1
|
Pettenuzzo S, Arduino A, Belluzzi E, Pozzuoli A, Fontanella CG, Ruggieri P, Salomoni V, Majorana C, Berardo A. Biomechanics of Chondrocytes and Chondrons in Healthy Conditions and Osteoarthritis: A Review of the Mechanical Characterisations at the Microscale. Biomedicines 2023; 11:1942. [PMID: 37509581 PMCID: PMC10377681 DOI: 10.3390/biomedicines11071942] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Biomechanical studies are expanding across a variety of fields, from biomedicine to biomedical engineering. From the molecular to the system level, mechanical stimuli are crucial regulators of the development of organs and tissues, their growth and related processes such as remodelling, regeneration or disease. When dealing with cell mechanics, various experimental techniques have been developed to analyse the passive response of cells; however, cell variability and the extraction process, complex experimental procedures and different models and assumptions may affect the resulting mechanical properties. For these purposes, this review was aimed at collecting the available literature focused on experimental chondrocyte and chondron biomechanics with direct connection to their biochemical functions and activities, in order to point out important information regarding the planning of an experimental test or a comparison with the available results. In particular, this review highlighted (i) the most common experimental techniques used, (ii) the results and models adopted by different authors, (iii) a critical perspective on features that could affect the results and finally (iv) the quantification of structural and mechanical changes due to a degenerative pathology such as osteoarthritis.
Collapse
Affiliation(s)
- Sofia Pettenuzzo
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
| | - Alessandro Arduino
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
| | - Elisa Belluzzi
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), Via Giustiniani 3, 35128 Padova, Italy
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), 35128 Padova, Italy
| | - Assunta Pozzuoli
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), Via Giustiniani 3, 35128 Padova, Italy
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), 35128 Padova, Italy
| | | | - Pietro Ruggieri
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), 35128 Padova, Italy
| | - Valentina Salomoni
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
- Department of Management and Engineering (DTG), Stradella S. Nicola 3, 36100 Vicenza, Italy
| | - Carmelo Majorana
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
| | - Alice Berardo
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
2
|
Biologic principles of minced cartilage implantation: a narrative review. Arch Orthop Trauma Surg 2022; 143:3259-3269. [PMID: 36385655 DOI: 10.1007/s00402-022-04692-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
Cartilage tissue has a very limited ability to regenerate. Symptomatic cartilage lesions are currently treated by various cartilage repair techniques. Multiple treatment techniques have been proposed in the last 30 years. Nevertheless, no single technique is accepted as a gold standard. Minced cartilage implantation is a newer technique that has garnered increasing attention. This procedure is attractive because it is autologous, can be performed in a single surgery, and is therefore given it is cost-effective. This narrative review provides an overview of the biological potential of current cartilage regenerative repair techniques with a focus on the translational evidence of minced cartilage implantation.
Collapse
|
3
|
Atomic force microscopy (AFM) and its applications to bone-related research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:52-66. [DOI: 10.1016/j.pbiomolbio.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
4
|
Kazemi M, Williams JL. Properties of Cartilage-Subchondral Bone Junctions: A Narrative Review with Specific Focus on the Growth Plate. Cartilage 2021; 13:16S-33S. [PMID: 32458695 PMCID: PMC8804776 DOI: 10.1177/1947603520924776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The purpose of this narrative review is to summarize what is currently known about the structural, chemical, and mechanical properties of cartilage-bone interfaces, which provide tissue integrity across a bimaterial interface of 2 very different structural materials. Maintaining these mechanical interfaces is a key factor for normal bone growth and articular cartilage function and maintenance. MATERIALS AND METHODS A comprehensive search was conducted using Google Scholar and PubMed/Medline with a specific focus on the growth plate cartilage-subchondral bone interface. All original articles, reviews in journals, and book chapters were considered. Following a review of the overall structural and functional characteristics of the physis, the literature on histological studies of both articular and growth plate chondro-osseous junctions is briefly reviewed. Next the literature on biochemical properties of these interfaces is reviewed, specifically the literature on elemental analyses across the cartilage-subchondral bone junctions. The literature on biomechanical studies of these junctions at the articular and physeal interfaces is also reviewed and compared. RESULTS Unlike the interface between articular cartilage and bone, growth plate cartilage has 2 chondro-osseous junctions. The reserve zone of the mature growth plate is intimately connected to a plate of subchondral bone on the epiphyseal side. This interface resembles that between the subchondral bone and articular cartilage, although much less is known about its makeup and formation. CONCLUSION There is a notably paucity of information available on the structural and mechanical properties of reserve zone-subchondral epiphyseal bone interface. This review reveals that further studies are needed on the microstructural and mechanical properties of chondro-osseous junction with the reserve zone.
Collapse
Affiliation(s)
- Masumeh Kazemi
- Biomedical Engineering Department,
University of Memphis, Memphis, TN, USA,Masumeh Kazemi, Biomedical Engineering
Department, University of Memphis, 3796 Norriswood Avenue, Memphis, TN 38152,
USA.
| | | |
Collapse
|
5
|
Shah SS, Mithoefer K. Scientific Developments and Clinical Applications Utilizing Chondrons and Chondrocytes with Matrix for Cartilage Repair. Cartilage 2021; 13:1195S-1205S. [PMID: 33155482 PMCID: PMC8808934 DOI: 10.1177/1947603520968884] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Injuries to articular cartilage of the knee are increasingly common. The operative management of these focal chondral lesions continues to be problematic for the treating orthopedic surgeon secondary to the limited regenerative capacity of articular cartilage. The pericellular matrix (PCM) is a specialized, thin layer of the extracellular matrix that immediately surrounds chondrocytes forming a unit together called the chondron. The advancements in our knowledge base with regard to the PCM/chondrons as well as interterritorial matrix has permeated and led to advancements in product development in conjunction with minced cartilage, marrow stimulation, osteochondral allograft, and autologous chondrocyte implantation (ACI). This review intends to summarize recent progress in chondrocytes with matrix research, with an emphasis on the role the PCM/extracellular matrix (ECM) plays for favorable chondrogenic gene expression, as a barrier/filtration unit, and in osteoarthritis. The bulk of the review describes cutting-edge and evolving clinical developments and discuss these developments in light of underlying basic science applications. Clinical applications of chondrocytes with matrix science include Reveille Cartilage Processor, Cartiform, and ACI with Spherox (which was recently recommended for the treatment of grade III or IV articular cartilage defects over 2 cm2 by the National Institute of Health and Care Excellence [NICE] in the United Kingdom). The current article presents a comprehensive overview of both the basic science and clinical results of these next-generation cartilage repair techniques by focusing specifically on the scientific evolution in each category as it pertains with underlying chondrocytes with matrix theory.
Collapse
Affiliation(s)
- Sarav S. Shah
- Division of Sports Medicine, Department
of Orthopaedic Surgery, New England Baptist Hospital, Boston, MA, USA,Sarav S. Shah, Division of Sports Medicine,
Department of Orthopaedic Surgery, New England Baptist Hospital, 125 Parker Hill
Avenue, Boston, MA 02120, USA.
| | - Kai Mithoefer
- Division of Sports Medicine, Department
of Orthopaedic Surgery, New England Baptist Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Statham P, Jones E, Jennings LM, Fermor HL. Reproducing the Biomechanical Environment of the Chondrocyte for Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:405-420. [PMID: 33726527 DOI: 10.1089/ten.teb.2020.0373] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It is well known that the biomechanical and tribological performance of articular cartilage is inextricably linked to its extracellular matrix (ECM) structure and zonal heterogeneity. Furthermore, it is understood that the presence of native ECM components, such as collagen II and aggrecan, promote healthy homeostasis in the resident chondrocytes. What is less frequently discussed is how chondrocyte metabolism is related to the extracellular mechanical environment, at both the macro and microscale. The chondrocyte is in immediate contact with the pericellular matrix of the chondron, which acts as a mechanocoupler, transmitting external applied loads from the ECM to the chondrocyte. Therefore, components of the pericellular matrix also play essential roles in chondrocyte mechanotransduction and metabolism. Recreating the biomechanical environment through tuning material properties of a scaffold and/or the use of external cyclic loading can induce biosynthetic responses in chondrocytes. Decellularized scaffolds, which retain the native tissue macro- and microstructure also represent an effective means of recapitulating such an environment. The use of such techniques in tissue engineering applications can ensure the regeneration of skeletally mature articular cartilage with appropriate biomechanical and tribological properties to restore joint function. Despite the pivotal role in graft maturation and performance, biomechanical and tribological properties of such interventions is often underrepresented. This review outlines the role of biomechanics in relation to native cartilage performance and chondrocyte metabolism, and how application of this theory can enhance the future development and successful translation of biomechanically relevant tissue engineering interventions. Impact statement Physiological cartilage function is a key criterion in the success of a cartilage tissue engineering solution. The in situ performance is dependent on the initial scaffold design as well as extracellular matrix deposition by endogenous or exogenous cells. Both biological and biomechanical stimuli serve as key regulators of cartilage homeostasis and maturation of the resulting tissue-engineered graft. An improved understanding of the influence of biomechanics on cellular function and consideration of the final biomechanical and tribological performance will help in the successful development and translation of tissue-engineered grafts to restore natural joint function postcartilage trauma or osteoarthritic degeneration, delaying the requirement for prosthetic intervention.
Collapse
Affiliation(s)
- Patrick Statham
- Institute of Medical and Biological Engineering, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds, United Kingdom
| | - Louise M Jennings
- Institute of Medical and Biological Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Hazel L Fermor
- Institute of Medical and Biological Engineering, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Chondrocyte and Pericellular Matrix Deformation and Strain in the Growth Plate Cartilage Reserve Zone Under Compressive Loading. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-43195-2_43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Comparison of cell mechanical measurements provided by Atomic Force Microscopy (AFM) and Micropipette Aspiration (MPA). J Mech Behav Biomed Mater 2019; 95:103-115. [PMID: 30986755 DOI: 10.1016/j.jmbbm.2019.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/15/2019] [Accepted: 03/31/2019] [Indexed: 01/21/2023]
Abstract
A comparative analysis of T-lymphocyte mechanical data obtained from Micropipette Aspiration (MPA) and Atomic Force Microscopy (AFM) is presented. Results obtained by fitting the experimental data to simple Hertz and Theret models led to non-Gaussian distributions and significantly different values of the elastic moduli obtained by both techniques. The use of more refined models, taking into account the finite size of cells (simplified double contact and Zhou models) reduces the differences in the values calculated for the elastic moduli. Several possible sources for the discrepancy between the techniques are considered. The analysis suggests that the local nature of AFM measurements compared with the more general character of MPA measurements probably contributed to the differences observed.
Collapse
|
9
|
Petersen A, Princ A, Korus G, Ellinghaus A, Leemhuis H, Herrera A, Klaumünzer A, Schreivogel S, Woloszyk A, Schmidt-Bleek K, Geissler S, Heschel I, Duda GN. A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat Commun 2018; 9:4430. [PMID: 30361486 PMCID: PMC6202397 DOI: 10.1038/s41467-018-06504-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
Biomaterials developed to treat bone defects have classically focused on bone healing via direct, intramembranous ossification. In contrast, most bones in our body develop from a cartilage template via a second pathway called endochondral ossification. The unsolved clinical challenge to regenerate large bone defects has brought endochondral ossification into discussion as an alternative approach for bone healing. However, a biomaterial strategy for the regeneration of large bone defects via endochondral ossification is missing. Here we report on a biomaterial with a channel-like pore architecture to control cell recruitment and tissue patterning in the early phase of healing. In consequence of extracellular matrix alignment, CD146+ progenitor cell accumulation and restrained vascularization, a highly organized endochondral ossification process is induced in rats. Our findings demonstrate that a pure biomaterial approach has the potential to recapitulate a developmental bone growth process for bone healing. This might motivate future strategies for biomaterial-based tissue regeneration.
Collapse
Affiliation(s)
- A Petersen
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - A Princ
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - G Korus
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - A Ellinghaus
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - H Leemhuis
- Matricel GmbH, Kaiserstrasse 100, 52134, Herzogenrath, Germany
| | - A Herrera
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - A Klaumünzer
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - S Schreivogel
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - A Woloszyk
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Orthopaedic Surgery, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Dr, 78229, San Antonio, TX, USA
| | - K Schmidt-Bleek
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - S Geissler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - I Heschel
- Matricel GmbH, Kaiserstrasse 100, 52134, Herzogenrath, Germany
| | - G N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
10
|
Guilak F, Nims RJ, Dicks A, Wu CL, Meulenbelt I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol 2018; 71-72:40-50. [PMID: 29800616 DOI: 10.1016/j.matbio.2018.05.008] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023]
Abstract
Osteoarthritis is a painful joint disease characterized by progressive degeneration of the articular cartilage as well as associated changes to the subchondral bone, synovium, and surrounding joint tissues. While the effects of osteoarthritis on the cartilage extracellular matrix (ECM) have been well recognized, it is now becoming apparent that in many cases, the onset of the disease may be initially reflected in the matrix region immediately surrounding the chondrocytes, termed the pericellular matrix (PCM). Growing evidence suggests that the PCM - which along with the enclosed chondrocytes are termed the "chondron" - acts as a critical transducer or "filter" of biochemical and biomechanical signals for the chondrocyte, serving to help regulate the homeostatic balance of chondrocyte metabolic activity in response to environmental signals. Indeed, it appears that alterations in PCM properties and cell-matrix interactions, secondary to genetic, epigenetic, metabolic, or biomechanical stimuli, could in fact serve as initiating or progressive factors for osteoarthritis. Here, we discuss recent advances in the understanding of the role of the PCM, with an emphasis on the reciprocity of changes that occur in this matrix region with disease, as well as how alterations in PCM properties could serve as a driver of ECM-based diseases such as osteoarthritis. Further study of the structure, function, and composition of the PCM in normal and diseased conditions may provide new insights into the understanding of the pathogenesis of osteoarthritis, and presumably new therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110, United States.
| | - Robert J Nims
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States
| | - Amanda Dicks
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110, United States
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States
| | - Ingrid Meulenbelt
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
11
|
Theoretically proposed optimal frequency for ultrasound induced cartilage restoration. Theor Biol Med Model 2017; 14:21. [PMID: 29132387 PMCID: PMC5684760 DOI: 10.1186/s12976-017-0067-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/28/2017] [Indexed: 01/01/2023] Open
Abstract
Background Matching the frequency of the driving force to that of the system’s natural frequency of vibration results in greater amplitude response. Thus we hypothesize that applying ultrasound at the chondrocyte’s resonant frequency will result in greater deformation than applying similar ultrasound power at a frequency outside of the resonant bandwidth. Based on this resonant hypothesis, our group previously confirmed theoretically and experimentally that ultrasound stimulation of suspended chondrocytes at resonance (5 MHz) maximized gene expression of load inducible genes. However, this study was based on suspended chondrocytes. The resonant frequency of a chondrocyte does not only depend on the cell mass and intracellular stiffness, but also on the mechanical properties of the surrounding medium. An in vivo chondrocyte’s environment differs whether it be a blood clot (following microfracture), a hydrogel or the pericellular and extracellular matrices of the natural cartilage. All have distinct structures and compositions leading to different resonant frequencies. In this study, we present two theoretical models, the first model to understand the effects of the resonant frequency on the cellular deformation and the second to identify the optimal frequency range for clinical applications of ultrasound to enhance cartilage restoration. Results We showed that applying low-intensity ultrasound at the resonant frequency induced deformation equivalent to that experimentally calculated in previous studies at higher intensities and a 1 MHz frequency. Additionally, the resonant frequency of an in vivo chondrocyte in healthy conditions, osteoarthritic conditions, embedded in a blood clot and embedded in fibrin ranges from 3.5 − 4.8 MHz. Conclusion The main finding of this study is the theoretically proposed optimal frequency for clinical applications of therapeutic ultrasound induced cartilage restoration is 3.5 − 4.8 MHz (the resonant frequencies of in vivo chondrocytes). Application of ultrasound in this frequency range will maximize desired bioeffects.
Collapse
|
12
|
Multiscale modeling of growth plate cartilage mechanobiology. Biomech Model Mechanobiol 2016; 16:667-679. [DOI: 10.1007/s10237-016-0844-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
|
13
|
Prein C, Warmbold N, Farkas Z, Schieker M, Aszodi A, Clausen-Schaumann H. Structural and mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed by atomic force microscopy. Matrix Biol 2016; 50:1-15. [DOI: 10.1016/j.matbio.2015.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/25/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
|
14
|
Gao J, Roan E, Williams JL. Regional variations in growth plate chondrocyte deformation as predicted by three-dimensional multi-scale simulations. PLoS One 2015; 10:e0124862. [PMID: 25885547 PMCID: PMC4401775 DOI: 10.1371/journal.pone.0124862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 03/10/2015] [Indexed: 11/17/2022] Open
Abstract
The physis, or growth plate, is a complex disc-shaped cartilage structure that is responsible for longitudinal bone growth. In this study, a multi-scale computational approach was undertaken to better understand how physiological loads are experienced by chondrocytes embedded inside chondrons when subjected to moderate strain under instantaneous compressive loading of the growth plate. Models of representative samples of compressed bone/growth-plate/bone from a 0.67 mm thick 4-month old bovine proximal tibial physis were subjected to a prescribed displacement equal to 20% of the growth plate thickness. At the macroscale level, the applied compressive deformation resulted in an overall compressive strain across the proliferative-hypertrophic zone of 17%. The microscale model predicted that chondrocytes sustained compressive height strains of 12% and 6% in the proliferative and hypertrophic zones, respectively, in the interior regions of the plate. This pattern was reversed within the outer 300 μm region at the free surface where cells were compressed by 10% in the proliferative and 26% in the hypertrophic zones, in agreement with experimental observations. This work provides a new approach to study growth plate behavior under compression and illustrates the need for combining computational and experimental methods to better understand the chondrocyte mechanics in the growth plate cartilage. While the current model is relevant to fast dynamic events, such as heel strike in walking, we believe this approach provides new insight into the mechanical factors that regulate bone growth at the cell level and provides a basis for developing models to help interpret experimental results at varying time scales.
Collapse
Affiliation(s)
- Jie Gao
- Departments of Mechanical Engineering, University of Memphis Memphis, Tennessee, 38152, United States of America
| | - Esra Roan
- Department of Biomedical Engineering, University of Memphis Memphis, Tennessee, 38152, United States of America
| | - John L Williams
- Department of Biomedical Engineering, University of Memphis Memphis, Tennessee, 38152, United States of America
| |
Collapse
|
15
|
Zhang Z. Chondrons and the pericellular matrix of chondrocytes. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:267-77. [PMID: 25366980 DOI: 10.1089/ten.teb.2014.0286] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In cartilage, chondrocytes are embedded within an abundant extracellular matrix (ECM). A typical chondron consists of a chondrocyte and the immediate surrounding pericellular matrix (PCM). The PCM has a patent structure, defined molecular composition, and unique physical properties that support the chondrocyte. Given this spatial position, the PCM is pivotal in mediating communication between chondrocytes and the ECM and, thus, plays a critical role in cartilage homeostasis. The biological function and mechanical properties of the PCM have been extensively studied, mostly in the form of chondrons. This review intends to summarize recent progress in chondron and chondrocyte PCM research, with emphasis on the re-establishment of the PCM by isolated chondrocytes or mesenchymal stem cells during chondrogenic differentiation, and the effects of the PCM on cartilage tissue formation.
Collapse
Affiliation(s)
- Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| |
Collapse
|
16
|
Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol 2014; 39:25-32. [PMID: 25172825 DOI: 10.1016/j.matbio.2014.08.009] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chondrocytes in articular cartilage are surrounded by a narrow pericellular matrix (PCM) that is both biochemically and biomechanically distinct from the extracellular matrix (ECM) of the tissue. While the PCM was first observed nearly a century ago, its role is still under investigation. In support of early hypotheses regarding its function, increasing evidence indicates that the PCM serves as a transducer of biochemical and biomechanical signals to the chondrocyte. Work over the past two decades has established that the PCM in adult tissue is defined biochemically by several molecular components, including type VI collagen and perlecan. On the other hand, the biomechanical properties of this structure have only recently been measured. Techniques such as micropipette aspiration, in situ imaging, computational modeling, and atomic force microscopy have determined that the PCM exhibits distinct mechanical properties as compared to the ECM, and that these properties are influenced by specific PCM components as well as disease state. Importantly, the unique relationships among the mechanical properties of the chondrocyte, PCM, and ECM in different zones of cartilage suggest that this region significantly influences the stress-strain environment of the chondrocyte. In this review, we discuss recent advances in the measurement of PCM mechanical properties and structure that further increase our understanding of PCM function. Taken together, these studies suggest that the PCM plays a critical role in controlling the mechanical environment and mechanobiology of cells in cartilage and other cartilaginous tissues, such as the meniscus or intervertebral disc.
Collapse
Affiliation(s)
- Rebecca E Wilusz
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Johannah Sanchez-Adams
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
17
|
Hunziker EB, Lippuner K, Shintani N. How best to preserve and reveal the structural intricacies of cartilaginous tissue. Matrix Biol 2014; 39:33-43. [PMID: 25173436 DOI: 10.1016/j.matbio.2014.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
No single processing technique is capable of optimally preserving each and all of the structural entities of cartilaginous tissue. Hence, the choice of methodology must necessarily be governed by the nature of the component that is targeted for analysis, for example, fibrillar collagens or proteoglycans within the extracellular matrix, or the chondrocytes themselves. This article affords an insight into the pitfalls that are to be encountered when implementing the available techniques and how best to circumvent them. Adult articular cartilage is taken as a representative pars pro toto of the different bodily types. In mammals, this layer of tissue is a component of the synovial joints, wherein it fulfills crucial and diverse biomechanical functions. The biomechanical functions of articular cartilage have their structural and molecular correlates. During the natural course of postnatal development and after the onset of pathological disease processes, such as osteoarthritis, the tissue undergoes structural changes which are intimately reflected in biomechanical modulations. The fine structural intricacies that subserve the changes in tissue function can be accurately assessed only if they are faithfully preserved at the molecular level. For this reason, a careful consideration of the tissue-processing technique is indispensable. Since, as aforementioned, no single methodological tool is capable of optimally preserving all constituents, the approach must be pre-selected with a targeted structure in view. Guidance in this choice is offered.
Collapse
Affiliation(s)
- Ernst B Hunziker
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Inselspital, University of Bern, Murtenstrasse 35, P.O. Box 54, 3010 Bern, Switzerland.
| | - Kurt Lippuner
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Inselspital, University of Bern, Murtenstrasse 35, P.O. Box 54, 3010 Bern, Switzerland
| | - Nahoko Shintani
- Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Inselspital, University of Bern, Murtenstrasse 35, P.O. Box 54, 3010 Bern, Switzerland
| |
Collapse
|
18
|
Chen C, Tambe DT, Deng L, Yang L. Biomechanical properties and mechanobiology of the articular chondrocyte. Am J Physiol Cell Physiol 2013; 305:C1202-8. [PMID: 24067919 DOI: 10.1152/ajpcell.00242.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To withstand physiological loading over a lifetime, human synovial joints are covered and protected by articular cartilage, a layer of low-friction, load-bearing tissue. The unique mechanical function of articular cartilage largely depends on the composition and structural integrity of the cartilage matrix. The matrix is produced by highly specialized resident cells called chondrocytes. Under physiological loading, chondrocytes maintain the balance between degradation and synthesis of matrix macromolecules. Under excessive loading or injury, however, degradation exceeds synthesis, causing joint degeneration and, eventually, osteoarthritis (OA). Hence, the mechanoresponses of chondrocytes play an important role in the development of OA. Despite its clear importance, the mechanobiology of articular chondrocytes is not well understood. To summarize our current understanding, here we review studies of the effect of mechanical forces on mechanical and biological properties of articular chondrocytes. First, we present the viscoelastic properties of the cell nucleus, chondrocyte, pericellular matrix, and chondron. Then we discuss how these properties change in OA. Finally, we discuss the responses of normal and osteoarthritic chondrocytes to a variety of mechanical stimuli. Studies reviewed here may provide novel insights into the pathogenesis of OA and may help in development of effective biophysical treatment.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | |
Collapse
|
19
|
Characterization of mechanical and biochemical properties of developing embryonic tendon. Proc Natl Acad Sci U S A 2013; 110:6370-5. [PMID: 23576745 DOI: 10.1073/pnas.1300135110] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tendons have uniquely high tensile strength, critical to their function to transfer force from muscle to bone. When injured, their innate healing response results in aberrant matrix organization and functional properties. Efforts to regenerate tendon are challenged by limited understanding of its normal development. Consequently, there are few known markers to assess tendon formation and parameters to design tissue engineering scaffolds. We profiled mechanical and biological properties of embryonic tendon and demonstrated functional properties of developing tendon are not wholly reflected by protein expression and tissue morphology. Using force volume-atomic force microscopy, we found that nano- and microscale tendon elastic moduli increase nonlinearly and become increasingly spatially heterogeneous during embryonic development. When we analyzed potential biochemical contributors to modulus, we found statistically significant but weak correlation between elastic modulus and collagen content, and no correlation with DNA or glycosaminoglycan content, indicating there are additional contributors to mechanical properties. To investigate collagen cross-linking as a potential contributor, we inhibited lysyl oxidase-mediated collagen cross-linking, which significantly reduced tendon elastic modulus without affecting collagen morphology or DNA, glycosaminoglycan, and collagen content. This suggests that lysyl oxidase-mediated cross-linking plays a significant role in the development of embryonic tendon functional properties and demonstrates that changes in cross-links alter mechanical properties without affecting matrix content and organization. Taken together, these data demonstrate the importance of functional markers to assess tendon development and provide a profile of tenogenic mechanical properties that may be implemented in tissue engineering scaffold design to mechanoregulate new tendon regeneration.
Collapse
|
20
|
Wilusz RE, DeFrate LE, Guilak F. Immunofluorescence-guided atomic force microscopy to measure the micromechanical properties of the pericellular matrix of porcine articular cartilage. J R Soc Interface 2012; 9:2997-3007. [PMID: 22675162 DOI: 10.1098/rsif.2012.0314] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pericellular matrix (PCM) is a narrow region that is rich in type VI collagen that surrounds each chondrocyte within the extracellular matrix (ECM) of articular cartilage. Previous studies have demonstrated that the chondrocyte micromechanical environment depends on the relative properties of the chondrocyte, its PCM and the ECM. The objective of this study was to measure the influence of type VI collagen on site-specific micromechanical properties of cartilage in situ by combining atomic force microscopy stiffness mapping with immunofluorescence imaging of PCM and ECM regions in cryo-sectioned tissue samples. This method was used to test the hypotheses that PCM biomechanical properties correlate with the presence of type VI collagen and are uniform with depth from the articular surface. Control experiments verified that immunolabelling did not affect the properties of the ECM or PCM. PCM biomechanical properties correlated with the presence of type VI collagen, and matrix regions lacking type VI collagen immediately adjacent to the PCM exhibited higher elastic moduli than regions positive for type VI collagen. PCM elastic moduli were similar in all three zones. Our findings provide further support for type VI collagen in defining the chondrocyte PCM and contributing to its biological and biomechanical properties.
Collapse
Affiliation(s)
- Rebecca E Wilusz
- Department of Orthopaedic Surgery, Duke University Medical Center, Box 3093, Durham, NC 27710, USA
| | | | | |
Collapse
|
21
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
22
|
Christensen SE, Coles JM, Zelenski NA, Furman BD, Leddy HA, Zauscher S, Bonaldo P, Guilak F. Altered trabecular bone structure and delayed cartilage degeneration in the knees of collagen VI null mice. PLoS One 2012; 7:e33397. [PMID: 22448243 PMCID: PMC3308976 DOI: 10.1371/journal.pone.0033397] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 02/13/2012] [Indexed: 11/18/2022] Open
Abstract
Mutation or loss of collagen VI has been linked to a variety of musculoskeletal abnormalities, particularly muscular dystrophies, tissue ossification and/or fibrosis, and hip osteoarthritis. However, the role of collagen VI in bone and cartilage structure and function in the knee is unknown. In this study, we examined the role of collagen VI in the morphology and physical properties of bone and cartilage in the knee joint of Col6a1(-/-) mice by micro-computed tomography (microCT), histology, atomic force microscopy (AFM), and scanning microphotolysis (SCAMP). Col6a1(-/-) mice showed significant differences in trabecular bone structure, with lower bone volume, connectivity density, trabecular number, and trabecular thickness but higher structure model index and trabecular separation compared to Col6a1(+/+) mice. Subchondral bone thickness and mineral content increased significantly with age in Col6a1(+/+) mice, but not in Col6a1(-/-) mice. Col6a1(-/-) mice had lower cartilage degradation scores, but developed early, severe osteophytes compared to Col6a1(+/+) mice. In both groups, cartilage roughness increased with age, but neither the frictional coefficient nor compressive modulus of the cartilage changed with age or genotype, as measured by AFM. Cartilage diffusivity, measured via SCAMP, varied minimally with age or genotype. The absence of type VI collagen has profound effects on knee joint structure and morphometry, yet minimal influences on the physical properties of the cartilage. Together with previous studies showing accelerated hip osteoarthritis in Col6a1(-/-) mice, these findings suggest different roles for collagen VI at different sites in the body, consistent with clinical data.
Collapse
Affiliation(s)
- Susan E. Christensen
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Jeffrey M. Coles
- Department of Mechanical Engineering & Materials Science, Duke University, Durham, North Carolina, United States of America
| | - Nicole A. Zelenski
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bridgette D. Furman
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Holly A. Leddy
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Stefan Zauscher
- Department of Mechanical Engineering & Materials Science, Duke University, Durham, North Carolina, United States of America
| | - Paolo Bonaldo
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Padova, Italy
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Department of Mechanical Engineering & Materials Science, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
23
|
Nia HT, Han L, Li Y, Ortiz C, Grodzinsky A. Poroelasticity of cartilage at the nanoscale. Biophys J 2011; 101:2304-13. [PMID: 22067171 DOI: 10.1016/j.bpj.2011.09.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 08/23/2011] [Accepted: 09/06/2011] [Indexed: 11/26/2022] Open
Abstract
Atomic-force-microscopy-based oscillatory loading was used in conjunction with finite element modeling to quantify and predict the frequency-dependent mechanical properties of the superficial zone of young bovine articular cartilage at deformation amplitudes, δ, of ~15 nm; i.e., at macromolecular length scales. Using a spherical probe tip (R ~ 12.5 μm), the magnitude of the dynamic complex indentation modulus, |E*|, and phase angle, φ, between the force and tip displacement sinusoids, were measured in the frequency range f ~ 0.2-130 Hz at an offset indentation depth of δ(0) ~ 3 μm. The experimentally measured |E*| and φ corresponded well with that predicted by a fibril-reinforced poroelastic model over a three-decade frequency range. The peak frequency of phase angle, f(peak), was observed to scale linearly with the inverse square of the contact distance between probe tip and cartilage, 1/d(2), as predicted by linear poroelasticity theory. The dynamic mechanical properties were observed to be independent of the deformation amplitude in the range δ = 7-50 nm. Hence, these results suggest that poroelasticity was the dominant mechanism underlying the frequency-dependent mechanical behavior observed at these nanoscale deformations. These findings enable ongoing investigations of the nanoscale progression of matrix pathology in tissue-level disease.
Collapse
Affiliation(s)
- Hadi Tavakoli Nia
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
24
|
Han L, Grodzinsky AJ, Ortiz C. Nanomechanics of the Cartilage Extracellular Matrix. ANNUAL REVIEW OF MATERIALS RESEARCH 2011; 41:133-168. [PMID: 22792042 PMCID: PMC3392687 DOI: 10.1146/annurev-matsci-062910-100431] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology.
Collapse
Affiliation(s)
- Lin Han
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Alan J. Grodzinsky
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Christine Ortiz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
25
|
Zhang Z, Jin W, Beckett J, Otto T, Moed B. A proteomic approach for identification and localization of the pericellular components of chondrocytes. Histochem Cell Biol 2011; 136:153-62. [PMID: 21698479 DOI: 10.1007/s00418-011-0834-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2011] [Indexed: 11/26/2022]
Abstract
Although the pericellular matrix (PCM) plays a central role in the communication between chondrocytes and extracellular matrix, its composition is largely unknown. In this study, the PCM was investigated with a proteomic approach using chondrons, which are enzymatically isolated constructs including the chondrocyte and its surrounding PCM. Chondrons and chondrocytes alone were isolated from human articular cartilage. Proteins extracted from chondrons and chondrocytes were used for two-dimensional electrophoresis. Protein spots were quantitatively compared between chondron and chondrocyte gels. Cellular proteins, which had similar density between chondron and chondrocyte gels, did not proceed for analysis. Since chondrons only differ from chondrocytes in association of the PCM, protein spots in the chondron gels that had higher quantity than that in the chondrocyte gels were selected as candidates of the PCM components and processed for mass spectrometry. Among 15 identified peptides, several were fragments of the three type VI collagen chains (α-1, α-2, and α-3). Other identified PCM proteins included triosephosphate isomerase, transforming growth factor-β induced protein, peroxiredoxin-4, ADAM (A disintegrin and metalloproteinases) 28, and latent-transforming growth factor beta-binding protein-2. These PCM components were verified with immunohisto(cyto)chemistry for localization in the PCM region of articular cartilage. The abundance of type VI collagen in the PCM emphasizes its importance to the microenvironment of chondrocytes. Several proteins were localized in the PCM of chondrocytes for the first time and that warrants further investigation for their functions in cartilage biology.
Collapse
Affiliation(s)
- Zijun Zhang
- Department of Orthopaedic Surgery, Saint Louis University, School of Medicine, 3635 Vista Avenue, Desloge Towers, DT-7, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Atomic force microscopy (AFM) can be used to co-localize mechanical properties and topographical features through property mapping techniques. The most common approach for testing biological materials at the microscale and nanoscale is force mapping, which involves taking individual force curves at discrete sites across a region of interest. The limitations of force mapping include long testing times and low resolution. While newer AFM methodologies, like modulated scanning and torsional oscillation, circumvent this problem, their adoption for biological materials has been limited. This could be due to their need for specialized software algorithms and/or hardware. The objective of this study is to develop a novel force scanning technique using AFM to rapidly capture high-resolution topographical images of soft biological materials while simultaneously quantifying their mechanical properties. Force scanning is a straightforward methodology applicable to a wide range of materials and testing environments, requiring no special modification to standard AFMs. Essentially, if a contact-mode image can be acquired, then force scanning can be used to produce a spatial modulus map. The current study first validates this technique using agarose gels, comparing results to ones achieved by the standard force mapping approach. Biologically relevant demonstrations are then presented for high-resolution modulus mapping of individual cells, cell-cell interfaces, and articular cartilage tissue.
Collapse
Affiliation(s)
- E M Darling
- Department of Molecular Pharmacology, Physiology and Biotechnology, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
27
|
Roddy KA, Kelly GM, van Es MH, Murphy P, Prendergast PJ. Dynamic patterns of mechanical stimulation co-localise with growth and cell proliferation during morphogenesis in the avian embryonic knee joint. J Biomech 2011; 44:143-9. [DOI: 10.1016/j.jbiomech.2010.08.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 11/25/2022]
|
28
|
Darling EM, Wilusz RE, Bolognesi MP, Zauscher S, Guilak F. Spatial mapping of the biomechanical properties of the pericellular matrix of articular cartilage measured in situ via atomic force microscopy. Biophys J 2010; 98:2848-56. [PMID: 20550897 DOI: 10.1016/j.bpj.2010.03.037] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/15/2010] [Accepted: 03/17/2010] [Indexed: 11/15/2022] Open
Abstract
In articular cartilage, chondrocytes are surrounded by a narrow region called the pericellular matrix (PCM), which is biochemically, structurally, and mechanically distinct from the bulk extracellular matrix (ECM). Although multiple techniques have been used to measure the mechanical properties of the PCM using isolated chondrons (the PCM with enclosed cells), few studies have measured the biomechanical properties of the PCM in situ. The objective of this study was to quantify the in situ mechanical properties of the PCM and ECM of human, porcine, and murine articular cartilage using atomic force microscopy (AFM). Microscale elastic moduli were quantitatively measured for a region of interest using stiffness mapping, or force-volume mapping, via AFM. This technique was first validated by means of elastomeric models (polyacrylamide or polydimethylsiloxane) of a soft inclusion surrounded by a stiff medium. The elastic properties of the PCM were evaluated for regions surrounding cell voids in the middle/deep zone of sectioned articular cartilage samples. ECM elastic properties were evaluated in regions visually devoid of PCM. Stiffness mapping successfully depicted the spatial arrangement of moduli in both model and cartilage surfaces. The modulus of the PCM was significantly lower than that of the ECM in human, porcine, and murine articular cartilage, with a ratio of PCM to ECM properties of approximately 0.35 for all species. These findings are consistent with previous studies of mechanically isolated chondrons, and suggest that stiffness mapping via AFM can provide a means of determining microscale inhomogeneities in the mechanical properties of articular cartilage in situ.
Collapse
Affiliation(s)
- Eric M Darling
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
29
|
Kim E, Guilak F, Haider MA. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation. J Biomech Eng 2010; 132:031011. [PMID: 20459199 DOI: 10.1115/1.4000938] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pericellular matrix (PCM) is the narrow tissue region surrounding all chondrocytes in articular cartilage and, together, the chondrocyte(s) and surrounding PCM have been termed the chondron. Previous theoretical and experimental studies suggest that the structure and properties of the PCM significantly influence the biomechanical environment at the microscopic scale of the chondrocytes within cartilage. In the present study, an axisymmetric boundary element method (BEM) was developed for linear elastic domains with internal interfaces. The new BEM was employed in a multiscale continuum model to determine linear elastic properties of the PCM in situ, via inverse analysis of previously reported experimental data for the three-dimensional morphological changes of chondrons within a cartilage explant in equilibrium unconfined compression (Choi, et al., 2007, "Zonal Changes in the Three-Dimensional Morphology of the Chondron Under Compression: The Relationship Among Cellular, Pericellular, and Extracellular Deformation in Articular Cartilage," J. Biomech., 40, pp. 2596-2603). The microscale geometry of the chondron (cell and PCM) within the cartilage extracellular matrix (ECM) was represented as a three-zone equilibrated biphasic region comprised of an ellipsoidal chondrocyte with encapsulating PCM that was embedded within a spherical ECM subjected to boundary conditions for unconfined compression at its outer boundary. Accuracy of the three-zone BEM model was evaluated and compared with analytical finite element solutions. The model was then integrated with a nonlinear optimization technique (Nelder-Mead) to determine PCM elastic properties within the cartilage explant by solving an inverse problem associated with the in situ experimental data for chondron deformation. Depending on the assumed material properties of the ECM and the choice of cost function in the optimization, estimates of the PCM Young's modulus ranged from approximately 24 kPa to 59 kPa, consistent with previous measurements of PCM properties on extracted chondrons using micropipette aspiration. Taken together with previous experimental and theoretical studies of cell-matrix interactions in cartilage, these findings suggest an important role for the PCM in modulating the mechanical environment of the chondrocyte.
Collapse
Affiliation(s)
- Eunjung Kim
- Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
30
|
Nguyen BV, Wang QG, Kuiper NJ, El Haj AJ, Thomas CR, Zhang Z. Biomechanical properties of single chondrocytes and chondrons determined by micromanipulation and finite-element modelling. J R Soc Interface 2010; 7:1723-33. [PMID: 20519215 DOI: 10.1098/rsif.2010.0207] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A chondrocyte and its surrounding pericellular matrix (PCM) are defined as a chondron. Single chondrocytes and chondrons isolated from bovine articular cartilage were compressed by micromanipulation between two parallel surfaces in order to investigate their biomechanical properties and to discover the mechanical significance of the PCM. The force imposed on the cells was measured directly during compression to various deformations and then holding. When the nominal strain at the end of compression was 50 per cent, force relaxation showed that the cells were viscoelastic, but this viscoelasticity was generally insignificant when the nominal strain was 30 per cent or lower. The viscoelastic behaviour might be due to the mechanical response of the cell cytoskeleton and/or nucleus at higher deformations. A finite-element analysis was applied to simulate the experimental force-displacement/time data and to obtain mechanical property parameters of the chondrocytes and chondrons. Because of the large strains in the cells, a nonlinear elastic model was used for simulations of compression to 30 per cent nominal strain and a nonlinear viscoelastic model for 50 per cent. The elastic model yielded a Young's modulus of 14 ± 1 kPa (mean ± s.e.) for chondrocytes and 19 ± 2 kPa for chondrons, respectively. The viscoelastic model generated an instantaneous elastic modulus of 21 ± 3 and 27 ± 4 kPa, a long-term modulus of 9.3 ± 0.8 and 12 ± 1 kPa and an apparent viscosity of 2.8 ± 0.5 and 3.4 ± 0.6 kPa s for chondrocytes and chondrons, respectively. It was concluded that chondrons were generally stiffer and showed less viscoelastic behaviour than chondrocytes, and that the PCM significantly influenced the mechanical properties of the cells.
Collapse
|
31
|
Horkay F, Lin DC. Mapping the local osmotic modulus of polymer gels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:8735-41. [PMID: 20050048 PMCID: PMC2804954 DOI: 10.1021/la900103j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polymer gels undergo volume phase transition in a thermodynamically poor solvent as a result of changes in molecular interactions. The osmotic pressure of gels, both synthetic and biological in nature, induces swelling and imparts the materials with the capacity to resist compressive loads. We have investigated the mechanical and swelling properties of poly(vinyl alcohol) (PVA) gels brought into the unstable state by changing the composition of the solvent. Chemically cross-linked PVA gels were prepared and initially swollen in water at 25 degrees C, and then n-propyl alcohol (nonsolvent) was gradually added to the equilibrium liquid. AFM imaging and force-indentation measurements were made in water/n-propyl alcohol mixtures of different composition. It has been found that the elastic modulus of the gels exhibits simple scaling behavior as a function of the polymer concentration in each solvent mixture over the entire concentration range investigated. The power law exponent n obtained for the concentration dependence of the shear modulus increases from 2.3 (in pure water) to 7.4 (in 35% (v/v) water + 65% (v/v) n-propyl alcohol mixture). In the vicinity of the theta-solvent composition (59% (v/v) water + 41% (v/v) n-propyl alcohol) n approximately 2.9. Shear and osmotic modulus maps of the phase separating gels have been constructed. It is demonstrated that the latter sensitively reflects the changes both in the topography and thermodynamic interactions occurring in the course of volume phase transition.
Collapse
Affiliation(s)
- Ferenc Horkay
- Section on Tissue Biophysics and Biomimetics, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
32
|
Nguyen BV, Wang Q, Kuiper NJ, El Haj AJ, Thomas CR, Zhang Z. Strain-dependent viscoelastic behaviour and rupture force of single chondrocytes and chondrons under compression. Biotechnol Lett 2009; 31:803-9. [PMID: 19205892 DOI: 10.1007/s10529-009-9939-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 01/09/2009] [Accepted: 01/13/2009] [Indexed: 11/29/2022]
Abstract
The chondron in articular cartilage includes the chondrocyte and its surrounding pericellular matrix (PCM). Single chondrocytes and chondrons were compressed between two parallel surfaces by a micromanipulation technique to investigate their biomechanical properties and to discover the mechanical significance of the PCM. The force imposed on the cells was measured directly during deformation at various compression speeds and deformations up to cell rupture. When the deformation at the end of compression was 50%, relaxation showed that the cells were viscoelastic, but this viscoelasticity was generally insignificant at 30% deformation or lower. When the deformation was 70%, the cells had deformed plastically. Chondrons ruptured at a mean deformation of 85 +/- 1%, whilst chondrocytes ruptured at a mean deformation of 78 +/- 1%. Chondrons were generally stiffer than chondrocytes and showed less viscoelastic behaviour than chondrocytes. Thus, the PCM significantly influences the mechanical properties of the cells.
Collapse
Affiliation(s)
- Bac V Nguyen
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
33
|
Gene expression profiles of dynamically compressed single chondrocytes and chondrons. Biochem Biophys Res Commun 2008; 379:738-42. [PMID: 19118531 DOI: 10.1016/j.bbrc.2008.12.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 11/21/2022]
Abstract
A chondrocyte produces a hydrated pericellular matrix (PCM); together they form a chondron. Previous work has shown that the presence of the PCM influences the biological response of chondrocytes to loading. The objective of this study was to determine the gene expression profiles of enzymatically isolated single chondrocytes and chondrons in response to dynamic compression. Cartilage specific extracellular matrix components and transcription factors were examined. Following dynamic compression, chondrocytes and chondrons showed variations in gene expression profiles. Aggrecan, Type II collagen and osteopontin gene expression were significantly increased in chondrons. Lubricin gene expression decreased in both chondrons and chondrocytes. Dynamic compression had no effect on SOX9 gene expression. Our results demonstrate a clear role for the PCM in interfacing the mechanical signalling in chondrocytes in response to dynamic compression. Further investigation of single chondrocytes and chondrons from different zones within articular cartilage may further our understanding of cartilage mechanobiology.
Collapse
|
34
|
Tomkoria S, Masuda K, Mao J. Nanomechanical properties of alginate-recovered chondrocyte matrices for cartilage regeneration. Proc Inst Mech Eng H 2007; 221:467-73. [PMID: 17822149 DOI: 10.1243/09544119jeim205] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tissue-engineered cartilage constructs designed for in-vivo applications intuitively should mimic the mechanical properties of native cartilage. The objective of the present work was to characterize the nanomechanical properties of alginate-recovered chondrocyte matrices as a function of ex-vivo incubation time. Chondrocytes isolated from the articular cartilage of the mature bovine metacarpophalangeal joints were cultured with alginate hydrogel to allow for the formation of extracellular matrices. The recovered chondral constructs after 2, 4, 8, and 12 weeks of ex-vivo incubation were analysed using nanoindentation with atomic force microscopy to determine their mechanical properties. Chondral constructs had average Young's moduli of 123±22 kPa, 174±31 kPa, 373±40 kPa, and 564±79 kPa after incubation for 2, 4, 8, and 12 weeks respectively, indicating the gradual attainment of mechanical stiffness. This escalating trend of micromechanical properties as a function of increasing ex-vivo incubation time suggests that chondral constructs via a tissue-engineering approach are capable of elaborating extracellular matrices and increase mechanical stiffness. The relationship between Young's modulus and incubation time of the chondral constructs is useful in the design and fabrication of tissue-engineered cartilage constructs.
Collapse
Affiliation(s)
- S Tomkoria
- Boston Scientific, Cardiac Surgery Division, Santa Clara, California, USA
| | | | | |
Collapse
|
35
|
Candiello J, Balasubramani M, Schreiber EM, Cole GJ, Mayer U, Halfter W, Lin H. Biomechanical properties of native basement membranes. FEBS J 2007; 274:2897-908. [PMID: 17488283 DOI: 10.1111/j.1742-4658.2007.05823.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Basement membranes are sheets of extracellular matrix that separate epithelia from connective tissues and outline muscle fibers and the endothelial lining of blood vessels. A major function of basement membranes is to establish and maintain stable tissue borders, exemplified by frequent vascular breaks and a disrupted pial and retinal surface in mice with mutations or deletions of basement membrane proteins. To directly measure the biomechanical properties of basement membranes, chick and mouse inner limiting membranes were examined by atomic force microscopy. The inner limiting membrane is located at the retinal-vitreal junction and its weakening due to basement membrane protein mutations leads to inner limiting membrane rupture and the invasion of retinal cells into the vitreous. Transmission electron microscopy and western blotting has shown that the inner limiting membrane has an ultrastructure and a protein composition typical for most other basement membranes and, thus, provides a suitable model for determining their biophysical properties. Atomic force microscopy measurements of native chick basement membranes revealed an increase in thickness from 137 nm at embryonic day 4 to 402 nm at embryonic day 9, several times thicker that previously determined by transmission electron microscopy. The change in basement membrane thickness was accompanied by a large increase in apparent Young's modulus from 0.95 MPa to 3.30 MPa. The apparent Young's modulus of the neonatal and adult mouse retinal basement membranes was in a similar range, with 3.81 MPa versus 4.07 MPa, respectively. These results revealed that native basement membranes are much thicker than previously determined. Their high mechanical strength explains why basement membranes are essential in stabilizing blood vessels, muscle fibers and the pial border of the central nervous system.
Collapse
Affiliation(s)
- Joseph Candiello
- Department of Bioengineering, University of Pittsburgh, PA 15262, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Choi JB, Youn I, Cao L, Leddy HA, Gilchrist CL, Setton LA, Guilak F. Zonal changes in the three-dimensional morphology of the chondron under compression: the relationship among cellular, pericellular, and extracellular deformation in articular cartilage. J Biomech 2007; 40:2596-603. [PMID: 17397851 PMCID: PMC2265315 DOI: 10.1016/j.jbiomech.2007.01.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
The pericellular matrix (PCM) is a narrow region of tissue that completely surrounds chondrocytes in articular cartilage. Previous theoretical models of the "chondron" (the PCM with enclosed cells) suggest that the structure and properties of the PCM may significantly influence the mechanical environment of the chondrocyte. The objective of this study was to quantify changes in the three-dimensional (3D) morphology of the chondron in situ at different magnitudes of compression applied to the cartilage extracellular matrix. Fluorescence immunolabeling for type-VI collagen was used to identify the boundaries of the cell and PCM, and confocal microscopy was used to form 3D images of chondrons from superficial, middle, and deep zone cartilage in explants compressed to 0%, 10%, 30%, and 50% surface-to-surface strain. Lagrangian tissue strain, determined locally using texture correlation, was highly inhomogeneous and revealed depth-dependent compressive stiffness and Poisson's ratio of the extracellular matrix. Compression significantly decreased cell and chondron height and volume, depending on the zone and magnitude of compression. In the superficial zone, cellular-level strains were always lower than tissue-level strains. In the middle and deep zones, however, tissue strains below 25% were amplified at the cellular level, while tissue strains above 25% were decreased at the cellular level. These findings are consistent with previous theoretical models of the chondron, suggesting that the PCM can serve as either a protective layer for the chondrocyte or a transducer that amplifies strain, such that cellular-level strains are more homogenous throughout the tissue depth despite large inhomogeneities in local ECM strains.
Collapse
Affiliation(s)
- Jae Bong Choi
- Departments of Surgery and Biomedical Engineering Duke University Medical Center Durham, North Carolina 27710
- Department of Mechanical Systems Engineering Hansung University, Seoul, Korea
| | - Inchan Youn
- Departments of Surgery and Biomedical Engineering Duke University Medical Center Durham, North Carolina 27710
| | - Li Cao
- Departments of Surgery and Biomedical Engineering Duke University Medical Center Durham, North Carolina 27710
| | - Holly A. Leddy
- Departments of Surgery and Biomedical Engineering Duke University Medical Center Durham, North Carolina 27710
| | - Christopher L. Gilchrist
- Departments of Surgery and Biomedical Engineering Duke University Medical Center Durham, North Carolina 27710
| | - Lori A. Setton
- Departments of Surgery and Biomedical Engineering Duke University Medical Center Durham, North Carolina 27710
| | - Farshid Guilak
- Departments of Surgery and Biomedical Engineering Duke University Medical Center Durham, North Carolina 27710
| |
Collapse
|
37
|
Othman H, Thonar EJ, Mao JJ. Modulation of neonatal growth plate development by ex vivo intermittent mechanical stress. J Biomech 2007; 40:2686-93. [PMID: 17346717 PMCID: PMC4035018 DOI: 10.1016/j.jbiomech.2006.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 12/14/2006] [Indexed: 01/17/2023]
Abstract
Although growth plate response to mechanical stress has been increasingly studied, our understanding of mechanical modulation of neonatal growth plate is incomplete, especially concerning biochemical changes. This study was designed to explore the cellular and biochemical responses of the cranial base growth plate (CBGP) explant upon cyclic loading. The growth plate with subchondral bone was aseptically isolated from each of 24 neonatal rabbits and fixated in an organ culture system. Cyclic loading was applied to growth plate explants at 200 mN and 1 Hz for 60 min (N=12), whereas control explants were immersed in organ culture for 60 min without mechanical loading (N=12). Computerized image analysis revealed that cyclic loading induced significantly more proliferating chondrocytes than unloaded controls (p<0.001), as well as significantly higher growth plate height at 856+/-30 microm than the unloaded controls at 830+/-36 microm (p<0.05). Immunoblotting with monoclonal antibodies (mAb) disclosed that the average mAb binding area for chondroitin sulfate was significantly higher in the loaded specimens than the unloaded controls at (p<0.001). The average mAb binding area for keratan sulfate was also significantly higher in the loaded specimens than the unloaded controls (p<0.01). Biochemical analysis showed that the average total hyaluronan content of loaded specimens at 0.25+/-0.06 microg/microg DNA was significantly higher than the unloaded controls at 0.09+/-0.05 microg/microg DNA (p<0.01). Taken together, these data suggest that brief doses of cyclic, intermittent forces activate cellular and molecular responses in the CBGP ex vivo. Whether hyaluronan-mediated pathway is involved in the biological responses of growth plate to mechanical loading warrants additional investigations.
Collapse
Affiliation(s)
- Hasan Othman
- Department of Biomedical Engineering, Fu Foundation School of Engineering and Applied Sciences, College of Dental Medicine, Columbia University, 630 W. 168 Street, PH7 East SDOS, New York, NY 10032, USA
| | - Eugene J. Thonar
- Departments of Biochemistry and Orthopaedics, Rush University, 1735 W. Harrison Street, Suite 526 Cohn Building, Chicago, IL 60612, USA
| | - Jeremy J. Mao
- Department of Biomedical Engineering, Fu Foundation School of Engineering and Applied Sciences, College of Dental Medicine, Columbia University, 630 W. 168 Street, PH7 East SDOS, New York, NY 10032, USA
| |
Collapse
|
38
|
Darling EM, Zauscher S, Block JA, Guilak F. A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys J 2007; 92:1784-91. [PMID: 17158567 PMCID: PMC1796808 DOI: 10.1529/biophysj.106.083097] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 11/27/2006] [Indexed: 02/07/2023] Open
Abstract
Atomic force microscopy has rapidly become a valuable tool for quantifying the biophysical properties of single cells. The interpretation of atomic force microscopy-based indentation tests, however, is highly dependent on the use of an appropriate theoretical model of the testing configuration. In this study, a novel, thin-layer viscoelastic model for stress relaxation was developed to quantify the mechanical properties of chondrosarcoma cells in different configurations to examine the hypothesis that viscoelastic properties reflect the metastatic potential and invasiveness of the cell using three well-characterized human chondrosarcoma cell lines (JJ012, FS090, 105KC) that show increasing chondrocytic differentiation and decreasing malignancy, respectively. Single-cell stress relaxation tests were conducted at 2 h and 2 days after plating to determine cell mechanical properties in either spherical or spread morphologies and analyzed using the new theoretical model. At both time points, JJ012 cells had the lowest moduli of the cell lines examined, whereas FS090 typically had the highest. At 2 days, all cells showed an increase in stiffness and a decrease in apparent viscosity compared to the 2-h time point. Fluorescent labeling showed that the F-actin structure in spread cells was significantly different between FS090 cells and JJ012/105KC cells. Taken together with results of previous studies, these findings indicate that cell transformation and tumorigenicity are associated with a decrease in cell modulus and apparent viscosity, suggesting that cell mechanical properties may provide insight into the metastatic potential and invasiveness of a cell.
Collapse
Affiliation(s)
- Eric M Darling
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
39
|
Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 2007; 28:316-25. [PMID: 17010425 PMCID: PMC4035020 DOI: 10.1016/j.biomaterials.2006.08.042] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 08/22/2006] [Indexed: 11/25/2022]
Abstract
Nanofibers have recently gained substantial interest for potential applications in tissue engineering. The objective of this study was to determine whether electrospun nanofibers accommodate the viability, growth, and differentiation of human mesenchymal stem cells (hMSCs) as well as their osteogenic (hMSC-Ob) and chondrogenic (hMSC-Ch) derivatives. Poly(d,l-lactide-co-glycolide) (PLGA) beads with a PLA:PGA ratio of 85:15 were electrospun into non-woven fibers with an average diameter of 760+/-210 nm. The average Young's modulus of electrospun PLGA nanofibers was 42+/-26 kPa, per nanoindentation with atomic force microscopy (AFM). Human MSCs were seeded 1-4 weeks at a density of 2 x 10(6)cells/mL in PLGA nanofiber sheets. After 2 week culture on PLGA nanofiber scaffold, hMSCs remained as precursors upon immunoblotting with hKL12 antibody. SEM taken up to 7 days after cell seeding revealed that hMSCs, hMSC-Ob and hMSC-Ch apparently attached to PLGA nanofibers. The overwhelming majority of hMSCs was viable and proliferating in PLGA nanofiber scaffolds up to the tested 14 days, as assayed live/dead tests, DNA assay and BrdU. In a separate experiment, hMSCs seeded in PLGA nanofiber scaffolds were differentiated into chodrogenic and osteogenic cells. Histological assays revealed that hMSCs continuously differentiated into chondrogenic cells and osteogenic cells after 2 week incubation in PLGA nanofibers. Taken together, these data represent an original investigation of continuous differentiation of hMSCs into chondrogenic and osteogenic cells in PLGA nanofiber scaffold. Consistent with previous work, these findings also suggest that nanofibers may serve as accommodative milieu for not only hMSCs, but also as a 3D carrier vehicle for lineage specific cells.
Collapse
Affiliation(s)
- Xuejun Xin
- Department of Biomedical Engineering, Columbia University, College of Dental Medicine, Fu Foundation School of Engineering and Applied Sciences, 630 W. 168 St., – PH7 East CDM, New York, NY 10032, USA
| | - Mohammad Hussain
- Department of Biomedical Engineering, Columbia University, College of Dental Medicine, Fu Foundation School of Engineering and Applied Sciences, 630 W. 168 St., – PH7 East CDM, New York, NY 10032, USA
| | - Jeremy J. Mao
- Department of Biomedical Engineering, Columbia University, College of Dental Medicine, Fu Foundation School of Engineering and Applied Sciences, 630 W. 168 St., – PH7 East CDM, New York, NY 10032, USA
| |
Collapse
|
40
|
Ng L, Hung HH, Sprunt A, Chubinskaya S, Ortiz C, Grodzinsky A. Nanomechanical properties of individual chondrocytes and their developing growth factor-stimulated pericellular matrix. J Biomech 2006; 40:1011-23. [PMID: 16793050 DOI: 10.1016/j.jbiomech.2006.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 04/04/2006] [Indexed: 11/30/2022]
Abstract
The nanomechanical properties of individual cartilage cells (chondrocytes) and their aggrecan and collagen-rich pericellular matrix (PCM) were measured via atomic force microscope nanoindentation using probe tips of two length scales (nanosized and micron-sized). The properties of cells freshly isolated from cartilage tissue (devoid of PCM) were compared to cells that were cultured for selected times (up to 28 days) in 3-D alginate gels which enabled PCM assembly and accumulation. Cells were immobilized and kept viable in pyramidal wells microfabricated into an array on silicon chips. Hertzian contact mechanics and finite element analyses were employed to estimate apparent moduli from the force versus depth curves. The effects of culture conditions on the resulting PCM properties were studied by comparing 10% fetal bovine serum to medium containing a combination of insulin growth factor-1 (IGF-1)+osteogenic protein-1 (OP-1). While both systems showed increases in stiffness with time in culture between days 7 and 28, the IGF-1+OP-1 combination resulted in a higher stiffness for the cell-PCM composite by day 28 and a higher apparent modulus of the PCM which is compared to the FBS cultured cells. These studies give insight into the temporal evolution of the nanomechanical properties of the pericellar matrix relevant to the biomechanics and mechanobiology of tissue-engineered constructs for cartilage repair.
Collapse
Affiliation(s)
- Laurel Ng
- Biological Engineering Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
41
|
Darling EM, Zauscher S, Guilak F. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthritis Cartilage 2006; 14:571-9. [PMID: 16478668 DOI: 10.1016/j.joca.2005.12.003] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 12/13/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Articular chondrocytes respond to chemical and mechanical signals depending on their zone of origin with respect to distance from the tissue surface. However, little is known of the zonal variations in cellular mechanical properties in cartilage. The goal of this study was to determine the zonal variations in the elastic and viscoelastic properties of porcine chondrocytes using atomic force microscopy (AFM), and to validate this method against micropipette aspiration. METHODS A theoretical solution for stress relaxation of a viscoelastic, incompressible, isotropic surface indented with a hard, spherical indenter (5 microm diameter) was derived and fit to experimental stress-relaxation data for AFM indentation of chondrocytes isolated from the superficial or middle/deep zones of cartilage. RESULTS The instantaneous moduli of chondrocytes were 0.55+/-0.23 kPa for superficial cells (S) and 0.29+/-0.14 kPa for middle/deep cells (M/D) (P<0.0001), and the relaxed moduli were 0.31+/-0.15 kPa (S) and 0.17+/-0.09 kPa (M/D) (P<0.0001). The apparent viscosities were 1.15+/-0.66 kPas (S) and 0.61+/-0.69 kPa-s (M/D) (P<0.0001). Results from the micropipette aspiration test showed similar cell moduli but higher apparent viscosities, indicating that mechanical properties measured by these two techniques are similar. CONCLUSION Our findings suggest that chondrocyte biomechanical properties differ significantly with the zone of origin, consistent with previous studies showing zonal differences in chondrocyte biosynthetic activity and gene expression. Given the versatility and dynamic testing capabilities of AFM, the ability to conduct stress-relaxation measurements using this technique may provide further insight into the viscoelastic properties of isolated cells.
Collapse
Affiliation(s)
- E M Darling
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
42
|
Tang M, Mao JJ. Matrix and gene expression in the rat cranial base growth plate. Cell Tissue Res 2006; 324:467-74. [PMID: 16525834 PMCID: PMC4035035 DOI: 10.1007/s00441-005-0143-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 12/07/2005] [Indexed: 01/15/2023]
Abstract
Recent data have shown that the proliferation and differentiation of the cranial base growth plate (CBGP) chondrocytes are modulated by mechanical stresses. However, little is known about the expression of genes and matrix molecules in the CBGP during development or under mechanical stresses. The objective of the present study was to determine whether several cartilage- and bone-related molecules are expressed in the CBGP and whether their expression is modulated by cyclic loading. The CBGP of normal 8-day-old rats (n=8) were isolated immediately after death, followed by extraction of total RNA and reverse transcription/polymerase chain reaction (RT-PCR) analysis. All studied genes, including type II and X collagens, biglycan, versican, osteocalcin, osteopontin, and fetal liver kinase 1, were expressed in the CBGP with a reproducible absence of decorin mRNA. In age- and sex-matched rats (n=10), exogenous cyclic forces were applied to the maxilla at 500 mN and 4 Hz for 20 min/day over 2 days, followed by RNA isolation and RT-PCR analysis. This exogenous cyclic loading consistently induced the expression of the decorin gene, which was non-detectable, by the current RT-PCR approach, in control neonatal CBGPs without loading. Immunolocalization of several of the above-studied gene products demonstrated their remarkable site-specific expression. Decorin proteoglycan was primarily expressed in the perichondrium instead of various cartilage growth zones, especially upon mechanical loading. These findings serve as baseline data for the expression of several genes and gene products in the neonatal CBGP. Mechanical modulation of decorin expression is consistent with recent reports of its susceptibility to mechanical loading in several connective tissues.
Collapse
Affiliation(s)
- Minghui Tang
- Tissue Engineering Laboratory, Rm 237, University of Illinois at Chicago MC 841, 801 South Paulina Street, Chicago, IL 60612-7211, USA, , Tel.: 312-9962649, Fax: 312-9967854
| | - Jeremy J. Mao
- Tissue Engineering Laboratory, Rm 237, University of Illinois at Chicago MC 841, 801 South Paulina Street, Chicago, IL 60612-7211, USA, , Tel.: 312-9962649, Fax: 312-9967854
| |
Collapse
|
43
|
Abstract
Mesenchymal stem cells (MSCs) have become one of the most studied stem cells, especially toward the healing of diseased and damaged tissues and organs. MSCs can be readily isolated from a number of adult tissues by means of minimally invasive approaches. MSCs are capable of self-replication to many passages and, therefore, can potentially be expanded to sufficient numbers for tissue and organ regeneration. MSCs are able to differentiate into multiple cell lineages that resemble osteoblasts, chondrocytes, myoblasts, adipocytes, and fibroblasts and express some of the key markers typical of endothelial cells, neuron-like cells, and cardiomyocytes. MSCs have been used alone for cell delivery or seeded in biomaterial scaffolds toward the healing of tissue and organ defects. After an increasing number of the "proof of concept" studies, the remaining tasks are many, such as to determine MSC interactions with host cells and signaling molecules, to investigate the interplay between MSCs and biological scaffold materials, and to apply MSC-based therapies toward clinically relevant defect models. The ultimate goal of MSC-based therapies has valid biological rationale in that clusters of MSCs differentiate to form virtually all connective tissue during development. MSC-based therapies can only be realized our improved understanding of not only their fundamental properties such as population doubling and differentiation pathways but also translational studies that use MSCs in the de novo formation and/or regeneration of diseased or damaged tissues and organs.
Collapse
Affiliation(s)
- Nicholas W Marion
- College of Dental Medicine - Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, New York, USA
| | | |
Collapse
|
44
|
Abstract
Mammalian skeletal motion is made possible by synovial joints. Widespread suffering from arthritis and joint injuries has motivated recent effort to regenerate a stem-cell-driven synovial joint condyle implantable in total joint replacement. A single adult stem cell lineage, mesenchymal stem cells, differentiate to form all components of a synovial joint. Whereas localized joint lesions may be repaired by either cell-based or cell-free approaches, regeneration of the entire articular condyle of the synovial joint is unattainable without tissue-forming cells. A series of experiments are presented here to describe our initial attempts to regenerate a synovial joint condyle in the shape and dimensions of a human mandibular condyle, with both cartilaginous and osseous components derived from a single population of rat mesenchymal stem cells. Upcoming challenges are along several intertwining fronts including structural integrity, tissue maturation, mechanical strength and host integration. The synovial joint condyle may turn out to be one of the first 'human body parts' or organs truly regeneratable by stem-cell-derived approaches. Current approaches to regenerate the synovial joint condyle from stem-cell-derived multiple cell lineages may also offer clues for engineering complex organs such as the kidney or liver.
Collapse
Affiliation(s)
- Jeremy J Mao
- Tissue Engineering Laboratory, Department of Anatomy and Cell Biology, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA.
| |
Collapse
|
45
|
Alexopoulos LG, Williams GM, Upton ML, Setton LA, Guilak F. Osteoarthritic changes in the biphasic mechanical properties of the chondrocyte pericellular matrix in articular cartilage. J Biomech 2005; 38:509-17. [PMID: 15652549 DOI: 10.1016/j.jbiomech.2004.04.012] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2004] [Indexed: 11/25/2022]
Abstract
The pericellular matrix (PCM) is a narrow region of cartilaginous tissue that surrounds chondrocytes in articular cartilage. Previous modeling studies indicate that the mechanical properties of the PCM relative to those of the extracellular matrix (ECM) can significantly affect the stress-strain, fluid flow, and physicochemical environments of the chondrocyte, suggesting that the PCM plays a biomechanical role in articular cartilage. The goals of this study were to measure the mechanical properties of the PCM using micropipette aspiration coupled with a linear biphasic finite element model, and to determine the alterations in the mechanical properties of the PCM with osteoarthritis (OA). Using a recently developed isolation technique, chondrons (the chondrocyte and its PCM) were mechanically extracted from non-degenerate and osteoarthritic human cartilage. The transient mechanical behavior of the PCM was well-described by a biphasic model, suggesting that the viscoelastic response of the PCM is attributable to flow-dependent effects, similar to that of the ECM. With OA, the mean Young's modulus of the PCM was significantly decreased (38.7+/-16.2 kPa vs. 23.5+/-12.9 kPa, p < 0.001), and the permeability was significantly elevated (4.19+/-3.78 x10(-17) m(4)/Ns vs. 10.2+/-9.38 x 10(-17) m(4)/Ns, p < 0.01). The Poisson's ratio was similar for both non-degenerate and OA PCM (0.044+/-0.063 vs. 0.030+/-0.068, p > 0.6). These findings suggest that the PCM may undergo degenerative processes with OA, similar to those occurring in the ECM. In combination with previous theoretical models of cell-matrix interactions in cartilage, our findings suggest that changes in the properties of the PCM with OA may have an important influence on the biomechanical environment of the chondrocyte.
Collapse
Affiliation(s)
- Leonidas G Alexopoulos
- Orthopaedic Research Laboratories, Division of Orthopaedic Surgery, Department of Surgery, Duke University Medical Center, 375 Medical Sciences Research Building, Box 3093 Research Dr. Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Scott A Rodeo
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA.
| | | | | |
Collapse
|
47
|
Radhakrishnan P, Mao JJ. Nanomechanical properties of facial sutures and sutural mineralization front. J Dent Res 2004; 83:470-5. [PMID: 15153454 DOI: 10.1177/154405910408300607] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mechanical properties of craniofacial sutures have rarely been investigated. Three facial sutures-the pre-maxillomaxillary (PMS), the nasofrontal (NFS), and the zygomaticotemporal (ZTS)-and their corresponding sutural mineralization fronts in 8 young New Zealand White rabbits were subjected to nano-indentation with atomic force microscopy as a test of the hypothesis that they have different mechanical properties. The average elastic modulus of the PMS was 1.46 +/- 0.24 MPa (mean +/- SD), significantly higher than both the ZTS (1.20 +/- 0.20) and NFS (1.16 +/- 0.18). The average elastic moduli of sutural mineralization fronts 30 micro m away were significantly higher than their corresponding sutures and had the same distribution pattern: the PMS (2.07 +/- 0.24 MPa) significantly higher than both the ZTS (1.56 +/- 0.29) and NFS (1.71 +/- 0.22). Analysis of these data suggests that facial sutures and their immediately adjacent sutural mineralization fronts have different capacities for mechanical deformation. The elastic properties of sutures and sutural mineralization fronts are potentially useful for improving our understanding of their roles in development.
Collapse
Affiliation(s)
- P Radhakrishnan
- Tissue Engineering Laboratory, Department of Orthodontics, 801 S. Paulina Street, University of Illinois at Chicago, Chicago, IL 60612-7211, USA
| | | |
Collapse
|