1
|
Balasubramanian D, Agraharam G, Girigoswami A, Girigoswami K. Multiple radiations and its effect on biological system - a review on in vitro and in vivo mechanisms. Ann Med 2025; 57:2486595. [PMID: 40219761 PMCID: PMC11995768 DOI: 10.1080/07853890.2025.2486595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/07/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
PURPOSE We are exposed to different types of radiation from natural sources or for biomedical diagnostic and therapeutic purposes at different doses or times. The dose, duration, and number of exposures can cause multiple effects both in vivo and in vitro. Several researchers have explored the effects of ionizing and non-ionizing radiation in cell lines and animal models. Macromolecules, such as DNA, RNA, and proteins, are the primary targets of damage and can lead to several diseases, including cancer and even cell death. Chronic low-dose exposure of cells to radiation can cause alterations in gene expression and can be deleterious to the fate of the cells. We aim to discuss the implications of multiple radiations on different biological systems, including how nanotechnology can facilitate the effects of radiation in therapeutics. CONCLUSION In this review, we discuss the in vitro and in vivo changes that occur due to exposure to different types of radiation used in diagnosis, therapeutics, and other means, such as radiation equipment operators and patients being exposed. The effects of ionizing and non-ionizing radiation have been discussed separately. We have also mentioned in detail about the human-caused accidents of Hiroshima and Chernobyl in this article. The application of nanotechnology in facilitating the effects of radiation in the therapy and management of radioresistance of cells has also been discussed. The radio resistance and method to improve the radiosensitivity have also been mentioned. This review article can reflect the recent developments in the various uses of ionizing and non-ionizing radiation in biomedical field and will open up new avenues to utilize radiation in a more prudent way. The role of nanotechnology in reducing the harmful effects of radiation is also discussed.
Collapse
Affiliation(s)
- Deepika Balasubramanian
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, India
| | - Gopikrishna Agraharam
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, India
| |
Collapse
|
2
|
Gaida JL, Steinberg T, Stieger-Vanegas SM, Merle R, Lischer CJ. Equine Standing Multidetector Computed Tomography of the Distal Thoracic Limb and Tarsus Has a Lower Cumulative Radiation Dose than Digital Radiography. Vet Radiol Ultrasound 2025; 66:e70049. [PMID: 40420323 DOI: 10.1111/vru.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/16/2025] [Accepted: 05/05/2025] [Indexed: 05/28/2025] Open
Abstract
Recent technological advancements in CT have improved the ability to scan standing sedated horses. However, the impact of radiation exposure on veterinary staff while scanning the extremities of standing horses using this technique, compared with digital radiography (DR), remains unknown. This study compares the radiation exposure of imaging technicians assisting with multidetector CT (MDCT) and DR of the distal thoracic limb and tarsus in standing horses. Personal dose equivalent was measured on four body locations: thyroid gland, gonads, hand, and feet. Images of the distal thoracic limb (n = 12) and tarsus (n = 12) were obtained from 24 Warmblood horses using DR and MDCT. The DR included four views of the front fetlock (dorsopalmar, lateromedial, dorso45lateral-palmaromedial oblique, and dorso45medial-palmarolateral oblique), three views of the front foot (dorsopalmar, lateromedial and dorso65proximal-palmarodistal oblique) and four views of the tarsus (dorsoplantar, lateromedial, dorso45lateral-plantaromedial oblique and dorso45medial-planterolateral oblique). The MDCT scans included the distal metacarpus to the foot and the tarsus. Noninferiority testing showed lower radiation exposure to the imaging technician during MDCT of the distal thoracic limb and tarsus compared with DR, measured at the thyroid gland, hand, and feet. The radiation exposure to the gonads during MDCT of the thoracic limb was significantly higher than with DR. Nevertheless, the lower cumulative radiation exposure for the assisting imaging technician during MDCT compared with DR suggests that the tested MDCT setup enables advanced imaging of the distal limb in standing sedated horses, offering both reduced radiation exposure and avoiding the patient-related risks of general anesthesia.
Collapse
Affiliation(s)
- Julia L Gaida
- Tierklinik Luesche GmbH, Bakum, Germany
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, USA
- Clinic for Horses, General Surgery and Radiology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Susanne M Stieger-Vanegas
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, USA
| | - Roswitha Merle
- Clinic for Horses, General Surgery and Radiology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Christoph J Lischer
- Clinic for Horses, General Surgery and Radiology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Sung K, Hosoya K, Deguchi T, Yamashita K, Kim S, Sunaga T, Yasui H, Inanami O, Okumura M. Glutathione-associated redox regulation alleviates radio-resistance of canine cancer stem-like cells with low proteasome activity. Sci Rep 2025; 15:18017. [PMID: 40410310 PMCID: PMC12102148 DOI: 10.1038/s41598-025-02569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025] Open
Abstract
Radio-resistance of cancer stem-like cells (CSCs) is associated with the failure of radiation therapy. ZsGreen1-positive (ZsG⁺) cells, which exhibit low proteasome activity, have been used to enable the detection and isolation of CSCs. However, the mechanisms of radio-resistance in canine tumor cells with low proteasome activity remain unclear. This study aimed to elucidate the radio-resistance mechanisms of ZsG+ cells by identifying a potential target of canine CSCs. ZsG+ cells, isolated using flow cytometric cell sorting, were compared with ZsG- cells. Sulfasalazine was used to suppress glutathione (GSH) synthesis by inhibiting xCT. In vitro experiments demonstrated a significantly higher radio-resistance in ZsG+ cells than in ZsG- cells. After X-irradiation, ZsG+ cells had fewer p53‑binding protein 1 (53BP1) foci, low reactive oxygen species (ROS) accumulation, and high GSH content. Sulfasalazine caused radiosensitization of ZsG+ cells with an increased number of 53BP1 foci by decreasing GSH contents and increasing ROS accumulation. The low proteasome activity played a role in xCT upregulation. In conclusion, canine tumor cells with low proteasome activity are radio-resistant due to high GSH content and low ROS accumulation. Sulfasalazine causes radiosensitization of the tumor cells by altering redox balance by inhibiting GSH synthesis for effective targeting of canine CSCs.
Collapse
Affiliation(s)
- Koangyong Sung
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Hosoya
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
- Laboratory of Advanced Veterinary Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Tatsuya Deguchi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Koya Yamashita
- Laboratory of Radiation Biology, Department of Applied Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Sangho Kim
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takafumi Sunaga
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Applied Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Das RC, Chaki Borrás ML, Kim JH, Carolan M, Sluyter R, Lerch M, Konstantinov K. Quantum-Dot Ceramic Composites for Oxidative Stress Mitigation under Broad-Spectrum Radiation Exposure. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18096-18107. [PMID: 40091176 DOI: 10.1021/acsami.4c22795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Nanomaterials offer a promising approach to mitigating radiation-induced oxidative stress by scavenging reactive oxygen species (ROS). However, developing a nanomaterial that provides protection across a wide range of radiation conditions is challenging due to the photoelectric effects linked to the atomic number (Z) of the materials. Quantum dots (QDs) in a composite system, owing to their small size and when used at low concentrations, minimize photoelectric effects and secondary electron generation. In this study, cerium oxide (CeO2) QDs were combined with low-Z yttrium oxide (Y2O3) to create a nanocomposite (NC) (henceforth CeO2 QDs-Y2O3) that exploits the synergistic effects of both materials, providing protection across a broader spectrum of radiation. CeO2 QDs-Y2O3 demonstrated superior ROS scavenging than individual CeO2 and Y2O3 under nonradiative conditions, particularly for hydroxyl radicals (•OH) and hydrogen peroxide (H2O2), two primary ROS generated under radiation. This improved performance, due to increased oxygen vacancies and a higher Ce3+/Ce4+ ratio, indicates that these properties could help protect cells from oxidative stress during radiation exposure. Radioprotection analysis using the linear-quadratic (LQ) model revealed that the NC provided effective protection at both 150 kVp and 10 MV radiation energies. At 150 kVp, the obtained protection enhancement ratio (PER) values at 10% cell survival for CeO2 QDs-Y2O3, Y2O3, and CeO2 were 1.07, 1.16, and 0.89, respectively, suggesting that the radioprotection afforded by Y2O3 in the NC outweighed the radiosensitization of the encrusted CeO2 QDs. Additionally, despite the higher PER of Y2O3, the NC displayed increased biocompatibility toward the human keratinocyte HaCaT cell line in the absence of radiation compared to Y2O3. At 10 MV, where photoelectric effects are minimal, the NC outperformed both individual components, yielding a PER of 1.28, or a 28% dose enhancement compared to 12% for Y2O3 alone and 19% for CeO2. This study highlights the potential of CeO2 QDs-Y2O3 as a broad-spectrum radioprotective agent, offering enhanced biocompatibility and effective protection against radiation-induced oxidative stress across broad-ranging radiation conditions.
Collapse
Affiliation(s)
- Rajib Chandra Das
- Institute for Superconducting & Electronic Materials (ISEM), School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Marcela L Chaki Borrás
- Institute for Superconducting & Electronic Materials (ISEM), School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Jung Ho Kim
- Institute for Superconducting & Electronic Materials (ISEM), School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Martin Carolan
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, New South Wales 2500, Australia
| | - Ronald Sluyter
- School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics (CMRP), Faculty of Engineering and Information Science, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting & Electronic Materials (ISEM), School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
5
|
Shedid SM, Abdel-Aziz N, Algeda FR, Saada HN. The Mitigating Effect of Melatonin Against Radiation-Induced Inflammation and Disturbance of Reproductive Hormones in Female Albino Rats. Dose Response 2025; 23:15593258251323796. [PMID: 40027956 PMCID: PMC11872049 DOI: 10.1177/15593258251323796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 11/08/2024] [Accepted: 12/13/2024] [Indexed: 03/05/2025] Open
Abstract
Objectives: Melatonin has been documented as an antioxidant agent. Numerous investigations have documented melatonin's radioprotective impact; however, investigation of its role post-irradiation requires further studies. Thus, the present study investigated melatonin's mitigating effect against radiation-induced alteration in the ovaries and reproductive hormones in female albino rats. Methods: Melatonin (10 mg/kg body weight, i. p.) was administered to the animals for 7, 11, and 15 days after whole-body exposure to 4 Gy γ-radiation. Results: The results demonstrated that melatonin has significantly attenuated the radiation-induced oxidative stress in the ovary, manifested by a decrease in protein carbonyl and malondialdehyde in conjunction with an increase in total antioxidant capacity. In addition, melatonin has alleviated the radiation-induced increase of the pro-inflammatory cytokines (tumor necrotic factor alpha, interleukin-6, interleukin-1 beta) and caspase-3 levels in the serum. These results were accompanied by a noticeable improvement in serum E2-estradiol, testosterone, progesterone, follicle-stimulating hormone, and luteinizing hormone compared to their respective levels in the irradiated group. Conclusion: It could be concluded that melatonin is an effective agent for minimizing the deleterious impacts of radiation on the ovaries and reproductive hormones through synergistic interdependence between anti-inflammatory, antioxidant, and anti-apoptotic activities.
Collapse
Affiliation(s)
- Shereen M. Shedid
- Radiation Biology Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority Cairo, Egypt
| | - Nahed Abdel-Aziz
- Radiation Biology Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority Cairo, Egypt
| | - Fatma R. Algeda
- Radiation Biology Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority Cairo, Egypt
| | - Helen N. Saada
- Radiation Biology Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority Cairo, Egypt
| |
Collapse
|
6
|
Sharma S, Rehan A, Dutta A. A data mining approach to identify key radioresponsive genes in mouse model of radiation-induced intestinal injury. Biomarkers 2024; 29:505-517. [PMID: 39431989 DOI: 10.1080/1354750x.2024.2420196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Radiation-mediated GI injury (RIGI) is observed in humans either due to accidental or intentional exposures. This can only be managed with supporting care and no approved countermeasures are available till now. Early detection and monitoring of RIGI is important for effective medical management and improve survival chances of exposed individuals. OBJECTIVE The present study aims to identify new signatures of RIGI using data mining approach followed by validation of selected hub genes in mice. METHODS Data mining study was performed using microarray datasets from Gene Expression Omnibus database. The differentially expressed genes were identified and further validated in total-body irradiated mice. RESULTS Based on KEGG pathway analysis, lipid metabolism was found as one of the predominant pathways altered in irradiated intestine. Extensive alteration in lipid profile and lipid modification was observed in this tissue. A protein-protein interaction network revealed top 08 hub genes related to lipid metabolism, namely Fabp1, Fabp2, Fabp6, Npc1l1, Ppar-α, Abcg8, Hnf-4α, and Insig1. qRT-PCR analysis revealed significant up-regulation of Fabp6 and Hnf-4α and down-regulation of Fabp1, Fabp2 and Insig1 transcripts in irradiated intestine. Radiation dose and time kinetics study revealed that the selected 05 genes were altered differentially in response to radiation in intestine. CONCLUSION Finding suggests that lipid metabolism is one of the key targets of radiation and its mediators may act as biomarkers in detection and progression of RIGI.
Collapse
Affiliation(s)
- Suchitra Sharma
- GI Radiobiology Research Laboratory, Radiomitigation Research Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K Mazumdar Marg, Delhi, India
| | - Aliza Rehan
- GI Radiobiology Research Laboratory, Radiomitigation Research Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K Mazumdar Marg, Delhi, India
| | - Ajaswrata Dutta
- GI Radiobiology Research Laboratory, Radiomitigation Research Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K Mazumdar Marg, Delhi, India
| |
Collapse
|
7
|
Wang Y, Tang B, Li X, Kong X, Wang X, Yan K, Tu Y, Sun L. MIMC- β: microdosimetric assessment method for internal exposure of β-emitters based on mesh-type cell cluster model. Phys Med Biol 2024; 69:225007. [PMID: 39526343 DOI: 10.1088/1361-6560/ad8c92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The method combining Monte Carlo (MC) simulation and mesh-type cell models provides a way to accurately assess the cellular dose induced byβ-emitters. Although this approach allows for a specific evaluation of various nuclides and cell type combinations, the associated time cost for obtaining results is relatively high. In this work, we propose a Microdosimetric assessment method for Internal exposure ofβ-emitters based on Mesh-type Cell cluster models (abbreviated as MIMC-β). This approach is applied to evaluate the dose in various types of cells (human bronchial epithelial cells, BEAS-2B; normal human liver cells, L-O2; and normal human small intestine epithelial cells, FHs74Int) exposed toβ-emitters. Furthermore, microdosimetric quantity based on the cell cluster model are employed to estimate the relative biological effectiveness (RBE) ofβ-emitters. The results indicate that this method can accurately and rapidly predict cellular doses caused by different types ofβ-emitters, significantly mitigating the efficiency challenges associated with directly employing MC to estimate the overall dose of the mesh-type cell cluster model. In comparison with results obtained from direct simulations of uniform administration ofβ- sources using PHITS for validation, the cellular cluster overallS-values obtained through MIMC-βshow discrepancies mostly below 5%, with the minimum deviation reaching 1.35%. Small sampling sizes within the cell nucleus led to larger average lineal energies. In comparison to C-14, the differences in cellular cluster average lineal energy for Cs-134, Cs-137, and I-131 are negligible, resulting in close numerical estimations of RBE based on lineal energy. The MIMC-βcan be extended to diverse cell types andβ-emitters. Additionally, the RBE assessment based on the cell cluster model offers valuable insights for predicting radiobiological damage resulting from internal exposure byβ-emitters. This method is expected to find applicability in various realistic scenarios, including radiation protection and radioligand therapy.
Collapse
Affiliation(s)
- Yidi Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| | - Bo Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
- Department of Public Health Surveillance and Evaluation, Shandong center for disease control and prevention, Jinan 250014, People's Republic of China
| | - Xinlei Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| | - Xianghui Kong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| | - Xinjie Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| | - Kaijin Yan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
8
|
Haritwal T, Prakash A, Sharma N, Jamnal N, Kumar M, Agrawala PK. Repeated dose toxicity studies of Trichostatin A in Swiss albino mice through oral and intravenous route of administration with special emphasis on genotoxicity. Drug Chem Toxicol 2024; 47:1109-1117. [PMID: 38647049 DOI: 10.1080/01480545.2024.2336521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
Intravenous and oral 14 d repeated dose toxicity studies of Trichostatin A (TSA) were carried out in Swiss albino mice using low, intermediate, and high doses. Intravenous doses were 10, 25, and 50 μg/kg b.w while the oral doses were 20, 50, and 100 μg/kg b.w. Respective control groups of mice were administered phosphate buffered saline (vehicle only) for 14 consecutive days. All external morphological, hematological, biochemical, urine, histopathological, food intake in addition to body weight and vital organ weight were recorded. During the study no mortality in any animal was observed in either treatment routes. There were no significant changes in morphology, food intake, hematology, biochemical, urine analysis, organ weight. Animals treated high dose of TSA intravenously (50 μg/kg b.w) and orally (100 μg/kg b.w) had enlarged, congested, and discolored kidneys which were statistically significant. Histopathological studies had shown statistically significant degenerated glomerulus in high dose of intravenous and orally treated animals and degenerated tubule were found in orally treated animals. Genotoxicity was evaluated using micronucleus frequency at 14 and 21 d after treatment and chromosomal aberration at 21 d after treatment. Micronucleaus assay and chromosomal assay however did not show any significant changes at any doses and administration routes. Therefore, this study concludes that dose ∼25 µg/kg and ∼50 µg/kg b.w may be considered as No Observed Adverse Effect Level (NOAEL) for intravenous and oral administration of TSA respectively.
Collapse
Affiliation(s)
- Teena Haritwal
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Anu Prakash
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Neha Sharma
- Department of Biotechnology, Amity University, Noida, India
| | - Neetika Jamnal
- Department of Biosciences, Galgotias University, Greater Noida, India
| | - Manoj Kumar
- Shriram Institute for Industrial Research, Delhi, India
| | - Paban K Agrawala
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
9
|
Oršolić N, Jazvinšćak Jembrek M. Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy. Nutrients 2024; 16:3741. [PMID: 39519572 PMCID: PMC11547968 DOI: 10.3390/nu16213741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced cell death and increased drug resistance. Moreover, the use of multiple agents also contributes to added toxicity, resulting in poor treatment outcomes. Cancer cells gradually develop resistance to almost all chemotherapeutics through various mechanisms, such as drug efflux, alterations in drug metabolism and transport, changes in signal transduction pathways, enhanced DNA repair capacity, evasion of apoptosis, increased mutations, reactivation of drug targets, interaction with the cancer microenvironment, cancer cell-stroma interactions, epithelial-mesenchymal transition (EMT)-mediated chemoresistance, epigenetic modifications, metabolic alterations, and the effect of cancer stem cells (CSCs). Developing new strategies to improve chemotherapy sensitivity while minimizing side effects is essential for achieving better therapeutic outcomes and enhancing patients' quality of life. One promising approach involves combining conventional cancer treatments with propolis and its flavonoids. These natural compounds may enhance tumor response to treatment while reducing toxicity. Propolis and its components can sensitize cancer cells to chemotherapeutic agents, likely by inhibiting NF-κB activation, reprogramming tumor-associated macrophages (TAMs; an M2-like phenotype), and thereby reducing the release of matrix metalloproteinase (MMP)-9, cytokines, chemokines, and the vascular endothelial growth factor (VEGF). By reducing TAMs, propolis and its components may also overcome EMT-mediated chemoresistance, disrupt the crosstalk between macrophages and CSCs, inhibit the maintenance of stemness, and reverse acquired immunosuppression, thus promoting an antitumor response mediated by cytotoxic T-cells. This review highlights the potential of flavonoids to modulate the responsiveness of cancer to conventional treatment modalities. The evidence suggests that novel therapeutic strategies incorporating flavonoids could be developed to improve treatment outcomes. The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells. Therefore, polyphenolic/flavonoid components may hold potential for use in combination with chemotherapeutic agents in the clinical treatment of various types of cancers.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 244, HR-10000 Zagreb, Croatia
| |
Collapse
|
10
|
Kozbenko T, Adam N, Grybas VS, Smith BJ, Alomar D, Hocking R, Abdelaziz J, Pace A, Boerma M, Azimzadeh O, Blattnig S, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to abnormal vascular remodeling. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:4-30. [PMID: 39440813 DOI: 10.1002/em.22636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are complex, encompassing many types of heart pathophysiologies and associated etiologies. Radiotherapy studies have shown that fractionated radiation exposure at high doses (3-17 Gy) to the heart increases the incidence of CVD. However, the effects of low doses of radiation on the cardiovascular system or the effects from space travel, where radiation and microgravity are important contributors to damage, are not clearly understood. Herein, the adverse outcome pathway (AOP) framework was applied to develop an AOP to abnormal vascular remodeling from the deposition of energy. Following the creation of a preliminary pathway with the guidance of field experts and authoritative reviews, a scoping review was conducted that informed final key event (KE) selection and evaluation of the Bradford Hill criteria for the KE relationships (KERs). The AOP begins with a molecular initiating event of deposition of energy; ionization events increase oxidative stress, which when persistent concurrently causes the release of pro-inflammatory mediators, suppresses anti-inflammatory mechanisms and alters stress response signaling pathways. These KEs alter nitric oxide levels leading to endothelial dysfunction, and subsequent abnormal vascular remodeling (the adverse outcome). The work identifies evidence needed to strengthen understanding of the causal associations for the KERs, emphasizing where there are knowledge gaps and uncertainties in both qualitative and quantitative understanding. The AOP is anticipated to direct future research to better understand the effects of space on the human body and potentially develop countermeasures to better protect future space travelers.
Collapse
Affiliation(s)
- Tatiana Kozbenko
- Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | - Amanda Pace
- Carleton University, Ottawa, Ontario, Canada
| | - Marjan Boerma
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, Neuherberg, Germany
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
11
|
Yazarlou F, Martinez I, Lipovich L. Radiotherapy and breast cancer: finally, an lncRNA perspective on radiosensitivity and radioresistance. Front Oncol 2024; 14:1437542. [PMID: 39346726 PMCID: PMC11427263 DOI: 10.3389/fonc.2024.1437542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/01/2024] [Indexed: 10/01/2024] Open
Abstract
Radiotherapy (RT) serves as one of the key adjuvant treatments in management of breast cancer. Nevertheless, RT has two major problems: side effects and radioresistance. Given that patients respond differently to RT, it is imperative to understand the molecular mechanisms underlying these differences. Two-thirds of human genes do not encode proteins, as we have realized from genome-scale studies conducted after the advent of the genomic era; nevertheless, molecular understanding of breast cancer to date has been attained almost entirely based on protein-coding genes and their pathways. Long non-coding RNAs (lncRNAs) are a poorly understood but abundant class of human genes that yield functional non-protein-coding RNA transcripts. Here, we canvass the field to seek evidence for the hypothesis that lncRNAs contribute to radioresistance in breast cancer. RT-responsive lncRNAs ranging from "classical" lncRNAs discovered at the dawn of the post-genomic era (such as HOTAIR, NEAT1, and CCAT), to long intergenic lncRNAs such as LINC00511 and LINC02582, antisense lncRNAs such as AFAP-AS1 and FGD5-AS1, and pseudogene transcripts such as DUXAP8 were found during our screen of the literature. Radiation-related pathways modulated by these lncRNAs include DNA damage repair, cell cycle, cancer stem cells phenotype and apoptosis. Thus, providing a clear picture of these lncRNAs' underlying RT-relevant molecular mechanisms should help improve overall survival and optimize the best radiation dose for each individual patient. Moreover, in healthy humans, lncRNAs show greater natural expression variation than protein-coding genes, even across individuals, alluding to their exceptional potential for targeting in truly personalized, precision medicine.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ivan Martinez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Leonard Lipovich
- Department of Biology, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, China
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., Shenzhen, China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
12
|
Nakao T, Takasu R, Tsuchida H, Saito M, Majima T. Delayed fragmentation of isolated nucleobases induced by MeV ions. J Chem Phys 2024; 161:054302. [PMID: 39087542 DOI: 10.1063/5.0215222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
We evaluated the dissociation of isolated gas-phase nucleobase molecules induced by mega electron volt (MeV)-energy ions to gain fundamental insights into the reactions of nucleobases upon fast ion irradiation. We studied five nucleobase molecules-adenine, guanine, cytosine, thymine, and uracil-as gas-phase targets. We compared the fragmentation patterns obtained from carbon ion impacts with those obtained from proton impacts to clarify the effect of heavy ion irradiation. We also compared the results with electron impact and photoionization results. In addition, we identified several delayed fragmentation pathways by analyzing the correlation between fragment pairs generated from singly and doubly charged intermediate ions. To determine the lifetimes of delayed fragmentation from singly charged intermediate ions, we evaluated the detection efficiencies of the microchannel plate detector for the neutral fragment HCN as a function of kinetic energy using a new methodology. As the first demonstration of this method, we estimated the lifetimes of C5H5N5+ generated by 1.2-MeV C+ and 0.5-MeV H+ collisions to be 0.87 ± 0.43 and 0.67 ± 0.09 µs, respectively. These lifetimes were approximately one order of magnitude longer than those of the doubly charged intermediate ion C5H5N52+.
Collapse
Affiliation(s)
- T Nakao
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - R Takasu
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - H Tsuchida
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
- Quantum Science and Engineering Center, Kyoto University, Uji 611-0011, Japan
| | - M Saito
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
- Quantum Science and Engineering Center, Kyoto University, Uji 611-0011, Japan
| | - T Majima
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
| |
Collapse
|
13
|
Watabe H, Yu PKN, Tse G, Krstic D, Nikezic D, Rafiqul Islam M, Wei Z, Wei Y, Shahmohammadi Beni M. Monte Carlo modelling of cyclotron and radioisotope center (CYRIC) at Tohoku University: a radiation protection study. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2024; 44:021521. [PMID: 38838649 DOI: 10.1088/1361-6498/ad5450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Protection against ionizing radiations is important in laboratories with radioactive materials and high energy cyclotron beams. The Cyclotron and Radioisotope Center (CYRIC) located in Tohoku University in Miyagi prefecture, Japan and is a well-known nuclear science laboratory with cyclotron beams and substantial number of high activity radioactive materials. Considering this, it is important to perform complete radiation transport computations to ensure the safety of non-occupational and occupational workers. In the present work, we have developed a complete 3-dimensional model of the main cyclotron building and radiation labs using Monte Carlo method. We have found that the dispersed photons and neutrons inside and in the surrounding of the CYRIC building pose no significant risk to occupational and non-occupational workers. The present work and the developed models would be useful in the field of radiation protection.
Collapse
Affiliation(s)
- Hiroshi Watabe
- Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai, 980-8578 Miyagi, Japan
| | - Peter K N Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Gary Tse
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Dragana Krstic
- Faculty of Science, University of Kragujevac, R. Domanovica 12, 34000 Kragujevac, Serbia
| | - Dragoslav Nikezic
- Faculty of Science, University of Kragujevac, R. Domanovica 12, 34000 Kragujevac, Serbia
| | - M Rafiqul Islam
- Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai, 980-8578 Miyagi, Japan
- Institute of Nuclear Medical Physics, AERE, Bangladesh Atomic Energy Commission, 1349, Dhaka, Bangladesh
| | - Zhanbing Wei
- School of Nuclear Science and Technology, University of South China, 28 Changsheng, West Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Yuezhou Wei
- Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai, 980-8578 Miyagi, Japan
- School of Nuclear Science and Technology, University of South China, 28 Changsheng, West Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Mehrdad Shahmohammadi Beni
- Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai, 980-8578 Miyagi, Japan
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong Special Administrative Region of China, People's Republic of China
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong Special Administrative Region of China, People's Republic of China
| |
Collapse
|
14
|
Nersesova L, Petrosyan M, Tsakanova G. Review of the evidence of radioprotective potential of creatine and arginine as dietary supplements. Int J Radiat Biol 2024; 100:849-864. [PMID: 38683545 DOI: 10.1080/09553002.2024.2345098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Creatine (Cr) and l-arginine are naturally occurring guanidino compounds, commonly used as ergogenic dietary supplements. Creatine and l-arginine exhibit also a number of non-energy-related features, such as antioxidant, anti-apoptotic, and anti-inflammatory properties, which contribute to their protective action against oxidative stress (OS). In this regard, there are a number of studies emphasizing the protective effect of Cr against OS, which develops in the process of aging, increased physical loads as part of athletes' workouts, as well as a number of neurological diseases and toxic effects associated with xenobiotics and UV irradiation. Against this backdrop, and since ionizing radiation causes OS in cells, leading to radiotoxicity, there is an increasing interest to understand whether Cr has the full potential to serve as an effective radioprotective agent. The extensive literature search did not provide any data on this issue. In this narrative review, we have summarized some of our own experimental data published over the last years addressing the respective radioprotective effects of Cr. Next, we have additionally reviewed the existing data on the radiomodifying effects of l-arginine presented earlier by other research groups. CONCLUSIONS Creatine possesses significant radioprotective potential including: (1) radioprotective effect on the survival rate of rats subjected to acute whole-body X-ray irradiation in a LD70/30 dose of 6.5 Gy, (2) radioprotective effect on the population composition of peripheral blood cells, (3) radioprotective effect on the DNA damage of peripheral blood mononuclear cells, (4) radioprotective effect on the hepatocyte nucleus-nucleolar apparatus, and (5) radioprotective effect on the brain and liver Cr-Cr kinase systems of the respective animals. Taking into account these cytoprotective, gene-protective, hepatoprotective and energy-stimulating features of Cr, as well as its significant radioprotective effect on the survival rate of rats, it can be considered as a potentially promising radioprotector for further preclinical and clinical studies. The review of the currently available data on radiomodifying effects of l-arginine has indicated its significant potential as a radioprotector, radiomitigator, and radiosensitizer. However, to prove the effectiveness of arginine (Arg) as a radioprotective agent, it appears necessary to expand and deepen the relevant preclinical studies, and, most importantly, increase the number of proof-of-concept clinical trials, which are evidently lacking as of now.
Collapse
Affiliation(s)
| | | | - Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- CANDLE Synchrotron Research Institute, Yerevan, Armenia
| |
Collapse
|
15
|
Ramesh P, Ruan D, Liu SJ, Seo Y, Braunstein S, Sheng K. Hypoxia-informed RBE-weighted beam orientation optimization for intensity modulated proton therapy. Med Phys 2024; 51:2320-2333. [PMID: 38345134 PMCID: PMC10940223 DOI: 10.1002/mp.16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Variable relative biological effectiveness (RBE) models in treatment planning have been proposed to optimize the therapeutic ratio of proton therapy. It has been reported that proton RBE decreases with increasing tumor oxygen level, offering an opportunity to address hypoxia-related radioresistance with RBE-weighted optimization. PURPOSE Here, we obtain a voxel-level estimation of partial oxygen pressure to weigh RBE values in a single biologically informed beam orientation optimization (BOO) algorithm. METHODS Three glioblastoma patients with [18 F]-fluoromisonidazole (FMISO)-PET/CT images were selected from the institutional database. Oxygen values were derived from tracer uptake using a nonlinear least squares curve fitting. McNamara RBE, calculated from proton dose, was then weighed using oxygen enhancement ratios (OER) for each voxel and incorporated into the dose fidelity term of the BOO algorithm. The nonlinear optimization problem was solved using a split-Bregman approach, with FISTA as the solver. The proposed hypoxia informed RBE-weighted method (HypRBE) was compared to dose fidelity terms using the constant RBE of 1.1 (cRBE) and the normoxic McNamara RBE model (RegRBE). Tumor homogeneity index (HI), maximum biological dose (Dmax), and D95%, as well as OAR therapeutic index (TI = gEUDCTV /gEUDOAR ) were evaluated along with worst-case statistics after normalization to normal tissue isotoxicity. RESULTS Compared to [cRBE, RegRBE], HypRBE increased tumor HI, Dmax, and D95% across all plans by on average [31.3%, 31.8%], [48.6%, 27.1%], and [50.4%, 23.8%], respectively. In the worst-case scenario, the parameters increase on average by [12.5%, 14.7%], [7.3%,-8.9%], and [22.3%, 2.1%]. Despite increased OAR Dmean and Dmax by [8.0%, 3.0%] and [13.1%, -0.1%], HypRBE increased average TI by [22.0%, 21.1%]. Worst-case OAR Dmean, Dmax, and TI worsened by [17.9%, 4.3%], [24.5%, -1.2%], and [9.6%, 10.5%], but in the best cases, HypRBE escalates tumor coverage significantly without compromising OAR dose, increasing the therapeutic ratio. CONCLUSIONS We have developed an optimization algorithm whose dose fidelity term accounts for hypoxia-informed RBE values. We have shown that HypRBE selects bE:\Alok\aaeams better suited to deliver high physical dose to low RBE, hypoxic tumor regions while sparing the radiosensitive normal tissue.
Collapse
Affiliation(s)
- Pavitra Ramesh
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dan Ruan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - S. John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Steve Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Ling CCH, Chan WX, Siow JX, Loh ZH. Ultrafast Vibrational Wave Packet Dynamics of the Aqueous Guanine Radical Anion Induced by Photodetachment. J Phys Chem A 2024; 128:626-635. [PMID: 38207335 DOI: 10.1021/acs.jpca.3c08232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Studying the ultrafast dynamics of ionized aqueous biomolecules is important for gaining an understanding of the interaction of ionizing radiation with biological matter. Guanine plays an essential role in biological systems as one of the four nucleobases that form the building blocks of deoxyribonucleic acid (DNA). Guanine radicals can induce oxidative damage to DNA, particularly due to the lower ionization potential of guanine compared to the other nucleobases, sugars, and phosphate groups that are constituents of DNA. This study utilizes femtosecond optical pump-probe spectroscopy to observe the ultrafast vibrational wave packet dynamics of the guanine radical anion launched by photodetachment of the aqueous guanine dianion. The vibrational wave packet motion is resolved into 11 vibrational modes along which structural reorganization occurs upon photodetachment. These vibrational modes are assigned with the aid of density functional theory (DFT) calculations. Our work sheds light on the ultrafast vibrational dynamics following the ionization of nucleobases in an aqueous medium.
Collapse
Affiliation(s)
- Christine Chun Hui Ling
- School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Wei Xin Chan
- School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Jing Xuan Siow
- School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Zhi-Heng Loh
- School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
17
|
Stephan OOH. Bio-positive effects of ionizing radiation on pollen: The role of ROS. PHYSIOLOGIA PLANTARUM 2024; 176:e14163. [PMID: 39141204 DOI: 10.1111/ppl.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/19/2023] [Accepted: 12/18/2023] [Indexed: 08/15/2024]
Abstract
The concept of 'hormesis' is defined as a dose-response relationship whereby low doses of various toxic substances or physical stressors trigger bio-positive effects in diverse biological systems, whereas high doses cause inhibition of cellular performance (e.g. growth, viability). The two-sided phenomenon of specific low-dose stimulation and high-dose inhibition imposed by a 'hormetic-factor' has been well documented in toxicology and pharmacology. Multitudinous factors have been identified that correspondingly cause hormetic effects in diverse taxa of animals, fungi, and plants. This study particularly aims to elucidate the molecular basis for stimulatory implications of ionizing radiation (IR) on plant male gametophytes (pollen). Beyond that, this analysis impacts general research on cell growth, plant breeding, radiation protection, and, in a wider sense, medical treatment. For this purpose, IR-related data were surveyed and discussed in connection with the present knowledge about pollen physiology. It is concluded that IR-induced reactive oxygen species (ROS) have a key role here. Moreover, it is hypothesized that IR-exposure shifts the ratio between diverse types of ROS in the cell. The interrelation between ROS, intracellular Ca2+-gradient, NADPH oxidases, ROS-scavengers, actin dynamics, and cell wall properties are most probably involved in IR-hormesis of pollen germination and tube growth. Modulation of gene expression, phytohormone signalling, and cellular antioxidant capacity are also implicated in IR-hormesis.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| |
Collapse
|
18
|
Butterworth SJ, Barton F, Lloyd JR. Extremophilic microbial metabolism and radioactive waste disposal. Extremophiles 2023; 27:27. [PMID: 37839067 PMCID: PMC10577106 DOI: 10.1007/s00792-023-01312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Decades of nuclear activities have left a legacy of hazardous radioactive waste, which must be isolated from the biosphere for over 100,000 years. The preferred option for safe waste disposal is a deep subsurface geological disposal facility (GDF). Due to the very long geological timescales required, and the complexity of materials to be disposed of (including a wide range of nutrients and electron donors/acceptors) microbial activity will likely play a pivotal role in the safe operation of these mega-facilities. A GDF environment provides many metabolic challenges to microbes that may inhabit the facility, including high temperature, pressure, radiation, alkalinity, and salinity, depending on the specific disposal concept employed. However, as our understanding of the boundaries of life is continuously challenged and expanded by the discovery of novel extremophiles in Earth's most inhospitable environments, it is becoming clear that microorganisms must be considered in GDF safety cases to ensure accurate predictions of long-term performance. This review explores extremophilic adaptations and how this knowledge can be applied to challenge our current assumptions on microbial activity in GDF environments. We conclude that regardless of concept, a GDF will consist of multiple extremes and it is of high importance to understand the limits of polyextremophiles under realistic environmental conditions.
Collapse
Affiliation(s)
- Sarah Jane Butterworth
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK
| | - Franky Barton
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK.
| | - Jonathan Richard Lloyd
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
19
|
Stephan OOH. Effects of environmental stress factors on the actin cytoskeleton of fungi and plants: Ionizing radiation and ROS. Cytoskeleton (Hoboken) 2023; 80:330-355. [PMID: 37066976 DOI: 10.1002/cm.21758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Actin is an abundant and multifaceted protein in eukaryotic cells that has been detected in the cytoplasm as well as in the nucleus. In cooperation with numerous interacting accessory-proteins, monomeric actin (G-actin) polymerizes into microfilaments (F-actin) which constitute ubiquitous subcellular higher order structures. Considering the extensive spatial dimensions and multifunctionality of actin superarrays, the present study analyses the issue if and to what extent environmental stress factors, specifically ionizing radiation (IR) and reactive oxygen species (ROS), affect the cellular actin-entity. In that context, this review particularly surveys IR-response of fungi and plants. It examines in detail which actin-related cellular constituents and molecular pathways are influenced by IR and related ROS. This comprehensive survey concludes that the general integrity of the total cellular actin cytoskeleton is a requirement for IR-tolerance. Actin's functions in genome organization and nuclear events like chromatin remodeling, DNA-repair, and transcription play a key role. Beyond that, it is highly significant that the macromolecular cytoplasmic and cortical actin-frameworks are affected by IR as well. In response to IR, actin-filament bundling proteins (fimbrins) are required to stabilize cables or patches. In addition, the actin-associated factors mediating cellular polarity are essential for IR-survivability. Moreover, it is concluded that a cellular homeostasis system comprising ROS, ROS-scavengers, NADPH-oxidases, and the actin cytoskeleton plays an essential role here. Consequently, besides the actin-fraction which controls crucial genome-integrity, also the portion which facilitates orderly cellular transport and polarized growth has to be maintained in order to survive IR.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, 91058, Germany
| |
Collapse
|
20
|
Babu B, Pawar S, Mittal A, Kolanthai E, Neal CJ, Coathup M, Seal S. Nanotechnology enabled radioprotectants to reduce space radiation-induced reactive oxidative species. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1896. [PMID: 37190884 DOI: 10.1002/wnan.1896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Interest in space exploration has seen substantial growth following recent launch and operation of modern space technologies. In particular, the possibility of travel beyond low earth orbit is seeing sustained support. However, future deep space travel requires addressing health concerns for crews under continuous, longer-term exposure to adverse environmental conditions. Among these challenges, radiation-induced health issues are a major concern. Their potential to induce chronic illness is further potentiated by the microgravity environment. While investigations into the physiological effects of space radiation are still under investigation, studies on model ionizing radiation conditions, in earth and micro-gravity conditions, can provide needed insight into relevant processes. Substantial formation of high, sustained reactive oxygen species (ROS) evolution during radiation exposure is a clear threat to physiological health of space travelers, producing indirect damage to various cell structures and requiring therapeutic address. Radioprotection toward the skeletal system components is essential to astronaut health, due to the high radio-absorption cross-section of bone mineral and local hematopoiesis. Nanotechnology can potentially function as radioprotectant and radiomitigating agents toward ROS and direct radiation damage. Nanoparticle compositions such as gold, silver, platinum, carbon-based materials, silica, transition metal dichalcogenides, and ceria have all shown potential as viable radioprotectants to mitigate space radiation effects with nanoceria further showing the ability to protect genetic material from oxidative damage in several studies. As research into space radiation-induced health problems develops, this review intends to provide insights into the nanomaterial design to ameliorate pathological effects from ionizing radiation exposure. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Craig J Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Melanie Coathup
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- College of Medicine, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
21
|
Dahiya A, Agrawala PK, Dutta A. Mitigative and anti-inflammatory effects of Trichostatin A against radiation-induced gastrointestinal toxicity and gut microbiota alteration in mice. Int J Radiat Biol 2023; 99:1865-1878. [PMID: 37531370 DOI: 10.1080/09553002.2023.2242929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE Radiation-induced gastrointestinal injury (RIGI) is a serious side effect of abdominal and pelvic radiotherapy, which often limits the treatment of gastrointestinal and gynaecological cancers. RIGI is also observed during accidental radiological or nuclear scenarios with no approved agents available till date to prevent or mitigate RIGI in humans. Trichostatin A (TSA), an epigenetic modulator, has been currently in clinical trials for cancer treatment and is also well known for its antibiotic and antifungal properties. METHODS In this study, partial body (abdominal) irradiation mice model was used to investigate the mitigative effect of TSA against gastrointestinal toxicity caused by gamma radiation. Mice were checked for alterations in mean body weight, diarrheal incidence, disease activity index and survival against 15 Gy radiation. Structural abnormalities in intestine and changes in microbiota composition were studied by histopathology and 16S rRNA sequencing of fecal samples respectively. Immunoblotting and biochemical assays were performed to check protein nitrosylation, expression of inflammatory mediators, infiltration of inflammatory cells and changes in pro-inflammatory cytokine. RESULTS TSA administration to C57Bl/6 mice improved radiation induced mean body weight loss, maintained better health score, reduced disease activity index and promoted survival. The 16S rRNA sequencing of fecal DNA demonstrated that TSA influenced the fecal microbiota dynamics with significant alterations in the Firmicutes/Bacteriodetes ratio. TSA effectively mitigated intestinal injury, down-regulated NF-κB, Cox-2, iNOS expression, inhibited PGE2 and protein nitrosylation levels in irradiated intestine. The upregulation of NLRP3-inflammasome complex and infiltrations of inflammatory cells in the inflamed intestine were also prevented by TSA. Subsequently, the myeloperoxidase activity in intestine alongwith serum IL-18 levels was found reduced. CONCLUSION These findings provide evidence that TSA inhibits inflammatory mediators, alleviates gut dysbiosis, and promotes structural restoration of the irradiated intestine. TSA, therefore, can be considered as a potential agent for mitigation of RIGI in humans.
Collapse
Affiliation(s)
- Akshu Dahiya
- CBRN Division, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), India
| | - Paban K Agrawala
- CBRN Division, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), India
| | - Ajaswrata Dutta
- CBRN Division, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), India
| |
Collapse
|
22
|
Ren Z, Ren Y, Bai X, Shang P, Li G. Analysis of factors associated with abnormal thyroid function among medical staff in radiotherapy departments. Front Public Health 2023; 11:1225879. [PMID: 37663838 PMCID: PMC10470063 DOI: 10.3389/fpubh.2023.1225879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Objective To understand abnormal thyroid function and its associated factors among medical staff in radiotherapy departments. Methods Data related to medical staff in radiotherapy departments who met the inclusion and exclusion criteria were analyzed from September to December 2022 in Shenyang, Liaoning Province, including basic personal and lifestyle habits, work information, and scores on the Depression Self-Assessment Scale, Perception Stress Scale, and the Generalized Anxiety Scale. Data analysis was performed using the χ2 test and binary logistic regression. Results Among 484 medical staff in the radiotherapy department, 147 (30.4%) had abnormal thyroid function. Binary logistic regression analysis showed that age, years of work, smoking, occupational exposure, smoking, late-night snacking habits, depression, and stress perception were factors associated with abnormal thyroid function among medical staff in radiotherapy departments; on the other hand, physical exercise was a protective factor. Conclusion The positive rate of thyroid dysfunction among medical personnel in the radiology department is relatively high. It is necessary to strengthen health education and awareness among relevant practitioners and improve the coverage of occupational disease prevention and control education.
Collapse
Affiliation(s)
- Ziwei Ren
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanwei Ren
- Department of Paediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinghua Bai
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Puyu Shang
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Li
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
23
|
Masilela TAM, Prezado Y. Monte Carlo study of the free radical yields in minibeam radiation therapy. Med Phys 2023; 50:5115-5134. [PMID: 37211907 DOI: 10.1002/mp.16475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 02/24/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Minibeam radiation therapy (MBRT) is a novel technique which has been shown to widen the therapeutic window through significant normal tissue sparing. Despite the heterogeneous dose distributions, tumor control is still ensured. Nevertheless the exact radiobiological mechanisms responsible for MBRT efficacy are not fully understood. PURPOSE Reactive oxygen species (ROS) resulting from water radiolysis were investigated given their implications not only on targeted DNA damage, but also for their role in the immune response and non-targeted cell signalling effects: two potential drivers of MBRT efficacy. METHODS Monte Carlo simulations were performed using TOPAS-nBio to carry out the irradiation of a water phantom with beams of protons (pMBRT), photons (xMBRT), 4 He ions (HeMBRT), and 12 C ions (CMBRT). Primary yields at the end of the chemical stage were calculated in spheres of 20 μm diameter, located in the peaks and valleys at various depths up to the Bragg peak. The chemical stage was limited to 1 ns to approximate biological scavenging, and the yield of · OH, H2 O2 , ande aq - ${\rm e}^{-}_{\rm aq}$ was recorded. RESULTS Beyond 10 mm, there were no substantial differences in the primary yields between peaks and valleys of the pMBRT and HeMBRT modalities. For xMBRT, there was a lower primary yield of the radical species · OH ande aq - ${\rm e}^{-}_{\rm aq}$ at all depths in the valleys compared to the peaks, and a higher primary yield of H2 O2 . Compared to the peaks, the valleys of the CMBRT modality were subject to a higher · OH ande aq - ${\rm e}^{-}_{\rm aq}$ yield, and lower H2 O2 yield. This difference between peaks and valleys became more severe in depth. Near the Bragg peak, the increase in the primary yield of the valleys over the peaks was 6% and 4% for · OH ande aq - ${\rm e}^{-}_{\rm aq}$ respectively, while there was a decrease in the yield of H2 O2 by 16%. Given the similar ROS primary yields in the peaks and valleys of pMBRT and HeMBRT, the level of indirect DNA damage is expected to be directly proportional to the peak to valley dose ratio (PVDR). The difference in the primary yields implicates a lower level of indirect DNA damage in the valleys compared to the peaks than what would be suggested by the PVDR for xMBRT, and a higher level for CMBRT. CONCLUSIONS These results highlight the notion that depending on the particle chosen, one can expect different levels of ROS in the peaks and valley that goes beyond what would be expected by the macroscopic PVDR. The combination of MBRT with heavier ions is shown to be particularly interesting as the primary yield in the valleys progressively diverges from the level observed in the peaks as the LET increases. While differences in the reported · OH yields of this work implicated the indirect DNA damage, H2 O2 yields particularly implicate non-targeted cell signalling effects, and therefore this work provides a point of reference for future simulations in which the distribution of this species at more biologically relevant timescales could be investigated.
Collapse
Affiliation(s)
- Thongchai A M Masilela
- Signalisation radiobiologie et cancer, Institut Curie, Université PSL, Orsay, France
- Signalisation radiobiologie et cancer, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Orsay, France
| | - Yolanda Prezado
- Signalisation radiobiologie et cancer, Institut Curie, Université PSL, Orsay, France
- Signalisation radiobiologie et cancer, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Orsay, France
| |
Collapse
|
24
|
Wintenberg M, Manglass L, Martinez NE, Blenner M. Global Transcriptional Response of Escherichia coli Exposed In Situ to Different Low-Dose Ionizing Radiation Sources. mSystems 2023; 8:e0071822. [PMID: 36779725 PMCID: PMC10134817 DOI: 10.1128/msystems.00718-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/11/2023] [Indexed: 02/14/2023] Open
Abstract
Characterization of biological and chemical responses to ionizing radiation by various organisms is essential for potential applications in bioremediation, alternative modes of detecting nuclear material, and national security. Escherichia coli DH10β is an optimal system to study the microbial response to low-dose ionizing radiation at the transcriptional level because it is a well-characterized model bacterium and its responses to other environmental stressors, including those to higher radiation doses, have been elucidated in prior studies. In this study, RNA sequencing with downstream transcriptomic analysis (RNA-seq) was employed to characterize the global transcriptional response of stationary-phase E. coli subjected to 239Pu, 3H (tritium), and 55Fe, at an approximate absorbed dose rate of 10 mGy day-1 for 1 day and 15 days. Differential expression analysis identified significant changes in gene expression of E. coli for both short- and long-term exposures. Radionuclide source exposure induced differential expression in E. coli of genes involved in biosynthesis pathways of nuclear envelope components, amino acids, and siderophores, transport systems such as ABC transporters and type II secretion proteins, and initiation of stress response and regulatory systems of temperature stress, the RpoS regulon, and oxidative stress. These findings provide a basic understanding of the relationship between low-dose exposure and biological effect of a model bacterium that is critical for applications in alternative nuclear material detection and bioremediation. IMPORTANCE Escherichia coli strain DH10β, a well-characterized model bacterium, was subjected to short-term (1-day) and long-term (15-day) exposures to three different in situ radiation sources comprised of radionuclides relevant to nuclear activities to induce a measurable and identifiable genetic response. We found E. coli had both common and unique responses to the three exposures studied, suggesting both dose rate- and radionuclide-specific effects. This study is the first to provide insights into the transcriptional response of a microorganism in short- and long-term exposure to continuous low-dose ionizing radiation with multiple in situ radionuclide sources and the first to examine microbial transcriptional response in stationary phase. Moreover, this work provides a basis for the development of biosensors and informing more robust dose-response relationships to support ecological risk assessment.
Collapse
Affiliation(s)
- Molly Wintenberg
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, USA
| | - Lisa Manglass
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
- Department of Physics and Engineering, Francis Marion University, Florence, South Carolina, USA
| | - Nicole E. Martinez
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
25
|
Li X, Seymour CB, Mothersill C, Rollo CD. Investigation of presence and impact of radiation-induced bystander effect in Acheta domesticus. Int J Radiat Biol 2023; 99:1619-1630. [PMID: 36892482 DOI: 10.1080/09553002.2023.2188977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/22/2023] [Indexed: 03/10/2023]
Abstract
PURPOSE Radiation-induced bystander effect (RIBE), a non-targeted effect of ionizing radiation in which non-irradiated individuals behave as if they have been irradiated after interactions with irradiated individuals, has been well documented in vertebrates. However, little research has been done investigating RIBE in terrestrial insects, this paucity of invertebrate RIBE leads to lack of knowledge on invertebrates living in fallout and exclusion zones. This paper aims to better understand the impacts of RIBE on terrestrial insects.Methods and materials: House crickets who have interacted with irradiated crickets were examined to investigate population effects of ionizing radiation exposure to better understand RIBE in insects. RESULTS The results demonstrated RIBE in crickets and found that cohabitated males had higher growth rate (mg/day) when compared to non-cohabitated males. Further, cohabitated males and females matured significantly faster with no significant difference in maturation weight than non-cohabitated populations. Experiment with adult irradiated crickets found saturability of bystander signals and similar shifts in maturation parameters. These results highlight that bystander signals can impacted development and maturation in crickets. CONCLUSION Given long-term impacts of RIBE in insects, these results may have significant implications for interactions between insects inhabiting fringe nuclear exclusion zones and those outside of it.
Collapse
Affiliation(s)
- Xiaobing Li
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - C David Rollo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Zu Y, Wang Z, Yao H, Yan L. Oxygen-generating biocatalytic nanomaterials for tumor hypoxia relief in cancer radiotherapy. J Mater Chem B 2023; 11:3071-3088. [PMID: 36920849 DOI: 10.1039/d2tb02751h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Radiotherapy (RT), the most commonly used treatment method in clinics, shows unique advantages such as strong penetration, high energy intensity, and low systemic side effects. However, in vivo tumor hypoxia seriously hinders the therapeutic effect of RT. Hypoxia is a common characteristic of locally advanced solid tumor microenvironments, which leads to the proliferation, invasion and metastasis of tumor cells. In addition, oxygen consumption during RT will further aggravate tumor hypoxia, causing a variety of adverse side effects. In recent years, various biocatalytic nanomaterials (BCNs) have been explored to regulate and reverse tumor hypoxia microenvironments during RT. In this review, the most recent efforts toward developing oxygen-generating BCNs in relieving tumor hypoxia in RT are focused upon. The classification, engineering nanocatalytical activity of oxygen-generating BCNs and combined therapy based on these BCNs are systematically introduced and discussed. The challenges and prospects of these oxygen-generating BCNs in RT applications are also summarized.
Collapse
Affiliation(s)
- Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Ziyu Wang
- College of Medical and Biological lnformation Engineering, Northeastern University, Shenyang 110170, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Georgieva M, Vassileva V. Stress Management in Plants: Examining Provisional and Unique Dose-Dependent Responses. Int J Mol Sci 2023; 24:ijms24065105. [PMID: 36982199 PMCID: PMC10049000 DOI: 10.3390/ijms24065105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The purpose of this review is to critically evaluate the effects of different stress factors on higher plants, with particular attention given to the typical and unique dose-dependent responses that are essential for plant growth and development. Specifically, this review highlights the impact of stress on genome instability, including DNA damage and the molecular, physiological, and biochemical mechanisms that generate these effects. We provide an overview of the current understanding of predictable and unique dose-dependent trends in plant survival when exposed to low or high doses of stress. Understanding both the negative and positive impacts of stress responses, including genome instability, can provide insights into how plants react to different levels of stress, yielding more accurate predictions of their behavior in the natural environment. Applying the acquired knowledge can lead to improved crop productivity and potential development of more resilient plant varieties, ensuring a sustainable food source for the rapidly growing global population.
Collapse
|
28
|
Duarte GT, Volkova PY, Fiengo Perez F, Horemans N. Chronic Ionizing Radiation of Plants: An Evolutionary Factor from Direct Damage to Non-Target Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:1178. [PMID: 36904038 PMCID: PMC10005729 DOI: 10.3390/plants12051178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In present times, the levels of ionizing radiation (IR) on the surface of Earth are relatively low, posing no high challenges for the survival of contemporary life forms. IR derives from natural sources and naturally occurring radioactive materials (NORM), the nuclear industry, medical applications, and as a result of radiation disasters or nuclear tests. In the current review, we discuss modern sources of radioactivity, its direct and indirect effects on different plant species, and the scope of the radiation protection of plants. We present an overview of the molecular mechanisms of radiation responses in plants, which leads to a tempting conjecture of the evolutionary role of IR as a limiting factor for land colonization and plant diversification rates. The hypothesis-driven analysis of available plant genomic data suggests an overall DNA repair gene families' depletion in land plants compared to ancestral groups, which overlaps with a decrease in levels of radiation exposure on the surface of Earth millions of years ago. The potential contribution of chronic IR as an evolutionary factor in combination with other environmental factors is discussed.
Collapse
Affiliation(s)
| | | | | | - Nele Horemans
- Belgian Nuclear Research Centre—SCK CEN, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
29
|
ALMisned G, Rabaa E, Sen Baykal D, Kavaz E, Ilik E, Kilic G, Zakaly HMH, Ene A, Tekin HO. Mechanical properties, elastic moduli, and gamma ray attenuation competencies of some TeO 2–WO 3–GdF 3 glasses: Tailoring WO 3–GdF 3 substitution toward optimum behavioral state range. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Abstract
We report the mechanical properties, elastic moduli, and gamma ray attenuation properties of some TeO2–WO3–GdF3 glasses. Using the chemical composition of the selected glasses, the dissociation energy per unit volume (G
t
) and the packing density (V
t
) were calculated. Using the G
t
and V
t
values, Young’s, Shear, Bulk, Longitudinal Modulus, and Poisson’s ratio of the glasses are calculated. Next several fundamental gamma ray attenuation properties such as linear and mass attenuation coefficients, half value layer, mean free path, effective atomic number, effective electron density, effective conductivity, exposure, and energy absorption buildup factors are calculated in 0.015–15 MeV energy range. As a consequence of WO3–GdF3 substitution, the glass densities are observed in different values. The overall gamma ray attenuation properties are found to be enhanced through WO3 addition. Moreover, the increasing WO3 incorporation into glass configuration decreases the overall elastic moduli of glasses. It can be concluded that increasing WO3 may be a useful tool for enhancing the gamma ray attenuation qualities and decreasing the elastic moduli of TeO2–WO3–GdF3 in situations where a material with versatile mechanical properties is required.
Collapse
Affiliation(s)
- Ghada ALMisned
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Elaf Rabaa
- Medical Diagnostic Imaging Department, College of Health Sciences, University of Sharjah , Sharjah , 27272 , United Arab Emirates
| | - Duygu Sen Baykal
- Vocational School of Health Sciences, Istanbul Kent University , Istanbul 34433 , Turkey
| | - Esra Kavaz
- Department of Physics, Faculty of Sciences, Ataturk University , 25240 Erzurum , Turkey
| | - Erkan Ilik
- Department of Physics, Faculty of Science, Eskisehir Osmangazi University , Eskisehir , 26040 , Turkey
| | - Gokhan Kilic
- Department of Physics, Faculty of Science, Eskisehir Osmangazi University , Eskisehir , 26040 , Turkey
| | - Hesham M. H. Zakaly
- Institute of Physics and Technology, Ural Federal University , 620002 Ekaterinburg , Russia
- Physics Department, Faculty of Science, Al-Azhar University , Assiut 71524 , Egypt
| | - Antoaneta Ene
- INPOLDE Research Center, Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati , 47 Domneasca Street , 800008 Galati , Romania
| | - Huseyin Ozan Tekin
- Medical Diagnostic Imaging Department, College of Health Sciences, University of Sharjah , Sharjah , 27272 , United Arab Emirates
- Istinye University, Faculty of Engineering and Natural Sciences, Computer Engineering Department , Istanbul 34396 , Turkey
| |
Collapse
|
30
|
Chen W, Yang J, Huang N, Zhang Q, Zhong Y, Yang H, Liu W, Yue Y. Effect of combined treatments of electron beam irradiation with antioxidants on the microbial quality, physicochemical characteristics and volatiles of vacuum-packed fresh pork during refrigerated storage. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Oglat AA. Gamma ray, beta and alpha particles as a sources and detection. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2022.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Yu N, Qin H, Zhang F, Liu T, Cao K, Yang Y, Chen Y, Cai J. The role and mechanism of long non-coding RNAs in homologous recombination repair of radiation-induced DNA damage. J Gene Med 2023; 25:e3470. [PMID: 36537017 DOI: 10.1002/jgm.3470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
DNA double-strand breaks can seriously damage the genetic information that organisms depend on for survival and reproduction. Therefore, cells require a robust DNA damage response mechanism to repair the damaged DNA. Homologous recombination (HR) allows error-free repair, which is key to maintaining genomic integrity. Long non-coding RNAs (lncRNAs) are RNA molecules that are longer than 200 nucleotides. In recent years, a number of studies have found that lncRNAs can act as regulators of gene expression and DNA damage response mechanisms, including HR repair. Moreover, they have significant effects on the occurrence, development, invasion and metastasis of tumor cells, as well as the sensitivity of tumors to radiotherapy and chemotherapy. These studies have therefore begun to expose the great potential of lncRNAs for clinical applications. In this review, we focus on the regulatory roles of lncRNAs in HR repair.
Collapse
Affiliation(s)
- Nanxi Yu
- School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, China.,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, China
| | - Hongran Qin
- Department of Nuclear Radiation, Shanghai Pulmonary Hospital,School of Medicine, Tongji University, Shanghai, China
| | - Fangxiao Zhang
- School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, China
| | - Tingting Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yuanyuan Chen
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, China.,Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jianming Cai
- School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, China.,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, China
| |
Collapse
|
33
|
Bansal S, Bansal S, Fish BL, Li Y, Xu X, Fernandez JA, Griffin JH, Himburg HA, Boerma M, Medhora M, Cheema AK. Analysis of the urinary metabolic profiles in irradiated rats treated with Activated Protein C (APC), a potential mitigator of radiation toxicity. Int J Radiat Biol 2023; 99:1109-1118. [PMID: 36827630 PMCID: PMC10330346 DOI: 10.1080/09553002.2023.2182001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/26/2023]
Abstract
PURPOSE The goal of the current study was to identify longitudinal changes in urinary metabolites following IR exposure and to determine potential alleviation of radiation toxicities by administration of recombinant APC formulations. MATERIALS AND METHODS Female adult WAG/RijCmcr rats were irradiated with 13.0 Gy leg-out partial body X-rays; longitudinally collected urine samples were subject to LC-MS based metabolomic profiling. Sub-cohorts of rats were treated with three variants of recombinant APC namely, rat wildtype (WT) APC, rat 3K3A mutant form of APC, and human WT APC as two bolus injections at 24 and 48 hours post IR. RESULTS Radiation induced robust changes in the urinary profiles leading to oxidative stress, severe dyslipidemia, and altered biosynthesis of PUFAs, glycerophospholipids, sphingolipids, and steroids. Alterations were observed in multiple metabolic pathways related to energy metabolism, nucleotide biosynthesis and metabolism that were indicative of disrupted mitochondrial function and DNA damage. On the other hand, sub-cohorts of rats that were treated with rat wildtype-APC showed alleviation of radiation toxicities, in part, at the 90-day time point, while rat 3K3A-APC showed partial alleviation of radiation induced metabolic alterations 14 days after irradiation. CONCLUSIONS Taken together, these results show that augmenting the Protein C pathway and activity via administration of recombinant APC may be an effective approach for mitigation of radiation induced normal tissue toxicity.
Collapse
Affiliation(s)
- Shivani Bansal
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
| | - Sunil Bansal
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yaoxiang Li
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
| | - Xiao Xu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jose A Fernandez
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - John H Griffin
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
34
|
Kano F, Hashimoto N, Liu Y, Xia L, Nishihara T, Oki W, Kawarabayashi K, Mizusawa N, Aota K, Sakai T, Azuma M, Hibi H, Iwasaki T, Iwamoto T, Horimai N, Yamamoto A. Therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth for radiation-induced mouse xerostomia. Sci Rep 2023; 13:2706. [PMID: 36792628 PMCID: PMC9932159 DOI: 10.1038/s41598-023-29176-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Radiation therapy for head and neck cancers is frequently associated with adverse effects on the surrounding normal tissue. Irreversible damage to radiation-sensitive acinar cells in the salivary gland (SG) causes severe radiation-induced xerostomia (RIX). Currently, there are no effective drugs for treating RIX. We investigated the efficacy of treatment with conditioned medium derived from stem cells from human exfoliated deciduous teeth (SHED-CM) in a mouse RIX model. Intravenous administration of SHED-CM, but not fibroblast-CM (Fibro-CM), prevented radiation-induced cutaneous ulcer formation (p < 0.0001) and maintained SG function (p < 0.0001). SHED-CM treatment enhanced the expression of multiple antioxidant genes in mouse RIX and human acinar cells and strongly suppressed radiation-induced oxidative stress. The therapeutic effects of SHED-CM were abolished by the superoxide dismutase inhibitor diethyldithiocarbamate (p < 0.0001). Notably, quantitative liquid chromatography-tandem mass spectrometry shotgun proteomics of SHED-CM and Fibro-CM identified eight proteins activating the endogenous antioxidant system, which were more abundant in SHED-CM than in Fibro-CM (p < 0.0001). Neutralizing antibodies against those activators reduced antioxidant activity of SHED-CM (anti-PDGF-D; p = 0.0001, anti-HGF; p = 0.003). Our results suggest that SHED-CM may provide substantial therapeutic benefits for RIX primarily through the activation of multiple antioxidant enzyme genes in the target tissue.
Collapse
Affiliation(s)
- Fumiya Kano
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Noboru Hashimoto
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Yao Liu
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Linze Xia
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Takaaki Nishihara
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Wakana Oki
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Keita Kawarabayashi
- grid.267335.60000 0001 1092 3579Department of Pediatric Dentistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Noriko Mizusawa
- grid.267335.60000 0001 1092 3579Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Keiko Aota
- grid.267335.60000 0001 1092 3579Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takayoshi Sakai
- grid.136593.b0000 0004 0373 3971Department of Oral-Facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masayuki Azuma
- grid.267335.60000 0001 1092 3579Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hideharu Hibi
- grid.27476.300000 0001 0943 978XDepartment of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonori Iwasaki
- grid.267335.60000 0001 1092 3579Department of Pediatric Dentistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tsutomu Iwamoto
- grid.265073.50000 0001 1014 9130Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Akihito Yamamoto
- Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504, Japan.
| |
Collapse
|
35
|
Semyachkina-Glushkovskaya O, Bragin D, Bragina O, Socolovski S, Shirokov A, Fedosov I, Ageev V, Blokhina I, Dubrovsky A, Telnova V, Terskov A, Khorovodov A, Elovenko D, Evsukova A, Zhoy M, Agranovich I, Vodovozova E, Alekseeva A, Kurths J, Rafailov E. Low-Level Laser Treatment Induces the Blood-Brain Barrier Opening and the Brain Drainage System Activation: Delivery of Liposomes into Mouse Glioblastoma. Pharmaceutics 2023; 15:567. [PMID: 36839889 PMCID: PMC9966329 DOI: 10.3390/pharmaceutics15020567] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The progress in brain diseases treatment is limited by the blood-brain barrier (BBB), which prevents delivery of the vast majority of drugs from the blood into the brain. In this study, we discover unknown phenomenon of opening of the BBBB (BBBO) by low-level laser treatment (LLLT, 1268 nm) in the mouse cortex. LLLT-BBBO is accompanied by activation of the brain drainage system contributing effective delivery of liposomes into glioblastoma (GBM). The LLLT induces the generation of singlet oxygen without photosensitizers (PSs) in the blood endothelial cells and astrocytes, which can be a trigger mechanism of BBBO. LLLT-BBBO causes activation of the ABC-transport system with a temporal decrease in the expression of tight junction proteins. The BBB recovery is accompanied by activation of neuronal metabolic activity and stabilization of the BBB permeability. LLLT-BBBO can be used as a new opportunity of interstitial PS-free photodynamic therapy (PDT) for modulation of brain tumor immunity and improvement of immuno-therapy for GBM in infants in whom PDT with PSs, radio- and chemotherapy are strongly limited, as well as in adults with a high allergic reaction to PSs.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Institute of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Denis Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Olga Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
| | - Sergey Socolovski
- Optoelectronics and Biomedical Photonics Group, Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
| | - Alexander Shirokov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
| | - Ivan Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Vasily Ageev
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Alexander Dubrovsky
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Alexander Khorovodov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Daria Elovenko
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Arina Evsukova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Maria Zhoy
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Ilana Agranovich
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Jürgen Kurths
- Institute of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Potsdam Institute for Climate Impact Research, Department of Complexity Science, Telegrafenberg A31, 14473 Potsdam, Germany
| | - Edik Rafailov
- Optoelectronics and Biomedical Photonics Group, Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
36
|
Burraco P, Salla RF, Orizaola G. Exposure to ionizing radiation and liver histopathology in the tree frogs of Chornobyl (Ukraine). CHEMOSPHERE 2023; 315:137753. [PMID: 36608893 DOI: 10.1016/j.chemosphere.2023.137753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Ionizing radiation has the potential to damage organic molecules and decrease the health and survival of wildlife. The accident at the Chornobyl Nuclear Plant (Ukraine, 1986) led to the largest release of radioactive material to the environment. Among the different organs of a vertebrate, the liver plays a crucial role in detoxification processes, and has been used as a biomarker to investigate cellular damage in ecotoxicological research. Here, we examined the impact of the exposure to the current levels of ionizing radiation present in the Chornobyl Exclusion Zone on the liver of Eastern tree frogs (Hyla orientalis). We quantified the area of melanomacrophage cells and morphological variables of hepatocytes, two cell types often used to estimate damage caused by pollutants in vertebrates. First, we investigated whether these hepatic parameters were indicative of frog (individual) condition. Then, we analyzed the effect of individual absorbed dose rates and ambient radiation levels on frog livers. Most of the studied parameters were correlated with individual body condition (a good predictor of amphibian fitness and survival). We did not detect marked morphological lesions in the liver of frogs captured in medium-high radiation environments. The area occupied by melanomacrophages and the morphology of hepatocytes did not change across a gradient of radiocontamination covering two orders of magnitude. Once accounting for body condition and sampling locality, the area of melanomacrophages was lower in areas with high radiation levels. Finally, the area occupied by melanomacrophages was not linked to dorsal skin coloration. Our results indicate that current levels of radiation experienced by tree frogs in Chornobyl do not cause histopathological damage in their liver. These results agree with previous physiological work in the species in the Chornobyl area, and encourage further molecular and physiological research to fully disentangle the current impact of the Chornobyl accident on wildlife.
Collapse
Affiliation(s)
- Pablo Burraco
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden; Doñana Biological Station, Spanish Research Council (EBD-CSIC), 41092, Sevilla, Spain
| | - Raquel Fernanda Salla
- Postgraduate Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos, 18052-780, Sorocaba, São Paulo, Brazil; Institute of Tropical Pathology and Public Health, Federal University of Goiás, 74605-050, Goiania, Goias, Brazil
| | - Germán Orizaola
- IMIB-Biodiversity Research Institute (Univ. Oviedo-CSIC-Princip. Asturias), University of Oviedo, 33600, Mieres, Asturias, Spain; Zoology Unit, Department of Biology of Organisms and Systems, University of Oviedo, 33071, Oviedo, Asturias, Spain.
| |
Collapse
|
37
|
Pakniyat F, Mozdarani H, Nedaie HA, Mahmoudzadeh A, Salimi M, Gholami S. Bystander Response Following High-Dose X-irradiation; Time-dependent Nature of GammaH2AX Foci and Cell Death Consequences. J Biomed Phys Eng 2023; 13:17-28. [PMID: 36818004 PMCID: PMC9923241 DOI: 10.31661/jbpe.v0i0.2001-1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/07/2020] [Indexed: 01/31/2023]
Abstract
Background The paradigm shifts in target theory could be defined as the radiation-triggered bystander response in which the radiation deleterious effects occurred in the adjacent cells. Objective This study aims to assess bystander response in terms of DNA damage and their possible cell death consequences following high-dose radiotherapy. Temporal characteristics of gH2AX foci as a manifestation of DNA damage were also evaluated. Material and Methods In this experimental study, bystander response was investigated in human carcinoma cells of HeLa and HN5, neighboring those that received high doses. Medium transfer was performed from 10 Gy-irradiated donors to 1.5 Gy-irradiated recipients. GammaH2AX foci, clonogenic and apoptosis assays were investigated. The gH2AX foci time-point study was implemented 1, 4, and 24 h after the medium exchange. Results DNA damage was enhanced in HeLa and HN5 bystander cells with the ratio of 1.27 and 1.72, respectively, which terminated in more than two-fold clonogenic survival decrease, along with gradual apoptosis increase. GammH2AX foci temporal characterization revealed maximum foci scoring at the 1 h time-point in HeLa, and also 4 h in HN5, which remained even 24 h after the medium sharing in higher level than the control group. Conclusion The time-dependent nature of bystander-induced gH2AX foci as a DNA damage surrogate marker was highlighted with the persistent foci at 24 h. considering an outcome of bystander-induced DNA damage, predominant role of clonogenic cell death was also elicited compared to apoptosis. Moreover, the role of high-dose bystander response observed in the current work clarified bystander potential implications in radiotherapy.
Collapse
Affiliation(s)
- Fatemeh Pakniyat
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Ali Nedaie
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aziz Mahmoudzadeh
- Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| | - Mahdieh Salimi
- Department of Medical Genetics, Medical Biotechnology Institute, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Somayeh Gholami
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Johnson JD, Heines M, Bruchertseifer F, Chevallay E, Cocolios TE, Dockx K, Duchemin C, Heinitz S, Heinke R, Hurier S, Lambert L, Leenders B, Skliarova H, Stora T, Wojtaczka W. Resonant laser ionization and mass separation of 225Ac. Sci Rep 2023; 13:1347. [PMID: 36693865 PMCID: PMC9873802 DOI: 10.1038/s41598-023-28299-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
[Formula: see text]Ac is a radio-isotope that can be linked to biological vector molecules to treat certain distributed cancers using targeted alpha therapy. However, developing [Formula: see text]Ac-labelled radiopharmaceuticals remains a challenge due to the supply shortage of pure [Formula: see text]Ac itself. Several techniques to obtain pure [Formula: see text]Ac are being investigated, amongst which is the high-energy proton spallation of thorium or uranium combined with resonant laser ionization and mass separation. As a proof-of-principle, we perform off-line resonant ionization mass spectrometry on two samples of [Formula: see text]Ac, each with a known activity, in different chemical environments. We report overall operational collection efficiencies of 10.1(2)% and 9.9(8)% for the cases in which the [Formula: see text]Ac was deposited on a rhenium surface and a ThO[Formula: see text] mimic target matrix respectively. The bottleneck of the technique was the laser ionization efficiency, which was deduced to be 15.1(6)%.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Reinhard Heinke
- KU Leuven, IKS, 3000, Leuven, Belgium
- CERN, 1211, Geneva, Switzerland
| | - Sophie Hurier
- KU Leuven, IKS, 3000, Leuven, Belgium
- Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | | | - Benji Leenders
- Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Universiteit Gent, Gent, Belgium
| | | | | | | |
Collapse
|
39
|
Tessaro APG, de Araujo LG, Silva TT, Coelho E, Corrêa B, Rolindo NC, Vicente R. Prospects for fungal bioremediation of unburied waste packages from the Goiânia radiological accident. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41045-41059. [PMID: 36627427 DOI: 10.1007/s11356-023-25247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Goiânia, the Goiás State capital, starred in 1987, where one of the largest radiological accidents in the world happened. A teletherapy machine was subtracted from a derelict radiotherapy clinic and disassembled by scavengers who distributed fragments of the 50 TBq 137CsCl source among relatives and acquaintances, enchanted by the blue shine of the substance. During the 15 days before the accident was acknowledged, contaminated recycling materials were delivered to recycling factories in four cities in the state of São Paulo, Brazil, in the form of recycling paper bales. The contaminated bales were spotted, collected, and stored in fifty 1.6 m3 steel boxes at the interim storage facility of the Nuclear and Energy Research Institute (IPEN). In 2017, a check of the content was performed in a few boxes and the presence of high moisture content was observed even though the bales were dry when conditioned and the packages were kept sealed since then. The main objective of this work was to report the fungi found in the radioactive waste after they evolved for 30 years in isolation inside the waste boxes and their role in the decay of the waste. Examination of the microbiome showed the presence of nematodes and fungal communities. The fungi species isolated were Aspergillus quadricinctus, Fusarium oxysporum, Lecanicillium coprophilumi, Scedosporium boydii, Scytalidium lignicola, Xenoacremonium recifei, and Pleurostoma richardsiae. These microorganisms showed a significant capacity to digest cellulose in our trials, which could be one of the ways they survive in such a harsh environment, reducing the volume of radioactive paper waste. These metabolic abilities give us a future perspective of using these fungi in biotechnology to remediate radioactively contaminated materials, particularly cellulose-based waste.
Collapse
Affiliation(s)
- Ana Paula Gimenes Tessaro
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| | - Leandro Goulart de Araujo
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil.
- Current Affiliation, Université de Lorraine, CNRS, 88000, Epinal, IJL, France.
| | - Thalita Tieko Silva
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| | - Ednei Coelho
- Microbiology Department, University of Sao Paulo, Av. Professor Lineu Prestes, São Paulo, 1374, Brazil
| | - Benedito Corrêa
- Microbiology Department, University of Sao Paulo, Av. Professor Lineu Prestes, São Paulo, 1374, Brazil
| | - Natalie Costa Rolindo
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| | - Roberto Vicente
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
40
|
He L, Yu X, Li W. Recent Progress and Trends in X-ray-Induced Photodynamic Therapy with Low Radiation Doses. ACS NANO 2022; 16:19691-19721. [PMID: 36378555 DOI: 10.1021/acsnano.2c07286] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The prominence of photodynamic therapy (PDT) in treating superficial skin cancer inspires innovative solutions for its congenitally deficient shadow penetration of the visible-light excitation. X-ray-induced photodynamic therapy (X-PDT) has been proven to be a successful technique in reforming the conventional PDT for deep-seated tumors by creatively utilizing penetrating X-rays as external excitation sources and has witnessed rapid developments over the past several years. Beyond the proof-of-concept demonstration, recent advances in X-PDT have exhibited a trend of minimizing X-ray radiation doses to quite low values. As such, scintillating materials used to bridge X-rays and photosensitizers play a significant role, as do diverse well-designed irradiation modes and smart strategies for improving the tumor microenvironment. Here in this review, we provide a comprehensive summary of recent achievements in X-PDT and highlight trending efforts using low doses of X-ray radiation. We first describe the concept of X-PDT and its relationships with radiodynamic therapy and radiotherapy and then dissect the mechanism of X-ray absorption and conversion by scintillating materials, reactive oxygen species evaluation for X-PDT, and radiation side effects and clinical concerns on X-ray radiation. Finally, we discuss a detailed overview of recent progress regarding low-dose X-PDT and present perspectives on possible clinical translation. It is expected that the pursuit of low-dose X-PDT will facilitate significant breakthroughs, both fundamentally and clinically, for effective deep-seated cancer treatment in the near future.
Collapse
|
41
|
Williams KA, Wright BK, Perrigin MW, Caffrey E, Khan Q, Maqbool M. Radiation shielding characterization of 83Bi209, 74W184, 50Sn119, ZnS, and CaCO3 using the modified Klein-Nishina formula. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Improve the cytotoxic effects of megavoltage radiation treatment by Fe3O4@Cus–PEG nanoparticles as a novel radiosensitizer in colorectal cancer cells. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
To enhance the performance of radiotherapy, emerging nanoparticles that can professionally enhance X-ray irradiation to destruct cancer cells are extremely necessary. Here, we examined the potential of PEG-coated magnetite copper sulfide hetero-nanoparticles (Fe3O4@Cus–PEG) as a radiosensitizer agent.
Methods
Fe3O4@Cus–PEG nanoparticles were synthesized and characterized. The toxicity of nanoparticles on HT-29 colorectal cancer cells was assessed by the MTT assay. The radio-sensitizing effects of Fe3O4@Cus–PEG nanoparticles on HT-29 cancer cells were investigated by the MTT and colony formation assays. Moreover, the underlying mechanisms for Fe3O4@Cus–PEG nanoparticles to improve the radiation sensitivity of cells were evaluated.
Results
The results demonstrated that nanoparticles enhanced the effects of X-ray irradiation in a dose-dependent manner. The effects of combined treatments (nanoparticles and X-ray radiation) were strongly synergistic. The sensitizing enhancement ratio (SER) of nanoparticles was 2.02. Our in vitro assays demonstrated that the nitric oxide production, the intracellular hydrogen peroxide concentration, and the expression level of Bax and Caspase-3 genes significantly increased in the cells treated with the combination of nanoparticles and radiation. Whereas, the Glutathione peroxidase enzyme activity and the expression level of the Bcl-2 gene in the combined treatment significantly decreased compared to the radiation alone.
Conclusions
Our study suggests that Fe3O4@Cus–PEG nanoparticles are the promising nano radio-sensitizing agents for the treatment of cancer cells to enhance the efficacy of radiation therapy through increasing the reactive oxygen species generation, nitric oxide production, and inducing apoptosis.
Graphical Abstract
Collapse
|
43
|
El-Benhawy SA, Fahmy EI, Mahdy SM, Khedr GH, Sarhan AS, Nafady MH, Yousef Selim YA, Salem TM, Abu-Samra N, El Khadry HA. Assessment of thyroid gland hormones and ultrasonographic abnormalities in medical staff occupationally exposed to ionizing radiation. BMC Endocr Disord 2022; 22:287. [PMID: 36404320 PMCID: PMC9677629 DOI: 10.1186/s12902-022-01196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Ionizing radiation (IR) is high-energy radiation that has the potential to displace electrons from atoms and break chemical bonds. It has the ability to introduce mutations, DNA strand breakage, and cell death. Being a radiosensitive organ, exposure of the thyroid gland to IR can lead to significant changes in its function. AIM OF THE WORK Was to measure the levels of thyroid hormones panel and ultrasonography abnormalities in medical staff occupationally exposed to IR. SUBJECTS AND METHODS A total of 120 subjects were divided into three main groups: Group I: radiation-exposed workers occupationally exposed to radioiodine (131I) (n = 40), Group II: radiation-exposed workers occupationally exposed to X-ray (n = 40), and Group III: non-exposed healthy professionals matched in age and sex with the previous groups (n = 40). Thyroid hormones panel including free triiodothyronine (fT3), free thyroxine (fT4), thyroid-stimulating hormone (TSH), anti-thyroperoxidase antibodies (anti-TPO), and thyroglobulin (Tg) were measured. Thyroid ultrasonography was performed. Oxidative stress markers such as malondialdehyde (MDA), hydrogen peroxide (H2O2), and total antioxidant capacity (TAC) were measured. RESULTS Group I had significantly higher fT3 levels than the control group. fT3 levels were considerably higher, while TSH was substantially lower in group II participants than in the control group. Tg was markedly lower in radiation-exposed workers. However, anti-TPO levels in radiation-exposed workers were significantly higher than in the control group. MDA and H2O2 were substantially higher; TAC was significantly lower in radiation-exposed workers compared to the control group. According to ultrasonographic examination, thyroid volume and the percentage of thyroid nodules in all radiation workers were significantly higher than in the control group. CONCLUSION Despite low exposure doses, occupational exposure to IR affects the thyroid hormones and links with a higher likelihood of developing thyroid immune diseases.
Collapse
Affiliation(s)
- Sanaa A. El-Benhawy
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Enayat I. Fahmy
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sherien M. Mahdy
- Nuclear Medicine and thyroid gland Department, Naser Institute for Research and Treatment, Nasr City, Egypt
| | - Galal H. Khedr
- Radiology and Medical Imaging, Faculty of Applied Medical Sciences, Misr University for Science & Technology, Giza, Egypt
| | - Alyaa S. Sarhan
- Radiology and Medical Imaging, Faculty of Applied Medical Sciences, University of 6 October, Giza, Egypt
| | - Mohamed H. Nafady
- Radiology and Medical Imaging, Faculty of Applied Medical Sciences, Misr University for Science & Technology, Giza, Egypt
| | - Yousef A. Yousef Selim
- Radiology and Medical Imaging, Faculty of Applied Medical Sciences, Misr University for Science & Technology, Giza, Egypt
| | - Tarek M. Salem
- Department of Internal Medicine, (Endocrinology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nehal Abu-Samra
- Department of Basic Sciences, Faculty of Physical Therapy, Pharos University, Alexandria, Egypt
| | - Hany A. El Khadry
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
44
|
Radioresistance Mechanisms in Prostate Cancer Cell Lines Surviving Ultra-Hypo-Fractionated EBRT: Implications and Possible Clinical Applications. Cancers (Basel) 2022; 14:cancers14225504. [PMID: 36428597 PMCID: PMC9688510 DOI: 10.3390/cancers14225504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
The use of a higher dose per fraction to overcome the high radioresistance of prostate cancer cells has been unsuccessfully proposed. Herein, we present PC3 and DU-145, castration-resistant prostate cancer cell lines that survived a clinically used ultra-higher dose per fraction, namely, radioresistant PC3 and DU-145 cells (PC3RR and DU-145RR). Compared to PC3, PC3RR showed a higher level of aggressive behaviour, with enhanced clonogenic potential, DNA damage repair, migration ability and cancer stem cell features. Furthermore, compared to PC3, PC3RR more efficiently survived further radiation by increasing proliferation and down-regulating pro-apoptotic proteins. No significant changes of the above parameters were described in DU-145RR, suggesting that different prostate cancer cell lines that survive ultra-higher dose per fraction do not display the same grade of aggressive phenotype. Furthermore, both PC3RR and DU-145RR increased antioxidant enzymes and mesenchymal markers. Our data suggest that different molecular mechanisms could be potential targets for future treatments plans based on sequential strategies and synergistic effects of different modalities, possibly in a patient-tailored fashion. Moreover, PC3RR cells displayed an increase in specific markers involved in bone remodeling, indicating that radiotherapy selects a PC3 population capable of migrating to secondary metastatic sites. Finally, PC3RR cells showed a better sensitivity to Docetaxel as compared to native PC3 cells. This suggests that a subset of patients with castration-resistant metastatic disease could benefit from upfront Docetaxel treatment after the failure of radiotherapy.
Collapse
|
45
|
Uchida H, Ingalls MH, Maruyama EO, Johnston CJ, Hernady E, Faustoferri RC, Ovitt CE. Short-term and bystander effects of radiation on murine submandibular glands. Dis Model Mech 2022; 15:dmm049570. [PMID: 36263624 PMCID: PMC9683099 DOI: 10.1242/dmm.049570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Many patients treated for head and neck cancers experience salivary gland hypofunction due to radiation damage. Understanding the mechanisms of cellular damage induced by radiation treatment is important in order to design methods of radioprotection. In addition, it is crucial to recognize the indirect effects of irradiation and the systemic responses that may alter saliva secretion. In this study, radiation was delivered to murine submandibular glands (SMGs) bilaterally, using a 137Cs gamma ray irradiator, or unilaterally, using a small-animal radiation research platform (SARRP). Analysis at 3, 24 and 48 h showed dynamic changes in mRNA and protein expression in SMGs irradiated bilaterally. Unilateral irradiation using the SARRP caused similar changes in the irradiated SMGs, as well as significant off-target, bystander effects in the non-irradiated contralateral SMGs.
Collapse
Affiliation(s)
- Hitoshi Uchida
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Matthew H. Ingalls
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Eri O. Maruyama
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Carl J. Johnston
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Eric Hernady
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Roberta C. Faustoferri
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Catherine E. Ovitt
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642USA
| |
Collapse
|
46
|
Bani-Ahmad MM, Noor Azman NZ, Jasmine JNZ, Almarri HM, Alshipli M, Ramzun MR. Radiation attenuation ability of bentonite clay enriched with eggshell as recyclable waste for a physical rradiation barrier. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
HPRT1 Most Suitable Reference Gene for Accurate Normalization of mRNA Expression in Canine Dermal Tissues with Radiation Therapy. Genes (Basel) 2022; 13:genes13111928. [DOI: 10.3390/genes13111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/04/2022] Open
Abstract
Reference genes are crucial in molecular biological studies as an internal control for gene re-search as they exhibit consistent expression patterns across many tissue types. In canines, radiation therapy is the most important therapeutic tool to cure various diseases like cancer. However, when using radiation for therapeutic strategy, radiation exposure to healthy tissues leads to some possible side effects such as acute radiation-induced skin injury and alters gene expression. Therefore, the analysis of a change in reference gene expression during the skin recovery process after radiation therapy is essential in healthy canine tissue. In the present study, we analyzed eight reference genes (ACTB, GAPDH, YWHAZ, GUSB, HPRT1, RPL4, RPS5, and TBP) in canine dermal tissues at 0, 1, 2, 3, 4, 5, 7, and 9 weeks of radiation exposure that affected the skin condition of canines. The stability of reference genes is determined by evaluating radiation therapy’s effect on healthy canine dermal tissue. Epidermal marker, Keratin 10 expression varies each week after irradiation, and HPRT1 is found to be the most suitable for normalization of mRNA expression in radiation-exposed canine dermal tissues. Changes in the gene expression level were evaluated by using a reliable tool such as quantitative real-time polymerase chain reaction (qRT-PCR). In order to achieve a valid qRT-PCR result, the most stable reference genes used for normalization after the radiation exposure process are important. Therefore, the current study was designed to evaluate the most stable reference gene for the post-irradiation canine tissues. After radiation exposure, the alternation of reference gene expression was estimated by three algorithms (geNorm, Normfinder, and Bestkeeper). The RG validation programs (GeNorm and NormFinder) suggested that HPRT1, RPL4, and TBP were suitable for normalization in qRT-PCR. Furthermore, three algorithms suggested that HPRT1 was the most stable reference gene for normalization with qRT-PCR results, regardless of before and after radiation exposure. Whereas GAPDH was found to be the most unstable reference gene. In addition, the use of stable or unstable reference genes for the normalization of Keratin 10 expression showed statistical differences. Therefore, we observed that, to obtain accurate and suitable PCR results of the canine tissues with and without radiation exposure, the HPRT1 reference gene is recommended for normalization with its high stability. Additionally, the use of RGs such as HPRT1, RPL4, and TBP for normalization in qRT-PCR experiments is recommended for post-radiation canine tissues to generate more accurate and reliable data. These results will provide fundamental information regarding internal controls for gene expression studies and can be used for the analysis of gene patterns in regenerative medicine.
Collapse
|
48
|
Bhatnagar P, Gururani P, Bisht B, Kumar V, Kumar N, Joshi R, Vlaskin MS. Impact of irradiation on physico-chemical and nutritional properties of fruits and vegetables: A mini review. Heliyon 2022; 8:e10918. [PMID: 36247116 PMCID: PMC9557900 DOI: 10.1016/j.heliyon.2022.e10918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/17/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Background Fruits and vegetables are healthy because they contain good nutrients and secondary metabolites that keep the body healthy and disease-free. Post-harvest losses of fresh fruits and vegetables limit access and availability as a result of foodborne infections and poor storage technologies. The selection of fruits and vegetables depend on the starting microbial load, the size of fruits and vegetables, and the type of infrastructure. Scope and approach Despite the positive impacts of conventional thermal (roasting, boiling, blanching) and some non-thermal processing techniques such as High Pressure Processing (HPP), Pulse Electric Field (PEF), Cold Plasma Technology (CPT) on shelf-life extension, their use is commonly associated with a number of negative consequences on product quality such as cold plasma treatment increases the acidity and rate of lipid oxidation and further decrease the colour intensity and firmness of products. Similarly, in high pressure processing and pulse electric field there is no spore inactivation and they further limit their application to semi-moist and liquid foods. On that account, food irradiation, a non-thermal technique, is currently being used for post-harvest preservation, which could be very useful in retaining the keeping quality of various fresh and dehydrated products without negatively affecting their versatility and physico-chemical, nutritional and sensory properties. Conclusion Existing studies have communicated the effective influence of irradiation technology on nutritional, sensory, and physico-chemical properties of multiple fruits and vegetables accompanying consequential deduction in microbial load throughout the storage period. Food irradiation can be recognized as a prevalent, safe and promising technology however, still is not fully exploited on a magnified scale. The consumer acceptance of processed products has always been a significant challenge for innovative food processing technologies such as food irradiation. Therefore, owing to current review, additional scientific evidences and efforts are still demanded for increasing its technological request.
Collapse
Affiliation(s)
- Pooja Bhatnagar
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India,Corresponding author.
| | - Bhawna Bisht
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Vinod Kumar
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India,Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russian Federation,Corresponding author.
| | - Navin Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Raja Joshi
- School of Agriculture, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Mikhail S. Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, 117198, Russian Federation
| |
Collapse
|
49
|
Hageman E, Che PP, Dahele M, Slotman BJ, Sminia P. Radiobiological Aspects of FLASH Radiotherapy. Biomolecules 2022; 12:biom12101376. [PMID: 36291585 PMCID: PMC9599153 DOI: 10.3390/biom12101376] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy (RT) is one of the primary treatment modalities for cancer patients. The clinical use of RT requires a balance to be struck between tumor effect and the risk of toxicity. Sparing normal tissue is the cornerstone of reducing toxicity. Advances in physical targeting and dose-shaping technology have helped to achieve this. FLASH RT is a promising, novel treatment technique that seeks to exploit a potential normal tissue-sparing effect of ultra-high dose rate irradiation. A significant body of in vitro and in vivo data has highlighted a decrease in acute and late radiation toxicities, while preserving the radiation effect in tumor cells. The underlying biological mechanisms of FLASH RT, however, remain unclear. Three main mechanisms have been hypothesized to account for this differential FLASH RT effect between the tumor and healthy tissue: the oxygen depletion, the DNA damage, and the immune-mediated hypothesis. These hypotheses and molecular mechanisms have been evaluated both in vitro and in vivo. Furthermore, the effect of ultra-high dose rate radiation with extremely short delivery times on the dynamic tumor microenvironment involving circulating blood cells and immune cells in humans is essentially unknown. Therefore, while there is great interest in FLASH RT as a means of targeting tumors with the promise of an increased therapeutic ratio, evidence of a generalized FLASH effect in humans and data to show that FLASH in humans is safe and at least effective against tumors as standard photon RT is currently lacking. FLASH RT needs further preclinical investigation and well-designed in-human studies before it can be introduced into clinical practice.
Collapse
Affiliation(s)
- Eline Hageman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Pei-Pei Che
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Max Dahele
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ben J. Slotman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Peter Sminia
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
50
|
Taghizadeh-Hesary F, Akbari H, Bahadori M, Behnam B. Targeted Anti-Mitochondrial Therapy: The Future of Oncology. Genes (Basel) 2022; 13:1728. [PMID: 36292613 PMCID: PMC9602426 DOI: 10.3390/genes13101728] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Like living organisms, cancer cells require energy to survive and interact with their environment. Mitochondria are the main organelles for energy production and cellular metabolism. Recently, investigators demonstrated that cancer cells can hijack mitochondria from immune cells. This behavior sheds light on a pivotal piece in the cancer puzzle, the dependence on the normal cells. This article illustrates the benefits of new functional mitochondria for cancer cells that urge them to hijack mitochondria. It describes how functional mitochondria help cancer cells' survival in the harsh tumor microenvironment, immune evasion, progression, and treatment resistance. Recent evidence has put forward the pivotal role of mitochondria in the metabolism of cancer stem cells (CSCs), the tumor components responsible for cancer recurrence and metastasis. This theory highlights the mitochondria in cancer biology and explains how targeting mitochondria may improve oncological outcomes.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran 1445613131, Iran
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran 1445613131, Iran
| | - Hassan Akbari
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 4739-19395, Iran
- Traditional Medicine School, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Moslem Bahadori
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, Germantown, MD 20874, USA
| |
Collapse
|