1
|
Zhang Z, Li L, Qiu S, Sun Y, Zhang R, Chen D, Chen P, Song Y, Zeng R, Lu L. BAHD acyltransferase OsSLG mediates rice cadmium tolerance by integrating the brassinosteroid and salicylic acid pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112503. [PMID: 40222390 DOI: 10.1016/j.plantsci.2025.112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Cadmium (Cd) is a highly toxic element that significantly threatens plant growth and human health. Brassinosteroids (BRs) and salicylic acid (SA) are crucial phytohormones involved in plant growth and defense. While the mechanisms by which BRs and SA individually regulate various plant biological processes have been extensively studied, their interaction with Cd in rice (Oryza sativa L.) remains poorly understood. In this study, we demonstrated that SLENDER GRAIN (OsSLG), a BR biosynthesis-related gene, plays a critical role in regulating in rice. Overexpression of OsSLG enhanced Cd tolerance, whereas OsSLG RNA interference (RNAi) lines (OsSLG-Ri) exhibited hypersensitivity to Cd stress. Exogenous BR treatment improved the Cd tolerance of the wild type and rescued the Cd-sensitive phenotype of OsSLG-Ri. Furthermore, OsSLG overexpression significantly reduced reactive oxygen species (ROS) and Cd accumulation, this reduction was attributed to the downregulation of genes involved in Cd absorption and transport, as well as the upregulation of genes associated with Cd detoxification and ROS scavenging. In addition, OsSLG enhanced the photosynthetic capacity and mineral element content in rice plants, improving their ability to cope with Cd stress. Gene expression analysis showed that OsSLG promoted the expression of the SA pathway genes, and phenotypic analysis confirmed that SA positively regulates Cd tolerance in rice. Notably, BR-induced Cd tolerance was diminished in SA biosynthesis-deficient rice plants overexpressing SA hydroxylase genes OsS5H1 and OsS5H2, suggesting that the SA pathway is necessary for BR-mediated Cd tolerance. In conclusion, our findings highlight OsSLG as a key player in elucidating the interplay between BR and SA under Cd stress.
Collapse
Affiliation(s)
- Zaoli Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Long Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Shunjiao Qiu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yanyan Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Rongjun Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Dongmei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Pinghua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
2
|
Della Rovere F, Malimage SAF, D'Angeli S, Peduzzi A, Piacentini D, Altamura MM, Falasca G. Brassinosteroids and jasmonates mitigate arsenite- and arsenate-induced morpho-anatomical anomalies in Arabidopsis roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 359:112625. [PMID: 40562103 DOI: 10.1016/j.plantsci.2025.112625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 06/19/2025] [Accepted: 06/21/2025] [Indexed: 06/28/2025]
Abstract
Arsenic, a toxic metalloid, predominantly exists in soil as inorganic arsenate (AsV) and arsenite (AsIII). Upon root uptake, AsV is extensively reduced to AsIII in the plant. The Arabidopsis root system comprises primary, lateral and adventitious roots. It is unclear whether the inorganic arsenic-form and concentration affect specific components of the Arabidopsis root system. Synergistic and antagonistic interactions of brassinosteroids and jasmonates regulate plant development under stress, as shown by treatments with epibrassinolide (eBL) or methyl jasmonate (MeJA). However, the role of these phytohormones in root response to inorganic arsenic has been poorly studied. This research aimed to determine whether Arabidopsis roots of different type respond similarly or differently to AsIII and AsV, administered as NaAsO2 and Na2HAsO4·7H2O respectively, and whether these responses are modulated by the application of eBL and/or MeJA. The results demonstrated that AsIII inhibited primary root elongation, in contrast to AsV, but promoted lateral and adventitious root formation, especially when combined with eBL. AsIII, more than AsV, induced irregular cell divisions in the quiescent center and the stem cell niche of root apices, mainly of lateral roots. The AsIII negative impact on lateral/adventitious roots was counteracted by eBL which favoured root formation. Xylogenesis was induced by periclinal divisions in the pericycle of the basal hypocotyl and was promoted by MeJA as a mechanical defense barrier against AsV. Collectively, results suggest that Arabidopsis responds to As by strengthening its root system and applications of eBL and MeJA ameliorate root development in specific ways, depending on the As-form.
Collapse
Affiliation(s)
- Federica Della Rovere
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Simone D'Angeli
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Alice Peduzzi
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Giuseppina Falasca
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
3
|
Su J, Liu Y, Han F, Gao F, Gan F, Huang K, Li Z. ROS, an Important Plant Growth Regulator in Root Growth and Development: Functional Genes and Mechanism. BIOLOGY 2024; 13:1033. [PMID: 39765700 PMCID: PMC11673109 DOI: 10.3390/biology13121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Roots are fundamental to the growth, development, and survival of plants. Beyond anchoring the plant, roots absorb water and nutrients, supporting the plant's ability to grow and function normally. Root systems, originating from the apical meristem, exhibit significant diversity depending on the plant species. ROS are byproducts of aerobic metabolism, present in both above- and below-ground plant tissues. While ROS were once considered merely harmful byproducts of oxygen metabolism, they are now recognized as critical signaling molecules that regulate plant growth and development. Under stress conditions, plants produce elevated levels of ROS, which can inhibit growth. However, moderate ROS levels act as signals that integrate various regulatory pathways, contributing to normal plant development. However, there is still a lack of comprehensive and systematic research on how ROS precisely regulate root growth and development. This review provides an overview of ROS production pathways and their regulatory mechanisms in plants, with a particular focus on their influence on root development.
Collapse
Affiliation(s)
- Jialin Su
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuxin Gao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fangyi Gan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Gracia-Rodriguez C, Lopez-Ortiz C, Flores-Iga G, Ibarra-Muñoz L, Nimmakayala P, Reddy UK, Balagurusamy N. From genes to ecosystems: Decoding plant tolerance mechanisms to arsenic stress. Heliyon 2024; 10:e29140. [PMID: 38601600 PMCID: PMC11004893 DOI: 10.1016/j.heliyon.2024.e29140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Arsenic (As), a metalloid of considerable toxicity, has become increasingly bioavailable through anthropogenic activities, raising As contamination levels in groundwater and agricultural soils worldwide. This bioavailability has profound implications for plant biology and farming systems. As can detrimentally affect crop yield and pose risks of bioaccumulation and subsequent entry into the food chain. Upon exposure to As, plants initiate a multifaceted molecular response involving crucial signaling pathways, such as those mediated by calcium, mitogen-activated protein kinases, and various phytohormones (e.g., auxin, methyl jasmonate, cytokinin). These pathways, in turn, activate enzymes within the antioxidant system, which combat the reactive oxygen/nitrogen species (ROS and RNS) generated by As-induced stress. Plants exhibit a sophisticated genomic response to As, involving the upregulation of genes associated with uptake, chelation, and sequestration. Specific gene families, such as those coding for aquaglyceroporins and ABC transporters, are key in mediating As uptake and translocation within plant tissues. Moreover, we explore the gene regulatory networks that orchestrate the synthesis of phytochelatins and metallothioneins, which are crucial for As chelation and detoxification. Transcription factors, particularly those belonging to the MYB, NAC, and WRKY families, emerge as central regulators in activating As-responsive genes. On a post-translational level, we examine how ubiquitination pathways modulate the stability and function of proteins involved in As metabolism. By integrating omics findings, this review provides a comprehensive overview of the complex genomic landscape that defines plant responses to As. Knowledge gained from these genomic and epigenetic insights is pivotal for developing biotechnological strategies to enhance crop As tolerance.
Collapse
Affiliation(s)
- Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Gerardo Flores-Iga
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Lizbeth Ibarra-Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| |
Collapse
|
5
|
Qin Q. ROS: Important factor in plant stem cell fate regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154082. [PMID: 37690340 DOI: 10.1016/j.jplph.2023.154082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Reactive oxygen species (ROS) are initially considered to be toxic byproducts of aerobic metabolic reactions. However, increasing evidence has shown that they have emerged as signaling molecules involved in several basic biological processes. Recent studies highlight the pivotal role of ROS in the maintenance of shoot and root stem cell niche. In this review, we discuss the impact of ROS distribution and their gradients on the stability of the stem cell niches (SCN) in shoot apical meristem (SAM) and root apical meristem (RAM) by determining the balance between stemness and differentiation. We also summarize several important transcription factors that are involved in the regulation of ROS balance in SAM and RAM, regulating key enzymes in ROS metabolism, especially SOD and peroxidase. ROS are also tightly interconnected with phytohormones in the control of the stem cell fate. Besides, ROS are also important regulators of the cell cycle in controlling the size of the stem cells. Understanding the regulation mechanisms of ROS production, polarization gradient distribution, homeostasis, and downstream signal transduction in cells will open exciting new perspectives for plant developmental biology.
Collapse
Affiliation(s)
- Qianqian Qin
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Key Laboratory of Gene Editing for Breeding, Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Gomez MY, Schroeder MM, Chieb M, McLain NK, Gachomo EW. Bradyrhizobium japonicum IRAT FA3 promotes salt tolerance through jasmonic acid priming in Arabidopsis thaliana. BMC PLANT BIOLOGY 2023; 23:60. [PMID: 36710321 PMCID: PMC9885586 DOI: 10.1186/s12870-022-03977-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 12/05/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plant growth promoting rhizobacteria (PGPR), such as Bradyrhizobium japonicum IRAT FA3, are able to improve seed germination and plant growth under various biotic and abiotic stress conditions, including high salinity stress. PGPR can affect plants' responses to stress via multiple pathways which are often interconnected but were previously thought to be distinct. Although the overall impacts of PGPR on plant growth and stress tolerance have been well documented, the underlying mechanisms are not fully elucidated. This work contributes to understanding how PGPR promote abiotic stress by revealing major plant pathways triggered by B. japonicum under salt stress. RESULTS The plant growth-promoting rhizobacterial (PGPR) strain Bradyrhizobium japonicum IRAT FA3 reduced the levels of sodium in Arabidopsis thaliana by 37.7%. B. japonicum primed plants as it stimulated an increase in jasmonates (JA) and modulated hydrogen peroxide production shortly after inoculation. B. japonicum-primed plants displayed enhanced shoot biomass, reduced lipid peroxidation and limited sodium accumulation under salt stress conditions. Q(RT)-PCR analysis of JA and abiotic stress-related gene expression in Arabidopsis plants pretreated with B. japonicum and followed by six hours of salt stress revealed differential gene expression compared to non-inoculated plants. Response to Desiccation (RD) gene RD20 and reactive oxygen species scavenging genes CAT3 and MDAR2 were up-regulated in shoots while CAT3 and RD22 were increased in roots by B. japonicum, suggesting roles for these genes in B. japonicum-mediated salt tolerance. B. japonicum also influenced reductions of RD22, MSD1, DHAR and MYC2 in shoots and DHAR, ADC2, RD20, RD29B, GTR1, ANAC055, VSP1 and VSP2 gene expression in roots under salt stress. CONCLUSION Our data showed that MYC2 and JAR1 are required for B. japonicum-induced shoot growth in both salt stressed and non-stressed plants. The observed microbially influenced reactions to salinity stress in inoculated plants underscore the complexity of the B. japonicum jasmonic acid-mediated plant response salt tolerance.
Collapse
Affiliation(s)
- Melissa Y Gomez
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Mercedes M Schroeder
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Maha Chieb
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Nathan K McLain
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
7
|
Navarro C, Navarro MA, Leyva A. Arsenic perception and signaling: The yet unexplored world. FRONTIERS IN PLANT SCIENCE 2022; 13:993484. [PMID: 36119603 PMCID: PMC9479143 DOI: 10.3389/fpls.2022.993484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is one of the most potent carcinogens in the biosphere, jeopardizing the health of millions of people due to its entrance into the human food chain through arsenic-contaminated waters and staple crops, particularly rice. Although the mechanisms of arsenic sensing are widely known in yeast and bacteria, scientific evidence concerning arsenic sensors or components of early arsenic signaling in plants is still in its infancy. However, in recent years, we have gained understanding of the mechanisms involved in arsenic uptake and detoxification in different plant species and started to get insights into arsenic perception and signaling, which allows us to glimpse the possibility to design effective strategies to prevent arsenic accumulation in edible crops or to increase plant arsenic extraction for phytoremediation purposes. In this context, it has been recently described a mechanism according to which arsenite, the reduced form of arsenic, regulates the arsenate/phosphate transporter, consistent with the idea that arsenite functions as a selective signal that coordinates arsenate uptake with detoxification mechanisms. Additionally, several transcriptional and post-translational regulators, miRNAs and phytohormones involved in arsenic signaling and tolerance have been identified. On the other hand, studies concerning the developmental programs triggered to adapt root architecture in order to cope with arsenic toxicity are just starting to be disclosed. In this review, we compile and analyze the latest advances toward understanding how plants perceive arsenic and coordinate its acquisition with detoxification mechanisms and root developmental programs.
Collapse
|
8
|
Zulfiqar F, Ashraf M. Antioxidants as modulators of arsenic-induced oxidative stress tolerance in plants: An overview. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127891. [PMID: 34848065 DOI: 10.1016/j.jhazmat.2021.127891] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 05/24/2023]
Abstract
Arsenic (As) is a highly toxic contaminant in the environment. Although both inorganic and organic types of arsenic exist in the environment, the most common inorganic forms of As that adversely affect plants are arsenite (As III) and arsenate (As V). Despite no evidence for As being essential for plant growth, exposure of roots to this element can cause its uptake primarily via transporters responsible for the transport of essential mineral nutrients. Arsenic exposure even at low concentrations disturbs the plant normal functioning via excessive generation of reactive oxygen species, a condition known as oxidative stress leading to an imbalance in the redox system of the plant. This is associated with considerable damage to the cell components thereby impairing normal cellular functions and activation of several cell survival and cell death pathways. To counteract this oxidative disorder, plants possess natural defense mechanisms such as chemical species and enzymatic antioxidants. This review considers how different types of antioxidants participate in the oxidative defense mechanism to alleviate As stress in plants. Since the underlying phenomena of oxidative stress tolerance are not yet fully elucidated, the potential for "Omics" technologies to uncover molecular mechanisms are discussed. Various strategies to improve As-induced oxidative tolerance in plants such as exogenous supplementation of effective growth regulators, protectant chemicals, transgenic approaches, and genome editing are also discussed thoroughly in this review.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
9
|
Abstract
The non-essential metalloid arsenic (As) is widely distributed in soil and underground water of many countries. Arsenic contamination is a concern because it creates threat to food security in terms of crop productivity and food safety. Plants exposed to As show morpho-physiological, growth and developmental disorder which altogether result in loss of productivity. At physiological level, As-induced altered biochemistry in chloroplast, mitochondria, peroxisome, endoplasmic reticulum, cell wall, plasma membrane causes reactive oxygen species (ROS) overgeneration which damage cell through disintegrating the structure of lipids, proteins, and DNA. Therefore, plants tolerance to ROS-induced oxidative stress is a vital strategy for enhancing As tolerance in plants. Plants having enhanced antioxidant defense system show greater tolerance to As toxicity. Depending upon plant diversity (As hyperaccumulator/non-hyperaccumulator or As tolerant/susceptible) the mechanisms of As accumulation, absorption or toxicity response may differ. There can be various crop management practices such as exogenous application of nutrients, hormones, antioxidants, osmolytes, signaling molecules, different chelating agents, microbial inoculants, organic amendments etc. can be effective against As toxicity in plants. There is information gap in understanding the mechanism of As-induced response (damage or tolerance response) in plants. This review presents the mechanism of As uptake and accumulation in plants, physiological responses under As stress, As-induced ROS generation and antioxidant defense system response, various approaches for enhancing As tolerance in plants from the available literatures which will make understanding the to date knowledge, knowledge gap and future guideline to be worked out for the development of As tolerant plant cultivars.
Collapse
|
10
|
İşkil R, Surgun-Acar Y, Çatav ŞS, Zemheri-Navruz F, Erden Y. Mercury toxicity affects oxidative metabolism and induces stress responsive mechanisms in wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:911-920. [PMID: 35592475 PMCID: PMC9110583 DOI: 10.1007/s12298-022-01171-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) toxicity is an increasing problem worldwide, with a negative impact on the environment and living organisms including both animals and plants. In this study, we analyzed molecular and biochemical changes related to Hg toxicity in wheat (Triticum aestivum L.) seedlings. Seven-day-old seedlings were exposed to various concentrations (5, 10, and 20 µM) of HgCl2 for 24 and 48 h. Our results showed that HgCl2 treatments led to an increase in the Hg content of wheat leaves in a time- and concentration-dependent manner. Furthermore, significant increases were observed in hydrogen peroxide, malondialdehyde, and proline contents in response to Hg toxicity. While all HgCl2 treatments decreased the level of superoxide dismutase (SOD), the level of catalase (CAT) was reduced only in seedlings exposed to 5 µM of HgCl2. Mercury stress caused a decline in the expression of Cu/Zn-SOD, Fe-SOD, TaWRKY19, and TaDREB1 genes at both exposure times. On the other hand, 10 and 20 µM HgCl2 treatments caused significant induction (1.9 to 6.1-fold) in the expression of the CAT gene in wheat leaves. The mRNA level of the Mn-SOD and TaWRKY2 genes showed different patterns depending on the concentration and exposure period of HgCl2. In conclusion, the findings of this work demonstrate that Hg toxicity causes oxidative damage in wheat seedlings and changes the expression of some genes encoding WRKY and DREB transcription factor families, which have important functions in abiotic stress response.
Collapse
Affiliation(s)
- Rabia İşkil
- Department of Forest Engineering, Faculty of Forest, Bartın University, 74100 Bartın, Turkey
| | - Yonca Surgun-Acar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Çanakkale Onsekiz Mart University, 17000 Çanakkale, Turkey
| | - Şükrü Serter Çatav
- Division of Botany, Department of Biology, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Fahriye Zemheri-Navruz
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, 74100 Bartın, Turkey
| | - Yavuz Erden
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, 74100 Bartın, Turkey
| |
Collapse
|
11
|
Mondal S, Pramanik K, Ghosh SK, Pal P, Ghosh PK, Ghosh A, Maiti TK. Molecular insight into arsenic uptake, transport, phytotoxicity, and defense responses in plants: a critical review. PLANTA 2022; 255:87. [PMID: 35303194 DOI: 10.1007/s00425-022-03869-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
A critical investigation into arsenic uptake and transportation, its phytotoxic effects, and defense strategies including complex signaling cascades and regulatory networks in plants. The metalloid arsenic (As) is a leading pollutant of soil and water. It easily finds its way into the food chain through plants, more precisely crops, a common diet source for humans resulting in serious health risks. Prolonged As exposure causes detrimental effects in plants and is diaphanously observed through numerous physiological, biochemical, and molecular attributes. Different inorganic and organic As species enter into the plant system via a variety of transporters e.g., phosphate transporters, aquaporins, etc. Therefore, plants tend to accumulate elevated levels of As which leads to severe phytotoxic damages including anomalies in biomolecules like protein, lipid, and DNA. To combat this, plants employ quite a few mitigation strategies such as efficient As efflux from the cell, iron plaque formation, regulation of As transporters, and intracellular chelation with an array of thiol-rich molecules such as phytochelatin, glutathione, and metallothionein followed by vacuolar compartmentalization of As through various vacuolar transporters. Moreover, the antioxidant machinery is also implicated to nullify the perilous outcomes of the metalloid. The stress ascribed by the metalloid also marks the commencement of multiple signaling cascades. This whole complicated system is indeed controlled by several transcription factors and microRNAs. This review aims to understand, in general, the plant-soil-arsenic interaction, effects of As in plants, As uptake mechanisms and its dynamics, and multifarious As detoxification mechanisms in plants. A major portion of this article is also devoted to understanding and deciphering the nexus between As stress-responsive mechanisms and its underlying complex interconnected regulatory networks.
Collapse
Affiliation(s)
- Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, Burdwan, West Bengal, 713104, India
| | - Krishnendu Pramanik
- Mycology and Plant Pathology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Birbhum, Santiniketan, West Bengal, 731235, India
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, Burdwan, West Bengal, 713104, India
| | - Priyanka Pal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, Burdwan, West Bengal, 713104, India
| | - Pallab Kumar Ghosh
- Directorate of Open and Distance Learning, University of Kalyani, Nadia, Kalyani, West Bengal, 741235, India
| | - Antara Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, Burdwan, West Bengal, 713104, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
12
|
Sharma A, Ramakrishnan M, Khanna K, Landi M, Prasad R, Bhardwaj R, Zheng B. Brassinosteroids and metalloids: Regulation of plant biology. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127518. [PMID: 34836689 DOI: 10.1016/j.jhazmat.2021.127518] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/28/2021] [Accepted: 10/13/2021] [Indexed: 05/06/2023]
Abstract
Metalloid contamination in the environment is one of the serious concerns posing threat to our ecosystems. Excess of metalloid concentrations (including antimony, arsenic, boron, selenium etc.) in soil results in their over accumulation in plant tissues, which ultimately causes phytotoxicity and their bio-magnification. So, it is very important to find some ecofriendly approaches to counter negative impacts of above mentioned metalloids on plant system. Brassinosteroids (BRs) belong to family of plant steroidal hormones, and are considered as one of the ecofriendly way to counter metalloid phytotoxicity. This phytohormone regulates the plant biology in presence of metalloids by modulating various key biological processes like cell signaling, primary and secondary metabolism, bio-molecule crosstalk and redox homeostasis. The present review explains the in-depth mechanisms of BR regulated plant responses in presence of metalloids, and provides some biotechnological aspects towards ecofriendly management of metalloid contamination.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kanika Khanna
- Plant Stress Physiology Lab, Department of Botanical and Environment Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Rajendra Prasad
- Department of Horticulture, Kulbhaskar Ashram Post Graduate College, Prayagraj, Uttar Pradesh, India
| | - Renu Bhardwaj
- Plant Stress Physiology Lab, Department of Botanical and Environment Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
13
|
Zhang J, Hamza A, Xie Z, Hussain S, Brestic M, Tahir MA, Ulhassan Z, Yu M, Allakhverdiev SI, Shabala S. Arsenic transport and interaction with plant metabolism: Clues for improving agricultural productivity and food safety. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117987. [PMID: 34425370 DOI: 10.1016/j.envpol.2021.117987] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 08/14/2021] [Indexed: 05/13/2023]
Abstract
Arsenic (As) is a ubiquitous metalloid that is highly toxic to all living organisms. When grown in As-contaminated soils, plants may accumulate significant amounts of As in the grains or edible shoot parts which then enter a food chain. Plant growth and development per se are also both affected by arsenic. These effects are traditionally attributed to As-induced accumulation of reactive oxygen species (ROS) and a consequent lipid peroxidation and damage to cellular membranes. However, this view is oversimplified, as As exposure have a major impact on many metabolic processes in plants, including availability of essential nutrients, photosynthesis, carbohydrate metabolism, lipid metabolism, protein metabolism, and sulfur metabolism. This review is aimed to fill this gap in the knowledge. In addition, the molecular basis of arsenic uptake and transport in plants and prospects of creating low As-accumulating crop species, for both agricultural productivity and food safety, are discussed.
Collapse
Affiliation(s)
- Jie Zhang
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Ameer Hamza
- School of Environment Science and Engineering, China University of Geoscience, Wuhan, 430074, China; College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Zuoming Xie
- School of Environment Science and Engineering, China University of Geoscience, Wuhan, 430074, China
| | - Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang, Chengdu, 611130, China.
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Mukkram Ali Tahir
- College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Suleyman I Allakhverdiev
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China; K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow, 127276, Russia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas7001, Australia.
| |
Collapse
|
14
|
Nabi A, Naeem M, Aftab T, Khan MMA, Ahmad P. A comprehensive review of adaptations in plants under arsenic toxicity: Physiological, metabolic and molecular interventions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118029. [PMID: 34474375 DOI: 10.1016/j.envpol.2021.118029] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is recognized as a toxic metalloid and a severe threat to biodiversity due to its contamination. Soil and groundwater contamination with this metalloid has become a major concern. Large fractions of cultivable lands are becoming infertile gradually due to the irrigation of As contaminated water released from various sources. The toxicity of As causes the generation of free radicals, which are harmful to cellular metabolism and functions of plants. It alters the growth, metabolic, physiological, and molecular functions of the plants due to oxidative burst. Plants employ different signaling mechanisms to face the As toxicity like phosphate cascade, MAPK (Mitogen-Activated Protein Kinase), Ca-calmodulin, hormones, and ROS-signaling. The toxicity of As may significantly be reduced through various remediation techniques. Among them, the microbial-assisted remediation technique is cost-effective and eco-friendly. It breaks down the metalloid into less harmful species through various processes viz. biovolatilization, biomethylation, and transformation. Moreover, the adaptation strategies towards As toxicity are vacuolar sequestration, involvement of plant defense mechanism, and restricting its uptake from plant roots to above-ground parts. The speciation, uptake, transport, metabolism, ion dynamics, signaling pathways, crosstalk with phytohormones and gaseous molecules, as well as harmful impacts of the As on physiological processes, overall development of plants and remediation techniques are summarized in this review.
Collapse
Affiliation(s)
- Aarifa Nabi
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Bali AS, Sidhu GPS. Arsenic acquisition, toxicity and tolerance in plants - From physiology to remediation: A review. CHEMOSPHERE 2021; 283:131050. [PMID: 34147983 DOI: 10.1016/j.chemosphere.2021.131050] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 05/25/2023]
Abstract
Globally, environmental contamination by potentially noxious metalloids like arsenic is becoming a critical concern to the living organisms. Arsenic is a non-essential metalloid for plants and can be acclimatised in plants to toxic levels. Arsenic acquisition by plants poses serious health risks in human due to its entry in the food chain. High arsenic regimes disturb plant water relations, promote the generation of reactive oxygen species (ROS) and induce oxidative outburst in plants. This review evidences a conceivable tie-up among arsenic levels, speciation, its availability, uptake, acquisition, transport, phytotoxicity and arsenic detoxification in plants. The role of different antioxidant enzymes to confer plant tolerance towards the enhanced arsenic distress has also been summed up. Additionally, the mechanisms involved in the modulation of different genes coupled with arsenic tolerance have been thoroughly discussed. This review is intended to present an overview to rationalise the contemporary progressions on the recent advances in phytoremediation approaches to overcome ecosystem contamination by arsenic.
Collapse
Affiliation(s)
| | - Gagan Preet Singh Sidhu
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, 136119, India.
| |
Collapse
|
16
|
Song YJ, Li Y, Leng Y, Li SW. 24-epibrassinolide improves differential cadmium tolerance of mung bean roots, stems, and leaves via amending antioxidative systems similar to that of abscisic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52032-52045. [PMID: 33999324 DOI: 10.1007/s11356-021-14404-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) pollution has attracted global concern. In the present study, the biochemical mechanisms underlying the amelioration of 24-epibrassinolide (eBL) and abscisic acid (ABA) on Cd tolerance of roots, stems, and leaves in mung bean seedlings were comparatively analyzed. Foliar application of eBL markedly ameliorated the growth of mung bean seedling exposed to 100 μM Cd. eBL alone had no significant effects on the activities of antioxidative enzymes and the contents of glutathione (GSH) and polyphenols in the three organs whereas significantly increased the root, stem, and leaf proline contents on average by 54.9%, 39.9%, and 94.4%, respectively, and leaf malondialdehyde (MDA) content on average by 69.0% compared with the controls. When the plants were exposed to Cd, eBL significantly reversed the Cd-increased root ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities, root polyphenol, proline, and GSH levels, leaf chlorophyll contents, and MDA levels in the three organs. eBL significantly restored the Cd-decreased leaf catalase (CAT) activity and leaf polyphenol levels. These results indicated that eBL played roles in maintaining cellular redox homeostasis and evidently alleviated Cd-caused membrane lipid peroxidation via controlling the activity of antioxidative systems. eBL mediated the differential responses of cellular biochemical processes in the three organs to Cd exposure. Furthermore, a comparative analysis revealed that, under Cd stress, the effects of eBL on the biochemical processes were very similar to those of ABA, suggesting that ABA and eBL improve plant Cd tolerance via some common downstream pathways.
Collapse
Affiliation(s)
- Ya-Juan Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China
| | - Yi Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China
| | - Yan Leng
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China
| | - Shi-Weng Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China.
| |
Collapse
|
17
|
Deng F, Zeng F, Chen G, Feng X, Riaz A, Wu X, Gao W, Wu F, Holford P, Chen ZH. Metalloid hazards: From plant molecular evolution to mitigation strategies. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124495. [PMID: 33187800 DOI: 10.1016/j.jhazmat.2020.124495] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 05/25/2023]
Abstract
Metalloids such as boron and silicon are key elements for plant growth and crop productivity. However, toxic metalloids such as arsenic are increasing in the environment due to inputs from natural sources and human activities. These hazardous metalloids can cause serious health risks to humans and animals if they enter the food chain. Plants have developed highly regulated mechanisms to alleviate the toxicity of metalloids during their 500 million years of evolution. A better understanding the molecular mechanisms underlying the transport and detoxification of toxic metalloids in plants will shed light on developing mitigation strategies. Key transporters and regulatory proteins responsive to toxic metalloids have been identified through evolutionary and molecular analyses. Moreover, knowledge of the regulatory proteins and their pathways can be used in the breeding of crops with lower accumulation of metalloids. These findings can also assist phytoremediation by the exploration of plants such as fern species that hyperaccumulate metalloids from soils and water, and can be used to engineer plants with elevated uptake and storage capacity of toxic metalloids. In summary, there are solutions to remediate contamination due to toxic metalloids by combining the research advances and industrial technologies with agricultural and environmental practices.
Collapse
Affiliation(s)
- Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guang Chen
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xue Feng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Adeel Riaz
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaojian Wu
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Feibo Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.
| |
Collapse
|
18
|
Sharma SS, Kumar V, Dietz KJ. Emerging Trends in Metalloid-Dependent Signaling in Plants. TRENDS IN PLANT SCIENCE 2021; 26:452-471. [PMID: 33257259 DOI: 10.1016/j.tplants.2020.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Metalloids are semiconducting elements that constitute a small group in the periodic table of elements. Their occurrence in nature either poses an environmental threat or benefit to plants. The precise mechanisms or manner of crosstalk of metalloid interference and sensing remain open questions. Standard plant nutrient solutions contain the metalloid boron (B) as a micronutrient, while silicon (Si) is considered a beneficial element routinely supplied only to some plants such as grasses. By contrast, arsenic (As) is a severe environmental hazard to most organisms, including plants, while the less abundant metalloids germanium (Ge), antimony (Sb), and tellurium (Te) display variable degrees of toxicity. Here we review the molecular events and mechanisms that could explain the contrasting (or overlapping) action of metalloids on the cell and cell signaling.
Collapse
Affiliation(s)
- Shanti S Sharma
- Department of Botany, School of Life Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Vijay Kumar
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany; Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany.
| |
Collapse
|
19
|
Zulfiqar F, Ashraf M. Bioregulators: unlocking their potential role in regulation of the plant oxidative defense system. PLANT MOLECULAR BIOLOGY 2021; 105:11-41. [PMID: 32990920 DOI: 10.1007/s11103-020-01077-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 05/21/2023]
Abstract
Plant bioregulators play an important role in managing oxidative stress tolerance in plants. Utilizing their ability in stress sensitive crops through genetic engineering will be a meaningful approach to manage food production under the threat of climate change. Exploitation of the plant defense system against oxidative stress to engineer tolerant plants in the climate change scenario is a sustainable and meaningful strategy. Plant bioregulators (PBRs), which are important biotic factors, are known to play a vital role not only in the development of plants, but also in inducing tolerance in plants against various environmental extremes. These bioregulators include auxins, gibberellins, cytokinins, abscisic acid, brassinosteroids, polyamines, strigolactones, and ascorbic acid and provide protection against the oxidative stress-associated reactive oxygen species through modulation or activation of a plant's antioxidant system. Therefore, exploitation of their functioning and accumulation is of considerable significance for the development of plants more tolerant of harsh environmental conditions in order to tackle the issue of food security under the threat of climate change. Therefore, this review summarizes a new line of evidence that how PBRs act as inducers of oxidative stress resistance in plants and how they could be modulated in transgenic crops via introgression of genes. Reactive oxygen species production during oxidative stress events and their neutralization through an efficient antioxidants system is comprehensively detailed. Further, the use of exogenously applied PBRs in the induction of oxidative stress resistance is discussed. Recent advances in engineering transgenic plants with modified PBR gene expression to exploit the plant defense system against oxidative stress are discussed from an agricultural perspective.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | | |
Collapse
|
20
|
Luo Z, Wang Z, Liu A, Yan Y, Wu Y, Zhang X. New insights into toxic effects of arsenate on four Microcystis species under different phosphorus regimes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44460-44469. [PMID: 32770468 DOI: 10.1007/s11356-020-10396-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Very little information is available on the stressed growth of Microcystis imposed by arsenate (As(V)) under different phosphorus (P) regimes. In this study, we examined the growth characteristics and arsenic transformation of four Microcystis species exposed under As(V) with two P sources involving dissolved inorganic phosphorus (IP) and organophosphate (D-glucose-6-phosphate disodium salt, GP). Results showed that all the four chosen Microcystis species could grow and reproduce with GP as the only P source, and the difference was insignificant when compared with IP. From optical density (OD), chlorophyll a (Chla), and actual quantum yield (Yield), the tolerance to As(V) of the chosen species was following as FACHB 905 > FACHB 1028 > FACHB 1334 > FACHB 912. Specifically, the 96 h EC50 of As(V) for FACHB 905 in IP was approx. 4 orders of magnitude higher than that in GP, but for other three algal species, the 96 h EC50 values were similar under the two given different P conditions. Furthermore, all antioxidant enzyme activities of superoxide dismutase (SOD), peroxide dismutase (POD), glutathione S-transferases (GSTs), and metalloproteinase (MTs) in algal cells were significantly increased in GP conditions. Moreover, the enzyme activities of AKP, GSTs, and MTs were inhibited with increasing As(V) levels under both IP and GP conditions. In addition, arsenite (As(III)) and methylated As of monomethylarsonic acid (MMA) and dimethylthioarsinic acid (DMA) were found in FACHB 912 and FACHB 1334 media, indicating that these Microcystis could detoxify As(V) by As biotransformation under IP and GP conditions. Specifically, As(V) reduction was elevated in media of FACHB 1334 and FACHB 905, but was decreased in media of FACHB 912 under GP conditions. Our results highlight the different P sources that impact the toxic effects of arsenate exposure on Microcystis and subsequent As biotransformation.
Collapse
Affiliation(s)
- Zhuanxi Luo
- College of Chemical Engineering and Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China.
- Key Laboratory of Karst Dynamics, MNR & Guangxi, Institute of Karst Geology, CAGS, Guilin, 541004, China.
| | - Zhenhong Wang
- College of Chemistry and Environment and Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Aifen Liu
- College of Chemistry and Environment and Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Yu Yan
- College of Chemical Engineering and Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Yaqing Wu
- Instrumental Analysis Center of Huaqiao University, Xiamen, 361021, China
| | - Xiaoyong Zhang
- Center of Environmental Emergency Response and Accident Investigation of Jiangsu Province, Nanjing, 210036, China
| |
Collapse
|
21
|
|
22
|
Zhou X, Xiang Y, Li C, Yu G. Modulatory Role of Reactive Oxygen Species in Root Development in Model Plant of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:485932. [PMID: 33042167 PMCID: PMC7525048 DOI: 10.3389/fpls.2020.485932] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 08/31/2020] [Indexed: 05/13/2023]
Abstract
Reactive oxygen species (ROS), a type of oxygen monoelectronic reduction product, have a higher chemical activity than O2. Although ROS pose potential risks to all organisms via inducing oxidative stress, indispensable role of ROS in individual development cannot be ignored. Among them, the role of ROS in the model plant Arabidopsis thaliana is deeply studied. Mounting evidence suggests that ROS are essential for root and root hair development. In the present review, we provide an updated perspective on the latest research progress pertaining to the role of ROS in the precise regulation of root stem cell maintenance and differentiation, redox regulation of the cell cycle, and root hair initiation during root growth. Among the different types of ROS, O2 •- and H2O2 have been extensively investigated, and they exhibit different gradient distributions in the roots. The concentration of O2 •- decreases along a gradient from the meristem to the transition zone and the concentration of H2O2 decreases along a gradient from the differentiation zone to the elongation zone. These gradients are regulated by peroxidases, which are modulated by the UPBEAT1 (UPB1) transcription factor. In addition, multiple transcriptional factors, such as APP1, ABO8, PHB3, and RITF1, which are involved in the brassinolide signaling pathway, converge as a ROS signal to regulate root stem cell maintenance. Furthermore, superoxide anions (O2 •-) are generated from the oxidation in mitochondria, ROS produced during plasmid metabolism, H2O2 produced in apoplasts, and catalysis of respiratory burst oxidase homolog (RBOH) in the cell membrane. Furthermore, ROS can act as a signal to regulate redox status, which regulates the expression of the cell-cycle components CYC2;3, CYCB1;1, and retinoblastoma-related protein, thereby controlling the cell-cycle progression. In the root maturation zone, the epidermal cells located in the H cell position emerge to form hair cells, and plant hormones, such as auxin and ethylene regulate root hair formation via ROS. Furthermore, ROS accumulation can influence hormone signal transduction and vice versa. Data about the association between nutrient stress and ROS signals in root hair development are scarce. However, the fact that ROBHC/RHD2 or RHD6 is specifically expressed in root hair cells and induced by nutrients, may explain the relationship. Future studies should focus on the regulatory mechanisms underlying root hair development via the interactions of ROS with hormone signals and nutrient components.
Collapse
Affiliation(s)
| | | | | | - Guanghui Yu
- *Correspondence: Guanghui Yu, ; orcid.org/0000-0002-3174-1878
| |
Collapse
|