1
|
Restrepo CM, Llanes A, Herrera L, Ellis E, Quintero I, Fernández PL. Baseline gene expression in BALB/c and C57BL/6 peritoneal macrophages influences but does not dictate their functional phenotypes. Exp Biol Med (Maywood) 2025; 249:10377. [PMID: 39830895 PMCID: PMC11740880 DOI: 10.3389/ebm.2024.10377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Macrophages are effector cells of the immune system and essential modulators of immune responses. Different functional phenotypes of macrophages with specific roles in the response to stimuli have been described. The C57BL/6 and BALB/c mouse strains tend to selectively display distinct macrophage activation states in response to pathogens, namely, the M1 and M2 phenotypes, respectively. Herein we used RNA-Seq and differential expression analysis to characterize the baseline gene expression pattern of unstimulated resident peritoneal macrophages from C57BL/6 and BALB/c mice. Our aim is to determine if there is a possible predisposition of these mouse strains to any activation phenotype and how this may affect the interpretation of results in studies concerning their interaction with pathogens. We found differences in basal gene expression patterns of BALB/c and C57BL/6 mice, which were further confirmed using RT-PCR for a subset of relevant genes. Despite these differences, our data suggest that baseline gene expression patterns of both mouse strains do not appear to determine by itself a specific macrophage phenotype.
Collapse
Affiliation(s)
- Carlos M. Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia Tecnología e Innovación (SENACYT), Panama City, Panama
| | - Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia Tecnología e Innovación (SENACYT), Panama City, Panama
| | - Lizzi Herrera
- Bioterio, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Esteban Ellis
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Departamento de Biotecnología, Facultad de Ciencias de la Salud, Universidad Latina de Panamá, Panama City, Panama
- Facultad de Ciencia y Tecnología, Universidad Tecnológica de Panamá, Panama City, Panama
| | - Iliana Quintero
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Patricia L. Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia Tecnología e Innovación (SENACYT), Panama City, Panama
| |
Collapse
|
2
|
Xuan L, Ren L, Zhang W, Du P, Li B, An Z. Formaldehyde aggravates airway inflammation through induction of glycolysis in an experimental model of asthma exacerbated by lipopolysaccharide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168947. [PMID: 38043820 DOI: 10.1016/j.scitotenv.2023.168947] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Formaldehyde (FA) exposure has been reported to induce or aggravate allergic asthma. Infection is also a potential risk factor for the onset and aggravation of asthma. However, no study has addressed the effects of FA exposure on asthmatic patients with respiratory infection. FA is ubiquitous in environment and respiratory infections are common in clinics. Therefore, it is necessary to explore whether FA exposure leads to the further worsening of symptoms in asthma patients with existing respiratory infection. In the present study, ovalbumin (OVA) was used to establish the murine asthma model. Lipopolysaccharide (LPS) was intratracheal administrated to mimic asthma with respiratory infection. The mice were exposed to 0.5 mg/m3 FA. FA exposure did not induce a significant aggravation on OVA induced allergic asthma. However, the lung function of specific airway resistance (sRaw), histological changes and cytokines production were greatly aggravated by FA exposure in OVA/LPS induced murine asthma model. Monocyte-derived macrophages (MDMs) were isolated from asthmatic patients. Exposure of MDMs to FA and LPS resulted in increased TNF-α, IL-6, IL-1β, and nitric oxide (NO) production. Lactate produciton and lactate dehydrogenase A (LDHA) expression were found to be upregulated by FA in OVA/LPS induced asthmatic mice and LPS stimulated MDMs. Furthermore, glycolysis inhibitor 2-Deoxy-d-glucose attenuated FA and LPS induced TNF-α, IL-6, IL-1β, and NO production. We conclude that FA exposure can lead to the aggravation of allergic asthma with infection through induction of glycolysis. This study could offer some new insight into how FA promotes asthma development.
Collapse
Affiliation(s)
- Lingling Xuan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Lulu Ren
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Wen Zhang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Ping Du
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Boyu Li
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Zhuoling An
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing 100020, China.
| |
Collapse
|
3
|
Al-Kharashi LA, Alqarni SA, Ahmad SF, Al-Harbi NO, Alsanea S, Ibrahim KE, Algahtani MM, Alhazzani K, Shazly GA, Al-Harbi MM, Nadeem A. BALB/c and C57BL/6 mice differ in oxidant and antioxidant responses in innate and adaptive immune cells in an asthma model induced by cockroach allergens. Int Immunopharmacol 2023; 124:110892. [PMID: 37717317 DOI: 10.1016/j.intimp.2023.110892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
Asthma is a complex and heterogenous disease affected by a multitude of factors. Several phenotypes of asthma exist which are influenced by various molecular mechanisms that include presence of antioxidant and oxidant enzymes in different immune cells such as dendritic cells (DCs), alveolar macrophages (AMs), neutrophils, and T cells. Close interaction between epithelial cells and dendritic cells initiates complex pathogenesis of asthma followed by involvement of other innate and adaptive immune cells. In chronic phase of the disease, these immune cells support each other in amplification of airway inflammation where oxidant-antioxidant balance is known to be an important contributing factor. Genetic variability in antioxidant response may influence the development of airway inflammation, however it has not been studied in mice yet. The two most studied mice strains, i.e. BALB/c and C57BL/6 are reported to have dissimilar airway responses to the same allergens due to their genetic makeup. In this investigation, we explored whether these strains had any differences in pulmonary oxidant-antioxidant system (Nrf2, SOD2, iNOS, HO-1, nitrotyrosine) in different immune cells (DCs, AMs, neutrophils, T cells), airway inflammation (presence of eosinophils and/or neutrophils) and mucus production in response to repeated cockroach allergen extract (CE) mouse model of asthma. Our data show that C57BL/6 mice had better induction of antioxidant system than BALB/c mice. Consequently, iNOS/nitrotyrosine levels were much exaggerated in BALB/c than C57BL/6 mice. As a result, BALB/c mice developed mixed granulocytic airway inflammation, whereas C57BL/6 developed mostly eosinophilic airway inflammation. Our data suggest that an exaggerated oxidant generation along with a weak antioxidant induction in response to a natural allergen on a susceptible genetic background may determine development of severe asthma phenotype such as mixed granulocyte inflammation.
Collapse
Affiliation(s)
- Layla A Al-Kharashi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Algahtani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Halawi A, El Kurdi AB, Vernon KA, Solhjou Z, Choi JY, Saad AJ, Younis NK, Elfekih R, Mohammed MT, Deban CA, Weins A, Abdi R, Riella LV, De Serres SA, Cravedi P, Greka A, Khoueiry P, Azzi JR. Uncovering a novel role of focal adhesion and interferon-gamma in cellular rejection of kidney allografts at single cell resolution. Front Immunol 2023; 14:1139358. [PMID: 37063857 PMCID: PMC10102512 DOI: 10.3389/fimmu.2023.1139358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundKidney transplant recipients are currently treated with nonspecific immunosuppressants that cause severe systemic side effects. Current immunosuppressants were developed based on their effect on T-cell activation rather than the underlying mechanisms driving alloimmune responses. Thus, understanding the role of the intragraft microenvironment will help us identify more directed therapies with lower side effects.MethodsTo understand the role of the alloimmune response and the intragraft microenvironment in cellular rejection progression, we conducted a Single nucleus RNA sequencing (snRNA-seq) on one human non-rejecting kidney allograft sample, one borderline sample, and T-cell mediated rejection (TCMR) sample (Banff IIa). We studied the differential gene expression and enriched pathways in different conditions, in addition to ligand-receptor (L-R) interactions.ResultsPathway analysis of T-cells in borderline sample showed enrichment for allograft rejection pathway, suggesting that the borderline sample reflects an early rejection. Hence, this allows for studying the early stages of cellular rejection. Moreover, we showed that focal adhesion (FA), IFNg pathways, and endomucin (EMCN) were significantly upregulated in endothelial cell clusters (ECs) of borderline compared to ECs TCMR. Furthermore, we found that pericytes in TCMR seem to favor endothelial permeability compared to borderline. Similarly, T-cells interaction with ECs in borderline differs from TCMR by involving DAMPS-TLRs interactions.ConclusionOur data revealed novel roles of T-cells, ECs, and pericytes in cellular rejection progression, providing new clues on the pathophysiology of allograft rejection.
Collapse
Affiliation(s)
- Ahmad Halawi
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Abdullah B. El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Zhabiz Solhjou
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Scripps Clinic Medical Group, San Diego, CA, United States
| | - John Y. Choi
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Anis J. Saad
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Nour K. Younis
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rania Elfekih
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mostafa Tawfeek Mohammed
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Clinical Pathology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Christa A. Deban
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Astrid Weins
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Leonardo V. Riella
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Sasha A. De Serres
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Paolo Cravedi
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anna Greka
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Pierre Khoueiry
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jamil R. Azzi
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Jamil R. Azzi,
| |
Collapse
|
5
|
Breda J, Banerjee A, Jayachandran R, Pieters J, Zavolan M. A novel approach to single-cell analysis reveals intrinsic differences in immune marker expression in unstimulated BALB/c and C57BL/6 macrophages. FEBS Lett 2022; 596:2630-2643. [PMID: 36001069 DOI: 10.1002/1873-3468.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022]
Abstract
The origin of functional heterogeneity among macrophages, key innate immune system components, is still debated. While mouse strains differ in their immune responses, the range of gene expression variation among their pre-stimulation macrophages is unknown. With a novel approach to scRNA-seq analysis, we reveal the gene expression variation in unstimulated macrophage populations from BALB/c and C57BL/6 mice. We show that intrinsic strain-to-strain differences are detectable before stimulation and we place the unstimulated single cells within the gene expression landscape of stimulated macrophages. C57BL/6 mice show stronger evidence of macrophage polarization than BALB/c mice, which may contribute to their relative resistance to pathogens. Our computational methods can be generally adopted to uncover biological variation between cell populations.
Collapse
Affiliation(s)
- Jeremie Breda
- Biozentrum, University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Arka Banerjee
- Biozentrum, University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| | - Mihaela Zavolan
- Biozentrum, University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
6
|
Buettmann EG, Goldscheitter GM, Hoppock GA, Friedman MA, Suva LJ, Donahue HJ. Similarities Between Disuse and Age-Induced Bone Loss. J Bone Miner Res 2022; 37:1417-1434. [PMID: 35773785 PMCID: PMC9378610 DOI: 10.1002/jbmr.4643] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/07/2022]
Abstract
Disuse and aging are known risk factors associated with low bone mass and quality deterioration, resulting in increased fracture risk. Indeed, current and emerging evidence implicate a large number of shared skeletal manifestations between disuse and aging scenarios. This review provides a detailed overview of current preclinical models of musculoskeletal disuse and the clinical scenarios they seek to recapitulate. We also explore and summarize the major similarities between bone loss after extreme disuse and advanced aging at multiple length scales, including at the organ/tissue, cellular, and molecular level. Specifically, shared structural and material alterations of bone loss are presented between disuse and aging, including preferential loss of bone at cancellous sites, cortical thinning, and loss of bone strength due to enhanced fragility. At the cellular level bone loss is accompanied, during disuse and aging, by increased bone resorption, decreased formation, and enhanced adipogenesis due to altered gap junction intercellular communication, WNT/β-catenin and RANKL/OPG signaling. Major differences between extreme short-term disuse and aging are discussed, including anatomical specificity, differences in bone turnover rates, periosteal modeling, and the influence of subject sex and genetic variability. The examination also identifies potential shared mechanisms underlying bone loss in aging and disuse that warrant further study such as collagen cross-linking, advanced glycation end products/receptor for advanced glycation end products (AGE-RAGE) signaling, reactive oxygen species (ROS) and nuclear factor κB (NF-κB) signaling, cellular senescence, and altered lacunar-canalicular connectivity (mechanosensation). Understanding the shared structural alterations, changes in bone cell function, and molecular mechanisms common to both extreme disuse and aging are paramount to discovering therapies to combat both age-related and disuse-induced osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Galen M Goldscheitter
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
7
|
Safari Z, Sadeghizadeh M, Asgaritarghi G, Bardania H, Sadeghizadeh D, Soudi S. M13 phage coated surface elicits an anti-inflammatory response in BALB/c and C57BL/6 peritoneal macrophages. Int Immunopharmacol 2022; 107:108654. [PMID: 35421683 DOI: 10.1016/j.intimp.2022.108654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022]
Abstract
Bacteriophages are one of the viral components of the human microbiome. M13 phages have recently been considered for immunotherapy because they can be detected by immune cells and stimulated immune responses. Macrophages are essential innate immune cells that respond to stimuli and direct subsequent immune responses. Therefore, it is crucial to evaluate the immunomodulatory effect of phage on macrophage function. For this purpose, peritoneal macrophages from BALB/c and C57BL/6 mice were cultured on the M13 phage, M13 phage-RGD, gelatin-coated, and un-coated wells. Then macrophages were examined for morphological characteristics, L. arginine metabolism, redox potential, inflammatory cytokine production, and phagocytic activity after two and seven days of culture. We observed that M13 phage-coated surfaces induced anti-inflammatory cytokines production and reduced inflammatory cytokines level of BALB/c and C57BL/6 macrophages at the steady-state and post LPS stimulation. In addition, L. arginine metabolism and phagocytic activity of macrophages were directed to the M2 phenotype by induction of arginase-1 and efferocytosis in the M13 phage-containing groups, respectively. The present study confirms the M13 phage's ability to polarize macrophages toward the M2 phenotype. However, using M13 phage in treating inflammatory diseases in animal models could determine their immunotherapy capacity in the future.
Collapse
Affiliation(s)
- Zohreh Safari
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Golareh Asgaritarghi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Dina Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Kim H, Back JH, Han G, Lee SJ, Park YE, Gu MB, Yang Y, Lee JE, Kim SH. Extracellular vesicle-guided in situ reprogramming of synovial macrophages for the treatment of rheumatoid arthritis. Biomaterials 2022; 286:121578. [PMID: 35594838 DOI: 10.1016/j.biomaterials.2022.121578] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 12/01/2022]
Abstract
Activation state of synovial macrophages is significantly correlated with disease activity and severity of rheumatoid arthritis (RA) and provides valuable clues for RA treatment. Classically activated M1 macrophages in inflamed synovial joints secrete high levels of pro-inflammatory cytokines and chemokines, resulting in bone erosion and cartilage degradation. Herein, we propose extracellular vesicle (EV)-guided in situ macrophage reprogramming toward anti-inflammatory M2 macrophages as a novel RA treatment modality based on the immunotherapeutic concept of reestablishing M1-M2 macrophage equilibrium in synovial tissue. M2 macrophage-derived EVs (M2-EVs) were able to convert activated M1 into reprogrammed M2 (RM2) macrophages with extremely high efficiency (>90%), producing a distinct protein expression pattern characteristic of anti-inflammatory M2 macrophages. In particular, M2-EVs were enriched for proteins known to be involved in the generation and migration of M2 macrophages as well as macrophage reprogramming factors, allowing for rapid and efficient driving of macrophage polarization toward M2 phenotype. After administration of M2-EVs into the joint of a collagen-induced arthritis mouse model, the synovial macrophage polarization was significantly shifted from M1 to M2 phenotype, a process that benefited greatly from the long residence time (>3 days) of M2-EVs in the joint. This superb in situ macrophage-reprogramming ability of EVs resulted in decreased joint swelling, arthritic index score and synovial inflammation, with corresponding reductions in bone erosion and articular cartilage damage and no systemic toxicity. The anti-RA effects of M2-EVs were comparable to those of the conventional disease-modifying antirheumatic drug, Methotrexate, which causes a range of toxic adverse effects, including gastrointestinal mucosal injury. Overall, our EV-guided reprogramming strategy for in situ tuning of macrophage responses holds great promise for the development of anti-inflammatory therapeutics for the treatment of various inflammatory diseases in addition to RA.
Collapse
Affiliation(s)
- Hyosuk Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ji Hyun Back
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea; Chemical & Biological integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Geonhee Han
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Su Jin Lee
- Chemical & Biological integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yae Eun Park
- Chemical & Biological integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Man Bock Gu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Yoosoo Yang
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ji Eun Lee
- Chemical & Biological integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Sun Hwa Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
9
|
Cardamonin attenuates phorbol 12-myristate 13-acetate-induced pulmonary inflammation in alveolar macrophages. Food Chem Toxicol 2021; 159:112761. [PMID: 34890758 DOI: 10.1016/j.fct.2021.112761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 01/24/2023]
Abstract
Pulmonary inflammation involves complex immune responses in which alveolar macrophages release pro-inflammatory proteins and cytokines. Cardamonin is a spice component that exerts anti-inflammatory and anti-oxidative properties against pulmonary inflammation. Herein, the aim of this research is to investigate the effects of cardamonin on pulmonary inflammation and its mechanism. Pulmonary inflammation in mice was induced by intratracheal administration of PMA. PMA-stimulated acute fibrosis, pulmonary edema, and inflammatory responses were ameliorated by oral administration of cardamonin in vivo. In MH-S alveolar macrophages, PMA-induced pro-inflammatory responses, including iNOS, COX-2, MMP-9 and cytokines expressions were reduced by cardamonin. The anti-oxidative Nrf2/HO-1 axis was also provoked by cardamonin in MH-S alveolar macrophages. In addition, MMP-9 expression induced by PMA is also decreased by the down-stream metabolites of HO-1, indicating that HO-1 expression partially contributes to the anti-inflammatory effect exerted by cardamonin. In this study, cardamonin demonstrates anti-inflammatory and anti-oxidative effects on PMA-induced pulmonary inflammation and activating Nrf2/HO-1 axis in alveolar macrophages. Cardamonin also ameliorates pulmonary inflammation, rapid fibrosis in vivo, suggesting powerful health benefits.
Collapse
|
10
|
Santecchia I, Ferrer MF, Vieira ML, Gómez RM, Werts C. Phagocyte Escape of Leptospira: The Role of TLRs and NLRs. Front Immunol 2020; 11:571816. [PMID: 33123147 PMCID: PMC7573490 DOI: 10.3389/fimmu.2020.571816] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
The spirochetal bacteria Leptospira spp. are causative agents of leptospirosis, a globally neglected and reemerging zoonotic disease. Infection with these pathogens may lead to an acute and potentially fatal disease but also to chronic asymptomatic renal colonization. Both forms of disease demonstrate the ability of leptospires to evade the immune response of their hosts. In this review, we aim first to recapitulate the knowledge and explore the controversial data about the opsonization, recognition, intracellular survival, and killing of leptospires by scavenger cells, including platelets, neutrophils, macrophages, and dendritic cells. Second, we will summarize the known specificities of the recognition or escape of leptospire components (the so-called microbial-associated molecular patterns; MAMPs) by the pattern recognition receptors (PRRs) of the Toll-like and NOD-like families. These PRRs are expressed by phagocytes, and their stimulation by MAMPs triggers pro-inflammatory cytokine and chemokine production and bactericidal responses, such as antimicrobial peptide secretion and reactive oxygen species production. Finally, we will highlight recent studies suggesting that boosting or restoring phagocytic functions by treatments using agonists of the Toll-like or NOD receptors represents a novel prophylactic strategy and describe other potential therapeutic or vaccine strategies to combat leptospirosis.
Collapse
Affiliation(s)
- Ignacio Santecchia
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
- INSERM, Equipe Avenir, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - María Florencia Ferrer
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Monica Larucci Vieira
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Martín Gómez
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Catherine Werts
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
| |
Collapse
|
11
|
Kim H, Wang SY, Kwak G, Yang Y, Kwon IC, Kim SH. Exosome-Guided Phenotypic Switch of M1 to M2 Macrophages for Cutaneous Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900513. [PMID: 31637157 PMCID: PMC6794619 DOI: 10.1002/advs.201900513] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/09/2019] [Indexed: 05/10/2023]
Abstract
Macrophages (Mϕs) critically contribute to wound healing by coordinating inflammatory, proliferative, and angiogenic processes. A proper switch from proinflammatory M1 to anti-inflammatory M2 dominant Mϕs accelerates the wound healing processes leading to favorable wound-care outcomes. Herein, an exosome-guided cell reprogramming technique is proposed to directly convert M1 to M2 Mϕs for effective wound management. The M2 Mϕ-derived exosomes (M2-Exo) induce a complete conversion of M1 to M2 Mϕs in vitro. The reprogrammed M2 Mϕs turn Arginase (M2-marker) and iNOS (M1-marker) on and off, respectively, and exhibit distinct phenotypic and functional features of M2 Mϕs. M2-Exo has not only Mϕ reprogramming factors but also various cytokines and growth factors promoting wound repair. After subcutaneous administration of M2-Exo into the wound edge, the local populations of M1 and M2 Mϕs are markedly decreased and increased, respectively, showing a successful exosome-guided switch to M2 Mϕ polarization. The direct conversion of M1 to M2 Mϕs at the wound site accelerates wound healing by enhancing angiogenesis, re-epithelialization, and collagen deposition. The Mϕ phenotype switching induced by exosomes possessing the excellent cell reprogramming capability and innate biocompatibility can be a promising therapeutic approach for various inflammation-associated disorders by regulating the balance between pro- versus anti-inflammatory Mϕs.
Collapse
Affiliation(s)
- Hyosuk Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Sun Young Wang
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Gijung Kwak
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Yoosoo Yang
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Ick Chan Kwon
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Sun Hwa Kim
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| |
Collapse
|
12
|
Magaña-Guerrero FS, Quiroz-Mercado J, Garfias-Zenteno N, Garfias Y. Comparative analysis of inflammatory response in the BALB/c and C57BL/6 mouse strains in an endotoxin-induced uveitis model. J Immunol Methods 2019; 476:112677. [PMID: 31626758 DOI: 10.1016/j.jim.2019.112677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/13/2019] [Accepted: 10/02/2019] [Indexed: 01/14/2023]
Abstract
Uveitis is an inflammatory disease associated with diverse systemic and autoimmune diseases, defined as the inflammation of any given segment of the uveal tract, uveitis contributes with 5-20% cases of blindness in the USA/Europe and >25% of cases in third-world countries. To understand its pathogenic mechanisms, BALB/c and C57BL/6 mice were induced to develop the condition by a single intraperitoneal injection of E. coli lipopolysaccharide, the aim of the present work is to determine leukocyte infiltration in an endotoxin-induced uveitis (EIU) in two non-related mouse strains. Histopathological findings and clinical analysis were conducted 24 and 48 h postinjection. Both strains presented conventional clinical signs of uveitis 24 h post LPS injection and the highest inflammatory leukocyte infiltration in the uveal tract was found in the BALB/c mouse strain. This article will give an insight on the difference of the inflammatory response in the EIU model in two different mouse strains and the relationship between the pathologic response.
Collapse
Affiliation(s)
- Fátima Sofía Magaña-Guerrero
- Research Unit, Institute of Ophthalmology, Conde de Valenciana Foundation, Chimalpopoca 14, 06800 Mexico City, Mexico.
| | - Joaquín Quiroz-Mercado
- Department of Medicine, Surgery and Zootechnics for Small Animals, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 Mexico City, Mexico
| | - Nicolás Garfias-Zenteno
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis S/N, 11340 Mexico City, Mexico
| | - Yonathan Garfias
- Research Unit, Institute of Ophthalmology, Conde de Valenciana Foundation, Chimalpopoca 14, 06800 Mexico City, Mexico; Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 Mexico City, Mexico.
| |
Collapse
|
13
|
Szulc-Dąbrowska L, Wojtyniak P, Struzik J, Toka FN, Winnicka A, Gieryńska M. ECTV Abolishes the Ability of GM-BM Cells to Stimulate Allogeneic CD4 T Cells in a Mouse Strain-Independent Manner. Immunol Invest 2019; 48:392-409. [PMID: 30884992 DOI: 10.1080/08820139.2019.1569676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ectromelia virus (ECTV) is the etiological agent of mousepox, an acute and systemic disease with high mortality rates in susceptible strains of mice. Resistance and susceptibility to mousepox are triggered by the dichotomous T-helper (Th) immune response generated in infected animals, with strong protective Th1 or nonprotective Th2 profile, respectively. Th1/Th2 balance is influenced by dendritic cells (DCs), which were shown to differ in their ability to polarize naïve CD4+ T cells in different mouse strains. Therefore, we have studied the inner-strain differences in the ability of conventional DCs (cDCs), generated from resistant (C57BL/6) and susceptible (BALB/c) mice, to stimulate proliferation and activation of Th cells upon ECTV infection. We found that ECTV infection of GM-CSF-derived bone marrow (GM-BM) cells, composed of cDCs and macrophages, affected initiation of allogeneic CD4+ T cells proliferation in a mouse strain-independent manner. Moreover, infected GM-BM cells from both mouse strains failed to induce and even inhibited the production of Th1 (IFN-γ and IL-2), Th2 (IL-4 and IL-10) and Th17 (IL-17A) cytokines by allogeneic CD4+ T cells. These results indicate that in in vitro conditions ECTV compromises the ability of cDCs to initiate/polarize adaptive antiviral immune response independently of the host strain resistance/susceptibility to lethal infection.
Collapse
Affiliation(s)
- Lidia Szulc-Dąbrowska
- a Department of Preclinical Sciences, Faculty of Veterinary Medicine , Warsaw University of Life Sciences , Warsaw , Poland
| | - Piotr Wojtyniak
- a Department of Preclinical Sciences, Faculty of Veterinary Medicine , Warsaw University of Life Sciences , Warsaw , Poland
| | - Justyna Struzik
- a Department of Preclinical Sciences, Faculty of Veterinary Medicine , Warsaw University of Life Sciences , Warsaw , Poland
| | - Felix N Toka
- a Department of Preclinical Sciences, Faculty of Veterinary Medicine , Warsaw University of Life Sciences , Warsaw , Poland.,b Center for Integrative Mammalian Research , Ross University School of Veterinary Medicine , Basseterre, St. Kitts , West Indies
| | - Anna Winnicka
- c Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine , Warsaw University of Life Sciences , Warsaw , Poland
| | - Małgorzata Gieryńska
- a Department of Preclinical Sciences, Faculty of Veterinary Medicine , Warsaw University of Life Sciences , Warsaw , Poland
| |
Collapse
|
14
|
Characterization of immune cell subtypes in three commonly used mouse strains reveals gender and strain-specific variations. J Transl Med 2019; 99:93-106. [PMID: 30353130 PMCID: PMC6524955 DOI: 10.1038/s41374-018-0137-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/22/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022] Open
Abstract
The lack of consensus on bone marrow (BM) and splenic immune cell profiles in preclinical mouse strains complicates comparative analysis across different studies. Although studies have documented relative distribution of immune cells from peripheral blood in mice, similar studies for BM and spleen from naïve mice are lacking. In an effort to establish strain- and gender-specific benchmarks for distribution of various immune cell subtypes in these organs, we performed immunophenotypic analysis of BM cells and splenocytes from both genders of three commonly used murine strains (C57BL/6NCr, 129/SvHsd, and BALB/cAnNCr). Total neutrophils and splenic macrophages were significantly higher in C57BL/6NCr, whereas total B cells were lower. Within C57BL/6NCr female mice, BM B cells were elevated with respect to the males whereas splenic mDCs and splenic neutrophils were reduced. Within BALB/cAnNCr male mice, BM CD4+ Tregs were elevated with respect to the other strains. Furthermore, in male BALB/cAnNCr mice, NK cells were elevated with respect to the other strains in both BM and spleen. Splenic CD4+ Tregs and splenic CD8+ T cells were reduced in male BALB/c mice in comparison to female mice. Bone marrow CD4+ T cells and mDCs were significantly increased in 129/SvHsd whereas splenic CD8+ T cells were reduced. In general, males exhibited higher immature myeloid cells, macrophages, and NK cells. To our knowledge, this study provides a first attempt to systematically establish organ-specific benchmarks on immune cells in studies involving these mouse strains.
Collapse
|
15
|
Van den Kerkhof M, Van Bockstal L, Gielis JF, Delputte P, Cos P, Maes L, Caljon G, Hendrickx S. Impact of primary mouse macrophage cell types on Leishmania infection and in vitro drug susceptibility. Parasitol Res 2018; 117:3601-3612. [PMID: 30141075 DOI: 10.1007/s00436-018-6059-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/15/2018] [Indexed: 01/16/2023]
Abstract
Primary mouse macrophages are frequently used to provide an in vitro intracellular model to evaluate antileishmanial drug efficacy. The present study compared the phenotypic characteristics of Swiss, BALB/c, and C57BL/6 mouse bone marrow-derived macrophages and peritoneal exudate cells using different stimulation and adherence protocols upon infection with a Leishmania infantum laboratory strain and two clinical isolates. Evaluation parameters were susceptibility to infection, permissiveness to amastigote multiplication, and impact on drug efficacy. Observed variations in infection of peritoneal exudate cells can mostly be linked to changes in the inflammatory cytokine profiles (IL-6, TNF-α, KC/GRO) rather than to differences in initial production of nitric oxide and reactive oxygen species. Optimization of the cell stimulation and adherence conditions resulted in comparable infection indices among peritoneal exudate cells and the various types of bone marrow-derived macrophages. BALB/c-derived bone marrow-derived macrophages were slightly more permissive to intracellular amastigote replication. Evaluation of antileishmanial drug potency in the various cell systems revealed minimal variation for antimonials and paromomycin, and no differences for miltefosine and amphotericin B. The study results allow to conclude that drug evaluation can be performed in all tested primary macrophages as only marginal differences are observed in terms of susceptibility to infection and impact of drug exposure. Combined with some practical considerations, the use of 24-h starch-stimulated, 48-h adhered, Swiss-derived peritoneal exudate cells can be advocated as an efficient, reliable, relatively quick, and cost-effective tool for routine drug susceptibility testing in vitro whenever the use of primary cells is feasible.
Collapse
Affiliation(s)
- M Van den Kerkhof
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - L Van Bockstal
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - J F Gielis
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
- Antwerp Surgical Training, Anatomy & Research Center, Department of Medicine, University of Antwerp, Wilrijk, Belgium
| | - P Delputte
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - P Cos
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - L Maes
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium.
| | - Sarah Hendrickx
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
16
|
Miller KE, Bajzer Ž, Hein SS, Phillips JE, Syed S, Wright AM, Cipriani G, Gibbons SJ, Szurszewski JH, Farrugia G, Ordog T, Linden DR. High temporal resolution gastric emptying breath tests in mice. Neurogastroenterol Motil 2018; 30:e13333. [PMID: 29575442 PMCID: PMC6157017 DOI: 10.1111/nmo.13333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/11/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gastric emptying is a complex physiological process regulating the division of a meal into smaller partitions for the small intestine. Disrupted gastric emptying contributes to digestive disease, yet current measures may not reflect different mechanisms by which the process can be altered. METHODS We have developed high temporal resolution solid and liquid gastric emptying breath tests in mice using [13 C]-octanoic acid and off axis- integrated cavity output spectroscopy (OA-ICOS). Stretched gamma variate and 2-component stretched gamma variate models fit measured breath excretion data. KEY RESULTS These assays detect acceleration and delay using pharmacological (7.5 mg/kg atropine) or physiological (nutrients, cold exposure stress, diabetes) manipulations and remain stable over time. High temporal resolution resolved complex excretion curves with 2 components, which was more prevalent in mice with delayed gastric emptying following streptozotocin-induced diabetes. There were differences in the gastric emptying of Balb/c vs C57Bl6 mice, with slower gastric emptying and a greater occurrence of two-phase gastric emptying curves in the latter strain. Gastric emptying of C57Bl6 could be accelerated by halving the meal size, but with no effect on the occurrence of two-phase gastric emptying curves. A greater proportion of two-phase gastric emptying was induced in Balb/c mice with the administration of PYY (8-80 nmol) 60 min following meal ingestion. CONCLUSIONS AND INFERENCES Collectively, these results demonstrate the utility of high temporal resolution gastric emptying assays. Two-phase gastric emptying is more prevalent than previously reported, likely involves intestinal feedback, but contributes little to the overall rate of gastric emptying.
Collapse
Affiliation(s)
- Katie E. Miller
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
| | - Željko Bajzer
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic
College of Medicine, Rochester, MN 55905 USA
| | - Stephanie S. Hein
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
| | - Jessica E. Phillips
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
| | - Sabriya Syed
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic
College of Medicine, Rochester, MN 55905 USA
| | - Alec M. Wright
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
| | - Gianluca Cipriani
- Division of Gastroenterology and Hepatology, Department of Medicine,
Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Simon J. Gibbons
- Division of Gastroenterology and Hepatology, Department of Medicine,
Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Joseph H. Szurszewski
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
- Division of Gastroenterology and Hepatology, Department of Medicine,
Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Gianrico Farrugia
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
- Division of Gastroenterology and Hepatology, Department of Medicine,
Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
- Division of Gastroenterology and Hepatology, Department of Medicine,
Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - David R. Linden
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
| |
Collapse
|
17
|
Chiffoleau E. C-Type Lectin-Like Receptors As Emerging Orchestrators of Sterile Inflammation Represent Potential Therapeutic Targets. Front Immunol 2018; 9:227. [PMID: 29497419 PMCID: PMC5818397 DOI: 10.3389/fimmu.2018.00227] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/26/2018] [Indexed: 01/19/2023] Open
Abstract
Over the last decade, C-type lectin-like receptors (CTLRs), expressed mostly by myeloid cells, have gained increasing attention for their role in the fine tuning of both innate and adaptive immunity. Not only CTLRs recognize pathogen-derived ligands to protect against infection but also endogenous ligands such as self-carbohydrates, proteins, or lipids to control homeostasis and tissue injury. Interestingly, CTLRs act as antigen-uptake receptors via their carbohydrate-recognition domain for internalization and subsequent presentation to T-cells. Furthermore, CTLRs signal through a complex intracellular network leading to the secretion of a particular set of cytokines that differently polarizes downstream effector T-cell responses according to the ligand and pattern recognition receptor co-engagement. Thus, by orchestrating the balance between inflammatory and resolution pathways, CTLRs are now considered as driving players of sterile inflammation whose dysregulation leads to the development of various pathologies such as autoimmune diseases, allergy, or cancer. For examples, the macrophage-inducible C-type lectin (MINCLE), by sensing glycolipids released during cell-damage, promotes skin allergy and the pathogenesis of experimental autoimmune uveoretinitis. Besides, recent studies described that tumors use physiological process of the CTLRs’ dendritic cell-associated C-type lectin-1 (DECTIN-1) and MINCLE to locally suppress myeloid cell activation and promote immune evasion. Therefore, we aim here to overview the current knowledge of the pivotal role of CTLRs in sterile inflammation with special attention given to the “Dectin-1” and “Dectin-2” families. Moreover, we will discuss the potential of these receptors as promising therapeutic targets to treat a wide range of acute and chronic diseases.
Collapse
Affiliation(s)
- Elise Chiffoleau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,IHU Cesti, Nantes, France.,Labex Immunotherapy Graft Oncology (IGO), Nantes, France
| |
Collapse
|
18
|
Semini G, Aebischer T. Phagosome proteomics to study Leishmania's intracellular niche in macrophages. Int J Med Microbiol 2017; 308:68-76. [PMID: 28927848 DOI: 10.1016/j.ijmm.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/23/2017] [Accepted: 09/03/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular pathogens invade their host cells and replicate within specialized compartments. In turn, the host cell initiates a defensive response trying to kill the invasive agent. As a consequence, intracellular lifestyle implies morphological and physiological changes in both pathogen and host cell. Leishmania spp. are medically important intracellular protozoan parasites that are internalized by professional phagocytes such as macrophages, and reside within the parasitophorous vacuole inhibiting their microbicidal activity. Whereas the proteome of the extracellular promastigote form and the intracellular amastigote form have been extensively studied, the constituents of Leishmania's intracellular niche, an endolysosomal compartment, are not fully deciphered. In this review we discuss protocols to purify such compartments by means of an illustrating example to highlight generally relevant considerations and innovative aspects that allow purification of not only the intracellular parasites but also the phagosomes that harbor them and analyze the latter by gel free proteomics.
Collapse
Affiliation(s)
- Geo Semini
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.
| | - Toni Aebischer
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
19
|
Bearss JJ, Hunter M, Dankmeyer JL, Fritts KA, Klimko CP, Weaver CH, Shoe JL, Quirk AV, Toothman RG, Webster WM, Fetterer DP, Bozue JA, Worsham PL, Welkos SL, Amemiya K, Cote CK. Characterization of pathogenesis of and immune response to Burkholderia pseudomallei K96243 using both inhalational and intraperitoneal infection models in BALB/c and C57BL/6 mice. PLoS One 2017; 12:e0172627. [PMID: 28235018 PMCID: PMC5325312 DOI: 10.1371/journal.pone.0172627] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/07/2017] [Indexed: 01/02/2023] Open
Abstract
Burkholderia pseudomallei, the etiologic agent of melioidosis, is a Gram negative bacterium designated as a Tier 1 threat. This bacterium is known to be endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. Inhalational melioidosis has been associated with monsoonal rains in endemic areas and is also a significant concern in the biodefense community. There are currently no effective vaccines for B. pseudomallei and antibiotic treatment can be hampered by non-specific symptomology and also the high rate of naturally occurring antibiotic resistant strains. Well-characterized animal models will be essential when selecting novel medical countermeasures for evaluation prior to human clinical trials. Here, we further characterize differences between the responses of BALB/c and C57BL/6 mice when challenged with low doses of a low-passage and well-defined stock of B. pseudomallei K96243 via either intraperitoneal or aerosol routes of exposure. Before challenge, mice were implanted with a transponder to collect body temperature readings, and daily body weights were also recorded. Mice were euthanized on select days for pathological analyses and determination of the bacterial burden in selected tissues (blood, lungs, liver, and spleen). Additionally, spleen homogenate and sera samples were analyzed to better characterize the host immune response after infection with aerosolized bacteria. These clinical, pathological, and immunological data highlighted and confirmed important similarities and differences between these murine models and exposure routes.
Collapse
Affiliation(s)
- Jeremy J. Bearss
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Melissa Hunter
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Jennifer L. Dankmeyer
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Kristen A. Fritts
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Christopher P. Klimko
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Chris H. Weaver
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Jennifer L. Shoe
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Avery V. Quirk
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Ronald G. Toothman
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Wendy M. Webster
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - David P. Fetterer
- BioStatisitics Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Joel A. Bozue
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Patricia L. Worsham
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Susan L. Welkos
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Kei Amemiya
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Christopher K. Cote
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| |
Collapse
|
20
|
Mori D, Shibata K, Yamasaki S. C-Type Lectin Receptor Dectin-2 Binds to an Endogenous Protein β-Glucuronidase on Dendritic Cells. PLoS One 2017; 12:e0169562. [PMID: 28046067 PMCID: PMC5207712 DOI: 10.1371/journal.pone.0169562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/19/2016] [Indexed: 01/12/2023] Open
Abstract
C-type lectin receptors (CLRs) recognize pathogen-derived ligands and abnormal self that trigger protective immune responses. However, the precise nature of self ligands recognized by CLRs remains to be determined. Here, we found that Dectin-2 recognizes bone marrow-derived dendritic cells (BMDCs) using Dectin-2-expressing reporter cells. This activity was inhibited by an excessive amount of mannose, and by the mutation of mannose-binding motif in Dectin-2. β-glucuronidase (Gusb) was identified as a protein bound to Dectin-2 and mutations of N-glycosylation sites in Gusb impaired the binding of Gusb to Dectin-2. Overexpression of Gusb in a macrophage cell line conferred an ability to stimulate Dectin-2-expressing reporter cells. Our study suggests that a glycosylated protein with mannose-related structure is recognized by Dectin-2.
Collapse
Affiliation(s)
- Daiki Mori
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kensuke Shibata
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- * E-mail: (SY); (KS)
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- * E-mail: (SY); (KS)
| |
Collapse
|
21
|
Chen YS, Lin HH, Hsueh PT, Ni WF, Liu PJ, Chen PS, Chang HH, Sun DS, Chen YL. Involvement of L-selectin expression in Burkholderia pseudomallei-infected monocytes invading the brain during murine melioidosis. Virulence 2016; 8:751-766. [PMID: 27646437 DOI: 10.1080/21505594.2016.1232239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The development of neurologic melioidosis was linked to the elicitation of Burkholderia pseudomallei-infected L-selectinhiCD11b+ BALB/c cells in our previous study. However, whether monocytic L-selectin (CD62L, encoded by the sell gene) is a key factor remains uncertain. In the present study, after establishing multi-organ foci via hematogenous routes, we demonstrated that B. pseudomallei GFP steadily persisted in blood, splenic, hepatic and bone marrow (BM) Ly6C monocytes; however, the circulating CD16/32+CD45hiGFP+ brain-infiltrating leukocytes (BILs) derived from the blood Ly6C monocytes were expanded in BALB/c but not in C57BL/6 bacteremic melioidosis. Consistent with these results, 60% of BALB/c mice but only 10% of C57BL/6 mice exhibited neurologic melioidosis. In a time-dependent manner, B. pseudomallei invaded C57BL/6 BM-derived phagocytes and monocytic progenitors by 2 d. The number of Ly6C+CD62L+GFP+ inflamed cells that had expanded in the BM and that were ready for emigration peaked on d 21 post-infection. Hematogenous B. pseudomallei-loaded sell+/+Ly6C monocytes exacerbated the bacterial loads and the proportion of Ly6C+GFP+ BILs in the recipient brains compared to sell-/- infected Ly6C cells when adoptively transferred. Moreover, a neutralizing anti-CD62L antibody significantly depleted the bacterial colonization of the brain following adoptive transfer of B. pseudomallei-loaded C57BL/6 or BALB/c Ly6C cells. Our data thus suggest that Ly6C+CD62L+ infected monocytes served as a Trojan horse across the cerebral endothelium to induce brain infection. Therefore, CD62L should be considered as not only a temporally elicited antigen but also a disease-relevant leukocyte marker during the development of neurologic melioidosis.
Collapse
Affiliation(s)
- Yao-Shen Chen
- a Department of Internal Medicine , Kaohsiung Veterans General Hospital , Kaohsiung , Taiwan.,b Department of Internal Medicine , National Yang-Ming University , Taipei , Taiwan
| | - Hsi-Hsun Lin
- c Section of Infectious Disease , Department of Medicine , E-Da Hospital and University , Kaohsiung Taiwan
| | - Pei-Tan Hsueh
- d Department of Biological Science , National Sun Yat-sen University , Kaohsiung , Taiwan.,e Department of Biotechnology , National Kaohsiung Normal University , Kaohsiung , Taiwan
| | - Wei-Fen Ni
- e Department of Biotechnology , National Kaohsiung Normal University , Kaohsiung , Taiwan
| | - Pei-Ju Liu
- e Department of Biotechnology , National Kaohsiung Normal University , Kaohsiung , Taiwan
| | - Pei-Shih Chen
- f Department of Public Health , College of Health Science, Kaohsiung Medical University , Kaohsiung , Taiwan.,g Institute of Environmental Engineering, National Sun Yat-sen University , Kaohsiung , Taiwan
| | - Hsin-Hou Chang
- h Department of Molecular Biology and Human Genetics , Tzu Chi University , Hualien , Taiwan
| | - Der-Shan Sun
- h Department of Molecular Biology and Human Genetics , Tzu Chi University , Hualien , Taiwan
| | - Ya-Lei Chen
- e Department of Biotechnology , National Kaohsiung Normal University , Kaohsiung , Taiwan
| |
Collapse
|
22
|
Cizmeci D, Dempster EL, Champion OL, Wagley S, Akman OE, Prior JL, Soyer OS, Mill J, Titball RW. Mapping epigenetic changes to the host cell genome induced by Burkholderia pseudomallei reveals pathogen-specific and pathogen-generic signatures of infection. Sci Rep 2016; 6:30861. [PMID: 27484700 PMCID: PMC4971488 DOI: 10.1038/srep30861] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/07/2016] [Indexed: 01/26/2023] Open
Abstract
The potential for epigenetic changes in host cells following microbial infection has been widely suggested, but few examples have been reported. We assessed genome-wide patterns of DNA methylation in human macrophage-like U937 cells following infection with Burkholderia pseudomallei, an intracellular bacterial pathogen and the causative agent of human melioidosis. Our analyses revealed significant changes in host cell DNA methylation, at multiple CpG sites in the host cell genome, following infection. Infection induced differentially methylated probes (iDMPs) showing the greatest changes in DNA methylation were found to be in the vicinity of genes involved in inflammatory responses, intracellular signalling, apoptosis and pathogen-induced signalling. A comparison of our data with reported methylome changes in cells infected with M. tuberculosis revealed commonality of differentially methylated genes, including genes involved in T cell responses (BCL11B, FOXO1, KIF13B, PAWR, SOX4, SYK), actin cytoskeleton organisation (ACTR3, CDC42BPA, DTNBP1, FERMT2, PRKCZ, RAC1), and cytokine production (FOXP1, IRF8, MR1). Overall our findings show that pathogenic-specific and pathogen-common changes in the methylome occur following infection.
Collapse
Affiliation(s)
- Deniz Cizmeci
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Emma L. Dempster
- University of Exeter Medical School, Exeter University, Exeter, United Kingdom
| | - Olivia L. Champion
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sariqa Wagley
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Ozgur E. Akman
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Joann L. Prior
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, United Kingdom
| | - Jonathan Mill
- University of Exeter Medical School, Exeter University, Exeter, United Kingdom
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Richard W. Titball
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
23
|
Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells. Proteomes 2015; 3:467-495. [PMID: 28248281 PMCID: PMC5217390 DOI: 10.3390/proteomes3040467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022] Open
Abstract
Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.
Collapse
|
24
|
Graham DB, Becker CE, Doan A, Goel G, Villablanca EJ, Knights D, Mok A, Ng ACY, Doench JG, Root DE, Clish CB, Xavier RJ. Functional genomics identifies negative regulatory nodes controlling phagocyte oxidative burst. Nat Commun 2015; 6:7838. [PMID: 26194095 PMCID: PMC4518307 DOI: 10.1038/ncomms8838] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/17/2015] [Indexed: 01/06/2023] Open
Abstract
The phagocyte oxidative burst, mediated by Nox2 NADPH oxidase-derived reactive oxygen species, confers host defense against a broad spectrum of bacterial and fungal pathogens. Loss-of-function mutations that impair function of the Nox2 complex result in a life-threatening immunodeficiency, and genetic variants of Nox2 subunits have been implicated in pathogenesis of inflammatory bowel disease (IBD). Thus, alterations in the oxidative burst can profoundly impact host defense, yet little is known about regulatory mechanisms that fine-tune this response. Here we report the discovery of regulatory nodes controlling oxidative burst by functional screening of genes within loci linked to human inflammatory disease. Implementing a multi-omics approach, we define transcriptional, metabolic and ubiquitin-cycling nodes controlled by Rbpj, Pfkl and Rnf145, respectively. Furthermore, we implicate Rnf145 in proteostasis of the Nox2 complex by endoplasmic reticulum-associated degradation. Consequently, ablation of Rnf145 in murine macrophages enhances bacterial clearance, and rescues the oxidative burst defects associated with Ncf4 haploinsufficiency.
Collapse
Affiliation(s)
- Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Christine E Becker
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Aivi Doan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Gautam Goel
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Eduardo J Villablanca
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Amanda Mok
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Aylwin C Y Ng
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|