1
|
Sun G, Liu L, Zhang J, Zhang Z, She M, Chen J, Liu P, Zhang S, Li J. Modular Assembly of Chalcones, N-Tosylhydrazones, and KSCN/KSeCN for the Synthesis of Trisubstituted Imidazo[2,1- b][1,3,4]thiadiazoles/selenadiazoles. Org Lett 2025. [PMID: 39899432 DOI: 10.1021/acs.orglett.4c04786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
A modular protocol that achieved the efficient synthesis of imidazo[2,1-b][1,3,4]thiadiazoles/selenadiazoles via using easily available N-tosylhydrazones, chalcone derivatives, and KSCN/KSeCN is proposed. The method overcomes the elongated synthesis steps and prefunctionalized synthons of previous methods. It solves the problem of traditional preparation methods, which makes it difficult to synthesize thickened selenium-containing heterocyclic molecules, further expanding the number of members in its family. The fluorescence of these compounds also reveals the potential values of the scaffolds we synthesized.
Collapse
Affiliation(s)
- Guojin Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Lang Liu
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, Shaanxi, P. R. China
| | - Jun Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Zhe Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
2
|
da Costa P, Schetinger MRC, Baldissarelli J, Stefanello N, Lopes TF, Reichert KP, Assmann CE, Bottari NB, Miron VV, Vargas FFA, Gutierres JM, da Cruz IBM, Morsch VM. Blackcurrant ( Ribes nigrum L.) improves cholinergic signaling and protects against chronic Scopolamine-induced memory impairment in mice. J Psychopharmacol 2024; 38:1170-1183. [PMID: 39262284 DOI: 10.1177/02698811241273776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
BACKGROUND Blackcurrant (Ribes nigrum L.) is a berry rich in anthocyanins, bioactive compounds known for their antioxidant and neuroprotective properties that benefit human health. AIMS This study aimed to investigate the effects of blackcurrant and its association with Donepezil on memory impairment, cholinergic neurotransmission, and antioxidant systems in a mouse model of amnesia induced by chronic administration of Scopolamine. METHODS Adult male Swiss mice were given saline, blackcurrant (50 mg/kg, orally), and/or Donepezil (5 mg/kg, orally) and/or Scopolamine (1 mg/kg, intraperitoneally). RESULTS Behavioral tests revealed that blackcurrant and/or Donepezil prevented the learning and memory deficits induced by Scopolamine. In the cerebral cortex and hippocampus, blackcurrant and/or Donepezil treatments prevented the increase in acetylcholinesterase and butyrylcholinesterase activities induced by Scopolamine. Scopolamine also disrupted the glutathione redox system and increased levels of reactive species; nevertheless, blackcurrant and/or Donepezil treatments were able to prevent oxidative stress. Furthermore, these treatments prevented the increase in gene expression and protein density of acetylcholinesterase and the decrease in gene expression of the choline acetyltransferase enzyme induced by Scopolamine. CONCLUSIONS Findings suggest that blackcurrant and Donepezil, either alone or in combination, have anti-amnesic effects by modulating cholinergic system enzymes and improving the redox profile. Therefore, blackcurrant could be used as a natural supplement for the prevention and treatment of memory impairment in neurodegenerative diseases.
Collapse
Affiliation(s)
- Pauline da Costa
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa C Schetinger
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Multicenter Postgraduate Program in Physiological Sciences, Department of Physiology and Pharmacology, Federal University of Pelotas, Pelotas, RS, Brazil
- Postgraduate Program in Biochemistry and Bioprospecting, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Naiara Stefanello
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Thauan F Lopes
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Karine P Reichert
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Charles E Assmann
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Nathieli B Bottari
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Department of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Vanessa V Miron
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Fermina Francesca A Vargas
- Multicenter Postgraduate Program in Physiological Sciences, Department of Physiology and Pharmacology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Jessié M Gutierres
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Ivana Beatrice M da Cruz
- Post graduate Program in Gerontology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
3
|
Dustin CM, Shiva SS, Vazquez A, Saeed A, Pascoal T, Cifuentes-Pagano E, Pagano PJ. NOX2 in Alzheimer's and Parkinson's disease. Redox Biol 2024; 78:103433. [PMID: 39616884 PMCID: PMC11647642 DOI: 10.1016/j.redox.2024.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Alzheimer's Disease (AD), and related dementias, represent a growing concern for the worldwide population given the increased numbers of people of advanced age. Marked by significant degradation of neurological tissues and critical processes, in addition to more specific factors such as the presence of amyloid plaques and neurofibrillary tangles in AD, robust discussion is ongoing regarding the precise mechanisms by which these diseases arise. One of the major interests in recent years has been the contribution of reactive oxygen species (ROS) and, particularly, the contribution of the ROS-generating NADPH Oxidase proteins. NADPH Oxidase 2 (NOX2), the prototypical member of the family, represents a particularly interesting target for study given its close association with vascular and inflammatory processes in all tissues, including the brain, and the association of these processes with AD development and progression. In this review, we discuss the most relevant and recent work regarding the contribution of NOX2 to AD progression in neuronal, microglial, and cerebrovascular signaling. Furthermore, we will discuss the most promising NOX2-targeted therapeutics for potential AD management and treatment.
Collapse
Affiliation(s)
- Christopher M Dustin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sruti S Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alberto Vazquez
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 1526, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 1526, USA
| | - Anum Saeed
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Tharick Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Patrick J Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
4
|
Robertson KV, Rodriguez AS, Cartailler JP, Shrestha S, Schleh MW, Schroeder KR, Valenti AM, Kramer AT, Harrison FE, Hasty AH. Knockdown of microglial iron import gene, Slc11a2, worsens cognitive function and alters microglial transcriptional landscape in a sex-specific manner in the APP/PS1 model of Alzheimer's disease. J Neuroinflammation 2024; 21:238. [PMID: 39334471 PMCID: PMC11438269 DOI: 10.1186/s12974-024-03238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Microglial cell iron load and inflammatory activation are significant hallmarks of late-stage Alzheimer's disease (AD). In vitro, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and excess iron can augment cellular inflammation, suggesting a feed-forward loop between iron import mechanisms and inflammatory signaling. However, it is not understood whether microglial iron import mechanisms directly contribute to inflammatory signaling and chronic disease in vivo. These studies determined the effects of microglial-specific knockdown of Slc11a2 on AD-related cognitive decline and microglial transcriptional phenotype. METHODS In vitro experiments and RT-qPCR were used to assess a role for DMT1 in amyloid-β-associated inflammation. To determine the effects of microglial Slc11a2 knockdown on AD-related phenotypes in vivo, triple-transgenic Cx3cr1Cre-ERT2;Slc11a2flfl;APP/PS1+or - mice were generated and administered corn oil or tamoxifen to induce knockdown at 5-6 months of age. Both sexes underwent behavioral analyses to assess cognition and memory (12-15 months of age). Hippocampal CD11b+ microglia were magnetically isolated from female mice (15-17 months) and bulk RNA-sequencing analysis was conducted. RESULTS DMT1 inhibition in vitro robustly decreased Aβ-induced inflammatory gene expression and cellular iron levels in conditions of excess iron. In vivo, Slc11a2KD APP/PS1 female, but not male, mice displayed a significant worsening of memory function in Morris water maze and a fear conditioning assay, along with significant hyperactivity compared to control WT and APP/PS1 mice. Hippocampal microglia from Slc11a2KD APP/PS1 females displayed significant increases in Enpp2, Ttr, and the iron-export gene, Slc40a1, compared to control APP/PS1 cells. Slc11a2KD cells from APP/PS1 females also exhibited decreased expression of markers associated with subsets of disease-associated microglia (DAMs), such as Apoe, Ctsb, Ly9, Csf1, and Hif1α. CONCLUSIONS This work suggests a sex-specific role for microglial iron import gene Slc11a2 in propagating behavioral and cognitive phenotypes in the APP/PS1 model of AD. These data also highlight an association between loss of a DAM-like phenotype in microglia and cognitive deficits in Slc11a2KD APP/PS1 female mice. Overall, this work illuminates an iron-related pathway in microglia that may serve a protective role during disease and offers insight into mechanisms behind disease-related sex differences.
Collapse
Affiliation(s)
- Katrina Volk Robertson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Alec S Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | | | - Shristi Shrestha
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Nashville, TN, USA
| | - Michael W Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Kyle R Schroeder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Arianna M Valenti
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Alec T Kramer
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, 7465 Medical Research Building IV, 2213 Garland Avenue, Nashville, TN, 37232, USA.
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA.
- VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
5
|
Gonçalves LDS, Rusch G, Alves AG, Krüger LD, Paim MP, Martins CC, da Motta KP, Neto JSS, Luchese C, Wilhelm EA, Brüning CA, Bortolatto CF. Acute 2-phenyl-3-(phenylselanyl)benzofuran treatment reverses the neurobehavioral alterations induced by sleep deprivation in mice. Biochem Pharmacol 2024; 226:116339. [PMID: 38848781 DOI: 10.1016/j.bcp.2024.116339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/05/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sleep is a fundamental state for maintaining the organism homeostasis. Disruptions in sleep patterns predispose to the appearance of memory impairments and mental disorders, including depression. Recent pre-clinical studies have highlighted the antidepressant-like properties of the synthetic compound 2-phenyl-3-(phenylselanyl)benzofuran (SeBZF1). To further investigate the neuromodulatory effects of SeBZF1, this study aimed to assess its therapeutic efficacy in ameliorating neurobehavioral impairments induced by sleep deprivation (SD) in mice. For this purpose, a method known as multiple platforms over water was used to induce rapid eye movement (REM) SD. Two hours after acute SD (24 h), male Swiss mice received a single treatment of SeBZF1 (5 mg/kg, intragastric route) or fluoxetine (a positive control, 20 mg/kg, intraperitoneal route). Subsequently, behavioral tests were conducted to assess spontaneous motor function (open-field test), depressive-like behavior (tail suspension test), and memory deficits (Y-maze test). Brain structures were utilized to evaluate oxidative stress markers, monoamine oxidase (MAO) and acetylcholinesterase (AChE) activities. Our findings revealed that SD animals displayed depressive-like behavior and memory impairments, which were reverted by SeBZF1 and fluoxetine treatments. SeBZF1 also reverted the increase in lipoperoxidation levels and glutathione peroxidase activity in the pre-frontal cortex in mice exposed to SD. Besides, the increase in hippocampal AChE activity induced by SD was overturned by SeBZF1. Lastly, cortical MAO-B activity was reestablished by SeBZF1 in mice that underwent SD. Based on the main findings of this study, it can be inferred that the compound SeBZF1 reverses the neurobehavioral alterations induced by sleep deprivation in male Swiss mice.
Collapse
Affiliation(s)
- Luciane da Silva Gonçalves
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Gabriela Rusch
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Amália Gonçalves Alves
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Letícia Devantier Krüger
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Mariana Parron Paim
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Carolina Cristóvão Martins
- Laboratório de Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Ketlyn Pereira da Motta
- Laboratório de Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | | | - Cristiane Luchese
- Laboratório de Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - Ethel Antunes Wilhelm
- Laboratório de Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil
| | - César Augusto Brüning
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil.
| | - Cristiani Folharini Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brasil.
| |
Collapse
|
6
|
Pereira ME, Lima LS, Souza JV, de Souza da Costa N, da Silva JF, Guiloski IC, Irioda AC, Oliveira CS. Evaluation of the Neuroprotective Effect of Organic Selenium Compounds: An in Vitro Model of Alzheimer's Disease. Biol Trace Elem Res 2024; 202:2954-2965. [PMID: 37803188 DOI: 10.1007/s12011-023-03893-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Selenium (Se) is an essential trace element for human health and plays an important role in the development and maintenance of central nervous system functions. Se deficiency has been associated with cognitive decline and increased oxidative stress. The increase in oxidative stress is one of the hypotheses for the emergence and worsening of neurodegenerative diseases, such as Alzheimer's disease (AD). To investigate the neuroprotective effects of organic Se compounds in human neuroblastoma cells (SH-SY5Y) differentiated into cholinergic neurons-like. The SH-SY5Y cells were differentiated into cholinergic neuron-like with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). AD was mimicked exposing the cells to okadaic acid (OA) and beta-amyloid protein (Aβ). The neuroprotective effect of organic Se compounds, selenomethionine (SeMet) and Ebselen, was evaluated through cell viability tests, acetylcholinesterase and antioxidant enzyme activities, and detection of reactive oxygen species (ROS). None of the SeMet concentrations tested protected against the toxic effect of OA + Aβ. On the other hand, previous exposure to 0.1 and 1 µM Ebselen protected cells from the toxic effect of OA + Aβ. Cell differentiation induced by RA and BDNF exposure was effective, showing characteristics of neuronal cells, and pointing to a promising model of AD. Ebselen showed a protective effect, but more studies are needed to identify the mechanism of action.
Collapse
Affiliation(s)
- Meire Ellen Pereira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Luiza Siqueira Lima
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Júlia Vicentin Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Nayara de Souza da Costa
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Juliana Ferreira da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | - Cláudia Sirlene Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil.
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
7
|
Robertson KV, Rodriguez AS, Cartailler JP, Shrestha S, Schroeder KR, Valenti AM, Harrison FE, Hasty AH. Knockdown of microglial iron import gene, DMT1, worsens cognitive function and alters microglial transcriptional landscape in a sex-specific manner in the APP/PS1 model of Alzheimer's disease. RESEARCH SQUARE 2024:rs.3.rs-4559940. [PMID: 38978579 PMCID: PMC11230470 DOI: 10.21203/rs.3.rs-4559940/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Microglial cell iron load and inflammatory activation are significant hallmarks of late-stage Alzheimer's disease (AD). In vitro, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and excess iron can augment cellular inflammation, suggesting a feed-forward loop between iron import mechanisms and inflammatory signaling. However, it is not understood whether microglial iron import mechanisms directly contribute to inflammatory signaling and chronic disease in vivo. These studies determined the effects of microglial-specific knockdown of Slc11a2 on AD-related cognitive decline and microglial transcriptional phenotype. Methods In vitro experiments and RT-qPCR were used to assess a role for DMT1 in amyloid-β-associated inflammation. To determine the effects of microglial Slc11a2 knockdown on AD-related phenotypes in vivo, triple-transgenic Cx3cr1 Cre - ERT2 ;Slc11a2 flfl;APP/PS1 + or - mice were generated and administered corn oil or tamoxifen to induce knockdown at 5-6 months of age. Both sexes underwent behavioral analyses to assess cognition and memory (12-15 months of age). Hippocampal CD11b + microglia were magnetically isolated from female mice (15-17 months) and bulk RNA-sequencing analysis was conducted. Results DMT1 inhibition in vitro robustly decreased Aβ-induced inflammatory gene expression and cellular iron levels in conditions of excess iron. In vivo, Slc11a2 KD APP/PS1 female, but not male, mice displayed a significant worsening of memory function in Morris water maze and a fear conditioning assay, along with significant hyperactivity compared to control WT and APP/PS1 mice. Hippocampal microglia from Slc11a2 KD APP/PS1 females displayed significant increases in Enpp2, Ttr, and the iron-export gene, Slc40a1, compared to control APP/PS1 cells. Slc11a2 KD cells from APP/PS1 females also exhibited decreased expression of markers associated with disease-associated microglia (DAMs), such as Apoe, Ctsb, Csf1, and Hif1α. Conclusions This work suggests a sex-specific role for microglial iron import gene Slc11a2 in propagating behavioral and cognitive phenotypes in the APP/PS1 model of AD. These data also highlight an association between loss of a DAM-like phenotype in microglia and cognitive deficits in Slc11a2 KD APP/PS1 female mice. Overall, this work illuminates an iron-related pathway in microglia that may serve a protective role during disease and offers insight into mechanisms behind disease-related sex differences.
Collapse
|
8
|
Samanta S, Akhter F, Roy A, Chen D, Turner B, Wang Y, Clemente N, Wang C, Swerdlow RH, Battaile KP, Lovell S, Yan SF, Yan SS. New cyclophilin D inhibitor rescues mitochondrial and cognitive function in Alzheimer's disease. Brain 2024; 147:1710-1725. [PMID: 38146639 PMCID: PMC11484516 DOI: 10.1093/brain/awad432] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023] Open
Abstract
Mitochondrial dysfunction is an early pathological feature of Alzheimer disease and plays a crucial role in the development and progression of Alzheimer's disease. Strategies to rescue mitochondrial function and cognition remain to be explored. Cyclophilin D (CypD), the peptidylprolyl isomerase F (PPIase), is a key component in opening the mitochondrial membrane permeability transition pore, leading to mitochondrial dysfunction and cell death. Blocking membrane permeability transition pore opening by inhibiting CypD activity is a promising therapeutic approach for Alzheimer's disease. However, there is currently no effective CypD inhibitor for Alzheimer's disease, with previous candidates demonstrating high toxicity, poor ability to cross the blood-brain barrier, compromised biocompatibility and low selectivity. Here, we report a new class of non-toxic and biocompatible CypD inhibitor, ebselen, using a conventional PPIase assay to screen a library of ∼2000 FDA-approved drugs with crystallographic analysis of the CypD-ebselen crystal structure (PDB code: 8EJX). More importantly, we assessed the effects of genetic and pharmacological blockade of CypD on Alzheimer's disease mitochondrial and glycolytic bioenergetics in Alzheimer's disease-derived mitochondrial cybrid cells, an ex vivo human sporadic Alzheimer's disease mitochondrial model, and on synaptic function, inflammatory response and learning and memory in Alzheimer's disease mouse models. Inhibition of CypD by ebselen protects against sporadic Alzheimer's disease- and amyloid-β-induced mitochondrial and glycolytic perturbation, synaptic and cognitive dysfunction, together with suppressing neuroinflammation in the brain of Alzheimer's disease mouse models, which is linked to CypD-related membrane permeability transition pore formation. Thus, CypD inhibitors have the potential to slow the progression of neurodegenerative diseases, including Alzheimer's disease, by boosting mitochondrial bioenergetics and improving synaptic and cognitive function.
Collapse
Affiliation(s)
- Sourav Samanta
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
| | - Firoz Akhter
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, Del M. Shankel Structural Biology Center, University of Kansas, Lawrence, KS 66047, USA
| | - Doris Chen
- Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Benjamin Turner
- High Throughput Screening Laboratory, Del M. Shankel Structural Biology Center, University of Kansas, Lawrence, KS 66047, USA
| | - Yongfu Wang
- Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Nicolina Clemente
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, NY 12180-3590, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, NY 12180-3590, USA
| | | | - Kevin P Battaile
- New York Structural Biology Center, NSLS-II, Upton, NY 11973, USA
| | - Scott Lovell
- Protein Structure and X-Ray Crystallography Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Shi Fang Yan
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
| | - Shirley ShiDu Yan
- Division of Surgical Science of Department of Surgery, Columbia University in New York, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
9
|
Zago AM, Carvalho FB, Rahmeier FL, Santin M, Guimarães GR, Gutierres JM, da C Fernandes M. Exendin-4 Prevents Memory Loss and Neuronal Death in Rats with Sporadic Alzheimer-Like Disease. Mol Neurobiol 2024; 61:2631-2652. [PMID: 37919602 DOI: 10.1007/s12035-023-03698-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
This study investigated the neuroprotective effects of exendin-4 (EXE-4), an analog of the glucagon-like peptide 1 receptor (GLP-1R) on memory and on the neuronal populations that constitute the hippocampus of rats submitted to a sporadic dementia of Alzheimer's type (SDAT). Male Wistar rats received streptozotocin (STZ icv, 3 mg/kg diluted in aCFS, 5 µl/ventricle) and were treated for 21 days with EXE-4 (10 µg/kg, ip; saline as the vehicle). Four groups were formed: vehicle, EXE-4, STZ, and STZ + EXE-4. The groups were submitted to Y-Maze (YM), object recognition (ORT), and object displacement tasks (ODT) to assess learning and memory. The brains were used for immunohistochemical and immunofluorescent techniques with antibodies to NeuN, cleaved caspase-3 (CC3), PCNA, doublecortin (DCX), synaptophysin (SYP), and insulin receptor (IR). STZ worsened spatial memory in the YMT, as well as short-term (STM) and long-term (LTM) memories in the ORT and ODT, respectively. EXE-4 protected against memory impairment in STZ animals. STZ reduced mature neuron density (NeuN) and increased cell apoptosis (CC3) in the DG, CA1, and CA3. EXE-4 protected against neuronal death in all regions. EXE-4 increased PCNA+ cells in all regions of the hippocampus, and STZ attenuated this effect. STZ reduced neurogenesis in DG per se as well as synaptogenesis induced by EXE-4. EXE-4 increased immunoreactivity to IR in the CA1. From these findings, EXE-4 showed a beneficial effect on hippocampal pyramidal and granular neurons in the SDAT showing anti-apoptotic properties and promoting cell proliferation. In parallel, EXE-4 preserved the memory of SDAT rats. EXE-4 appears to enhance synapses at CA3 and DG. In conclusion, these data indicate that agonists to GLP-1R have a beneficial effect on hippocampal neurons in AD.
Collapse
Affiliation(s)
- Adriana M Zago
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Fabiano B Carvalho
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil.
| | - Francine L Rahmeier
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Marta Santin
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Giuliano R Guimarães
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Jessié M Gutierres
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Marilda da C Fernandes
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Amadio P, Sandrini L, Zarà M, Barbieri SS, Ieraci A. NADPH-oxidases as potential pharmacological targets for thrombosis and depression comorbidity. Redox Biol 2024; 70:103060. [PMID: 38310682 PMCID: PMC10848036 DOI: 10.1016/j.redox.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
There is a complex interrelationship between the nervous system and the cardiovascular system. Comorbidities of cardiovascular diseases (CVD) with mental disorders, and vice versa, are prevalent. Adults with mental disorders such as anxiety and depression have a higher risk of developing CVD, and people with CVD have an increased risk of being diagnosed with mental disorders. Oxidative stress is one of the many pathways associated with the pathophysiology of brain and cardiovascular disease. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is one of the major generators of reactive oxygen species (ROS) in mammalian cells, as it is the enzyme that specifically produces superoxide. This review summarizes recent findings on the consequences of NOX activation in thrombosis and depression. It also discusses the therapeutic effects and pharmacological strategies of NOX inhibitors in CVD and brain disorders. A better comprehension of these processes could facilitate the development of new therapeutic approaches for the prevention and treatment of the comorbidity of thrombosis and depression.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060, Novedrate (CO), Italy; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
11
|
Bajaj S, Mahesh R. Converged avenues: depression and Alzheimer's disease- shared pathophysiology and novel therapeutics. Mol Biol Rep 2024; 51:225. [PMID: 38281208 DOI: 10.1007/s11033-023-09170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Depression, a highly prevalent disorder affecting over 280 million people worldwide, is comorbid with many neurological disorders, particularly Alzheimer's disease (AD). Depression and AD share overlapping pathophysiology, and the search for accountable biological substrates made it an essential and intriguing field of research. The paper outlines the neurobiological pathways coinciding with depression and AD, including neurotrophin signalling, the hypothalamic-pituitary-adrenal axis (HPA), cellular apoptosis, neuroinflammation, and other aetiological factors. Understanding overlapping pathways is crucial in identifying common pathophysiological substrates that can be targeted for effective management of disease state. Antidepressants, particularly monoaminergic drugs (first-line therapy), are shown to have modest or no clinical benefits. Regardless of the ineffectiveness of conventional antidepressants, these drugs remain the mainstay for treating depressive symptoms in AD. To overcome the ineffectiveness of traditional pharmacological agents in treating comorbid conditions, a novel therapeutic class has been discussed in the paper. This includes neurotransmitter modulators, glutamatergic system modulators, mitochondrial modulators, antioxidant agents, HPA axis targeted therapy, inflammatory system targeted therapy, neurogenesis targeted therapy, repurposed anti-diabetic agents, and others. The primary clinical challenge is the development of therapeutic agents and the effective diagnosis of the comorbid condition for which no specific diagnosable scale is present. Hence, introducing Artificial Intelligence (AI) into the healthcare system is revolutionary. AI implemented with interdisciplinary strategies (neuroimaging, EEG, molecular biomarkers) bound to have accurate clinical interpretation of symptoms. Moreover, AI has the potential to forecast neurodegenerative and psychiatric illness much in advance before visible/observable clinical symptoms get precipitated.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - Radhakrishnan Mahesh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India.
| |
Collapse
|
12
|
Zhong M, Lu Y, Li S, Li X, Liu Z, He X, Zhang Y. Synthesis, cytotoxicity, antioxidant activity and molecular modeling of new NSAIDs-EBS derivatives. Eur J Med Chem 2023; 259:115662. [PMID: 37482018 DOI: 10.1016/j.ejmech.2023.115662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Two series of NSAIDs-EBS derivatives (5a-j and 9a-i) based on the hybridization of nonsteroidal anti-inflammatory drugs (NSAIDs) skeleton and Ebselen moiety were synthesized. Their cytotoxicity was evaluated against five types of human cancer cell lines, BGC-823 (human gastric cancer cell line), SW480 (human colon adenocarcinoma cells), MCF-7 (human breast adenocarcinoma cells), HeLa (human cervical cancer cells), A549 (human lung carcinoma cells). Moreover, the most active compound 5j showed IC50 values below 3 μM in all cancer cell lines and with remarkable anticancer activity against MCF-7 (1.5 μM) and HeLa (1.7 μM). The redox properties of the NSAIDs-EBS derivatives prepared herein were conducted by 2, 2-didiphenyl-1-picrylhydrazyl (DPPH), bleomycin dependent DNA damage and glutathione peroxidase (GPx)-like assays. Finally, TrxR1 inhibition activity assay and molecular docking study revealed NSAIDs-EBS derivatives could serve as potential TrxR1 inhibitor.
Collapse
Affiliation(s)
- Min Zhong
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China; Key Laboratory of Optoelectronic Chemical Materials and Devices, Jianghan University, Wuhan, 430056, China
| | - Ying Lu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Jianghan University, Wuhan, 430056, China
| | - Shaolei Li
- Shenzhen Fushan Biological Technology Co., Ltd, Kexing Science Park A1 1005, Nanshan Zone, Shenzhen, 518057, China
| | - Xiaolong Li
- Shenzhen Fushan Biological Technology Co., Ltd, Kexing Science Park A1 1005, Nanshan Zone, Shenzhen, 518057, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianran He
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
| | - Yongmin Zhang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
13
|
Abstract
Iron accumulation in the CNS occurs in many neurological disorders. It can contribute to neuropathology as iron is a redox-active metal that can generate free radicals. The reasons for the iron buildup in these conditions are varied and depend on which aspects of iron influx, efflux, or sequestration that help maintain iron homeostasis are dysregulated. Iron was shown recently to induce cell death and damage via lipid peroxidation under conditions in which there is deficient glutathione-dependent antioxidant defense. This form of cell death is called ferroptosis. Iron chelation has had limited success in the treatment of neurological disease. There is therefore much interest in ferroptosis as it potentially offers new drugs that could be more effective in reducing iron-mediated lipid peroxidation within the lipid-rich environment of the CNS. In this review, we focus on the molecular mechanisms that induce ferroptosis. We also address how iron enters and leaves the CNS, as well as the evidence for ferroptosis in several neurological disorders. Finally, we highlight biomarkers of ferroptosis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Fari Ryan
- Centre for Research in Neuroscience, and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Priya Jhelum
- Centre for Research in Neuroscience, and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
14
|
Mukem S, Sayoh I, Maungchanburi S, Thongbuakaew T. Ebselen, Iron Uptake Inhibitor, Alleviates Iron Overload-Induced Senescence-Like Neuronal Cells SH-SY5Y via Suppressing the mTORC1 Signaling Pathway. Adv Pharmacol Pharm Sci 2023; 2023:6641347. [PMID: 37731679 PMCID: PMC10509000 DOI: 10.1155/2023/6641347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
Increasing evidence highlights that excessive iron accumulation in the brain plays a vital role in neuronal senescence and is implicated in the pathogenesis of age-related neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Therefore, the chemical compounds that eliminate an iron overload may provide better protection against oxidative stress conditions that cause the accumulation of senescent cells during brain aging. Ebselen has been identified as a strongly useful compound in the research on redox biology mechanisms. We hypothesized that ebselen could alleviate an iron overload-induced oxidative stress and consequently reverses the senescence-like phenotypes in the neuronal cells. In the present study, SH-SY5Y cells were treated with ferric ammonium citrate (FAC) before ebselen, and the evaluation of the cellular iron homeostasis, the indicators of oxidative stress, and the onset of senescence phenotypes and mechanisms were carried out accordingly. Our findings showed that ebselen ameliorated the FAC-mediated iron overload by decreasing the expression of divalent metal transporter 1 (DMT1) and ferritin light chain (FT-L) proteins. In contrast, it increased the expression of ferroportin 1 (FPN1) protein and its correlation led to a decrease in the expression of the cytosolic labile iron pool (LIP). Furthermore, ebselen significantly reduced reactive oxygen species (ROS) and rescued the mitochondrial membrane potential (ΔΨm). Notably, ebselen restored the biomarkers of cellular senescence by reducing the number of senescence-associated β-galactosidase (SA-β-gal) positive cells and senescence-associated secretory phenotypes (SASP). This also suppressed the expression of p53 protein targeting DNA damage response (DDR)/p21 cyclin-dependent kinase (CDK) inhibitor through a mTORC1 signaling pathway. Potentially, ebselen could be a therapeutic agent for treating brain aging and AD by mitigating iron accumulation and restoring senescence in SH-SY5Y cells.
Collapse
Affiliation(s)
- Sirirak Mukem
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Ibrahim Sayoh
- Department of Anatomy, Faculty of Science and Technology, Princess of Naradhiwas University, Narathiwat 96000, Thailand
| | - Saowanee Maungchanburi
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | | |
Collapse
|
15
|
Funguetto-Ribeiro AC, Nakama KA, Pinz MP, Oliveira RLD, Sacramento MD, Pereira FSO, Pinton S, Wilhelm EA, Luchese C, Alves D, Ávila DS, Haas SE. Development and In Vivo Assessment of 4-Phenyltellanyl-7-chloroquinoline-loaded Polymeric Nanocapsules in Alzheimer's Disease Models. Brain Sci 2023; 13:999. [PMID: 37508931 PMCID: PMC10377448 DOI: 10.3390/brainsci13070999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in older people, and available treatments are palliative and produce undesirable side effects. The 4-phenyltellanyl-7-chloroquinoline (TQ) is an organochalcogen compound studied due to its pharmacological properties, particularly its antioxidant potential. However, TQ possesses some drawbacks such as low aqueous solubility and high toxicity, thus warranting the search for tools that improve the safety and effectiveness of new compounds. Here, we developed and investigated the biological effects of TQ-loaded polymeric nanocapsules (NCTQ) in an AD model in transgenic Caenorhabditis elegans expressing human Aβ1-42 in their body-wall muscles and Swiss mice injected with Aβ25-35. The NCTQ displayed good physicochemical properties, including nanometer size and maximum encapsulation capacity. The treatment showed low toxicity, reduced Aβ peptide-induced paralysis, and activated an endoplasmic reticulum chaperone in the C. elegans model. The Aβ injection in mice caused memory impairment, which NCTQ mitigated by improving working, long-term, and aversive memory. Additionally, no changes in biochemical markers were evidenced in mice, demonstrating that there was no hepatotoxicity in the tested doses. Altogether, these findings provide insights into the neuroprotective effects of TQ and indicate that NCTQ is a promising candidate for AD treatment.
Collapse
Affiliation(s)
| | - Kelly Ayumi Nakama
- Pharmaceutical Science Graduate Program, Federal University of Pampa-UNIPAMPA, Uruguaiana 97501-970, Brazil
| | - Mikaela Peglow Pinz
- Biochemistry and Bioprospecting Graduate Program, Biochemical Pharmacology Research Laboratory (LaFarBio), Neurobiotechnology Research Group (GPN), Chemical, Pharmaceutical and Food Science Center (CCQFA), Federal University of Pelotas-UFPel, Pelotas 96010-900, Brazil
| | - Renata Leivas de Oliveira
- Biochemistry and Bioprospecting Graduate Program, Biochemical Pharmacology Research Laboratory (LaFarBio), Neurobiotechnology Research Group (GPN), Chemical, Pharmaceutical and Food Science Center (CCQFA), Federal University of Pelotas-UFPel, Pelotas 96010-900, Brazil
| | - Manoela do Sacramento
- Clean Organic Synthesis Laboratory (LASOL), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas-UFPel, Pelotas 96010-900, Brazil
| | | | - Simone Pinton
- Biochemistry Graduate Program, Federal University of Pampa-UNIPAMPA, Uruguaiana 97501-970, Brazil
| | - Ethel Antunes Wilhelm
- Biochemistry and Bioprospecting Graduate Program, Biochemical Pharmacology Research Laboratory (LaFarBio), Neurobiotechnology Research Group (GPN), Chemical, Pharmaceutical and Food Science Center (CCQFA), Federal University of Pelotas-UFPel, Pelotas 96010-900, Brazil
| | - Cristiane Luchese
- Biochemistry and Bioprospecting Graduate Program, Biochemical Pharmacology Research Laboratory (LaFarBio), Neurobiotechnology Research Group (GPN), Chemical, Pharmaceutical and Food Science Center (CCQFA), Federal University of Pelotas-UFPel, Pelotas 96010-900, Brazil
| | - Diego Alves
- Clean Organic Synthesis Laboratory (LASOL), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas-UFPel, Pelotas 96010-900, Brazil
| | - Daiana Silva Ávila
- Biochemistry Graduate Program, Federal University of Pampa-UNIPAMPA, Uruguaiana 97501-970, Brazil
| | - Sandra Elisa Haas
- Biochemistry Graduate Program, Federal University of Pampa-UNIPAMPA, Uruguaiana 97501-970, Brazil
- Pharmaceutical Science Graduate Program, Federal University of Pampa-UNIPAMPA, Uruguaiana 97501-970, Brazil
| |
Collapse
|
16
|
Andrade MK, Souza LC, Azevedo EM, Bail EL, Zanata SM, Andreatini R, Vital MABF. Melatonin reduces β-amyloid accumulation and improves short-term memory in streptozotocin-induced sporadic Alzheimer's disease model. IBRO Neurosci Rep 2023; 14:264-272. [PMID: 36926592 PMCID: PMC10011440 DOI: 10.1016/j.ibneur.2023.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Melatonin is a hormone secreted by the pineal gland, it can be associated with circadian rhythms, aging and neuroprotection. Melatonin levels are decreased in sporadic Alzheimer's disease (sAD) patients, which suggests a relationship between the melatonergic system and sAD. Melatonin may reduce inflammation, oxidative stress, TAU protein hyperphosphorylation, and the formation of β-amyloid (Aβ) aggregates. Therefore, the objective of this work was to investigate the impact of treatment with 10 mg/kg of melatonin (i.p) in the animal model of sAD induced by the intracerebroventricular (ICV) infusion of 3 mg/kg of streptozotocin (STZ). ICV-STZ causes changes in the brain of rats similar to those found in patients with sAD. These changes include; progressive memory decline, the formation of neurofibrillary tangles, senile plaques, disturbances in glucose metabolism, insulin resistance and even reactive astrogliosis characterized by the upregulation of glucose levels and glial fibrillary acidic protein (GFAP). The results show that ICV-STZ caused short-term spatial memory impairment in rats after 30 days of STZ infusion without locomotor impairment which was evaluated on day 27 post-injury. Furthermore, we observed that a prolonged 30-day treatment with melatonin can improve the cognitive impairment of animals in the Y-maze test, but not in the object location test. Finally, we demonstrated that animals receiving ICV-STZ have high levels of Aβ and GFAP in the hippocampus and that treatment with melatonin reduces Aβ levels but does not reduce GFAP levels, concluding that melatonin may be useful to control the progression of amyloid pathology in the brain.
Collapse
Key Words
- AD, Alzheimer Disease
- APP, Amyloid precursor protein
- Alzheimer's disease
- Aβ, β-amyloid
- GFAP
- GFAP, Glial fibrillary acidic protein
- ICV-STZ, Intracerebroventricular injection of streptozotocin
- MEL, Melatonin
- MT1, Melatonin Receptor 1
- MT2, Melatonin Receptor 2
- Melatonin
- OLT, Object location test
- STZ, Streptozotocin
- Short-term memory
- Streptozotocin
- TNF-α, Tumor Necrosis factor alpha
- Y maze
- sAD, Sporadic Alzheimer disease
- β-amyloid
Collapse
Affiliation(s)
- Marcos K Andrade
- Department of Pharmacology, Federal University of Paraná, PR, Brazil
| | - Leonardo C Souza
- Department of Pharmacology, Federal University of Paraná, PR, Brazil
| | - Evellyn M Azevedo
- Department of Physiology, Federal University of Paraná, PR, Brazil.,Department of Basic Pathology, Federal University of Paraná, PR, Brazil
| | - Ellen L Bail
- Department of Physiology, Federal University of Paraná, PR, Brazil.,Department of Basic Pathology, Federal University of Paraná, PR, Brazil
| | - Silvio M Zanata
- Department of Basic Pathology, Federal University of Paraná, PR, Brazil
| | | | - Maria A B F Vital
- Department of Pharmacology, Federal University of Paraná, PR, Brazil
| |
Collapse
|
17
|
Dong F, Yan W, Meng Q, Song X, Cheng B, Liu Y, Yao R. Ebselen alleviates white matter lesions and improves cognitive deficits by attenuating oxidative stress via Keap1/Nrf2 pathway in chronic cerebral hypoperfusion mice. Behav Brain Res 2023; 448:114444. [PMID: 37098387 DOI: 10.1016/j.bbr.2023.114444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 04/27/2023]
Abstract
Oxidative stress is crucial in cerebral white matter lesions (WMLs) induced by chronic cerebral hypoperfusion. Therefore, ameliorating oxidative damage is considered to be a beneficial strategy for the treatment of WMLs. Ebselen (EbSe), a small lipid organoselenium compound, its lipid peroxidation activity is mediated through the glutathione peroxidase-mimetic properties. This study aimed to investigate the role of EbSe in WMLs after bilateral common carotid artery stenosis (BCAS). The BCAS model can moderately reduce cerebral blood flow, and mimics white matter damage caused by chronic cerebral hypoperfusion or small vessel disease. Laser Speckle Contrast Imaging (LSCI) was used to monitor the cerebral blood flow of mice. The spatial learning and memory were tested by using the eight-arm maze. LFB staining was used to detect demyelination. The expression of MBP, GFAP and Iba1 was assayed by immunofluorescence. The demyelination was assessed by Transmission Electron Microscope (TEM). The activities of MDA, SOD and GSH-Px were detected by assay kits. The mRNA levels of SOD, GSH-Px and HO-1 was detected by realtime PCR. The activation of the Nrf2/ARE pathway and the expression of SOD, GSH-Px and HO-1was assessed by Western blot. EbSe ameliorated cognitive deficits and white matter lesions induced by bilateral common carotid artery stenosis (BCAS). The expression of GFAP and Iba1 was decreased in the corpus callosum of BCAS mice after EbSe treatment. Moreover, EbSe alleviated the level of MDA by elevating the expression and mRNA of SOD, GSH-Px and HO-1 in BCAS mice. Furthermore, EbSe promoted the dissociation of the Keap1/Nrf2 complex, resulting in the accumulation of Nrf2 in the nucleus. This study demonstrates a favorable effect of EbSe on cognitive impairment in a chronic cerebral hypoperfusion model, and the improvement of EbSe's antioxidant property is mediated by Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China; Public Experimental Research Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Weixing Yan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Qiqi Meng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Xueli Song
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Bing Cheng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Yaping Liu
- Laboratory of National Experimental Teaching and Demonstration Center of Basic Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China.
| |
Collapse
|
18
|
Kumar M, Chhillar B, Verma D, Nain S, Singh VP. Introduction of Methyl Group in Substituted Isoselenazolones: Catalytic and Mechanistic Study. J Org Chem 2023; 88:4273-4285. [PMID: 36930142 DOI: 10.1021/acs.joc.2c02831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Copper-catalyzed direct selenation of substituted 2-bromo-N-phenylbenzamide substrates with elemental selenium powder provided a series of methoxy-substituted isoselenazolones via the C-Se and Se-N bond formations. Phenolic substituted isoselenazolones have been obtained by O-demethylation of the corresponding methoxy-substituted analogues using boron tribromide. Some isoselenazolones have been structurally characterized by X-ray single-crystal analysis. The glutathione peroxidase (GPx)-like antioxidant activity of isoselenazolones has been evaluated both in thiophenol and coupled-reductase assays. All isoselenazolones showed good GPx-like activities in the coupled-reductase assay. The ferric-reducing antioxidant power of phenolic antioxidants has also been evaluated. The best phenolic antioxidants were found to be good ferric-reducing antioxidant power agents. The single electron transfer, hydrogen atom transfer, and proton-coupled electron transfer mechanisms for the antioxidant properties of all catalysts have been supported by density functional theory calculations. The catalytic cycle was proposed for one of the phenolic isoselenazolones involving diselenide, selenenyl sulfide, selenol, and selenenic acid as intermediates using 77Se{1H} NMR spectroscopy.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Babli Chhillar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Divya Verma
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Sumit Nain
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Vijay P Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| |
Collapse
|
19
|
A Purine Derivative Containing an Organoselenium Group Protects Against Memory Impairment, Sensitivity to Nociception, Oxidative Damage, and Neuroinflammation in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2023; 60:1214-1231. [PMID: 36427137 DOI: 10.1007/s12035-022-03110-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
In the present study, the effect of 6-((4-fluorophenyl) selanyl)-9H-purine (FSP) was tested against memory impairment and sensitivity to nociception induced by intracerebroventricular injection of amyloid-beta peptide (Aβ) (25-35 fragment), 3 nmol/3 μl/per site in mice. Memory impairment was determined by the object recognition task (ORT) and nociception by the Von-Frey test (VFT). Aβ caused neuroinflammation with upregulation of glial fibrillary acidic protein (GFAP) (in hippocampus), nuclear factor-κB (NF-κB), and the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in cerebral cortex and hippocampus. Additionally, Aβ increased oxidant levels and lipid peroxidation in cerebral cortex and hippocampus, but decreased heme oxygenase-1 (HO-1) and peroxiredoxin-1 (Prdx1) expression in the hippocampus. Anti-neuroinflammatory effects of FSP were demonstrated by a decrease in the expression of GFAP and NF-κB in the hippocampus, as well as a decrease in proinflammatory cytokines in both the hippocampus and cerebral cortex FSP protected against oxidative stress by decreasing oxidant levels and lipid peroxidation and by increasing HO-1 and Prdx1 expressions in the hippocampus of mice. Moreover, FSP prevented the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2) in the hippocampus of mice induced by Aβ. In conclusion, treatment with FSP attenuated memory impairment, nociception sensitivity by decreasing oxidative stress, and neuroinflammation in a mouse model of Alzheimer's disease.
Collapse
|
20
|
Barbosa FAR, Canto RFS, Teixeira KF, de Souza AS, de Oliveira AS, Braga AL. Selenium-Derivative Compounds: A Review of New Perspectives in the Treatment of Alzheimer's Disease. Curr Med Chem 2023; 30:689-700. [PMID: 35209817 DOI: 10.2174/0929867329666220224161454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/16/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most prevalent types of dementia, affecting millions of older people worldwide. AD is stimulating efforts to develop novel molecules targeting its main features associated with a decrease in acetylcholine levels, an increase in oxidative stress and depositions of amyloid-β (Aβ) and tau protein. In this regard, selenium-containing compounds have been demonstrated as potential multi-targeted compounds in the treatment of AD. These compounds are known for their antioxidant and anticholinesterase properties, causing a decrease in Aβ aggregation. OBJECTIVE In this review, we approach structure-activity relationships of each compound, associating the decrease of ROS activity, an increase of tau-like activity and inhibition of AChE with a decrease in the self-aggregation of Aβ. METHODS We also verify that the molecular descriptors apol, nHBAcc and MlogP may be related to optimized pharmacokinetic properties for anti-AD drugs. RESULTS In our analysis, few selenium-derived compounds presented similar molecular features to FDA-approved drugs. CONCLUSION We suggest that unknown selenium-derived molecules with apol, nHBAcc and MlogP like FDA-approved drugs may be better successes with optimized pharmacokinetic properties in future studies in AD.
Collapse
Affiliation(s)
- Flavio A R Barbosa
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis-SC, Brazil
| | - Rômulo F S Canto
- Department of Pharmacosciences, Foundation Federal University of Health Sciences of Porto Alegre, Porto Alegre-RS, Brazil
| | - Kerolain F Teixeira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau-SC, Brazil
| | - Anacleto S de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Aldo S de Oliveira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau-SC, Brazil
| | - Antonio L Braga
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis-SC, Brazil.,Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
21
|
Gholami Mahmoudian Z, Komaki A, Rashidi I, Amiri I, Ghanbari A. The effect of minocycline on beta-amyloid-induced memory and learning deficit in male rats: A behavioral, biochemical, and histological study. J Chem Neuroanat 2022; 125:102158. [PMID: 36084891 DOI: 10.1016/j.jchemneu.2022.102158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Minocycline hydrochloride is a semi-synthetic, second-generation tetracycline with neuroprotective, neurorestorative, anti-amyloidogenic, anti-inflammatory, antioxidant, and anti-apoptotic properties. The present study was designed to investigate the potential protective effects of minocycline against beta-amyloid (Aβ)-induced Alzheimer's disease (AD), recognition memory decline, and the possible involved anti-apoptotic mechanisms. METHODS The rats were treated with minocycline (50 and 100 mg/kg/day; P.O.) after AD induction for 30 days. Behavioral functions were assessed by employing standard behavioral tests, including novel object recognition (NOR) and passive avoidance learning (PAL) tasks. Then, total antioxidant capacity (TAC) and total oxidant status (TOS) were measured in blood serum using ELISA kits. Apoptosis and the number of Aβ plaques were examined by the TUNEL and Congo red staining, respectively. RESULTS Treatment of Aβ rats with minocycline improved memory deficit in the PAL task and a decline in recognition memory in the NOR test. Minocycline at 50 and 100 mg/kg significantly reduced the TOS levels and increased the TAC levels (P < 0.0001). Also, minocycline at 50 and 100 mg/kg reduced the apoptotic index in the hippocampus of Aβ rats. After Congo red staining, the minocycline group showed improved cell morphology and markedly fewer Aβ plaques. CONCLUSIONS Minocycline reduced memory and learning deficit in behavioral experiments after Aβ injection, which may be due to its anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Rashidi
- Department of Anatomical Science, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Iraj Amiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Ghanbari
- Department of Anatomical Science, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
22
|
Handy DE, Loscalzo J. The role of glutathione peroxidase-1 in health and disease. Free Radic Biol Med 2022; 188:146-161. [PMID: 35691509 PMCID: PMC9586416 DOI: 10.1016/j.freeradbiomed.2022.06.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023]
Abstract
Glutathione peroxidase 1 (GPx1) is an important cellular antioxidant enzyme that is found in the cytoplasm and mitochondria of mammalian cells. Like most selenoenzymes, it has a single redox-sensitive selenocysteine amino acid that is important for the enzymatic reduction of hydrogen peroxide and soluble lipid hydroperoxides. Glutathione provides the source of reducing equivalents for its function. As an antioxidant enzyme, GPx1 modulates the balance between necessary and harmful levels of reactive oxygen species. In this review, we discuss how selenium availability and modifiers of selenocysteine incorporation alter GPx1 expression to promote disease states. We review the role of GPx1 in cardiovascular and metabolic health, provide examples of how GPx1 modulates stroke and provides neuroprotection, and consider how GPx1 may contribute to cancer risk. Overall, GPx1 is protective against the development and progression of many chronic diseases; however, there are some situations in which increased expression of GPx1 may promote cellular dysfunction and disease owing to its removal of essential reactive oxygen species.
Collapse
Affiliation(s)
- Diane E Handy
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Li X, Shi Q, Xu H, Xiong Y, Wang C, Le L, Lian J, Wu G, Peng F, Liu Q, Du X. Ebselen Interferes with Alzheimer's Disease by Regulating Mitochondrial Function. Antioxidants (Basel) 2022; 11:1350. [PMID: 35883841 PMCID: PMC9312019 DOI: 10.3390/antiox11071350] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: With unknown causes and no effective treatment available, Alzheimer's disease (AD) places enormous pressure on families and society. Our previous study had shown that Ebselen at a high concentration (10.94 μM) improved the cognition of triple-transgenic AD (3×Tg-AD) mice and alleviated the related pathological indicators but showed toxicity to the mice. Here, we dedicated to study the therapeutic effect and molecular mechanism of Ebselen at a much lower concentration on 3×Tg-AD mice. (2) Methods: Various behavioral experiments were applied to detect the behavioral ability of mice. Western blot, thioflavin T staining and a transmission electron microscope were used to evaluate the pathology of AD mice. The mitochondrial membrane potential and respiration were assessed with the corresponding assay kit. (3) Results: Ebselen remarkably increased cognitive ability of AD mice, eliminated β-Amyloid (Aβ) oligomers and recovered the synaptic damage in AD mice brain. In addition, the destroyed mitochondrial morphologies and function were repaired by Ebselen through ameliorating mitochondrial energy metabolism, mitochondrial biogenesis and mitochondrial fusion/fission balance in N2a-SW cells and brain tissues of AD mice. (4) Conclusions: This research indicated that Ebselen might exert its therapeutic effect via protecting mitochondria in AD.
Collapse
Affiliation(s)
- Xuexia Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Qingqing Shi
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an 710032, China;
| | - Hao Xu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
| | - Yufang Xiong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
| | - Chao Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China;
| | - Linfeng Le
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
| | - Junliang Lian
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
| | - Guoli Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
| | - Feiyuan Peng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
| | - Qiong Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiubo Du
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (X.L.); (H.X.); (Y.X.); (L.L.); (J.L.); (G.W.); (F.P.); (Q.L.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
24
|
Pharmacological Activation of GPR55 Improved Cognitive Impairment Induced by Lipopolysaccharide in Mice. J Mol Neurosci 2022; 72:1656-1669. [PMID: 35596056 DOI: 10.1007/s12031-022-02020-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
Abstract
Our previous research found that activation of GPR55 can alleviate cognitive impairment induced by amyloid-beta 1-42 (Aβ1-42) and streptozotocin in mice, but the role of GPR55 in the pathogenesis of cognitive impairment remains unknown. Here, we used a lipopolysaccharide (LPS) mouse model to further investigate the role and mechanism of O-1602, a GPR55 agonist, on cognitive dysfunction. ICR mice were treated with an intracerebroventricular (i.c.v.) injection of LPS, followed by cognitive function tests. The expression of GPR55, NF-κB p65, caspase-3, Bax, and Bcl-2 in the hippocampus was examined by Western blotting. Inflammatory cytokines and microglia were detected by ELISA kit and immunohistochemical analyses, respectively. The levels of MDA, GSH, SOD, and CAT were examined by assay kits. Furthermore, TUNEL-staining was used to detect neuronal apoptosis. Our results showed that i.c.v. injection of LPS in mice exhibited impaired performance in the behavior tests, which were ameliorated by O-1602 treatment (2.0 or 4.0 μg/mouse, i.c.v.). Importantly, we found that O-1602 treatment reversed GPR55 downregulation, decreased the expression of NF-κB p65, suppressed the accumulation of proinflammatory cytokines and microglia activation, increased the anti-inflammatory cytokines, and reduced the levels of MDA, increased the levels of GSH, SOD, and CAT in the hippocampus. In addition, O-1602 treatment also significantly reduced Bax and increased Bcl-2 expression as well as decreased caspase-3 activity and TUNEL-positive cells in the hippocampus. These observations indicate that O-1602 may ameliorate LPS-induced cognition deficits via inhibiting neuroinflammation, oxidative stress, and apoptosis mediated by the NF-κB pathway in mice.
Collapse
|
25
|
Ramli FF, Cowen PJ, Godlewska BR. The Potential Use of Ebselen in Treatment-Resistant Depression. Pharmaceuticals (Basel) 2022; 15:485. [PMID: 35455482 PMCID: PMC9030939 DOI: 10.3390/ph15040485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Ebselen is an organoselenium compound developed as an antioxidant and subsequently shown to be a glutathione peroxidase (GPx) mimetic. Ebselen shows some efficacy in post-stroke neuroprotection and is currently in trial for the treatment and prevention of hearing loss, Meniere's Disease and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In vitro screening studies show that ebselen is also an effective inhibitor of the enzyme inositol monophosphatase (IMPase), which is a key target of the mood-stabilising drug lithium. Further, in animal experimental studies, ebselen produces effects on the serotonin system very similar to those of lithium and also decreases behavioural impulsivity. The antidepressant effects of lithium in treatment-resistant depression (TRD) have been attributed to its ability to facilitate presynaptic serotonin activity; this suggests that ebselen might also have a therapeutic role in this condition. Human studies utilising magnetic resonance spectroscopy support the notion that ebselen, at therapeutic doses, inhibits IMPase in the human brain. Moreover, neuropsychological studies support an antidepressant profile for ebselen based on positive effects on emotional processing and reward seeking. Ebselen also lowers a human laboratory measure of impulsivity, a property that has been associated with lithium's anti-suicidal effects in patients with mood disorders. Current clinical studies are directed towards assessment of the neuropsychological effects of ebselen in TRD patients. It will also be important to ascertain whether ebselen is able to lower impulsivity and suicidal behaviour in clinical populations. The objective of this review is to summarise the developmental history, pre-clinical and clinical psychopharmacological properties of ebselen in psychiatric disorders and its potential application as a treatment for TRD.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Philip J. Cowen
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
| | - Beata R. Godlewska
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
| |
Collapse
|
26
|
Kim JM, Heo HJ. The roles of catechins in regulation of systemic inflammation. Food Sci Biotechnol 2022; 31:957-970. [PMID: 35345441 PMCID: PMC8943496 DOI: 10.1007/s10068-022-01069-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023] Open
Abstract
Catechins are a phytochemical present in plants such as tea leaves, beans, black grapes, cherries, and cacao, and have various physiological activities. It is reported that catechins have a health improvement effect and ameliorating effect against various diseases. In addition, antioxidant activity, liver damage prevention, cholesterol lowering effect, and anti-obesity activity were confirmed through in vivo animal and clinical studies. Although most diseases are reported as ones mediating various inflammations, the mechanism for improving inflammation remains unclear. Therefore, the current review article evaluates the physiological activity and various pharmacological actions of catechins and conclude by confirming an improvement effect on the inflammatory response.
Collapse
Affiliation(s)
- Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| |
Collapse
|
27
|
Hou W, Xu H. Incorporating Selenium into Heterocycles and Natural Products─From Chemical Properties to Pharmacological Activities. J Med Chem 2022; 65:4436-4456. [PMID: 35244394 DOI: 10.1021/acs.jmedchem.1c01859] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selenium (Se)-containing compounds have emerged as potential therapeutic agents for the treatment of a range of diseases. Through tremendous effort, considerable knowledge has been acquired to understand the complex chemical properties and biological activities of selenium, especially after its incorporation into bioactive molecules. From this perspective, we compiled extensive literature evidence to summarize and critically discuss the relationship between the pharmacological activities and chemical properties of selenium compounds and the strategic incorporation of selenium into organic molecules, especially bioactive heterocycles and natural products. We also provide perspectives regarding the challenges in selenium-based medicinal chemistry and future research directions.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development and Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
28
|
Ferreira Schopf P, Peglow Pinz M, Pereira da Motta K, Klein VP, Kolinski Machado A, Rhoden CRB, Wilhelm EA, Luchese C, Zanella I, Sagrillo M. SAFETY PROFILE AND PREVENTION OF COGNITIVE DEFICIT IN ALZHEIMER’S DISEASE MODEL OF GRAPHENE FAMILY NANOMATERIALS, TUCUMA OIL (Astrocaryum vulgare) AND ITS SYNERGISMS. INTERNATIONAL JOURNAL FOR INNOVATION EDUCATION AND RESEARCH 2022; 10:267-303. [DOI: 10.31686/ijier.vol10.iss3.3694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Alzheimer's disease is a worldwide health issue, and there are currently no treatments that can stop this disease. Oxidized graphene derivatives have gained prominence in use in biological systems due to their excellent physical-chemical characteristics, biocompatibility and ability to overcome the blood-brain barrier. Other substances highlighted are those of natural origin from the Amazon biome, such as tucuma, a fruit whose oil has been widely studied in therapeutic applications. Thus, the aim of this study was to investigate the action of graphene oxide, reduced graphene oxide and tucuma oil, isolated and combined, as an alternative for treatment of Alzheimer's disease through studies in silico, in vitro, in vivo and ex vivo. Computational simulation via docking was used to verify the affinity of the substances with the proteins β-amyloid and acetylcholinesterase, in which the reduced graphene oxide was the one that showed the most favorable interaction. The results of the ab initio simulation showed that the synergism between the nanostructures and the oil occurs through physical adsorption. The experimental results revealed that the substances and their combinations were nontoxic, both at the cellular and systemic level. In general, all treatments had positive results against induced memory deficit, but reduced graphene oxide was the most prominent, as it was able to protect against memory damage in all behavioral tests performed, with anticholinesterase activity and antioxidant effect. In conclusion, the reduced graphene oxide is, among the treatments studied, the one with great therapeutic potential to be investigated in the treatment of this disease.
Collapse
|
29
|
Barchielli G, Capperucci A, Tanini D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants (Basel) 2022; 11:antiox11020251. [PMID: 35204134 PMCID: PMC8868242 DOI: 10.3390/antiox11020251] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
Selenium is an essential microelement required for a number of biological functions. Selenium—and more specifically the amino acid selenocysteine—is present in at least 25 human selenoproteins involved in a wide variety of essential biological functions, ranging from the regulation of reactive oxygen species (ROS) concentration to the biosynthesis of hormones. These processes also play a central role in preventing and modulating the clinical outcome of several diseases, including cancer, diabetes, Alzheimer’s disease, mental disorders, cardiovascular disorders, fertility impairments, inflammation, and infections (including SARS-CoV-2). Over the past years, a number of studies focusing on the relationship between selenium and such pathologies have been reported. Generally, an adequate selenium nutritional state—and in some cases selenium supplementation—have been related to improved prognostic outcome and reduced risk of developing several diseases. On the other hand, supra-nutritional levels might have adverse effects. The results of recent studies focusing on these topics are summarized and discussed in this review, with particular emphasis on advances achieved in the last decade.
Collapse
|
30
|
de Oliveira RL, Voss GT, da C. Rodrigues K, Pinz MP, Biondi JV, Becker NP, Blodorn E, Domingues WB, Larroza A, Campos VF, Alves D, Wilhelm EA, Luchese C. Prospecting for a quinoline containing selenium for comorbidities depression and memory impairment induced by restriction stress in mice. Psychopharmacology (Berl) 2022; 239:59-81. [PMID: 35013761 PMCID: PMC8747877 DOI: 10.1007/s00213-021-06039-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
RATIONALE Depression is often associated with memory impairment, a clinical feature of Alzheimer's disease (AD), but no effective treatment is available. 7-Chloro-4-(phenylselanyl) quinoline (4-PSQ) has been studied in experimental models of diseases that affect the central nervous system. OBJECTIVES The pharmacological activity of 4-PSQ in depressive-like behavior associated with memory impairment induced by acute restraint stress (ARS) in male Swiss mice was evaluated. METHODS ARS is an unavoidable stress model that was applied for a period of 240 min. Ten minutes after ARS, animals were intragastrically treated with canola oil (10 ml/kg) or 4-PSQ (10 mg/kg) or positive controls (paroxetine or donepezil) (10 mg/kg). Then, after 30 min, mice were submitted to behavioral tests. Corticosterone levels were evaluated in plasma and oxidative stress parameters; monoamine oxidase (MAO)-A and MAO -B isoform activity; mRNA expression levels of kappa nuclear factor B (NF-κB); interleukin (IL)-1β, IL-18, and IL-33; phosphatidylinositol-se-kinase (PI3K); protein kinase B (AKT2), as well as acetylcholinesterase activity were evaluated in the prefrontal cortex and hippocampus. RESULTS 4-PSQ attenuated the depressive-like behavior, self-care, and memory impairment caused by ARS. Based on the evidence, we believe that effects of 4-PSQ may be associated, at least in part, with the attenuation of HPA axis activation, attenuation of alterations in the monoaminergic system, modulation of oxidative stress, reestablishment of AChE activity, modulation of the PI3K/AKT2 pathway, and reduction of neuroinflammation. CONCLUSIONS These results suggested that 4-PSQ exhibited an antidepressant-like effect and attenuated the memory impairment induced by ARS, and it is a promising molecule to treat these comorbidities.
Collapse
Affiliation(s)
- Renata L. de Oliveira
- grid.411221.50000 0001 2134 6519Programa de Pós-Graduação Em Bioquímica E Bioprospecção (PPGBBio), Laboratório de Pesquisa Em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Pelotas, RS CEP 96010-900 Brazil
| | - Guilherme T. Voss
- grid.411221.50000 0001 2134 6519Programa de Pós-Graduação Em Bioquímica E Bioprospecção (PPGBBio), Laboratório de Pesquisa Em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Pelotas, RS CEP 96010-900 Brazil
| | - Karline da C. Rodrigues
- grid.411221.50000 0001 2134 6519Programa de Pós-Graduação Em Bioquímica E Bioprospecção (PPGBBio), Laboratório de Pesquisa Em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Pelotas, RS CEP 96010-900 Brazil
| | - Mikaela P. Pinz
- grid.411221.50000 0001 2134 6519Programa de Pós-Graduação Em Bioquímica E Bioprospecção (PPGBBio), Laboratório de Pesquisa Em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Pelotas, RS CEP 96010-900 Brazil
| | - Julia V. Biondi
- grid.411221.50000 0001 2134 6519Programa de Pós-Graduação Em Bioquímica E Bioprospecção (PPGBBio), Laboratório de Pesquisa Em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Pelotas, RS CEP 96010-900 Brazil
| | - Nicole P. Becker
- grid.411221.50000 0001 2134 6519Programa de Pós-Graduação Em Bioquímica E Bioprospecção (PPGBBio), Laboratório de Pesquisa Em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Pelotas, RS CEP 96010-900 Brazil
| | - Eduardo Blodorn
- grid.411221.50000 0001 2134 6519Laboratório de Genômica Estrutural, Programa de Pós-Graduação Em Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - William B. Domingues
- grid.411221.50000 0001 2134 6519Laboratório de Genômica Estrutural, Programa de Pós-Graduação Em Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Allya Larroza
- grid.411221.50000 0001 2134 6519Laboratório de Síntese Orgânica Limpa (LaSOL), Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Programa de Pós-Graduação Em Química, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Vinícius F. Campos
- grid.411221.50000 0001 2134 6519Laboratório de Genômica Estrutural, Programa de Pós-Graduação Em Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Diego Alves
- grid.411221.50000 0001 2134 6519Laboratório de Síntese Orgânica Limpa (LaSOL), Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Programa de Pós-Graduação Em Química, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Ethel A. Wilhelm
- grid.411221.50000 0001 2134 6519Programa de Pós-Graduação Em Bioquímica E Bioprospecção (PPGBBio), Laboratório de Pesquisa Em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Pelotas, RS CEP 96010-900 Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção (PPGBBio), Laboratório de Pesquisa Em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
31
|
Kamińska K, Wojaczyńska E. Synthesis of new chiral N-heterocyclic diselenides and their application in the alkoxyselenylation reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj01434c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel chiral diselenides based on a cyclic or bicyclic backbone were applied in the highly diastereoselective methoxyselenylation of styrene.
Collapse
Affiliation(s)
- Karolina Kamińska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| | - Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| |
Collapse
|
32
|
Tanaka KI, Shimoda M, Kawahara M. Effects of selenium-containing compounds on Cu 2+/Zn 2+-induced neuronal cell death and potential application as therapeutic agents for neurological diseases. Neural Regen Res 2022; 17:311-312. [PMID: 34269196 PMCID: PMC8463969 DOI: 10.4103/1673-5374.317968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Shinmachi, Nishitokyo, Tokyo, Japan
| | - Mikako Shimoda
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Shinmachi, Nishitokyo, Tokyo, Japan
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Shinmachi, Nishitokyo, Tokyo, Japan
| |
Collapse
|
33
|
Kumar M, Singh VP. Synthesis and antioxidant activities of N-thiophenyl ebselenamines: a 77Se{ 1H} NMR mechanistic study. NEW J CHEM 2022. [DOI: 10.1039/d2nj01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of N-thiophenyl ebselenamines and selenenyl sulphides as efficient radical-trapping and hydroperoxide-decomposing antioxidants, respectively has been described.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Vijay P. Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| |
Collapse
|
34
|
Erekat NS. Apoptosis and its therapeutic implications in neurodegenerative diseases. Clin Anat 2021; 35:65-78. [PMID: 34558138 DOI: 10.1002/ca.23792] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative disorders are characterized by progressive loss of particular populations of neurons. Apoptosis has been implicated in the pathogenesis of neurodegenerative diseases, including Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. In this review, we focus on the existing notions relevant to comprehending the apoptotic death process, including the morphological features, mediators and regulators of cellular apoptosis. We also highlight the evidence of neuronal apoptotic death in Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. Additionally, we present evidence of potential therapeutic agents that could modify the apoptotic pathway in the aforementioned neurodegenerative diseases and delay disease progression. Finally, we review the clinical trials that were conducted to evaluate the use of anti-apoptotic drugs in the treatment of the aforementioned neurodegenerative diseases, in order to highlight the essential need for early detection and intervention of neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Nour S Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
35
|
Abstract
Abstract
Ebselen is a well-known synthetic compound mimicking glutathione peroxidase (GPx), which catalyses some vital reactions that protect against oxidative damage. Based on a large number of in vivo and in vitro studies, various mechanisms have been proposed to explain its actions on multiple targets. It targets thiol-related compounds, including cysteine, glutathione, and thiol proteins (e.g., thioredoxin and thioredoxin reductase). Owing to this, ebselen is a unique multifunctional agent with important effects on inflammation, apoptosis, oxidative stress, cell differentiation, immune regulation and neurodegenerative disease, with anti-microbial, detoxifying and anti-tumour activity. This review summarises the current understanding of the multiple biological processes and molecules targeted by ebselen, and its pharmacological applications.
Collapse
|
36
|
Gao Y, Li J, Wu Q, Wang S, Yang S, Li X, Chen N, Li L, Zhang L. Tetrahydroxy stilbene glycoside ameliorates Alzheimer's disease in APP/PS1 mice via glutathione peroxidase related ferroptosis. Int Immunopharmacol 2021; 99:108002. [PMID: 34333354 DOI: 10.1016/j.intimp.2021.108002] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
Amyloid beta peptide (Aβ) has been confirmed to be an essential reason of Alzheimer's disease (AD) for a long time. Ferroptosis is a newly recognized oxidative cell death mechanism, which is highly related to AD. Recently, tetrahydroxy stilbene glycoside (TSG) has been beneficial in alleviating learning and memory of AD and aged mouse model. Unfortunately, the underlying mechanisms between TSG and ferroptosis in AD are poorly understood. Herein, we investigated whether neural cells in cerebral cortex and hippocampus that were seriously afflicted in APP/PS1 mice might be vulnerable to ferroptosis. Treatment with non-toxic TSG dose-dependently resisted Aβ-caused cytotoxic death in neuronal cells by regulating ferroptosis related proteins and enzymes in APP/PS1 mice. TSG also alleviated cellular oxidative stress and inflammatory damage in response to Aβ by attenuating the levels of oxidation products. Importantly, TSG administration abrogated Aβ-caused brain damage, indicating that TSG rescued brain cells. Subsequently, TSG promoted the activation of GSH/GPX4/ROS and Keap1/Nrf2/ARE signaling pathways. Notably, markers related to ferroptosis including increased lipid peroxidation, enhanced neuroinflammation such as NLRP3, and also the expression of DMT1, ACSL4 and NCOA4, were reduced by TSG administration. In addition, TSG enhanced antioxidative stress via the upregulation of SOD, and the expression of FTH1, CD98 and xCT. Taken together, our data indicated a novel mechanism of TSG in reversing Aβ-caused injury through restoring mitochondrial function via several signaling pathways, implying a promising candidate against neurodegenerative diseases especially AD. Hence, TSG should be taken into consideration during treatment of AD in the future.
Collapse
Affiliation(s)
- Yan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Juntong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qinglin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shasha Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Songwei Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| |
Collapse
|
37
|
Santi C, Scimmi C, Sancineto L. Ebselen and Analogues: Pharmacological Properties and Synthetic Strategies for Their Preparation. Molecules 2021; 26:4230. [PMID: 34299505 PMCID: PMC8306772 DOI: 10.3390/molecules26144230] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ebselen is the leader of selenorganic compounds, and starting from its identification as mimetic of the key antioxidant enzyme glutathione peroxidase, several papers have appeared in literature claiming its biological activities. It was the subject of several clinical trials and it is currently in clinical evaluation for the treatment of COVID-19 patients. Given our interest in the synthesis and pharmacological evaluation of selenorganic derivatives with this review, we aimed to collect all the papers focused on the biological evaluation of ebselen and its close analogues, covering the timeline between 2016 and most of 2021. Our analysis evidences that, even if it lacks specificity when tested in vitro, being able to bind to every reactive cysteine, it proved to be always well tolerated in vivo, exerting no sign of toxicity whatever the administered doses. Besides, looking at the literature, we realized that no review article dealing with the synthetic approaches for the construction of the benzo[d][1,2]-selenazol-3(2H)-one scaffold is available; thus, a section of the present review article is completely devoted to this specific topic.
Collapse
Affiliation(s)
| | | | - Luca Sancineto
- Group of Catalysis and Green Organic Chemistry, Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1, 06122 Perugia, Italy; (C.S.); (C.S.)
| |
Collapse
|
38
|
Pinz MP, Vogt AG, da Costa Rodrigues K, Dos Reis AS, Duarte LFB, Fronza MG, Domingues WB, Blodorn EB, Alves D, Campos VF, Savegnago L, Wilhelm EA, Luchese C. Effect of a purine derivative containing selenium to improve memory decline and anxiety through modulation of the cholinergic system and Na +/K +-ATPase in an Alzheimer's disease model. Metab Brain Dis 2021; 36:871-888. [PMID: 33651275 DOI: 10.1007/s11011-021-00703-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a worldwide problem, and there are currently no treatments that can stop this disease. To investigate the binding affinity of 6-((4-fluorophenyl) selanyl)-9H-purine (FSP) with acetylcholinesterase (AChE), to verify the effects of FSP in an AD model in mice and to evaluate the toxicological potential of this compound in mice. The binding affinity of FSP with AChE was investigated by molecular docking analyses. The AD model was induced by streptozotocin (STZ) in Swiss mice after FSP treatment (1 mg/kg, intragastrically (i.g.)), 1st-10th day of the experimental protocol. Anxiety was evaluated in an elevated plus maze test, and memory impairment was evaluated in the Y-maze, object recognition and step-down inhibitory avoidance tasks. The cholinergic system was investigated based on by looking at expression and activity of AChE and expression of choline acetyltransferase (ChAT). We evaluated expression and activity of Na+/K+-ATPase. For toxicological analysis, animals received FSP (300 mg/kg, i.g.) and aspartate aminotransferase, alanine aminotransferase activities were determined in plasma and δ-aminolevulinate dehydratase activity in brain and liver. FSP interacts with residues of the AChE active site. FSP mitigated the induction of anxiety and memory impairment caused by STZ. FSP protected cholinergic system dysfunction and reduction of activity and expression of Na+/K+-ATPase. FSP did not modify toxicological parameters evaluated and did not cause the death of mice. FSP protected against anxiety, learning and memory impairment with involvement of the cholinergic system and Na+/K+-ATPase in these actions.
Collapse
Affiliation(s)
- Mikaela Peglow Pinz
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Ane Gabriela Vogt
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Karline da Costa Rodrigues
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Angélica Schiavom Dos Reis
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Luis Fernando Barbosa Duarte
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa (LASOL), CCQFA, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Mariana Gallio Fronza
- Programa de Pós-Graduação em Biotecnologia, GPN, CDTec, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - William Borges Domingues
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico (CDTec), UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Eduardo Bierhaus Blodorn
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico (CDTec), UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Diego Alves
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa (LASOL), CCQFA, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Vinicius Farias Campos
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico (CDTec), UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Lucielli Savegnago
- Programa de Pós-Graduação em Biotecnologia, GPN, CDTec, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Ethel Antunes Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil.
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil.
| |
Collapse
|
39
|
Sharma S, Advani D, Das A, Malhotra N, Khosla A, Arora V, Jha A, Yadav M, Ambasta RK, Kumar P. Pharmacological intervention in oxidative stress as a therapeutic target in neurological disorders. J Pharm Pharmacol 2021; 74:461-484. [PMID: 34050648 DOI: 10.1093/jpp/rgab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Oxidative stress is a major cellular burden that triggers reactive oxygen species (ROS) and antioxidants that modulate signalling mechanisms. Byproducts generated from this process govern the brain pathology and functions in various neurological diseases. As oxidative stress remains the key therapeutic target in neurological disease, it is necessary to explore the multiple routes that can significantly repair the damage caused due to ROS and consequently, neurodegenerative disorders (NDDs). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the critical player of oxidative stress that can also be used as a therapeutic target to combat NDDs. KEY FINDINGS Several antioxidants signalling pathways are found to be associated with oxidative stress and show a protective effect against stressors by increasing the release of various cytoprotective enzymes and also exert anti-inflammatory response against this oxidative damage. These pathways along with antioxidants and reactive species can be the defined targets to eliminate or reduce the harmful effects of neurological diseases. SUMMARY Herein, we discussed the underlying mechanism and crucial role of antioxidants in therapeutics together with natural compounds as a pharmacological tool to combat the cellular deformities cascades caused due to oxidative stress.
Collapse
Affiliation(s)
- Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Nishtha Malhotra
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Vanshika Arora
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Megha Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
40
|
|
41
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
42
|
Plascencia-Villa G, Perry G. Preventive and Therapeutic Strategies in Alzheimer's Disease: Focus on Oxidative Stress, Redox Metals, and Ferroptosis. Antioxid Redox Signal 2021; 34:591-610. [PMID: 32486897 PMCID: PMC8098758 DOI: 10.1089/ars.2020.8134] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Significance: Alzheimer's disease (AD) is the most common cause of dementia in the elderly. AD is currently ranked as the sixth leading cause of death, but some sources put it as third, after heart disease and cancer. Currently, there are no effective therapeutic approaches to treat or slow the progression of chronic neurodegeneration. In addition to the accumulation of amyloid-β (Aβ) and tau, AD patients show progressive neuronal loss and neuronal death, also high oxidative stress that correlates with abnormal levels or overload of brain metals. Recent Advances: Several promising compounds targeting oxidative stress, redox metals, and neuronal death are under preclinical or clinical evaluation as an alternative or complementary therapeutic strategy in mild cognitive impairment and AD. Here, we present a general analysis and overview, discuss limitations, and suggest potential directions for these treatments for AD and related dementia. Critical Issues: Most of the disease-modifying therapeutic strategies for AD under evaluation in clinical trials have focused on components of the amyloid cascade, including antibodies to reduce levels of Aβ and tau, as well as inhibitors of secretases. Unfortunately, several of the amyloid-focused therapeutics have failed the clinical outcomes or presented side effects, and numerous clinical trials of compounds have been halted, reducing realistic options for the development of effective AD treatments. Future Directions: The focus of research on AD and related dementias is shifting to alternative or innovative areas, such as ApoE, lipids, synapses, oxidative stress, cell death mechanisms, neuroimmunology, and neuroinflammation, as well as brain metabolism and bioenergetics.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| | - George Perry
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| |
Collapse
|
43
|
Weglarz-Tomczak E, Tomczak JM, Talma M, Burda-Grabowska M, Giurg M, Brul S. Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Sci Rep 2021; 11:3640. [PMID: 33574416 PMCID: PMC7878891 DOI: 10.1038/s41598-021-83229-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
An efficient treatment against a COVID-19 disease, caused by the novel coronavirus SARS-CoV-2 (CoV2), remains a challenge. The papain-like protease (PLpro) from the human coronavirus is a protease that plays a critical role in virus replication. Moreover, CoV2 uses this enzyme to modulate the host’s immune system to its own benefit. Therefore, it represents a highly promising target for the development of antiviral drugs. We used Approximate Bayesian Computation tools, molecular modelling and enzyme activity studies to identify highly active inhibitors of the PLpro. We discovered organoselenium compounds, ebselen and its structural analogues, as a novel approach for inhibiting the activity of PLproCoV2. Furthermore, we identified, for the first time, inhibitors of PLproCoV2 showing potency in the nanomolar range. Moreover, we found a difference between PLpro from SARS and CoV2 that can be correlated with the diverse dynamics of their replication, and, putatively to disease progression.
Collapse
Affiliation(s)
- Ewelina Weglarz-Tomczak
- Molecular Biology and Microbial Food Safety Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jakub M Tomczak
- Computational Intelligence Group, Department of Computer Science, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michał Talma
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Małgorzata Burda-Grabowska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland.,Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Mirosław Giurg
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Sharma G, Shin EJ, Sharma N, Nah SY, Mai HN, Nguyen BT, Jeong JH, Lei XG, Kim HC. Glutathione peroxidase-1 and neuromodulation: Novel potentials of an old enzyme. Food Chem Toxicol 2021; 148:111945. [PMID: 33359022 DOI: 10.1016/j.fct.2020.111945] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
Glutathione peroxidase (GPx) acts in co-ordination with other signaling molecules to exert its own antioxidant role. We have demonstrated the protective effects of GPx,/GPx-1, a selenium-dependent enzyme, on various neurodegenerative disorders (i.e., Parkinson's disease, Alzheimer's disease, cerebral ischemia, and convulsive disorders). In addition, we summarized the recent findings indicating that GPx-1 might play a role as a neuromodulator in neuropsychiatric conditions, such as, stress, bipolar disorder, schizophrenia, and drug intoxication. In this review, we attempted to highlight the mechanistic scenarios mediated by the GPx/GPx-1 gene in impacting these neurodegenerative and neuropsychiatric disorders, and hope to provide new insights on the therapeutic interventions against these disorders.
Collapse
Affiliation(s)
- Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
45
|
Bian M, Hua J, Ma T, Xu J, Cai C, Yang Z, Liu C, He W, Fang Z, Guo K. Continuous-flow electrosynthesis of selenium-substituted iminoisobenzofuran via oxidative cyclization of olefinic amides and diselenides. Org Biomol Chem 2021; 19:3207-3212. [DOI: 10.1039/d1ob00236h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel method for the continuous synthesis of selenated iminoisobenzofurans by cyclization of olefinic amides with diselenides through electrochemical oxidation under metal-free and oxidant-free conditions has been developed.
Collapse
Affiliation(s)
- Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Tao Ma
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jia Xu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Chen Cai
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhao Yang
- College of Engineering
- China Pharmaceutical University
- Nanjing 210003
- China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
46
|
Shin EJ, Lee SH, Sharma N, Nguyen BT, Chung YH, Kang SW, Nah SY, Lee YJ, Nabeshima T, Jeong JH, Kim HC. An adenoviral vector encoded with the GPx-1 gene attenuates memory impairments induced by β-amyloid (1-42) in GPx-1 KO mice via activation of M1 mAChR-mediated signalling. Free Radic Res 2020; 55:11-25. [PMID: 33222572 DOI: 10.1080/10715762.2020.1854455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the present study, we examined whether glutathione peroxidase-1 (GPx-1), a major H2O2 scavenger in the brain, affects memory deficits induced by Aβ (1-42) in mice. Treatment with 400 pmol/5 μl Aβ (1-42) (i.c.v.) resulted in a reduction of GPx-1 expression in wild-type (WT) mice. An Aβ (1-42)-induced reduction in acetylcholine (ACh) level was observed in the hippocampus. Treatment with Aβ (1-42) consistently resulted in reduced expression and activity of choline acetyltransferase (ChAT) and in an increase in expression and activity of acetylcholinesterase (AChE). Upon examining each of the muscarinic acetylcholine receptors (mAChRs) and nicotinic AChRs, we noted that Aβ (1-42) treatment selectively reduced the levels of M1 mAChR. In addition, Aβ (1-42) induced a significant reduction in phospho-cAMP response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) expression. The cholinergic impairments induced by Aβ (1-42) were more pronounced in GPx-1 knockout mice than in WT mice. Importantly, an adenoviral vector encoded with the GPx-1 gene (Ad-GPx-1) significantly rescued Aβ (1-42)-induced cholinergic impairments in GPx-1 knockout mice. In addition, M1 mAChR antagonist dicyclomine significantly counteracted Ad-GPx-1-mediated increases in p-CREB and BDNF expression, as well as memory-enhancing effects in GPx-1 knockout mice, thus indicating that M1 mAChR might be a critical mediator for the rescue effects of Ad-GPx-1. Combined, our results suggest that GPx-1 gene protected against Aβ (1-42)-induced memory impairments via activation of M1 mAChR-dependent CREB/BDNF signalling.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Sung Hoon Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Sang Won Kang
- Department of Life Science, College of Natural science, Ewha Womans University, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Yu Jeung Lee
- Clinical Pharmacy, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| |
Collapse
|
47
|
Sevindik M, Akgul H, Selamoglu Z, Braidy N. Antioxidant, antimicrobial and neuroprotective effects of Octaviania asterosperma in vitro. Mycology 2020; 12:128-138. [PMID: 34035978 PMCID: PMC8131004 DOI: 10.1080/21501203.2020.1816584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/25/2020] [Indexed: 10/31/2022] Open
Abstract
Octaviania asterosperma (hypogeous Basidiomycota) We investigated the phenolic composition, and antioxidant, antimicrobial and antigenotoxic effects of methanol extracts of fruiting bodies from Octaviania asterosperma. The total phenolic content (ppm) of O. asterosperma was found to be catechin (54.73 ± 4.68), epicatechin (123.90 ± 8.52), caffeic acid (4.23 ± 0.97), p-hydroxybenzoic acid (37.72 ± 3.84), cinnamic acid (58.07 ± 5.40), gallic acid (56.64 ± 6.39), clorogenic acid (80.76 ± 4.92) and coumaric acid (2.45 ± 0.15). The total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) were 3.410 ± 0.099 mmol/L, 7.548 ± 0.147 μmol/L and 0.221 ± 0.005 respectively. O. asterosperma showed some promising antimicrobial activity. The extract showed no genotoxic potential and attenuated hydrogen peroxide (H2O2)-induced oxidative DNA damage in neurons. Pre-treatment with O. asterosperma maintained mitochondrial function, reduced expression levels of cleaved-caspase-3 and apoptosis-inducing factor (AIF) when HT22 cells were exposed to pathophysiological concentrations of GLU (25 mM) and modulated protein kinase B (Akt), the mammalian target of rapamycin (mTOR), and the phosphotase and tensin homolog on chromosome ten (PTEN). O. asterosperma is an important food for the treatment or management of neurodegenerative disorders due to its phenolic content and potent antioxidant and anti-excitotoxic effects.
Collapse
Affiliation(s)
- Mustafa Sevindik
- Bahçe Vocational High School, Osmaniye Korkut Ata University, 80500, Osmaniye, Turkey
| | - Hasan Akgul
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Turkey
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
48
|
Abstract
Ebselen is a synthetic organoselenium radical scavenger compound that possesses glutathione peroxidase-like activity and its own unique bioactivity by reacting with thiols, hydroperoxides and peroxynitrites. Owing to its high affinity toward several essential reactions, ebselen protects cellular components from oxidative and free radical damage, and it has been employed as a useful tool for studying redox-related mechanisms. Based on numerous in vitro and in vivo research, mechanisms are proposed to understand the biomedical and molecular actions of ebselen in health and disease, and it is currently under clinical trials for the prevention and treatment of various human disorders. Based on these outstanding discoveries, this review summarizes the current understanding of the biochemical and molecular characteristics, pharmacological applications and future directions of ebselen.
Collapse
|
49
|
Shin EJ, Chung YH, Sharma N, Nguyen BT, Lee SH, Kang SW, Nah SY, Wie MB, Nabeshima T, Jeong JH, Kim HC. Glutathione Peroxidase-1 Knockout Facilitates Memory Impairment Induced by β-Amyloid (1-42) in Mice via Inhibition of PKC βII-Mediated ERK Signaling; Application with Glutathione Peroxidase-1 Gene-Encoded Adenovirus Vector. Neurochem Res 2020; 45:2991-3002. [PMID: 33064252 DOI: 10.1007/s11064-020-03147-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/16/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
A growing body evidence suggests that selenium (Se) deficiency is associated with an increased risk of developing Alzheimer's disease (AD). Se-dependent glutathione peroxidase-1 (GPx-1) of a major antioxidant enzyme, and the most abundant isoform of GPx in the brain. In the present study, we investigated whether GPx-1 is protective against memory impairments induced by beta-amyloid (Aβ) (1-42) in mice. As the alteration of protein kinase C (PKC)-mediated ERK activation was recognized in the early stage of AD, we examined whether the GPx-1 gene modulates Aβ (1-42)-induced changes in PKC and ERK levels. We observed that Aβ (1-42) treatment (400 pmol, i.c.v.) significantly decreased PKC βII expression in the hippocampus of mice. Aβ (1-42)-induced neurotoxic changes [i.e., oxidative stress (i.e., reactive oxygen species, 4-hydroxy-2-noneal, and protein carbonyl), reduced PKC βII and phospho-ERK expressions, and memory impairment under Y-maze and passive avoidance test] were more pronounced in GPx-1 knockout than in wild type mice. Importantly, exposure to a GPx-1 gene-encoded adenovirus vector (Adv-GPx-1) significantly increased GPx-1 mRNA and GPx activity in the hippocampus of GPx-1 knockout mice. Adv-GPx-1 exposure also significantly blocked the neurotoxic changes induced by Aβ (1-42) in GPx-1 knockout mice. Treatment with ERK inhibitor U0126 did not significantly change Adv-GPx-1-mediated attenuation in PKC βII expression. In contrast, treatment with PKC inhibitor chelerythrine (CHE) reversed Adv-GPx-1-mediated attenuation in ERK phosphorylation, suggesting that PKC βII-mediated ERK signaling is important for Adv-GPx-1-mediated potentials against Aβ (1-42) insult. Our results suggest that treatment with the antioxidant gene GPx-1 rescues Aβ (1-42)-induced memory impairment via activating PKC βII-mediated ERK signaling.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Seoul, 06974, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Sung Hoon Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Won Kang
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Myung Bok Wie
- Department of Veterinary Toxicology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
50
|
Landgraf AD, Alsegiani AS, Alaqel S, Thanna S, Shah ZA, Sucheck SJ. Neuroprotective and Anti-neuroinflammatory Properties of Ebselen Derivatives and Their Potential to Inhibit Neurodegeneration. ACS Chem Neurosci 2020; 11:3008-3016. [PMID: 32840996 DOI: 10.1021/acschemneuro.0c00328] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ebselen (EBS) is an organo-selenium-containing compound that has anti-inflammatory, antitumor, and antibacterial properties. EBS is being explored as a possible treatment for reperfusion injury and stroke and is under clinical trials as a mimetic of lithium for the treatment of bipolar disorder [Mota et al. Synapse 2020, 74 (7), 1-6] and noise-induced hearing loss as a result of these actives [Martini et al. J. Psychiatr. Res. 2019, 109, 107-117. Slusarczyk et al. Neural Regener. Res. 2019, 17 (7), 1255-1261. Thangamani et al. PLoS One 2015, 10 (7), e0133877. Kil et al. Lancet 2017, 390 (10098), 969-979]. However, we wanted to characterize derivatives of EBS as neuroprotective, anti-neuroinflammatory, and antioxidant compounds. Recently, we have reported on a new thermal and photoinduced copper-mediated cross-coupling between potassium selenocyanate (KSeCN) and N-substituted ortho-halobenzamides to form ebselen derivatives with increased synthetic efficiency [Thanna et al. J. Org. Chem. 2017, 82 (7), 3844-3854]. Our synthesis allows for the varying of the remote benzene ring with various substituents or replacing that ring with heterocyclic rings such as pyridine, pyrrole, thiophene, etc. In this study, we synthesized seven new heterocyclic EBS derivatives to further diversify our EBS library. These 21 compounds were then evaluated for their neuroprotective properties, with four compounds showing an equal or better neuroprotective profile than EBS. Compounds 5, 9, 23, and 27 showed 73, 86, 80, 84% cell viability, respectively, at a 10 μM concentration. These studies were performed using human neuroblastoma SH-SY5Y cells in an oxygen and glucose deprivation (OGD) model of ischemia. At the same concentration, these compounds significantly inhibited lipopolysaccharide-induced nitric oxide and tumor necrosis factor alpha release from Human microglia clone 3 microglial cells. Compounds 9 and 27 showed significantly increased cell viability (84 and 80%, respectively) for SH-SY5Y cells exposed to microglia-activated media. These compounds showed only mild GPx-like reductive activity, with compounds 2, 7, 12, and 14 (115, 96, 95, and 82%, respectively) showing a higher percent rate of oxidation of NADPH in a coupled reaction assay compared to ebselen. This research highlights several derivatives of ebselen that show improved activity as neuroprotective agents over the parent compound.
Collapse
Affiliation(s)
- Alexander D. Landgraf
- Department of Chemistry and Biochemistry, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Amsha Saud Alsegiani
- Department of Medicinal and Biological Chemistry, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Saleh Alaqel
- Department of Medicinal and Biological Chemistry, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Sandeep Thanna
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|