1
|
Chen S, Nguyen TD, Lee KZ, Liu D. Ex vivo T cell differentiation in adoptive immunotherapy manufacturing: Critical process parameters and analytical technologies. Biotechnol Adv 2024; 77:108434. [PMID: 39168355 DOI: 10.1016/j.biotechadv.2024.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/01/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Adoptive immunotherapy shows great promise as a treatment for cancer and other diseases. Recent evidence suggests that the therapeutic efficacy of these cell-based therapies can be enhanced by the enrichment of less-differentiated T cell subpopulations in the therapeutic product, giving rise to a need for advanced manufacturing technologies capable of enriching these subpopulations through regulation of T cell differentiation. Studies have shown that modifying certain critical process control parameters, such as cytokines, metabolites, amino acids, and culture environment, can effectively manipulate T cell differentiation in ex vivo cultures. Advanced process analytical technologies (PATs) are crucial for monitoring these parameters and the assessment of T cell differentiation during culture. In this review, we examine such critical process parameters and PATs, with an emphasis on their impact on enriching less-differentiated T cell population. We also discuss the limitations of current technologies and advocate for further efforts from the community to establish more stringent critical process parameters (CPPs) and develop more at-line/online PATs that are specific to T cell differentiation. These advancements will be essential to enable the manufacturing of more efficacious adoptive immunotherapy products.
Collapse
Affiliation(s)
- Sixun Chen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore
| | - Tan Dai Nguyen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore
| | - Kang-Zheng Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore
| | - Dan Liu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore.
| |
Collapse
|
2
|
Lara ML, Carvalho MG, de Souza FF, Schmith RA, Codognoto VM, De Vita B, Freitas Dell'Aqua CDP, Landim FDC, Alvarenga MLE. Influence of culture conditions on the secretome of mesenchymal stem cells derived from feline adipose tissue: Proteomics approach. Biochimie 2023; 211:78-86. [PMID: 36931338 DOI: 10.1016/j.biochi.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
This study aimed to describe the secretome of mesenchymal stem cells derived from feline adipose tissue (AD-MSCs) and compare the effects of different culture conditions on AD-MSC proteomics using a shotgun approach. Adipose tissue was collected from 5 female cats and prepared to culture. Conditioned media was collected at third passage, in which the cells were cultured under 4 conditions, normoxia with fetal bovine serum (N + FBS), hypoxia with FBS (H + FBS), normoxia without FBS (N - FBS), and hypoxia without FBS (H - FBS). Then, the secretome was concentrated and prepared for proteomic approaches. Secretomes cultured with FBS-free medium had more than twice identified proteins in comparison with the secretomes cultured with FBS. In contrast, hypoxic conditions did not increase protein amount and affected only a small proteome fraction. Relevant proteins were related to the extracellular matrix promoting environmental modulation, influencing cell signaling pathways, and providing a suitable environment for cell proliferation and maintenance. Moreover, other proteins were also related to cell adhesion, migration and morphogenesis. Culture conditions can influence protein abundance in AD-MSC secretome, and can give also more specificity to cell and cell-free treatments for different diseases.
Collapse
Affiliation(s)
- Maria Laura Lara
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Marcos Gomides Carvalho
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Fabiana Ferreira de Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil.
| | - Rubia Alves Schmith
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Viviane Maria Codognoto
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Bruna De Vita
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil; International Product Marketing Manager - PROCARE HEALTH, Universitat de Barcelona, Barcelona, Catalunha, Spain
| | - Camila de Paula Freitas Dell'Aqua
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Fernada da Cruz Landim
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Marina Landim E Alvarenga
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil; Omics Animal Biotechnology, Botucatu, São Paulo, Brazil
| |
Collapse
|
3
|
Kiełbasa A, Gadzała-Kopciuch R, Buszewski B. Cytokines-Biogenesis and Their Role in Human Breast Milk and Determination. Int J Mol Sci 2021; 22:6238. [PMID: 34207900 PMCID: PMC8229712 DOI: 10.3390/ijms22126238] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Cytokines play a huge role in many biological processes. Their production, release and interactions are subject to a very complex mechanism. Cytokines are produced by all types of cells, they function very differently and they are characterized by synergism in action, antagonism, and aggregation activity, opposing action of one cytokine, overlapping activity, induction of another cytokine, inhibition of cytokine synthesis at the mRNA level as well as autoregulation-stimulation or inhibition of own production. The predominance of pro-inflammatory cytokines leads to a systemic inflammatory response, and anti-inflammatory-to an anti-inflammatory response. They regulate the organism's immune response and protect it against sudden disturbances in homeostasis. The synthesis and activity of cytokines are influenced by the central nervous system through the endocrine system (pituitary gland, adrenal glands).
Collapse
Affiliation(s)
- Anna Kiełbasa
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, ul. Gagarina 7, 87-100 Toruń, Poland; (A.K.); (B.B.)
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, ul. Gagarina 7, 87-100 Toruń, Poland; (A.K.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Group for Separation and Bioanalytical Methods (Bio-Sep) Nicolaus Copernicus University in Toruń, ul. Wileńska 4, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, ul. Gagarina 7, 87-100 Toruń, Poland; (A.K.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Group for Separation and Bioanalytical Methods (Bio-Sep) Nicolaus Copernicus University in Toruń, ul. Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
4
|
Yao J, Huang X, Ren J. In situ determination of secretory kinase Fam20C from living cells using fluorescence correlation spectroscopy. Talanta 2021; 232:122473. [PMID: 34074441 DOI: 10.1016/j.talanta.2021.122473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 11/19/2022]
Abstract
Secretory proteins constitute a biologically crucial subset of proteins for regulation of some pathological and physiological processes, and they have become very important biomarkers in clinical diagnosis and therapeutic targets. So far, secretory protein functions and mechanisms have not been fully understood due to methodological limitations in detection of low-abundance proteins against medium background. Here, we propose a strategy to determine secretory protein from living cells in situ using fluorescence correlation spectroscopy (FCS). In this study, the recombinant protein Fam20C with SNAP-tag was used as a model protein, and O6-benzylguanine (BG) derivatives bearing fluorescent dye as probes. We synthesized three fluorescent probes and investigated their fluorescent properties and diffusion behaviors in solution, and found the probe BG-Bodipy-561 more suitable for in situ labeling of Fam20C. We confirmed the specific binding of the probe to the target protein by combining FCS and in-gel fluorescence scanning methods. We studied the effects of some factors of the secretory Fam20C, and found that RNA interference significantly inhibited the synthesis of secretory fused Fam20C, and myriocin had no significant effect on the expression of secretory Fam20C, which indirectly illustrated that sphingolipid signaling can regulate the Fam20C activity. We believe that FCS is a very promising method to analyze secretory proteins from living cells in situ.
Collapse
Affiliation(s)
- Jun Yao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
5
|
He C, Hu S, Zhou W. Development of a novel nanoflow liquid chromatography-parallel reaction monitoring mass spectrometry-based method for quantification of angiotensin peptides in HUVEC cultures. PeerJ 2020; 8:e9941. [PMID: 32983648 PMCID: PMC7500351 DOI: 10.7717/peerj.9941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND This study aimed to develop an analytical method using liquid chromatography tandem mass spectrometry (LC-MS/MS) for the determination of angiotensin (Ang) I, Ang (1-9), Ang II, Ang (1-7), Ang (1-5), Ang III, Ang IV in human umbilical vein endothelial cell (HUVEC) culture supernatant. METHODS HUVEC culture supernatant was added with gradient concentrations (0.05-1,000 ng/ml) of standard solutions of the Ang peptides. These samples underwent C18 solid-phase extraction and separation using a preconcentration nano-liquid chromatography mass spectrometry system. The target peptides were detected by a Q Exactive quadrupole orbitrap high-resolution mass spectrometer in the parallel reaction monitoring mode. Ang converting enzyme (ACE) in HUVECs was silenced to examine Ang I metabolism. RESULTS The limit of detection was 0.1 pg for Ang II and Ang III, and 0.5 pg for Ang (1-9), Ang (1-7), and Ang (1-5). The linear detection range was 0.1-2,000 pg (0.05-1,000 ng/ml) for Ang II and Ang III, and 0.5-2,000 pg (0.25-1,000 ng/ml) for Ang (1-9) and Ang (1-5). Intra-day and inter-day precisions (relative standard deviation) were <10%. Ang II, Ang III, Ang IV, and Ang (1-5) were positively correlated with ACE expression by HUVECs, while Ang I, Ang (1-7), and Ang (1-9) were negatively correlated. CONCLUSION The nanoflow liquid chromatography-parallel reaction monitoring mass spectrometry-based methodology established in this study can evaluate the Ang peptides simultaneously in HUVEC culture supernatant.
Collapse
|
6
|
Cueto-Rojas HF, Milne N, van Helmond W, Pieterse MM, van Maris AJA, Daran JM, Wahl SA. Membrane potential independent transport of NH 3 in the absence of ammonium permeases in Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2017; 11:49. [PMID: 28412970 PMCID: PMC5392931 DOI: 10.1186/s12918-016-0381-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023]
Abstract
Background Microbial production of nitrogen containing compounds requires a high uptake flux and assimilation of the N-source (commonly ammonium), which is generally coupled with ATP consumption and negatively influences the product yield. In the industrial workhorse Saccharomyces cerevisiae, ammonium (NH4+) uptake is facilitated by ammonium permeases (Mep1, Mep2 and Mep3), which transport the NH4+ ion, resulting in ATP expenditure to maintain the intracellular charge balance and pH by proton export using the plasma membrane-bound H+-ATPase. Results To decrease the ATP costs for nitrogen assimilation, the Mep genes were removed, resulting in a strain unable to uptake the NH4+ ion. Subsequent analysis revealed that growth of this ∆mep strain was dependent on the extracellular NH3 concentrations. Metabolomic analysis revealed a significantly higher intracellular NHX concentration (3.3-fold) in the ∆mep strain than in the reference strain. Further proteomic analysis revealed significant up-regulation of vacuolar proteases and genes involved in various stress responses. Conclusions Our results suggest that the uncharged species, NH3, is able to diffuse into the cell. The measured intracellular/extracellular NHX ratios under aerobic nitrogen-limiting conditions were consistent with this hypothesis when NHx compartmentalization was considered. On the other hand, proteomic analysis indicated a more pronounced N-starvation stress response in the ∆mep strain than in the reference strain, which suggests that the lower biomass yield of the ∆mep strain was related to higher turnover rates of biomass components. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0381-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hugo F Cueto-Rojas
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Nicholas Milne
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands.,Present Address: Evolva Biotech A/S, Lersø Parkallé 42, 2100, København Ø, Denmark
| | - Ward van Helmond
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands.,Present Address: Nederlands Forensisch Instituut (NFI), Laan van Ypenburg 6, 2497 GB, Den Haag, The Netherlands
| | - Mervin M Pieterse
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands.,Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE 106 91, Stockholm, Sweden
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands.
| | - S Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands.
| |
Collapse
|
7
|
Abstract
SIGNIFICANCE Secreted proteins are important both as signaling molecules and potential biomarkers. Recent Advances: Protein can undergo different types of oxidation, both in physiological conditions or under oxidative stress. Several redox proteomics techniques have been successfully applied to the identification of glutathionylated proteins, an oxidative post-translational modification consisting in the formation of a mixed disulfide between a protein cysteine and glutathione. Redox proteomics has also been used to study other forms of protein oxidation. CRITICAL ISSUES Because of the highest proportion of free cysteines in the cytosol, redox proteomics of protein thiols has focused, so far, on intracellular proteins. However, plasma proteins, such as transthyretin and albumin, have been described as glutathionylated or cysteinylated. The present review discusses the redox state of protein cysteines in relation to their cellular distribution. We describe the various approaches used to detect secreted glutathionylated proteins, the only thiol modification studied so far in secreted proteins, and the specific problems presented in the study of the secretome. FUTURE DIRECTIONS This review focusses on glutathionylated proteins secreted under inflammatory conditions and that may act as soluble mediators (cytokines). Future studies on the redox secretome (including other forms of oxidation) might identify new soluble mediators and biomarkers of oxidative stress. Antioxid. Redox Signal. 26, 299-312.
Collapse
Affiliation(s)
- Pietro Ghezzi
- 1 Brighton & Sussex Medical School , Brighton, United Kingdom
| | - Philippe Chan
- 2 PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen , Rouen, France
| |
Collapse
|
8
|
Witzke KE, Rosowski K, Müller C, Ahrens M, Eisenacher M, Megger DA, Knobloch J, Koch A, Bracht T, Sitek B. Quantitative Secretome Analysis of Activated Jurkat Cells Using Click Chemistry-Based Enrichment of Secreted Glycoproteins. J Proteome Res 2016; 16:137-146. [PMID: 27696881 DOI: 10.1021/acs.jproteome.6b00575] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kathrin E. Witzke
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Kristin Rosowski
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Christian Müller
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Maike Ahrens
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Martin Eisenacher
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Dominik A. Megger
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Jürgen Knobloch
- Medical
Clinic III for Pneumology, Allergology, Sleep and Respiratory Medicine,
Bergmannsheil University Hospital, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Andrea Koch
- Medical
Clinic III for Pneumology, Allergology, Sleep and Respiratory Medicine,
Bergmannsheil University Hospital, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thilo Bracht
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Barbara Sitek
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
9
|
In Vivo Analysis of NH 4+ Transport and Central Nitrogen Metabolism in Saccharomyces cerevisiae during Aerobic Nitrogen-Limited Growth. Appl Environ Microbiol 2016; 82:6831-6845. [PMID: 27637876 DOI: 10.1128/aem.01547-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Ammonium is the most common N source for yeast fermentations. Although its transport and assimilation mechanisms are well documented, there have been only a few attempts to measure the in vivo intracellular concentration of ammonium and assess its impact on gene expression. Using an isotope dilution mass spectrometry (IDMS)-based method, we were able to measure the intracellular ammonium concentration in N-limited aerobic chemostat cultivations using three different N sources (ammonium, urea, and glutamate) at the same growth rate (0.05 h-1). The experimental results suggest that, at this growth rate, a similar concentration of intracellular (IC) ammonium, about 3.6 mmol NH4+/literIC, is required to supply the reactions in the central N metabolism, independent of the N source. Based on the experimental results and different assumptions, the vacuolar and cytosolic ammonium concentrations were estimated. Furthermore, we identified a futile cycle caused by NH3 leakage into the extracellular space, which can cost up to 30% of the ATP production of the cell under N-limited conditions, and a futile redox cycle between Gdh1 and Gdh2 reactions. Finally, using shotgun proteomics with protein expression determined relative to a labeled reference, differences between the various environmental conditions were identified and correlated with previously identified N compound-sensing mechanisms.IMPORTANCE In our work, we studied central N metabolism using quantitative approaches. First, intracellular ammonium was measured under different N sources. The results suggest that Saccharomyces cerevisiae cells maintain a constant NH4+ concentration (around 3 mmol NH4+/literIC), independent of the applied nitrogen source. We hypothesize that this amount of intracellular ammonium is required to obtain sufficient thermodynamic driving force. Furthermore, our calculations based on thermodynamic analysis of the transport mechanisms of ammonium suggest that ammonium is not equally distributed, indicating a high degree of compartmentalization in the vacuole. Additionally, metabolomic analysis results were used to calculate the thermodynamic driving forces in the central N metabolism reactions, revealing that the main reactions in the central N metabolism are far from equilibrium. Using proteomics approaches, we were able to identify major changes, not only in N metabolism, but also in C metabolism and regulation.
Collapse
|
10
|
Weng Y, Sui Z, Shan Y, Jiang H, Zhou Y, Zhu X, Liang Z, Zhang L, Zhang Y. In-Depth Proteomic Quantification of Cell Secretome in Serum-Containing Conditioned Medium. Anal Chem 2016; 88:4971-8. [PMID: 27042867 DOI: 10.1021/acs.analchem.6b00910] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yejing Weng
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Sui
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yichu Shan
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hao Jiang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zhou
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xudong Zhu
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Liang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lihua Zhang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
11
|
Nonnis S, Maffioli E, Zanotti L, Santagata F, Negri A, Viola A, Elliman S, Tedeschi G. Effect of fetal bovine serum in culture media on MS analysis of mesenchymal stromal cells secretome. EUPA OPEN PROTEOMICS 2016; 10:28-30. [PMID: 29900097 PMCID: PMC5988613 DOI: 10.1016/j.euprot.2016.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/14/2015] [Accepted: 01/05/2016] [Indexed: 02/02/2023]
Abstract
Optimized protocol to collect the secretome of human BM-MSC. Truly secreted proteins may be difficult to detect for fetal bovine serum presence. Cells should be transferred into a serum-free medium prior to secretome collection.
The analysis of mesenchymal stromal cells secretome is fundamental to identify key players of processes involving these cells. Truly secreted proteins may be difficult to detect in MS based analysis of conditioned media (CM) due to proteins supplemented with fetal bovine serum (FBS). We compared different growth conditions to determine the effect of varying FBS concentration on the number and quantity of truly secreted human proteins vs contaminating bovine proteins. The results suggest that to minimize interference cells should be grown in presence of FBS until confluence and transferred into a serum-free medium prior to secretome collection.
Collapse
Affiliation(s)
- Simona Nonnis
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Via Celoria, 10, 20133 Milan, Italy
| | - Elisa Maffioli
- Fondazione Filarete, Viale Ortles, 22/4, 20139 Milan, Italy
| | - Lucia Zanotti
- Unit of Immunogenetic, Leukemia genomic and Immunobiology, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Fabiana Santagata
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Via Celoria, 10, 20133 Milan, Italy
| | - Armando Negri
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Via Celoria, 10, 20133 Milan, Italy
| | - Antonella Viola
- Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Bassi, 58/B, 35131 Padova, Italy
| | - Stephen Elliman
- Orbsen Therapeutics Ltd., Distillery Road, NUIG, Galway, Ireland
| | - Gabriella Tedeschi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Via Celoria, 10, 20133 Milan, Italy.,Fondazione Filarete, Viale Ortles, 22/4, 20139 Milan, Italy
| |
Collapse
|
12
|
Kumar A, Baycin-Hizal D, Wolozny D, Pedersen LE, Lewis NE, Heffner K, Chaerkady R, Cole RN, Shiloach J, Zhang H, Bowen MA, Betenbaugh MJ. Elucidation of the CHO Super-Ome (CHO-SO) by Proteoinformatics. J Proteome Res 2015; 14:4687-703. [PMID: 26418914 DOI: 10.1021/acs.jproteome.5b00588] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chinese hamster ovary (CHO) cells are the preferred host cell line for manufacturing a variety of complex biotherapeutic drugs including monoclonal antibodies. We performed a proteomics and bioinformatics analysis on the spent medium from adherent CHO cells. Supernatant from CHO-K1 culture was collected and subjected to in-solution digestion followed by LC/LC-MS/MS analysis, which allowed the identification of 3281 different host cell proteins (HCPs). To functionally categorize them, we applied multiple bioinformatics tools to the proteins identified in our study including SignalP, TargetP, SecretomeP, TMHMM, WoLF PSORT, and Phobius. This analysis provided information on the presence of signal peptides, transmembrane domains, and cellular localization and showed that both secreted and intracellular proteins were constituents of the supernatant. Identified proteins were shown to be localized to the secretory pathway including ones playing roles in cell growth, proliferation, and folding as well as those involved in protein degradation and removal. After combining proteins predicted to be secreted or having a signal peptide, we identified 1015 proteins, which we termed as CHO supernatant-ome (CHO-SO), or superome. As a part of this effort, we created a publically accessible web-based tool called GO-CHO to functionally categorize proteins found in CHO-SO and identify enriched molecular functions, biological processes, and cellular components. We also used a tool to evaluate the immunogenicity potential of high-abundance HCPs. Among enriched functions were catalytic activity and structural constituents of the cytoskeleton. Various transport related biological processes, such as vesicle mediated transport, were found to be highly enriched. Extracellular space and vesicular exosome associated proteins were found to be the most enriched cellular components. The superome also contained proteins secreted from both classical and nonclassical secretory pathways. The work and database described in our study will enable the CHO community to rapidly identify high-abundance HCPs in their cultures and therefore help assess process and purification methods used in the production of biologic drugs.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States.,Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases , National Institute of Health, Building 14A, Bethesda, Maryland 20892, United States
| | - Deniz Baycin-Hizal
- Antibody Discovery and Protein Engineering, MedImmune LLC , 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Daniel Wolozny
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , DK-2970 Hørsholm, Denmark
| | - Nathan E Lewis
- Department of Biology, Brigham Young University , Provo, Utah 84602, United States.,Department of Pediatrics, University of California , San Diego, California 92093, United States
| | - Kelley Heffner
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Raghothama Chaerkady
- Institute of Basic Biomedical Sciences, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205, United States
| | - Robert N Cole
- Institute of Basic Biomedical Sciences, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205, United States
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases , National Institute of Health, Building 14A, Bethesda, Maryland 20892, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins School of Medicine , 400 North Broadway Street, Baltimore, Maryland 21287, United States
| | - Michael A Bowen
- Antibody Discovery and Protein Engineering, MedImmune LLC , 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
13
|
Stenken JA, Poschenrieder AJ. Bioanalytical chemistry of cytokines--a review. Anal Chim Acta 2015; 853:95-115. [PMID: 25467452 PMCID: PMC4717841 DOI: 10.1016/j.aca.2014.10.009] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/30/2014] [Accepted: 10/08/2014] [Indexed: 02/06/2023]
Abstract
Cytokines are bioactive proteins produced by many different cells of the immune system. Due to their role in different inflammatory disease states and maintaining homeostasis, there is enormous clinical interest in the quantitation of cytokines. The typical standard methods for quantitation of cytokines are immunoassay-based techniques including enzyme-linked immusorbent assays (ELISA) and bead-based immunoassays read by either standard or modified flow cytometers. A review of recent developments in analytical methods for measurements of cytokine proteins is provided. This review briefly covers cytokine biology and the analysis challenges associated with measurement of these biomarker proteins for understanding both health and disease. New techniques applied to immunoassay-based assays are presented along with the uses of aptamers, electrochemistry, mass spectrometry, optical resonator-based methods. Methods used for elucidating the release of cytokines from single cells as well as in vivo collection methods are described.
Collapse
Affiliation(s)
- Julie A Stenken
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Andreas J Poschenrieder
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Street 3, D-85748 Garching, Germany
| |
Collapse
|
14
|
Burrows GG, Van't Hof W, Newell LF, Reddy A, Wilmarth PA, David LL, Raber A, Bogaerts A, Pinxteren J, Deans RJ, Maziarz RT. Dissection of the human multipotent adult progenitor cell secretome by proteomic analysis. Stem Cells Transl Med 2013; 2:745-57. [PMID: 23981727 DOI: 10.5966/sctm.2013-0031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Multipotent adult progenitor cells (MAPCs) are adult adherent stromal stem cells currently being assessed in acute graft versus host disease clinical trials with demonstrated immunomodulatory capabilities and the potential to ameliorate detrimental autoimmune and inflammation-related processes. Our previous studies documented that MAPCs secrete factors that play a role in regulating T-cell activity. Here we expand our studies using a proteomics approach to characterize and quantify MAPC secretome components secreted over 72 hours in vitro under steady-state conditions and in the presence of the inflammatory triggers interferon-γ and lipopolysaccharide, or a tolerogenic CD74 ligand, RTL1000. MAPCs differentially responded to each of the tested stimuli, secreting molecules that regulate the biological activity of the extracellular matrix (ECM), including proteins that make up the ECM itself, proteins that regulate its construction/deconstruction, and proteins that serve to attach and detach growth factors from ECM components for redistribution upon appropriate stimulation. MAPCs secreted a wide array of proteases, some detectable in their zymogen forms. MAPCs also secreted protease inhibitors that would regulate protease activity. MAPCs secreted chemokines and cytokines that could provide molecular guidance cues to various cell types, including neutrophils, macrophages, and T cells. In addition, MAPCs secreted factors involved in maintenance of a homeostatic environment, regulating such diverse programs as innate immunity, angiogenesis/angiostasis, targeted delivery of growth factors, and the matrix-metalloprotease cascade.
Collapse
|
15
|
Selective enrichment of newly synthesized proteins for quantitative secretome analysis. Nat Biotechnol 2012; 30:984-90. [PMID: 23000932 DOI: 10.1038/nbt.2356] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/08/2012] [Indexed: 02/02/2023]
Abstract
Secreted proteins constitute a large and biologically important subset of proteins that are involved in cellular communication, adhesion and migration. Yet secretomes are understudied because of technical limitations in the detection of low-abundance proteins against a background of serum-containing media. Here we introduce a method that combines click chemistry and pulsed stable isotope labeling with amino acids in cell culture to selectively enrich and quantify secreted proteins. The combination of these two labeling approaches allows cells to be studied irrespective of the complexity of the background proteins. We provide an in-depth and differential secretome analysis of various cell lines and primary cells, quantifying secreted factors, including cytokines, chemokines and growth factors. In addition, we reveal that serum starvation has a marked effect on secretome composition. We also analyze the kinetics of protein secretion by macrophages in response to lipopolysaccharides.
Collapse
|