si herbivore-infested plants compared with -Si infested plants. These changes in plant chemistry were ecologically significant in altering the extent to which parasitoids were attracted to infested plants. Adult females of Trathala flavo-orbitalis and Microplitis mediator both exhibited greater attraction to the HIPV blend of +Si plants infested with their respective insect hosts compared to -Si infested plants. In equivalent studies using RNAi rice plants in which jasmonate perception was silenced there was no equivalent change to the HIPV blend associated with Si treatment; indicating that the effects of Si on HIPVs are modulated by the jasmonate pathway. Further, this work demonstrates that silicon alters the HIPV blend of herbivore-infested rice plants. The significance of this finding is that there are no earlier-published studies of this phenomenon in rice or any other plant species. Si treatment to crops offers scope for enhancing induced, indirect defenses and associated biological control of pests because parasitoids are more strongly attracted by the HIPVs produced by +Si plants.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
- Graham Centre for Agricultural Innovation, Charles Sturt University, OrangeNSW, Australia
| | - Jiwei Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Pengjun Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang UniversityHangzhou, China
| | - Liwei Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Olivia L. Reynolds
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Graham Centre for Agricultural Innovation, New South Wales Department of Primary Industries, MenangleNSW, Australia
| | - Rensen Zeng
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jinhong Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yue Shao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Geoff M. Gurr
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
- Graham Centre for Agricultural Innovation, Charles Sturt University, OrangeNSW, Australia
- *Correspondence: Geoff M. Gurr,
| |
Collapse
|
46
|
Rios JJ, Martínez-Ballesta MC, Ruiz JM, Blasco B, Carvajal M. Silicon-mediated Improvement in Plant Salinity Tolerance: The Role of Aquaporins. FRONTIERS IN PLANT SCIENCE 2017; 8:948. [PMID: 28642767 PMCID: PMC5463179 DOI: 10.3389/fpls.2017.00948] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Silicon (Si) is an abundant and differentially distributed element in soils that is believed to have important biological functions. However, the benefits of Si and its essentiality in plants are controversial due to differences among species in their ability to take up this element. Despite this, there is a consensus that the application of Si improves the water status of plants under abiotic stress conditions. Hence, plants treated with Si are able to maintain a high stomatal conductance and transpiration rate under salt stress, suggesting that a reduction in Na+ uptake occurs due to deposition of Si in the root. In addition, root hydraulic conductivity increases when Si is applied. As a result, a Si-mediated upregulation of aquaporin (PIP) gene expression is observed in relation to increased root hydraulic conductivity and water uptake. Aquaporins of the subclass nodulin 26-like intrinsic proteins are further involved in allowing Si entry into the cell. Therefore, on the basis of available published results and recent developments, we propose a model to explain how Si absorption alleviates stress in plants grown under saline conditions through the conjugated action of different aquaporins.
Collapse
Affiliation(s)
- Juan J. Rios
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura – Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Maria C. Martínez-Ballesta
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura – Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Juan M. Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of GranadaGranada, Spain
| | - Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of GranadaGranada, Spain
| | - Micaela Carvajal
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura – Consejo Superior de Investigaciones CientíficasMurcia, Spain
- *Correspondence: Micaela Carvajal,
| |
Collapse
|
47
|
Ouellette S, Goyette MH, Labbé C, Laur J, Gaudreau L, Gosselin A, Dorais M, Deshmukh RK, Bélanger RR. Silicon Transporters and Effects of Silicon Amendments in Strawberry under High Tunnel and Field Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:949. [PMID: 28642768 PMCID: PMC5462948 DOI: 10.3389/fpls.2017.00949] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Together with longer production periods, the commercial transition to day-neutral strawberry (Fragaria × ananassa) varieties has favored the development of diseases such as powdery mildew (Podosphaera aphanis) that thrives in late summer-early fall. In an attempt to find alternative solutions to fungicides currently employed to curb the disease, we wanted to investigate the potential of silicon (Si) amendments that have been associated with prophylactic properties against powdery mildews. To this end, our first objective was to determine if strawberry was a Si-competent species following the recent characterization of the properties of Si transporters that plants must carry to uptake silicic acid. Based on genomic data, we were able to conclude that strawberry contained both functional influx (Lsi1) and efflux (Lsi2) transporters for Si uptake. Subsequently commercial experiments under high tunnel and field conditions were conducted with different Si fertilization regimes: constant soluble Si feeding in high tunnel, and bi-weekly soluble Si feeding or three concentrations of calcium silicate fertilization in the field. Results from high tunnel experiments showed that strawberry could accumulate as much as 3% Si on a dry-weight basis, the highest concentration ever reported for this species. All six tested cultivars contained roughly the same concentration, thereby confirming the limited genetic variability, also observed in other species, associated with the trait. Silicon fertilization under high tunnel led to a significant reduction of powdery mildew severity in both years and on all cultivars, and a significant increase in yield of marketable fruits reaching as much as 300% with cv. Monterey. By contrast, Si fertilization under field conditions in soils deficient in plant available Si, either in soluble or solid form, did not result in significant accumulation of Si in plants, regardless of the cultivars, year or concentrations. Our results have thus provided both genotypic and phenotypic proof that strawberry can greatly benefit from Si fertilization, but have also highlighted the importance of validating the fertilization regime to ensure that Si is properly absorbed and/or available to the plant.
Collapse
|
48
|
Deshmukh RK, Sonah H, Bélanger RR. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools. FRONTIERS IN PLANT SCIENCE 2016; 7:1896. [PMID: 28066459 PMCID: PMC5167727 DOI: 10.3389/fpls.2016.01896] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/30/2016] [Indexed: 05/02/2023]
Abstract
Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is offered as a resource for AQP research.
Collapse
|