1
|
Misof BM, Fratzl-Zelman N. Bone Quality and Mineralization and Effects of Treatment in Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:777-804. [PMID: 39231826 DOI: 10.1007/s00223-024-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024]
Abstract
Osteogenesis imperfecta (OI) is a rare congenital bone dysplasia characterized by high fracture rates and broad variations in clinical manifestations ranging from mild to increasingly severe and perinatal lethal forms. The underlying mutations affect either the synthesis or processing of the type I procollagen molecule itself or proteins that are involved in the formation and mineralization of the collagen matrix. Consequently, the collagen forming cells, the osteoblasts, become broadly dysfunctional in OI. Strikingly, hypermineralized bone matrix seems to be a frequent feature in OI, despite the variability in clinical severity and mutations in the so far studied different forms of human OI. While the causes of the increased mineral content of the bone matrix are not fully understood yet, there is evidence that the descendants of the osteoblasts, the osteocytes, which play a critical role not only in bone remodeling, but also in mineralization and sensing of mechanical loads, are also highly dysregulated and might be of major importance in the pathogenesis of OI. In this review article, we firstly summarize findings of cellular abnormalities in osteoblasts and osteocytes, alterations of the organic matrix, as well as of the microstructural organization of bone. Secondly, we focus on the hypermineralization of the bone matrix in OI as observed in several different forms of human OI as well as in animal models, its measurement and potential mechanical implications and its effect on the bone mineral density measured by dual X-ray absorptiometry. Thirdly, we give an overview of established medication treatments of OI and new approaches with a focus of their known or possible effects on the bone material, particularly on bone matrix mineralization.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria.
- Vienna Bone and Growth Center, Vienna, Austria.
| |
Collapse
|
2
|
Gahlawat S, Nanda V, Shreiber DI. Designing collagens to shed light on the multi-scale structure-function mapping of matrix disorders. Matrix Biol Plus 2024; 21:100139. [PMID: 38186852 PMCID: PMC10765305 DOI: 10.1016/j.mbplus.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Collagens are the most abundant structural proteins in the extracellular matrix of animals and play crucial roles in maintaining the structural integrity and mechanical properties of tissues and organs while mediating important biological processes. Fibrillar collagens have a unique triple helix structure with a characteristic repeating sequence of (Gly-X-Y)n. Variations within the repetitive sequence can cause misfolding of the triple helix, resulting in heritable connective tissue disorders. The most common variations are single-point missense mutations that lead to the substitution of a glycine residue with a bulkier amino acid (Gly → X). In this review, we will first discuss the importance of collagen's triple helix structure and how single Gly substitutions can impact its folding, structure, secretion, assembly into higher-order structures, and biological functions. We will review the role of "designer collagens," i.e., synthetic collagen-mimetic peptides and recombinant bacterial collagen as model systems to include Gly → X substitutions observed in collagen disorders and investigate their impact on structure and function utilizing in vitro studies. Lastly, we will explore how computational modeling of collagen peptides, especially molecular and steered molecular dynamics, has been instrumental in probing the effects of Gly substitutions on structure, receptor binding, and mechanical stability across multiple length scales.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David I. Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
3
|
Khattignavong E, Neshatian M, Vaez M, Guillermin A, Tauer JT, Odlyha M, Mittal N, Komarova SV, Zahouani H, Bozec L. Development of a facile method to compute collagen network pathological anisotropy using AFM imaging. Sci Rep 2023; 13:20173. [PMID: 37978303 PMCID: PMC10656449 DOI: 10.1038/s41598-023-47350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
Type I collagen, a fundamental extracellular matrix (ECM) component, is pivotal in maintaining tissue integrity and strength. It is also the most prevalent fibrous biopolymer within the ECM, ubiquitous in mammalian organisms. This structural protein provides essential mechanical stability and resilience to various tissues, including tendons, ligaments, skin, bone, and dentin. Collagen has been structurally investigated for several decades, and variation to its ultrastructure by histology has been associated with several pathological conditions. The current study addresses a critical challenge in the field of collagen research by providing a novel method for studying collagen fibril morphology at the nanoscale. It offers a computational approach to quantifying collagen properties, enabling a deeper understanding of how collagen type I can be affected by pathological conditions. The application of Fast Fourier Transform (FFT) coupled with Atomic Force Microscope (AFM) imaging distinguishes not only healthy and diseased skin but also holds potential for automated diagnosis of connective tissue disorders (CTDs), contributing to both clinical diagnostics and fundamental research in this area. Here we studied the changes in the structural parameters of collagen fibrils in Ehlers Danlos Syndrome (EDS). We have used skin extracted from genetically mutant mice that exhibit EDS phenotype as our model system (Col1a1Jrt/+ mice). The collagen fibrils were analyzed by AFM based descriptive-structural parameters, coupled with a 2D Fast Fourier Transform(2D-FFT) approach that automated the analysis of AFM images. In addition, each sample was characterized based on its FFT and power spectral density. Our qualitative data showed morphological differences in collagen fibril clarity (clearness of the collagen fibril edge with their neighbouring fibri), D-banding, orientation, and linearity. We have also demonstrated that FFT could be a new tool for distinguishing healthy from tissues with CTDs by measuring the disorganization of fibrils in the matrix. We have also employed FFT to reveal the orientations of the collagen fibrils, providing clinically relevant phenotypic information on their organization and anisotropy. The result of this study can be used to develop a new automated tool for better diagnosis of CTDs.
Collapse
Affiliation(s)
- Emilie Khattignavong
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
- UMR 5513, Laboratoire de Tribologie et Dynamique Des Systémes, École Centrale de Lyon-École Nationale d'Ingénieurs de Saint, Université de Lyon, Étienne, France
| | - Mehrnoosh Neshatian
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
| | - Mina Vaez
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
| | - Amaury Guillermin
- UMR 5513, Laboratoire de Tribologie et Dynamique Des Systémes, École Centrale de Lyon-École Nationale d'Ingénieurs de Saint, Université de Lyon, Étienne, France
| | - Josephine T Tauer
- Shriners Hospital for Children, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Marianne Odlyha
- School of Biological Science, Birkbeck College, University of London, London, UK
| | - Nimish Mittal
- Division of Physical Medicine and Rehabilitation, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Svetlana V Komarova
- Shriners Hospital for Children, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Hassan Zahouani
- UMR 5513, Laboratoire de Tribologie et Dynamique Des Systémes, École Centrale de Lyon-École Nationale d'Ingénieurs de Saint, Université de Lyon, Étienne, France
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
4
|
Bazaid A, Zhang F, Zhang Q, Neumayer S, Denning D, Habelitz S, Marina Ferreira A, Rodriguez BJ. Electromechanical Coupling in Collagen Measured under Increasing Relative Humidity. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6034. [PMID: 37687727 PMCID: PMC10488372 DOI: 10.3390/ma16176034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
The functional role of collagen piezoelectricity has been under debate since the discovery of piezoelectricity in bone in 1957. The possibility that piezoelectricity plays a role in bone remodeling has generated interest in the investigation of this effect in relevant physiological conditions; however, there are conflicting reports as to whether collagen is piezoelectric in a humid environment. In macroscale measurements, the piezoelectricity in hydrated tendon has been shown to be insignificant compared to dehydrated tendon, whereas, at the nanoscale, the piezoelectric effect has been observed in both dry and wet bone using piezoresponse force microscopy (PFM). In this work, the electromechanical properties of type I collagen from a rat tail tendon have been investigated at the nanoscale as a function of humidity using lateral PFM (LPFM) for the first time. The relative humidity (RH) was varied from 10% to 70%, allowing the piezoelectric behavior to be studied dry, humid, as well as in the hydrated range for collagen in physiological bone (12% moisture content, corresponding to 40-50% RH). The results show that collagen piezoresponse can be measured across the humidity range studied, suggesting that piezoelectricity remains a property of collagen at a biologically relevant humidity.
Collapse
Affiliation(s)
- Arwa Bazaid
- School of Physics and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland; (A.B.); (F.Z.); (Q.Z.); (S.N.)
| | - Fengyuan Zhang
- School of Physics and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland; (A.B.); (F.Z.); (Q.Z.); (S.N.)
| | - Qiancheng Zhang
- School of Physics and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland; (A.B.); (F.Z.); (Q.Z.); (S.N.)
| | - Sabine Neumayer
- School of Physics and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland; (A.B.); (F.Z.); (Q.Z.); (S.N.)
| | - Denise Denning
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin D04 V1W8, Ireland;
| | - Stefan Habelitz
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA 94143, USA;
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Brian J. Rodriguez
- School of Physics and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland; (A.B.); (F.Z.); (Q.Z.); (S.N.)
| |
Collapse
|
5
|
Alcorta-Sevillano N, Infante A, Macías I, Rodríguez CI. Murine Animal Models in Osteogenesis Imperfecta: The Quest for Improving the Quality of Life. Int J Mol Sci 2022; 24:ijms24010184. [PMID: 36613624 PMCID: PMC9820162 DOI: 10.3390/ijms24010184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Osteogenesis imperfecta is a rare genetic disorder characterized by bone fragility, due to alterations in the type I collagen molecule. It is a very heterogeneous disease, both genetically and phenotypically, with a high variability of clinical phenotypes, ranging from mild to severe forms, the most extreme cases being perinatal lethal. There is no curative treatment for OI, and so great efforts are being made in order to develop effective therapies. In these attempts, the in vivo preclinical studies are of paramount importance; therefore, serious analysis is required to choose the right murine OI model able to emulate as closely as possible the disease of the target OI population. In this review, we summarize the features of OI murine models that have been used for preclinical studies until today, together with recently developed new murine models. The bone parameters that are usually evaluated in order to determine the relevance of new developing therapies are exposed, and finally, current and innovative therapeutic strategies attempts considered in murine OI models, along with their mechanism of action, are reviewed. This review aims to summarize the in vivo studies developed in murine models available in the field of OI to date, in order to help the scientific community choose the most accurate OI murine model when developing new therapeutic strategies capable of improving the quality of life.
Collapse
Affiliation(s)
- Natividad Alcorta-Sevillano
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Iratxe Macías
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Correspondence:
| |
Collapse
|
6
|
Design of synthetic collagens that assemble into supramolecular banded fibers as a functional biomaterial testbed. Nat Commun 2022; 13:6761. [PMID: 36351904 PMCID: PMC9646729 DOI: 10.1038/s41467-022-34127-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Collagens are the most abundant proteins of the extracellular matrix, and the hierarchical folding and supramolecular assembly of collagens into banded fibers is essential for mediating cell-matrix interactions and tissue mechanics. Collagen extracted from animal tissues is a valuable commodity, but suffers from safety and purity issues, limiting its biomaterials applications. Synthetic collagen biomaterials could address these issues, but their construction requires molecular-level control of folding and supramolecular assembly into ordered banded fibers, comparable to those of natural collagens. Here, we show an innovative class of banded fiber-forming synthetic collagens that recapitulate the morphology and some biological properties of natural collagens. The synthetic collagens comprise a functional-driver module that is flanked by adhesive modules that effectively promote their supramolecular assembly. Multiscale simulations support a plausible molecular-level mechanism of supramolecular assembly, allowing precise design of banded fiber morphology. We also experimentally demonstrate that synthetic fibers stimulate osteoblast differentiation at levels comparable to natural collagen. This work thus deepens understanding of collagen biology and disease by providing a ready source of safe, functional biomaterials that bridge the current gap between the simplicity of peptide biophysical models and the complexity of in vivo animal systems.
Collapse
|
7
|
Atomic force microscopy (AFM) and its applications to bone-related research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:52-66. [DOI: 10.1016/j.pbiomolbio.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
8
|
Distinctive structure, composition and biomechanics of collagen fibrils in vaginal wall connective tissues associated with pelvic organ prolapse. Acta Biomater 2022; 152:335-344. [PMID: 36055614 PMCID: PMC10182770 DOI: 10.1016/j.actbio.2022.08.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
Collagen is the predominant structural protein within connective tissues. Pelvic organ prolapse (POP) is characterized by weakening of the pelvic floor connective tissues and loss of support for pelvic organs. In this study, we examined the multiscale structure, molecular composition and biomechanics of native collagen fibrils in connective tissues of the posterior vaginal fornix collected from healthy women and POP patients, and established the correlation of these properties with clinical POP quantification (POP-Q) scores. The collagen characteristics, including collagen amount, ratio of Collagen I and Collagen III, collagen fibril d-period, alignment and stiffness, were found to change progressively with the increase of the clinical measurement of Point C, a measure of uterine descent and apical prolapse. The results imply that a severe prolapse is associated with stiffer collagen fibrils, reduced collagen d-period, increased fibril alignment and imbalanced collagen synthesis, degradation and deposition. Additionally, prolapse progression appears to be synchronized with deterioration of the collagen matrix, suggesting that a POP-Q score obtained via a non-invasive clinical test can be potentially used to quantitatively assess collagen abnormality of a patient's local tissue. STATEMENT OF SIGNIFICANCE: Abnormal collagen metabolism and deposition are known to associate with connective tissue disorders, such as pelvic organ prolapse. Quantitative correlation of the biochemical and biophysical characteristics of collagen in a prolapse patient's tissue with the clinical diagnostic measurements is unexplored and unestablished. This study fills the knowledge gap between clinical prolapse quantification and the individual's cellular and molecular disorders leading to connective tissue failure, thus, provides the basis for clinicians to employ personalized treatment that can best manage the patient's condition and to alert pre-symptomatic patients for early management to avoid unwanted surgery.
Collapse
|
9
|
Garibaldi N, Besio R, Dalgleish R, Villani S, Barnes AM, Marini JC, Forlino A. Dissecting the phenotypic variability of osteogenesis imperfecta. Dis Model Mech 2022; 15:275408. [PMID: 35575034 PMCID: PMC9150118 DOI: 10.1242/dmm.049398] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous family of collagen type I-related diseases characterized by bone fragility. OI is most commonly caused by single-nucleotide substitutions that replace glycine residues or exon splicing defects in the COL1A1 and COL1A2 genes that encode the α1(I) and α2(I) collagen chains. Mutant collagen is partially retained intracellularly, impairing cell homeostasis. Upon secretion, it assembles in disorganized fibrils, altering mineralization. OI is characterized by a wide range of clinical outcomes, even in the presence of identical sequence variants. Given the heterotrimeric nature of collagen I, its amino acid composition and the peculiarity of its folding, several causes may underlie the phenotypic variability of OI. A deep analysis of entries regarding glycine and splice site collagen substitution of the largest publicly available patient database reveals a higher risk of lethal phenotype for carriers of variants in α1(I) than in α2(I) chain. However, splice site variants are predominantly associated with lethal phenotype when they occur in COL1A2. In addition, lethality is increased when mutations occur in regions of importance for extracellular matrix interactions. Both extracellular and intracellular determinants of OI clinical severity are discussed in light of the findings from in vitro and in vivo OI models. Combined with meticulous tracking of clinical cases via a publicly available database, the available OI animal models have proven to be a unique tool to shed light on new modulators of phenotype determination for this rare heterogeneous disease.
Collapse
Affiliation(s)
- Nadia Garibaldi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Raymond Dalgleish
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Simona Villani
- Department of Public Health and Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, 27100 Pavia, Italy
| | - Aileen M Barnes
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, 20892 Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, 20892 Bethesda, MD, USA
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
10
|
Assessing Collagen D-Band Periodicity with Atomic Force Microscopy. MATERIALS 2022; 15:ma15041608. [PMID: 35208148 PMCID: PMC8877100 DOI: 10.3390/ma15041608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023]
Abstract
The collagen superfamily includes more than fifty collagen and/or collagen-like proteins with fibril-forming collagen type I being the most abundant protein within the extracellular matrix. Collagen type I plays a crucial role in a variety of functions, it has been associated with many pathological conditions and it is widely used due to its unique properties. One unique nano-scale characteristic of natural occurring collagen type I fibers is the so-called D-band periodicity, which has been associated with collagen natural structure and properties, while it seems to play a crucial role in the interactions between cells and collagen and in various pathological conditions. An accurate characterization of the surface and structure of collagen fibers, including D-band periodicity, on collagen-based tissues and/or (nano-)biomaterials can be achieved by Atomic Force Microscopy (AFM). AFM is a scanning probe microscope and is among the few techniques that can assess D-band periodicity. This review covers issues related to collagen and collagen D-band periodicity and the use of AFM for studying them. Through a systematic search in databases (PubMed and Scopus) relevant articles were identified. The study of these articles demonstrated that AFM can offer novel information concerning D-band periodicity. This study highlights the importance of studying collagen D-band periodicity and proves that AFM is a powerful tool for investigating a number of different properties related to collagen D-band periodicity.
Collapse
|
11
|
Uniyal P, Sihota P, Kumar N. Effect of organic matrix alteration on strain rate dependent mechanical behaviour of cortical bone. J Mech Behav Biomed Mater 2021; 125:104910. [PMID: 34700105 DOI: 10.1016/j.jmbbm.2021.104910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
The organic matrix phase of bone plays important role in its mechanical performance, especially in the post-yield regime. Also, the organic phase influences loading rate-dependent behaviour of bone which is relevant during the high-speed loading events. Many diseases, as well as aging, affect the matrix phase of bone which causes compromised mechanical properties. Improved understanding of alterations in the organic matrix phase on mechanical response of bone will be helpful in the mitigation of fractures associated with inferior matrix quality. In the present work, effect of alteration in organic matrix of cortical bone on its strain-rate dependent behaviour was investigated. To produce different amounts of collagen denaturation, bovine cortical bones were heated at the temperature of 180 °C and 240 °C. Further, compression testing was performed at quasi-static strain rates of 10-4 s-1 to 10-2 s-1 using a conventional testing machine whereas a modified Split Hopkinson Pressure Bar (SHPB) was used for high strain rate (∼103) testing. Thermal treatment-induced changes in the mineral and organic phases of bone were assessed using X-ray diffraction (XRD) and Fourier-transform infrared-attenuated total reflection (FTIR-ATR) techniques respectively. Compression test results show that thermal treatment of bone up to 180 °C did not affect mechanical properties significantly whereas treating at 240 °C significantly reduced elastic modulus, failure stress and failure strain. Also, thermal denaturation of collagen reduced the strain rate sensitivity of cortical bone at high strain rates. Similar to the compression test observations, nanoindentation results show a significant reduction in elastic modulus and hardness of denatured samples. Further, FTIR results revealed that with the heat treatment of bone, collagen structure undergoes conformational changes at the molecular level. The initial helix structure breakdowns into unordered/random coil structures which subsequently reduced the mechanical competence of bone. The present study provides insight into the effect of organic matrix modification on mechanical behaviour of cortical bone which could be helpful in understanding bone disorders associated with organic matrix phase and development of therapeutic interventions.
Collapse
Affiliation(s)
- Piyush Uniyal
- Department for Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Praveer Sihota
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Navin Kumar
- Department for Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India; Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India.
| |
Collapse
|
12
|
Al Makhzoomi AK, Kirk TB, Allison GT. An AFM study of the nanostructural response of New Zealand white rabbit Achilles tendons to cyclic loading. Microsc Res Tech 2021; 85:728-737. [PMID: 34632676 DOI: 10.1002/jemt.23944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023]
Abstract
The nanostructural response of New Zealand white rabbit Achilles tendons to a fatigue damage model was assessed quantitatively and qualitatively using the endpoint of dose assessments of each tendon from our previous study. The change in mechanical properties was assessed concurrently with nanostructural change in the same non-viable intact tendon. Atomic force microscopy was used to study the elongation of D-periodicities, and the changes were compared both within the same fibril bundle and between fibril bundles. D-periodicities increased due to both increased strain and increasing numbers of fatigue cycles. Although no significant difference in D-periodicity lengthening was found between fibril bundles, the lengthening of D-periodicity correlated strongly with the overall tendon mechanical changes. The accurate quantification of fibril elongation in response to macroscopic applied strain assisted in assessing the complex structure-function relationship in Achilles tendons.
Collapse
Affiliation(s)
- Anas K Al Makhzoomi
- School of Allied Health, Faculty of Health Science, Curtin University, Perth, Western Australia, Australia
| | - Thomas B Kirk
- School of Science, Engineering and Technology, RMIT University Vietnam, Ho Chi Minh City, Vietnam
| | - Garry T Allison
- Associate Deputy Vice-Chancellor, Research Excellence, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Toth Z, Ward A, Tang SY, McBride-Gagyi S. Sexual differences in bone porosity, osteocyte density, and extracellular matrix organization due to osteoblastic-specific Bmp2 deficiency in mice. Bone 2021; 150:116002. [PMID: 33971313 PMCID: PMC8217247 DOI: 10.1016/j.bone.2021.116002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/01/2022]
Abstract
Clinical studies have come to conflicting conclusions regarding BMP2 deficiency's link to regulating bone mass and increasing fracture risk. This may be due to the signaling protein having sex- or age-dependent effects. Previous pre-clinical studies have supported a role, but have not adequately determined the physical mechanism causing altered bulk material properties. This study investigated the physical effects of Bmp2 ablation from osteogenic lineage cells (Osx-Cre; Bmp2fl/fl) in 10- and 15-week-old male and female mice. Bones collected post-mortem were subjected to fracture toughness testing, reference point indentation testing, microCT, and histological analysis to determine the multi-scale relationships between mechanical/material behavior and collagen production, collagen organization, and bone architecture. BMP2-deficient bones were smaller, more brittle, and contained more lacunae-scale voids and cortical pores. The cellular density was significantly increased and there were material-level differences measured by reference point indentation, independently of collagen fiber alignment or organization. The disparities in bone size and in bone fracture toughness between genotypes were especially striking in males at 15-weeks-old. Together, this study suggests that there are sex- and age-dependent effects of BMP2 deficiency. The results from both sexes also warrant further investigation into BMP2 deficiency's role in osteoblasts' transition to osteocytes and overall bone porosity.
Collapse
Affiliation(s)
- Zacharie Toth
- Department of Orthopaedic Surgery, Saint Louis University, St. Louis, MO, United States of America
| | - Ashley Ward
- Department of Orthopaedic Surgery, Saint Louis University, St. Louis, MO, United States of America
| | - Simon Y Tang
- Department of Orthopaedics, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Sarah McBride-Gagyi
- Department of Orthopaedic Surgery, Saint Louis University, St. Louis, MO, United States of America.
| |
Collapse
|
14
|
Maghsoudi-Ganjeh M, Samuel J, Ahsan AS, Wang X, Zeng X. Intrafibrillar mineralization deficiency and osteogenesis imperfecta mouse bone fragility. J Mech Behav Biomed Mater 2021; 117:104377. [PMID: 33636677 DOI: 10.1016/j.jmbbm.2021.104377] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 01/25/2023]
Abstract
Osteogenesis imperfecta (OI), a brittle bone disease, is known to result in severe bone fragility. However, its ultrastructural origins are still poorly understood. In this study, we hypothesized that deficient intrafibrillar mineralization is a key contributor to the OI induced bone brittleness. To test this hypothesis, we explored the mechanical and ultrastructural changes in OI bone using the osteogenesis imperfecta murine (oim) model. Synchrotron X-ray scattering experiments indicated that oim bone had much less intrafibrillar mineralization than wild type bone, thus verifying that the loss of mineral crystals indeed primarily occurred in the intrafibrillar space of oim bone. It was also found that the mineral crystals were organized from preferentially in longitudinal axis in wild type bone to more randomly in oim bone. Moreover, it revealed that the deformation of mineral crystals was more coordinated with collagen fibrils in wild type than in oim bone, suggesting that the load transfer deteriorated between the two phases in oim bone. The micropillar test revealed that the compression work to fracture of oim bone (8.2 ± 0.9 MJ/m3) was significantly smaller (p < 0.05) than that of wild type bone (13.9 ± 2.7 MJ/m3), while the bone strength was not statistically different (p > 0.05) between the two genotype groups. In contrast, the uniaxial tensile test showed that the ultimate strength of wild type bone (50 ± 4.5 MPa) was significantly greater (p < 0.05) than that of oim bone (38 ± 5.3 MPa). Furthermore, the nanoscratch test showed that the toughness of oim bone was much less than that of wild type bone (6.6 ± 2.2 GJ/m3 vs. 12.6 ± 1.4 GJ/m3). Finally, in silico simulations using a finite element model of sub-lamellar bone confirmed the links between the reduced intrafibrillar mineralization and the observed changes in the mechanical behavior of OI bone. Taken together, these results provide important mechanistic insights into the underlying cause of poor mechanical quality of OI bone, thus pave the way toward future treatments of this brittle bone disease.
Collapse
Affiliation(s)
| | - Jitin Samuel
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Abu Saleh Ahsan
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xiaodu Wang
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Xiaowei Zeng
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
15
|
Cauble MA, Mancini NS, Kalinowski J, Lykotrafitis G, Moss IL. Atomic force microscopy imaging for nanoscale and microscale assessments of extracellular matrix in intervertebral disc and degeneration. JOR Spine 2020; 3:e1125. [PMID: 33015582 PMCID: PMC7524250 DOI: 10.1002/jsp2.1125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/07/2020] [Accepted: 08/30/2020] [Indexed: 01/07/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a condition that is often associated with debilitating back pain. There are no disease-modifying treatments available to halt the progression of this ubiquitous disorder. This is partly due to a lack of understanding of extracellular matrix (ECM) changes that occur at the micro- and nanometer size scales as the disease progresses. Over the past decade, atomic force microscopy (AFM) has been utilized as a tool to investigate the impact of disease on nanoscale structure of ECM in bone, skin, tendon, and dentin. We have expanded this methodology to include the IVD and report the first quantitative analysis of ECM structure at submicron size scales in a murine model for progressive IVD degeneration. Collagen D-spacing, a metric of nanoscale structure at the fibril level, was observed as a distribution of values with an overall average value of 62.5 ± 2.5 nm. In degenerative discs, the fibril D-spacing distribution shifted towards higher values in both the annulus fibrosus and nucleus pulposus (NP) (P < .05). A novel microstructural feature, collagen toroids, defined by a topographical pit enclosed by fibril-forming matrix was observed in the NP. With degeneration, these microstructures became more numerous and the morphology was altered from circular (aspect ratio 1.0 ± 0.1) to oval (aspect ratio 1.5 ± 0.4), P < .005. These analyses provide ECM structural details of the IVD at size scales that have historically been missing in studies of disc degeneration. Knowledge gained from these insights may aid the development of novel disease-modifying therapeutics.
Collapse
Affiliation(s)
- Meagan A Cauble
- UConn Health Department of Orthopaedic Surgery Musculoskeletal Institute Farmington Connecticut USA
| | - Nickolas S Mancini
- UConn Health Department of Orthopaedic Surgery Musculoskeletal Institute Farmington Connecticut USA
| | - Judith Kalinowski
- UConn Health Department of Orthopaedic Surgery Musculoskeletal Institute Farmington Connecticut USA
| | - George Lykotrafitis
- Department of Mechanical Engineering University of Connecticut Storrs Connecticut USA
| | - Isaac L Moss
- UConn Health Department of Orthopaedic Surgery Musculoskeletal Institute Farmington Connecticut USA
| |
Collapse
|
16
|
Hoop CL, Kemraj AP, Wang B, Gahlawat S, Godesky M, Zhu J, Warren HR, Case DA, Shreiber DI, Baum J. Molecular underpinnings of integrin binding to collagen-mimetic peptides containing vascular Ehlers-Danlos syndrome-associated substitutions. J Biol Chem 2019; 294:14442-14453. [PMID: 31406019 DOI: 10.1074/jbc.ra119.009685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/06/2019] [Indexed: 11/06/2022] Open
Abstract
Collagens carry out critical extracellular matrix (ECM) functions by interacting with numerous cell receptors and ECM components. Single glycine substitutions in collagen III, which predominates in vascular walls, result in vascular Ehlers-Danlos syndrome (vEDS), leading to arterial, uterine, and intestinal rupture and an average life expectancy of <50 years. Collagen interactions with integrin α2β1 are vital for platelet adhesion and activation; however, how these interactions are impacted by vEDS-associated mutations and by specific amino acid substitutions is unclear. Here, we designed collagen-mimetic peptides (CMPs) with previously reported Gly → Xaa (Xaa = Ala, Arg, or Val) vEDS substitutions within a high-affinity integrin α2β1-binding motif, GROGER. We used these peptides to investigate, at atomic-level resolution, how these amino acid substitutions affect the collagen III-integrin α2β1 interaction. Using a multitiered approach combining biological adhesion assays, CD, NMR, and molecular dynamics (MD) simulations, we found that these substitutions differentially impede human mesenchymal stem cell spreading and integrin α2-inserted (α2I) domain binding to the CMPs and were associated with triple-helix destabilization. Although an Ala substitution locally destabilized hydrogen bonding and enhanced mobility, it did not significantly reduce the CMP-integrin interactions. MD simulations suggested that bulkier Gly → Xaa substitutions differentially disrupt the CMP-α2I interaction. The Gly → Arg substitution destabilized CMP-α2I side-chain interactions, and the Gly → Val change broke the essential Mg2+ coordination. The relationship between the loss of functional binding and the type of vEDS substitution provides a foundation for developing potential therapies for managing collagen disorders.
Collapse
Affiliation(s)
- Cody L Hoop
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Allysa P Kemraj
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Baifan Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Madison Godesky
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Jie Zhu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Haley R Warren
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| |
Collapse
|
17
|
Yang PF, Nie XT, Wang Z, Al-Qudsy LHH, Ren L, Xu HY, Rittweger J, Shang P. Disuse Impairs the Mechanical Competence of Bone by Regulating the Characterizations of Mineralized Collagen Fibrils in Cortical Bone. Front Physiol 2019; 10:775. [PMID: 31293444 PMCID: PMC6598106 DOI: 10.3389/fphys.2019.00775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Bones are made of complex material comprising organic components and mineral hydroxyapatite, both of which formulate the unique hierarchical structure of bone and its mechanical properties. Bones are capable of optimizing their structure and mechanical properties according to the mechanical environment. Mineral loss is a well-known consequence of skeleton disuse. By contrast, the response of the non-mineral phase of bone, i.e., the collagen network, during disuse remain largely unknown. In this study, a tail-suspension mice model was used to induce bone loss. Atomic force microscopy-based imaging and indentation approaches were adopted to investigate the influence of disuse on the morphology and in situ mechanical behavior of the collagen fibrils, under both non-loaded and load-bearing conditions, in the cortical tibia of mice. The results indicate that disuse induced by hindlimb unloading did not alter the orientation and D-periodic spacing of the collagen fibril, but results in decreased collagen crosslinking which correlates with decreased elasticity and increased susceptibility to mechanical damage. More concretely, the collagen fibrils in the disused tibia were misaligned under mechanical loading. It therefore indicates that the disordered arrangement of the mineralized collagen fibrils is one of the characteristics of the weakened bone during elastic deformation. These findings reveals the unique adaptation regimes of the collagen fibrils in the cortical bone to disuse, as well as the deformation mechanisms of bone in the relevant pathological process at different scales.
Collapse
Affiliation(s)
- Peng-Fei Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, China.,Research & Development Institute, Northwestern Polytechnical University, Shenzhen, China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, China
| | - Xiao-Tong Nie
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, China
| | - Zhe Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, China
| | - Luban Hamdy Hameed Al-Qudsy
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, China
| | - Li Ren
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, China.,Research & Development Institute, Northwestern Polytechnical University, Shenzhen, China
| | - Hui-Yun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, China.,Research & Development Institute, Northwestern Polytechnical University, Shenzhen, China
| | - Joern Rittweger
- Division of Muscle & Bone Metabolism, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Peng Shang
- Research & Development Institute, Northwestern Polytechnical University, Shenzhen, China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
18
|
Mastrogiacomo M, Campi G, Cancedda R, Cedola A. Synchrotron radiation techniques boost the research in bone tissue engineering. Acta Biomater 2019; 89:33-46. [PMID: 30880235 DOI: 10.1016/j.actbio.2019.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 01/15/2023]
Abstract
X-ray Synchrotron radiation-based techniques, in particular Micro-tomography and Micro-diffraction, were exploited to investigate the structure of bone deposited in vivo within a porous ceramic scaffold. Bone formation was studied by implanting Mesenchymal Stem Cell (MSC) seeded ceramic scaffolds in a mouse model. Osteoblasts derived from the seeded MSC and from differentiation of cells migrated within the scaffold together with the blood vessels, deposited within the scaffold pores an organic collagenous matrix on which a precursor mineral amorphous liquid-phase, containing Ca++ and PO4-- crystallized filling the gaps between the collagen molecules. Histology offered a valid instrument to investigate the engineered tissue structure, but, unfortunately, limited itself to a macroscopic analysis. The evolution of the X-ray Synchrotron radiation-based techniques and the combination of micro X-ray diffraction with X-ray phase-contrast imaging enabled to study the dynamic of the structural and morphological changes occurring during the new bone deposition, biomineralization and vascularization. In fact, the unique features of Synchrotron radiation, is providing the high spatial resolution probe which is necessary for the study of complex materials presenting heterogeneity from micron-scale to meso- and nano-scale. Indeed, this is the occurrence in the heterogeneous and hierarchical bone tissue where an organic matter, such as the collagenous matrix, interacts with mineral nano-crystals to generate a hybrid multiscale biomaterial with unique physical properties. In this framework, the use of advanced synchrotron radiation techniques allowed to understand and to clarify fundamental aspects of the bone formation process within the bioceramic, i.e. biomineralization and vascularization, including to obtain deeper knowledge on bone deposition, mineralization and reabsorption in different health, aging and pathological conditions. In this review we present an overview of the X-ray Synchrotron radiation techniques and we provide a general outlook of their applications on bone Tissue Engineering, with a focus on our group work. STATEMENT OF SIGNIFICANCE: Synchrotron Radiation techniques for Tissue Engineering In this review we report recent applications of X-ray Synchrotron radiation-based techniques, in particular Microtomography and Microdiffraction, to investigations on the structure of ceramic scaffolds and bone tissue regeneration. Tissue engineering has made significant advances in bone regeneration by proposing the use of mesenchymal stem cells in combination with various types of scaffolds. The efficacy of the biomaterials used to date is not considered optimal in terms of resorbability and bone formation, resulting in a poor vascularization at the implant site. The review largely based on our publications in the last ten years could help the study of the regenerative model proposed. We also believe that the new imaging technologies we describe could be a starting point for the development of additional new techniques with the final aim of transferring them to the clinical practice.
Collapse
|
19
|
Stylianou A, Kontomaris SV, Grant C, Alexandratou E. Atomic Force Microscopy on Biological Materials Related to Pathological Conditions. SCANNING 2019; 2019:8452851. [PMID: 31214274 PMCID: PMC6535871 DOI: 10.1155/2019/8452851] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/23/2019] [Accepted: 03/07/2019] [Indexed: 05/16/2023]
Abstract
Atomic force microscopy (AFM) is an easy-to-use, powerful, high-resolution microscope that allows the user to image any surface and under any aqueous condition. AFM has been used in the investigation of the structural and mechanical properties of a wide range of biological matters including biomolecules, biomaterials, cells, and tissues. It provides the capacity to acquire high-resolution images of biosamples at the nanoscale and allows at readily carrying out mechanical characterization. The capacity of AFM to image and interact with surfaces, under physiologically relevant conditions, is of great importance for realistic and accurate medical and pharmaceutical applications. The aim of this paper is to review recent trends of the use of AFM on biological materials related to health and sickness. First, we present AFM components and its different imaging modes and we continue with combined imaging and coupled AFM systems. Then, we discuss the use of AFM to nanocharacterize collagen, the major fibrous protein of the human body, which has been correlated with many pathological conditions. In the next section, AFM nanolevel surface characterization as a tool to detect possible pathological conditions such as osteoarthritis and cancer is presented. Finally, we demonstrate the use of AFM for studying other pathological conditions, such as Alzheimer's disease and human immunodeficiency virus (HIV), through the investigation of amyloid fibrils and viruses, respectively. Consequently, AFM stands out as the ideal research instrument for exploring the detection of pathological conditions even at very early stages, making it very attractive in the area of bio- and nanomedicine.
Collapse
Affiliation(s)
- Andreas Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2238, Cyprus
| | - Stylianos-Vasileios Kontomaris
- Mobile Radio Communications Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechniou, Athens 15780, Greece
- Athens Metropolitan College, Sorou 74, Marousi 15125, Greece
| | - Colin Grant
- Hitachi High-Technologies Europe, Techspace One, Keckwick Lane, Warrington WA4 4AB, UK
| | - Eleni Alexandratou
- Biomedical Optics and Applied Biophysics Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechniou, Athens 15780, Greece
| |
Collapse
|
20
|
Sun Y, Vu LH, Chew N, Puthucheary Z, Cove ME, Zeng K. A Study of Perturbations in Structure and Elastic Modulus of Bone Microconstituents Using Bimodal Amplitude Modulated-Frequency Modulated Atomic Force Microscopy. ACS Biomater Sci Eng 2018; 5:478-486. [DOI: 10.1021/acsbiomaterials.8b01087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yao Sun
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| | - Lien Hong Vu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 10, Singapore 119228
| | - Nicholas Chew
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 10, Singapore 119228
| | - Zudin Puthucheary
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 10, Singapore 119228
- Division of Critical Care, Institute of Sports and Exercise Health, University College London Hospitals, U.K., and Centre for Human Health and Performance, University College London, London WC1E 6BT, United Kingdom
| | - Matthew E. Cove
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 10, Singapore 119228
| | - Kaiyang Zeng
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| |
Collapse
|
21
|
Deformation regimes of collagen fibrils in cortical bone revealed by in situ morphology and elastic modulus observations under mechanical loading. J Mech Behav Biomed Mater 2018; 79:115-121. [DOI: 10.1016/j.jmbbm.2017.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/21/2017] [Accepted: 12/14/2017] [Indexed: 01/14/2023]
|
22
|
Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci 2018; 1410:93-106. [PMID: 29265417 DOI: 10.1111/nyas.13572] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Bone quality encompasses all the characteristics of bone that, in addition to density, contribute to its resistance to fracture. In this review, we consider changes in architecture, porosity, and composition, including collagen structure, mineral composition, and crystal size. These factors all are known to vary with tissue and animal ages, and health status. Bone morphology and presence of microcracks, which also contribute to bone quality, will not be discussed in this review. Correlations with mechanical performance for collagen cross-linking, crystallinity, and carbonate content are contrasted with mineral content. Age-dependent changes in humans and rodents are discussed in relation to rodent models of disease. Examples are osteoporosis, osteomalacia, osteogenesis imperfecta (OI), and osteopetrosis in both humans and animal models. Each of these conditions, along with aging, is associated with increased fracture risk for distinct reasons.
Collapse
Affiliation(s)
- Adele L Boskey
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York.,Department of Biochemistry, Weill Cornell Medical College, New York, New York
| | - Laurianne Imbert
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York
| |
Collapse
|
23
|
Peñuela L, Negro C, Massa M, Repaci E, Cozzani E, Parodi A, Scaglione S, Quarto R, Raiteri R. Atomic force microscopy for biomechanical and structural analysis of human dermis: A complementary tool for medical diagnosis and therapy monitoring. Exp Dermatol 2018; 27:150-155. [DOI: 10.1111/exd.13468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Leonardo Peñuela
- Department of Informatics, Bioengineering, Robotics, and System Engineering; University of Genoa; Genoa Italy
| | - Carola Negro
- Department of Informatics, Bioengineering, Robotics, and System Engineering; University of Genoa; Genoa Italy
| | - Michela Massa
- Advanced Biotechnology Center; San Martino Hospital; University of Genoa; Genoa Italy
| | - Erica Repaci
- Advanced Biotechnology Center; San Martino Hospital; University of Genoa; Genoa Italy
| | - Emanuele Cozzani
- Clinic of Dermatology, DISSAL; Section of Dermatology; University of Genoa; IRCCS-AOU San Martino-IST; Genoa Italy
| | - Aurora Parodi
- Clinic of Dermatology, DISSAL; Section of Dermatology; University of Genoa; IRCCS-AOU San Martino-IST; Genoa Italy
| | - Silvia Scaglione
- Research National Council; IEIIT Institute (CNR-IEIIT) Genoa; Genoa Italy
| | - Rodolfo Quarto
- Advanced Biotechnology Center; San Martino Hospital; University of Genoa; Genoa Italy
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics, and System Engineering; University of Genoa; Genoa Italy
| |
Collapse
|
24
|
Chen J, Ahn T, Colón-Bernal ID, Kim J, Banaszak Holl MM. The Relationship of Collagen Structural and Compositional Heterogeneity to Tissue Mechanical Properties: A Chemical Perspective. ACS NANO 2017; 11:10665-10671. [PMID: 29112404 DOI: 10.1021/acsnano.7b06826] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Collagen is the primary protein component in mammalian connective tissues. Over the last 20 years, evidence has mounted that collagen matrices exhibit substantial heterogeneity in their hierarchical structures and that this heterogeneity plays important roles in both structure and function. Herein, an overview of studies addressing the nanoscale compositional and structural heterogeneity is provided and connected to work exploring the mechanical implications for a number of tissues.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Chemistry, ‡Macromolecular Science and Engineering, and §Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Taeyong Ahn
- Department of Chemistry, ‡Macromolecular Science and Engineering, and §Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Isabel D Colón-Bernal
- Department of Chemistry, ‡Macromolecular Science and Engineering, and §Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jinhee Kim
- Department of Chemistry, ‡Macromolecular Science and Engineering, and §Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Mark M Banaszak Holl
- Department of Chemistry, ‡Macromolecular Science and Engineering, and §Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
25
|
Canelón SP, Wallace JM. β-Aminopropionitrile-Induced Reduction in Enzymatic Crosslinking Causes In Vitro Changes in Collagen Morphology and Molecular Composition. PLoS One 2016; 11:e0166392. [PMID: 27829073 PMCID: PMC5102343 DOI: 10.1371/journal.pone.0166392] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/27/2016] [Indexed: 01/04/2023] Open
Abstract
Type I collagen morphology can be characterized using fibril D-spacing, a metric which describes the periodicity of repeating bands of gap and overlap regions of collagen molecules arranged into collagen fibrils. This fibrillar structure is stabilized by enzymatic crosslinks initiated by lysyl oxidase (LOX), a step which can be disrupted using β-aminopropionitrile (BAPN). Murine in vivo studies have confirmed effects of BAPN on collagen nanostructure and the objective of this study was to evaluate the mechanism of these effects in vitro by measuring D-spacing, evaluating the ratio of mature to immature crosslinks, and quantifying gene expression of type I collagen and LOX. Osteoblasts were cultured in complete media, and differentiated using ascorbic acid, in the presence or absence of 0.25mM BAPN-fumarate. The matrix produced was imaged using atomic force microscopy (AFM) and 2D Fast Fourier transforms were performed to extract D-spacing from individual fibrils. The experiment was repeated for quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Fourier Transform infrared spectroscopy (FTIR) analyses. The D-spacing distribution of collagen produced in the presence of BAPN was shifted toward higher D-spacing values, indicating BAPN affects the morphology of collagen produced in vitro, supporting aforementioned in vivo experiments. In contrast, no difference in gene expression was found for any target gene, suggesting LOX inhibition does not upregulate the LOX gene to compensate for the reduction in aldehyde formation, or regulate expression of genes encoding type I collagen. Finally, the mature to immature crosslink ratio decreased with BAPN treatment and was linked to a reduction in peak percent area of mature crosslink hydroxylysylpyridinoline (HP). In conclusion, in vitro treatment of osteoblasts with low levels of BAPN did not induce changes in genes encoding LOX or type I collagen, but led to an increase in collagen D-spacing as well as a decrease in mature crosslinks.
Collapse
Affiliation(s)
- Silvia P. Canelón
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Joseph M. Wallace
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana, United States of America
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
26
|
Gistelinck C, Witten PE, Huysseune A, Symoens S, Malfait F, Larionova D, Simoens P, Dierick M, Van Hoorebeke L, De Paepe A, Kwon RY, Weis M, Eyre DR, Willaert A, Coucke PJ. Loss of Type I Collagen Telopeptide Lysyl Hydroxylation Causes Musculoskeletal Abnormalities in a Zebrafish Model of Bruck Syndrome. J Bone Miner Res 2016; 31:1930-1942. [PMID: 27541483 PMCID: PMC5364950 DOI: 10.1002/jbmr.2977] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/09/2016] [Accepted: 08/17/2016] [Indexed: 11/11/2022]
Abstract
Bruck syndrome (BS) is a disorder characterized by joint flexion contractures and skeletal dysplasia that shows strong clinical overlap with the brittle bone disease osteogenesis imperfecta (OI). BS is caused by biallelic mutations in either the FKBP10 or the PLOD2 gene. PLOD2 encodes the lysyl hydroxylase 2 (LH2) enzyme, which is responsible for the hydroxylation of lysine residues in fibrillar collagen telopeptides. This hydroxylation directs crosslinking of collagen fibrils in the extracellular matrix, which is necessary to provide stability and tensile integrity to the collagen fibrils. To further elucidate the function of LH2 in vertebrate skeletal development, we created a zebrafish model harboring a homozygous plod2 nonsense mutation resulting in reduced telopeptide hydroxylation and crosslinking of bone type I collagen. Adult plod2 mutants present with a shortened body axis and severe skeletal abnormalities with evidence of bone fragility and fractures. The vertebral column of plod2 mutants is short and scoliotic with compressed vertebrae that show excessive bone formation at the vertebral end plates, and increased tissue mineral density in the vertebral centra. The muscle fibers of mutant zebrafish have a reduced diameter near the horizontal myoseptum. The endomysium, a layer of connective tissue ensheathing the individual muscle fibers, is enlarged. Transmission electron microscopy of mutant vertebral bone shows type I collagen fibrils that are less organized with loss of the typical plywood-like structure. In conclusion, plod2 mutant zebrafish show molecular and tissue abnormalities in the musculoskeletal system that are concordant with clinical findings in BS patients. Therefore, the plod2 zebrafish mutant is a promising model for the elucidation of the underlying pathogenetic mechanisms leading to BS and the development of novel therapeutic avenues in this syndrome. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | | | - Ann Huysseune
- Biology Department, Ghent University, Ghent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | | | | | - Pascal Simoens
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Manuel Dierick
- UGCT, Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Luc Van Hoorebeke
- UGCT, Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Anne De Paepe
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Ronald Y Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - David R Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - Andy Willaert
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Paul J Coucke
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Kłosowski MM, Carzaniga R, Abellan P, Ramasse Q, McComb DW, Porter AE, Shefelbine SJ. Electron Microscopy Reveals Structural and Chemical Changes at the Nanometer Scale in the Osteogenesis Imperfecta Murine Pathology. ACS Biomater Sci Eng 2016; 3:2788-2797. [DOI: 10.1021/acsbiomaterials.6b00300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Michał M. Kłosowski
- Department
of Materials and Engineering, Royal School of Mines, South Kensington
Campus, Imperial College London, London SW7 2AZ, U.K
| | - Raffaella Carzaniga
- Cancer
Research U.K., Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, U.K
| | - Patricia Abellan
- SuperSTEM Laboratory, SciTech Daresbury Campus, Keckwick Lane, Daresbury, Warrington WA4 4AD, U.K
| | - Quentin Ramasse
- SuperSTEM Laboratory, SciTech Daresbury Campus, Keckwick Lane, Daresbury, Warrington WA4 4AD, U.K
| | - David W. McComb
- Department
of Materials Science and Engineering, Center for Electron Microscopy
and Analysis, The Ohio State University, 1305 Kinnear Road, Columbus, Ohio 43212, United States
| | - Alexandra E. Porter
- Department
of Materials and Engineering, Royal School of Mines, South Kensington
Campus, Imperial College London, London SW7 2AZ, U.K
| | - Sandra J. Shefelbine
- Department
of Mechanical and Industrial Engineering, Northeastern University, 334 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
28
|
Hammond MA, Laine TJ, Berman AG, Wallace JM. Treadmill Exercise Improves Fracture Toughness and Indentation Modulus without Altering the Nanoscale Morphology of Collagen in Mice. PLoS One 2016; 11:e0163273. [PMID: 27655444 PMCID: PMC5031456 DOI: 10.1371/journal.pone.0163273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/05/2016] [Indexed: 01/22/2023] Open
Abstract
The specifics of how the nanoscale properties of collagen (e.g., the crosslinking profile) affect the mechanical integrity of bone at larger length scales is poorly understood despite growing evidence that collagen’s nanoscale properties are altered with disease. Additionally, mass independent increases in postyield displacement due to exercise suggest loading-induced improvements in bone quality associated with collagen. To test whether disease-induced reductions in bone quality driven by alterations in collagen can be rescued or prevented via exercise-mediated changes to collagen’s nanoscale morphology and mechanical properties, the effects of treadmill exercise and β-aminopropionitrile treatment were investigated. Eight week old female C57BL/6 mice were given a daily subcutaneous injection of either 164 mg/kg β-aminopropionitrile or phosphate buffered saline while experiencing either normal cage activity or 30 min of treadmill exercise for 21 consecutive days. Despite differences in D-spacing distribution (P = 0.003) and increased cortical area (tibial: P = 0.005 and femoral: P = 0.015) due to β-aminopropionitrile treatment, an overt mechanical disease state was not achieved as there were no differences in fracture toughness or 4 point bending due to β-aminopropionitrile treatment. While exercise did not alter (P = 0.058) the D-spacing distribution of collagen or prevent (P < 0.001) the β-aminopropionitrile-induced changes present in the unexercised animals, there were differential effects in the distribution of the reduced elastic modulus due to exercise between control and β-aminopropionitrile-treated animals (P < 0.001). Fracture toughness was increased (P = 0.043) as a main effect of exercise, but no significant differences due to exercise were observed using 4 point bending. Future studies should examine the potential for sex specific differences in the dose of β-aminopropionitrile required to induce mechanical effects in mice and the contributions of other nanoscale aspects of bone (e.g., the mineral–collagen interface) to elucidate the mechanism for the exercise-based improvements in fracture toughness observed here and the increased postyield deformation observed in other studies.
Collapse
Affiliation(s)
- Max A. Hammond
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Tyler J. Laine
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States of America
| | - Alycia G. Berman
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States of America
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States of America
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States of America
- * E-mail:
| |
Collapse
|
29
|
Gu C, Katti DR, Katti KS. On-site SEM and nanomechanical properties of human OI bone. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2016. [DOI: 10.1680/jbibn.15.00008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
30
|
Li T, Chang SW, Rodriguez-Florez N, Buehler MJ, Shefelbine S, Dao M, Zeng K. Studies of chain substitution caused sub-fibril level differences in stiffness and ultrastructure of wildtype and oim/oim collagen fibers using multifrequency-AFM and molecular modeling. Biomaterials 2016; 107:15-22. [PMID: 27589372 DOI: 10.1016/j.biomaterials.2016.08.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 11/25/2022]
Abstract
Molecular alteration in type I collagen, i.e., substituting the α2 chain with α1 chain in tropocollagen molecule, can cause osteogenesis imperfecta (OI), a brittle bone disease, which can be represented by a mouse model (oim/oim). In this work, we use dual-frequency Atomic Force Microscopy (AFM) and incorporated with molecular modeling to quantify the ultrastructure and stiffness of the individual native collagen fibers from wildtype (+/+) and oim/oim diseased mice humeri. Our work presents direct experimental evidences that the +/+ fibers have highly organized and compact ultrastructure and corresponding ordered stiffness distribution. In contrast, oim/oim fibers have ordered but loosely packed ultrastructure with uncorrelated stiffness distribution, as well as local defects. The molecular model also demonstrates the structural and molecular packing differences between +/+ and oim/oim collagens. The molecular mutation significantly altered sub-fibril structure and mechanical property of collagen fibers. This study can give the new insight for the mechanisms and treatment of the brittle bone disease.
Collapse
Affiliation(s)
- Tao Li
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Shu-Wei Chang
- Department of Civil Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sandra Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA.
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Kaiyang Zeng
- Department of Mechanical Engineering, National University of Singapore, Singapore.
| |
Collapse
|
31
|
Tonniges JR, Albert B, Calomeni EP, Roy S, Lee J, Mo X, Cole SE, Agarwal G. Collagen Fibril Ultrastructure in Mice Lacking Discoidin Domain Receptor 1. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:599-611. [PMID: 27329311 PMCID: PMC5174982 DOI: 10.1017/s1431927616000787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The quantity and quality of collagen fibrils in the extracellular matrix (ECM) have a pivotal role in dictating biological processes. Several collagen-binding proteins (CBPs) are known to modulate collagen deposition and fibril diameter. However, limited studies exist on alterations in the fibril ultrastructure by CBPs. In this study, we elucidate how the collagen receptor, discoidin domain receptor 1 (DDR1) regulates the collagen content and ultrastructure in the adventitia of DDR1 knock-out (KO) mice. DDR1 KO mice exhibit increased collagen deposition as observed using Masson's trichrome. Collagen ultrastructure was evaluated in situ using transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Although the mean fibril diameter was not significantly different, DDR1 KO mice had a higher percentage of fibrils with larger diameter compared with their wild-type littermates. No significant differences were observed in the length of D-periods. In addition, collagen fibrils from DDR1 KO mice exhibited a small, but statistically significant, increase in the depth of the fibril D-periods. Consistent with these observations, a reduction in the depth of D-periods was observed in collagen fibrils reconstituted with recombinant DDR1-Fc. Our results elucidate how DDR1 modulates collagen fibril ultrastructure in vivo, which may have important consequences in the functional role(s) of the underlying ECM.
Collapse
Affiliation(s)
- Jeffrey R. Tonniges
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Albert
- Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, USA
| | - Edward P. Calomeni
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Shuvro Roy
- David Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Joan Lee
- David Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Susan E. Cole
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Gunjan Agarwal
- Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, USA
- David Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Masci M, Wang M, Imbert L, Barnes AM, Spevak L, Lukashova L, Huang Y, Ma Y, Marini JC, Jacobsen CM, Warman ML, Boskey AL. Bone mineral properties in growing Col1a2(+/G610C) mice, an animal model of osteogenesis imperfecta. Bone 2016; 87:120-9. [PMID: 27083399 PMCID: PMC4862917 DOI: 10.1016/j.bone.2016.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/04/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
Abstract
The Col1a2(+/G610C) knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2(+/G610C) and their wild-type controls (Col1a2(+/+)), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2(+/G610C) with an LRP(+/A214V) high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2(+/G610C) tibias had 13% fewer secondary trabeculae than Col1a2(+/+), these were thinner (11%) and more widely spaced (20%) than those of Col1a2(+/+) mice. Vertebrae of Col1a2(+/G610C) mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1(a2+/+). The cortical bone of Col1a2(+/G610C) tibias at 2-months had 3% higher tissue mineral density compared to Col1a2(+/+); Col1a2(+/G610C) vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2(+/+). FTIRI analysis, which provides information on bone chemical composition at ~7μm-spatial resolution, showed tibias at 10-days did not differ between genotypes. Comparing identical bone types in Col1a2(+/G610C) to Col1a2(+/+) at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2(+/G610C) vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution was noted in 10-day-old trabecular bone in vertebrae (31%) and in 2-month old trabecular bone in both tibia (31%) and vertebrae (4%). There was also a 16% lower carbonate-to-phosphate ratio in vertebral trabeculae and a correspondingly higher (22%) carbonate-to-phosphate ratio in 2month-old vertebral cortices. At age 3-months-of-age, male femurs with both a Col1a2(+/G610C) allele and a Lrp5 high bone mass allele (Lrp5+/A214V) showed an improvement in bone composition, presenting higher trabecular carbonate-to-phosphate ratio (18%) and lower trabecular and cortical acid-phosphate substitutions (8% and 18%, respectively). Together, these results indicate that mutant collagen α2(I) chain affects both bone quantity and composition, and the usefulness of this model for studies of potential OI therapies such as anti-sclerostin treatments.
Collapse
Affiliation(s)
- Marco Masci
- Weill Cornell Medical College, New York, NY, United States.
| | - Min Wang
- Mineralized Tissues Laboratory, Hospital for Special Surgery, New York, NY, United States.
| | - Laurianne Imbert
- Mineralized Tissues Laboratory, Hospital for Special Surgery, New York, NY, United States.
| | - Aileen M Barnes
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| | - Lyudmila Spevak
- Mineralized Tissues Laboratory, Hospital for Special Surgery, New York, NY, United States.
| | - Lyudmila Lukashova
- Mineralized Tissues Laboratory, Hospital for Special Surgery, New York, NY, United States.
| | - Yihe Huang
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States.
| | - Yan Ma
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States.
| | - Joan C Marini
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| | - Christina M Jacobsen
- Division of Endocrinology and Genetics, Children's Hospital Boston, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| | - Matthew L Warman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, United States.
| | - Adele L Boskey
- Weill Cornell Medical College, New York, NY, United States; Mineralized Tissues Laboratory, Hospital for Special Surgery, New York, NY, United States.
| |
Collapse
|
33
|
Berman AG, Wallace JM, Bart ZR, Allen MR. Raloxifene reduces skeletal fractures in an animal model of osteogenesis imperfecta. Matrix Biol 2015; 52-54:19-28. [PMID: 26707242 DOI: 10.1016/j.matbio.2015.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Osteogenesis imperfecta (OI) is a genetic disease of Type I collagen and collagen-associated pathways that results in brittle bone behavior characterized by fracture and reduced mechanical properties. Based on previous work in our laboratory showing that raloxifene (RAL) can significantly improve bone mechanical properties through non-cellular mechanisms, we hypothesized that raloxifene would improve the mechanical properties of OI bone. In experiment 1, tibiae from female wild type (WT) and homozygous oim mice were subjected to in vitro soaking in RAL followed by mechanical tests. RAL soaking resulted in significantly higher post-yield displacement (+75% in WT, +472% in oim; p<0.004), with no effect on ultimate load or stiffness, in both WT and oim animals. In experiment 2, eight-week old WT and oim male mice were treated for eight weeks with saline vehicle (VEH) or RAL. Endpoint measures included assessment of in vivo skeletal fractures, bone density/geometry and mechanical properties. In vivo skeletal fractures of the femora, assessed by micro CT imaging, were significantly lower in oim-RAL (20%) compared to oim-VEH (48%, p=0.047). RAL led to significantly higher DXA-based BMD (p<0.01) and CT-based trabecular BV/TV in both WT and oim animals compared to those treated with VEH. Fracture toughness of the femora was lower in oim mice compared to WT and improved with RAL in both genotypes. These results suggest that raloxifene reduces the incidence of fracture in this mouse model of oim. Furthermore, they suggest that raloxifene's effects may be the result of both cellular (increased bone mass) and non-cellular (presumably changes in hydration) mechanisms, raising the possibility of using raloxifene, or related compounds, as a new approach for treating bone fragility associated with OI.
Collapse
Affiliation(s)
- Alycia G Berman
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States; Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zachary R Bart
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Matthew R Allen
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States; Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
34
|
Kim T, Sridharan I, Ma Y, Zhu B, Chi N, Kobak W, Rotmensch J, Schieber JD, Wang R. Identifying distinct nanoscopic features of native collagen fibrils towards early diagnosis of pelvic organ prolapse. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:667-675. [PMID: 26656625 DOI: 10.1016/j.nano.2015.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/20/2015] [Accepted: 11/09/2015] [Indexed: 01/02/2023]
Abstract
UNLABELLED Pelvic organ prolapse (POP) is characterized by weakening of the connective tissues and loss of support for the pelvic organs. Collagen is the predominant, load-bearing protein within pelvic floor connective tissues. In this study, we examined the nanoscopic structures and biomechanics of native collagen fibrils in surgical, vaginal wall connective tissues from healthy women and POP patients. Compared to controls, collagen fibrils in POP samples were bulkier, more uneven in width and stiffer with aberrant D-period. Additionally, the ratio of collagen I (COLI) and collagen III (COLIII) is doubled in POP with a concomitant reduction of the amount of total collagen. Thus, POP is characterized by abnormal biochemical composition and biophysical characteristics of collagen fibrils that form a loose and fragile fiber network accountable for the weak load-bearing capability. The study identifies nanoscale alterations in collagen as diagnostic markers that could enable pre-symptomatic or early diagnosis of POP. FROM THE CLINICAL EDITOR Pelvic organ prolapse (POP) occurs due to abnormalities of the supporting connective tissues. The underlying alterations of collagen fibers in the connective tissues have not been studied extensively. In this article, the authors showed that collagen fibrils in POP patients were much different from normal controls. The findings may provide a framework for the diagnosis of other connective diseases.
Collapse
Affiliation(s)
- Taeyoung Kim
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA
| | | | - Yin Ma
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA
| | - Bofan Zhu
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA
| | - Naiwei Chi
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA
| | - William Kobak
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob Rotmensch
- Department of Obstetrics and Gynecology, Rush University Medical School, Chicago, IL, USA
| | - Jay D Schieber
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | - Rong Wang
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA.
| |
Collapse
|
35
|
Ren L, Yang P, Wang Z, Zhang J, Ding C, Shang P. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level. J Mech Behav Biomed Mater 2015; 50:104-22. [DOI: 10.1016/j.jmbbm.2015.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/12/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023]
|
36
|
Anisotropic properties of human cortical bone with osteogenesis imperfecta. Biomech Model Mechanobiol 2015; 15:155-67. [DOI: 10.1007/s10237-015-0727-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
|
37
|
Campi G, Fratini M, Bukreeva I, Ciasca G, Burghammer M, Brun F, Tromba G, Mastrogiacomo M, Cedola A. Imaging collagen packing dynamics during mineralization of engineered bone tissue. Acta Biomater 2015; 23:309-316. [PMID: 26049151 DOI: 10.1016/j.actbio.2015.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/08/2015] [Accepted: 05/28/2015] [Indexed: 01/03/2023]
Abstract
The structure and organization of the Type I collagen microfibrils during mineral nanoparticle formation appear as the key factor for a deeper understanding of the biomineralization mechanism and for governing the bone tissue physical properties. In this work we investigated the dynamics of collagen packing during ex-vivo mineralization of ceramic porous hydroxyapatite implant scaffolds using synchrotron high resolution X-ray phase contrast micro-tomography (XPCμT) and synchrotron scanning micro X-ray diffraction (SμXRD). While XPCμT provides the direct 3D image of the collagen fibers network organization with micrometer spatial resolution, SμXRD allows to probe the structural statistical fluctuations of the collagen fibrils at nanoscale. In particular we imaged the lateral spacing and orientation of collagen fibrils during the anisotropic growth of mineral nanocrystals. Beyond throwing light on the bone regeneration multiscale process, this approach can provide important information in the characterization of tissue in health, aging and degeneration conditions. STATEMENT OF SIGNIFICANCE BONE grafts are the most common transplants after the blood transfusions. This makes the bone-tissue regeneration research of pressing scientific and social impact. Bone is a complex hierarchical structure, where the interplay of organic and inorganic mineral phases at different length scale (from micron to atomic scale) affect its functionality and health. Thus, the understanding of bone tissue regeneration requires to image its spatial-temporal evolution (i) with high spatial resolution and (ii) at different length scale. We exploited high spatial resolution X-ray Phase Contrast micro Tomography and Scanning micro X-ray Diffraction in order to get new insight on the engineered tissue formation mechanisms. This approach could open novel routes for the early detection of different degenerative conditions of tissue.
Collapse
|
38
|
Garnero P. The Role of Collagen Organization on the Properties of Bone. Calcif Tissue Int 2015; 97:229-40. [PMID: 25894071 DOI: 10.1007/s00223-015-9996-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
Abstract
Bone is a complex tissue constituted by a collagen matrix filled in with crystal of hydroxyapatite (HAP). Bone mechanical properties are influenced by the collagen matrix which is organized into hierarchical structures from the individual type I collagen heterotrimer flanked by linear telopeptides at each end to the collagen fibrils that are interconnected by enzymatic and non-enzymatic cross-links. Although most studies focused on the role of collagen cross-links in bone strength, other organizational features may also play a role. At the molecular level it has been shown that homotrimer of type I collagen found in bone tissue of some patients with osteogenesis imperfecta (OI) is characterized by decreased mechanical competence compared to the regular heterotrimer. The state of C-telopeptide isomerization-which can be estimated by the measurement in body fluids of the native and isomerized isoforms-has also been shown to be associated with bone strength, particularly the post-yield properties independent of bone size and bone mineral density. Other higher hierarchical features of collagen organization have shown to be associated with changes in bone mechanical behavior in ex vivo models and may also be relevant to explain bone fragility in diseases characterized by collagen abnormalities e.g., OI and Paget's disease. These include the orientation of collagen fibrils in a regular longitudinal direction, the D-spacing period between collagen fibrils and the collagen-HAP interfacial bonding. Preliminary data indicate that some of these organizational features can change during treatment with bisphosphonate, raloxifene, and PTH suggesting that they may contribute to their anti-fracture efficacy. It remains however to be determined which of these parameters play a specific and independent role in bone matrix properties, what is the magnitude of mechanical strength explained by collagen organization, whether they are relevant to explain osteoporosis-induced bone fragility, and how they could be monitored non-invasively to develop efficient bone quality biomarkers.
Collapse
|
39
|
Kim T, Sridharan I, Zhu B, Orgel J, Wang R. Effect of CNT on collagen fiber structure, stiffness assembly kinetics and stem cell differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:281-289. [PMID: 25686951 PMCID: PMC7225775 DOI: 10.1016/j.msec.2015.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/07/2014] [Accepted: 01/04/2015] [Indexed: 11/27/2022]
Abstract
Collagen is a native one-dimensional nanomaterial. Carbon nanotube (CNT) was found to interface with biological materials and show promising applications in creating reinforced scaffolds for tissue engineering and regenerative medicine. In this study, we examined the unique role of CNT in collagen fiber structure, mechanical strength and assembly kinetics. The results imply that CNT interacts with collagen at the molecular level. It relaxes the helical coil of collagen fibrils and has the effect of flattening the fibers leading to the elongation of D-period, the characteristic banding feature of collagen fibers. The surface charge of oxidized CNT leads to enhanced local ionic strength during collagen fibrillogenesis, accounting for the slower kinetics of collagen-CNT (COL-CNT) fiber assembly and the formation of thicker fibers. Due to the rigidity of CNT, the addition of CNT increases the fiber stiffness significantly. When applied as a matrix for human decidua parietalis placental stem cells (hdpPSCs) differentiation, COL-CNT was found to support fast and efficient neural differentiation ascribed to the elongated D-period. These results highlight the superiority of CNT to modulate collagen fiber assembly at the molecular level. The study also exemplifies the use of CNT to enhance the functionality of collagen for biological and biomedical applications.
Collapse
Affiliation(s)
- Taeyoung Kim
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101S. Dearborn St., Chicago, IL 60616, USA
| | - Indumathi Sridharan
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101S. Dearborn St., Chicago, IL 60616, USA
| | - Bofan Zhu
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101S. Dearborn St., Chicago, IL 60616, USA
| | - Joseph Orgel
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101S. Dearborn St., Chicago, IL 60616, USA
| | - Rong Wang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101S. Dearborn St., Chicago, IL 60616, USA.
| |
Collapse
|
40
|
Wallace JM. Effects of fixation and demineralization on bone collagen D-spacing as analyzed by atomic force microscopy. Connect Tissue Res 2015; 56:68-75. [PMID: 25634588 DOI: 10.3109/03008207.2015.1005209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM Collagen's role in bone is often considered secondary. As increased attention is paid to collagen, understanding the impact of tissue preservation is important in interpreting experimental results. The goal of this study was to test the hypothesis that bone fixation prior to demineralization would maintain its collagen ultrastructure in an undisturbed state when analyzed using Atomic Force Microscopy (AFM). MATERIALS/METHODS The anterior diaphysis of a pig femur was cut into 6 mm pieces along its length. Samples were mounted, polished and randomly assigned to control or fixation groups (n = 5/group). Fixation samples were fixed for 24 h prior to demineralization. All samples were briefly demineralized to expose collagen, and imaged using AFM. Mouse tail tendons were also analyzed to explore effects of dehydration and fixation. Measurements from each bone sample were averaged and compared using a Mann-Whitney U-test. Tendon sample means were compared using RMANOVA. To investigate differences in D-spacing distributions, Kolmogorov-Smirnov tests were used. RESULTS Fixation decreased D-spacing variability within and between bone samples and induced or maintained a higher average D-spacing versus control by shifting the D-spacing population upward. Tendon data indicate that fixing and drying samples leaves collagen near its undisturbed and hydrated native state. DISCUSSION Fixation in bone prior to demineralization decreased D-spacing variability. D-spacing was shifted upward in fixed samples, indicating that collagen is stretched with mineral present and relaxes upon its removal. The ability to decrease variability in bone suggests that fixation might increase the power to detect changes in collagen due to disease or other pressures.
Collapse
Affiliation(s)
- Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis , Indianapolis, IN , USA and
| |
Collapse
|
41
|
Hammond MA, Wallace JM. Exercise prevents β-aminopropionitrile-induced morphological changes to type I collagen in murine bone. BONEKEY REPORTS 2015; 4:645. [PMID: 25798234 DOI: 10.1038/bonekey.2015.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/27/2015] [Indexed: 01/22/2023]
Abstract
This study evaluated the effects of reduced enzymatic crosslinking, exercise and the ability of exercise to prevent the deleterious impact of reduced crosslinking on collagen D-spacing. Eight-week-old female mice were divided into four weight-matched groups receiving daily injections of either phosphate-buffered saline (PBS) or 300 mg kg(-1) β-aminopropionitrile (BAPN) while undergoing normal cage activity (Sed) or 30 min per day of treadmill exercise (Ex) for 21 consecutive days. BAPN caused a downward shift in the D-spacing distribution in Sed BAPN compared with Sed PBS (P<0.001) but not in Ex BAPN (P=0.429), indicating that exercise can prevent changes in collagen morphology caused by BAPN. Exercise had no effect on D-spacing in PBS control mice (P=0.726), which suggests that exercise-induced increases in lysyl oxidase may be a possible mechanism for preventing BAPN-induced changes in D-spacing. The D-spacing changes were accompanied by an increase in mineral crystallinity/maturity due to the main effect of BAPN (P=0.016). However, no changes in nanoindentation, reference point indentation or other Raman spectroscopy parameters were observed. The ability of exercise to rescue BAPN-driven changes in collagen morphology necessitates further research into the use of mechanical stimulation as a preventative therapy for collagen-based diseases.
Collapse
Affiliation(s)
- Max A Hammond
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette , Indianapolis, IN, USA
| | - Joseph M Wallace
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette , Indianapolis, IN, USA ; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis , Indianapolis, IN, USA ; Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, IN, USA
| |
Collapse
|
42
|
Stylianou A, Yova D, Alexandratou E. Investigation of the influence of UV irradiation on collagen thin films by AFM imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:455-68. [PMID: 25491851 DOI: 10.1016/j.msec.2014.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/21/2014] [Accepted: 09/08/2014] [Indexed: 01/06/2023]
Abstract
Collagen is the major fibrous extracellular matrix protein and due to its unique properties, it has been widely used as biomaterial, scaffold and cell-substrate. The aim of the paper was to use Atomic Force Microscopy (AFM) in order to investigate well-characterized collagen thin films after ultraviolet light (UV) irradiation. The films were also used as in vitro culturing substrates in order to investigate the UV-induced alterations to fibroblasts. A special attention was given in the alteration on collagen D-periodicity. For short irradiation times, spectroscopy (fluorescence/absorption) studies demonstrated that photodegradation took place and AFM imaging showed alterations in surface roughness. Also, it was highlighted that UV-irradiation had different effects when it was applied on collagen solution than on films. Concerning fibroblast culturing, it was shown that fibroblast behavior was affected after UV irradiation of both collagen solution and films. Furthermore, after a long irradiation time, collagen fibrils were deformed revealing that collagen fibrils are consisting of multiple shells and D-periodicity occurred on both outer and inner shells. The clarification of the effects of UV light on collagen and the induced modifications of cell behavior on UV-irradiated collagen-based surfaces will contribute to the better understanding of cell-matrix interactions in the nanoscale and will assist in the appropriate use of UV light for sterilizing and photo-cross-linking applications.
Collapse
Affiliation(s)
- Andreas Stylianou
- Biomedical Optics and Applied Biophysics Laboratory, Division of Electromagnetics, Electrooptics and Electronic Materials, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, Athens 15780 Greece.
| | - Dido Yova
- Biomedical Optics and Applied Biophysics Laboratory, Division of Electromagnetics, Electrooptics and Electronic Materials, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, Athens 15780 Greece
| | - Eleni Alexandratou
- Biomedical Optics and Applied Biophysics Laboratory, Division of Electromagnetics, Electrooptics and Electronic Materials, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, Athens 15780 Greece
| |
Collapse
|
43
|
Bart ZR, Hammond MA, Wallace JM. Multi-scale analysis of bone chemistry, morphology and mechanics in the oim model of osteogenesis imperfecta. Connect Tissue Res 2014; 55 Suppl 1:4-8. [PMID: 25158170 DOI: 10.3109/03008207.2014.923860] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteogenesis imperfecta is a congenital disease commonly characterized by brittle bones and caused by mutations in the genes encoding Type I collagen, the single most abundant protein produced by the body. The oim model has a natural collagen mutation, converting its heterotrimeric structure (two α1 and one α2 chains) into α1 homotrimers. This mutation in collagen may impact formation of the mineral, creating a brittle bone phenotype in animals. Femurs from male wild type (WT) and homozygous (oim/oim) mice, all at 12 weeks of age, were assessed using assays at multiple length scales with minimal sample processing to ensure a near-physiological state. Atomic force microscopy (AFM) demonstrated detectable differences in the organization of collagen at the nanoscale that may partially contribute to alterations in material and structural behavior obtained through mechanical testing and reference point indentation (RPI). Changes in geometric and chemical structure obtained from µ-Computed Tomography and Raman spectroscopy indicate a smaller bone with reduced trabecular architecture and altered chemical composition. Decreased tissue material properties in oim/oim mice are likely driven by changes in collagen fibril structure, decreasing space available for mineral nucleation and growth, as supported by a reduction in mineral crystallinity. Multi-scale analyses of this nature offer much in assessing how molecular changes compound to create a degraded, brittle bone phenotype.
Collapse
Affiliation(s)
- Zachary R Bart
- Department of Biomedical Engineering, Indiana University-Purdue University , Indianapolis, IN , USA
| | | | | |
Collapse
|
44
|
Su HN, Ran LY, Chen ZH, Qin QL, Shi M, Song XY, Chen XL, Zhang YZ, Xie BB. The ultrastructure of type I collagen at nanoscale: large or small D-spacing distribution? NANOSCALE 2014; 6:8134-8139. [PMID: 24922185 DOI: 10.1039/c4nr01268b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
D-Spacing is the most significant topographic feature of type I collagen fibril, and it is important for our understanding of the structure and function in collagens. Traditionally, the D-spacing of type I collagen fibril was shown to have a singular value of 67 nm, but recent works indicated that the D-spacing values have a large distribution of up to 10 nm when measured by atomic force microscopy. We found that this large distribution of D-spacing values mainly resulted from image drift during measurement. Note that the D-spacing was homogeneous in a single type I collagen fibril. Our statistical analysis indicated that the D-spacing values of type I collagen fibrils exhibited only a narrow distribution of 2.5 nm around the value of 67 nm. In addition, the D-spacing values of the collagen fibrils were nearly identical not only within a single fibril bundle, but also in different fibril bundles. The measurement of the D-spacing values of collagen may provide important structural information in many research areas such as collagen related diseases, construction of molecular model of collagen, and collagen fibrogenesis.
Collapse
Affiliation(s)
- Hai-Nan Su
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gallant MA, Brown DM, Hammond M, Wallace JM, Du J, Deymier-Black AC, Almer JD, Stock SR, Allen MR, Burr DB. Bone cell-independent benefits of raloxifene on the skeleton: a novel mechanism for improving bone material properties. Bone 2014; 61:191-200. [PMID: 24468719 PMCID: PMC3955028 DOI: 10.1016/j.bone.2014.01.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 01/04/2014] [Accepted: 01/14/2014] [Indexed: 12/29/2022]
Abstract
Raloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups (OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle X-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength.
Collapse
Affiliation(s)
- Maxime A Gallant
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, MS-5035, Indianapolis, IN 46202, USA
| | - Drew M Brown
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, MS-5035, Indianapolis, IN 46202, USA
| | - Max Hammond
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, 723 West Michigan Street, SL 220, Indianapolis, IN 46202, USA
| | - Jiang Du
- Department of Radiology, University of California, 200 West Arbor Drive, MC 0834 San Diego, CA 92103, USA
| | - Alix C Deymier-Black
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Cook Hall Room 2036, Evanston, IL 60208, USA
| | - Jonathan D Almer
- Advanced Photon Source, Argonne National Laboratory, Building 401, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Stuart R Stock
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Abbott Hall Suite 810, 710 N Lake Shore Drive, Chicago, IL 60611, USA
| | - Matthew R Allen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, MS-5035, Indianapolis, IN 46202, USA
| | - David B Burr
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, MS-5035, Indianapolis, IN 46202, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, 723 West Michigan Street, SL 220, Indianapolis, IN 46202, USA.
| |
Collapse
|
46
|
Hammond MA, Gallant MA, Burr DB, Wallace JM. Nanoscale changes in collagen are reflected in physical and mechanical properties of bone at the microscale in diabetic rats. Bone 2014; 60:26-32. [PMID: 24269519 PMCID: PMC3944921 DOI: 10.1016/j.bone.2013.11.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/23/2013] [Accepted: 11/15/2013] [Indexed: 01/22/2023]
Abstract
Diabetes detrimentally affects the musculoskeletal system by stiffening the collagen matrix due to increased advanced glycation end products (AGEs). In this study, tibiae and tendon from Zucker diabetic Sprague-Dawley (ZDSD) rats were compared to Sprague-Dawley derived controls (CD) using Atomic Force Microscopy. ZDSD and CD tibiae were compared using Raman Spectroscopy and Reference Point Indentation (RPI). ZDSD bone had a significantly different distribution of collagen D-spacing than CD (p=0.015; ZDSD n=294 fibrils; CD n=274 fibrils) which was more variable and shifted to higher values. This shift between ZDSD and CD D-spacing distribution was more pronounced in tendon (p<0.001; ZDSD n=350; CD n=371). Raman revealed significant increases in measures of bone matrix mineralization in ZDSD (PO4(3-) ν1/Amide I p=0.008; PO4(3-) ν1/CH2 wag p=0.047; n=5 per group) despite lower bone mineral density (aBMD) and ash fraction indicating diabetes may preferentially reduce the Raman signature of collagen. Decreased indentation distance increase (p=0.010) and creep indentation distance (p=0.040) measured by RPI (n=9 per group) in ZDSD rats suggest a matrix more resistant to indentation under the high stresses associated with RPI at this length scale. There were significant correlations between Raman and RPI measurements in the ZDSD population (n=18 locations) but not the CD population (n=16 locations) indicating that while RPI is relatively unaffected by biological noise, it is sensitive to disease-induced compositional changes. In conclusion, diabetes in the ZDSD rat causes changes to the nanoscale morphology of collagen that result in compositional and mechanical effects in bone at the microscale.
Collapse
Affiliation(s)
- Max A Hammond
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Maxime A Gallant
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, IN, USA
| | - David B Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, IN, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, IN, USA
| | - Joseph M Wallace
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, IN, USA.
| |
Collapse
|
47
|
Gonzalez AD, Gallant MA, Burr DB, Wallace JM. Multiscale analysis of morphology and mechanics in tail tendon from the ZDSD rat model of type 2 diabetes. J Biomech 2013; 47:681-6. [PMID: 24360194 DOI: 10.1016/j.jbiomech.2013.11.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/19/2013] [Accepted: 11/24/2013] [Indexed: 01/20/2023]
Abstract
Type 2 diabetes (T2D) impacts multiple organ systems including the circulatory, renal, nervous and musculoskeletal systems. In collagen-based tissues, one mechanism that may be responsible for detrimental mechanical impacts of T2D is the formation of advanced glycation end products (AGEs) leading to increased collagen stiffness and decreased toughness, resulting in brittle tissue behavior. The purpose of this study was to investigate tendon mechanical properties from normal and diabetic rats at two distinct length scales, testing the hypothesis that increased stiffness and strength and decreased toughness at the fiber level would be associated with alterations in nanoscale morphology and mechanics. Individual fascicles from female Zucker diabetic Sprague-Dawley (ZDSD) rats had no differences in fascicle-level mechanical properties but had increased material-level strength and stiffness versus control rats (CD). At the nanoscale, collagen fibril D-spacing was shifted towards higher spacing values in diabetic ZDSD fibrils. The distribution of nanoscale modulus values was also shifted to higher values. Material-level strength and stiffness from whole fiber tests were increased in ZDSD tails. Correlations between nanoscale and microscale properties indicate a direct positive relationship between the two length scales, most notably in the relationship between nanoscale and microscale modulus. These findings indicate that diabetes-induced changes in material strength and modulus were driven by alterations at the nanoscale.
Collapse
Affiliation(s)
- Armando Diaz Gonzalez
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, 723 W Michigan Street SL220D, Indianapolis, IN 46202, USA
| | - Maxime A Gallant
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David B Burr
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, 723 W Michigan Street SL220D, Indianapolis, IN 46202, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, 723 W Michigan Street SL220D, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
48
|
Denning D, Paukshto MV, Habelitz S, Rodriguez BJ. Piezoelectric properties of aligned collagen membranes. J Biomed Mater Res B Appl Biomater 2013; 102:284-92. [PMID: 24030958 DOI: 10.1002/jbm.b.33006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/22/2013] [Accepted: 06/16/2013] [Indexed: 11/10/2022]
Abstract
Electromechanical coupling, a phenomenon present in collagenous materials, may influence cell-extracellular matrix interactions. Here, electromechanical coupling has been investigated via piezoresponse force microscopy in transparent and opaque membranes consisting of helical-like arrays of aligned type I collagen fibrils self-assembled from acidic solution. Using atomic force microscopy, the transparent membrane was determined to contain fibrils having an average diameter of 76 ± 14 nm, whereas the opaque membrane comprised fibrils with an average diameter of 391 ± 99 nm. As the acidity of the membranes must be neutralized before they can serve as cell culture substrates, the structure and piezoelectric properties of the membranes were measured under ambient conditions before and after the neutralization process. A crimp structure (1.59 ± 0.37 µm in width) perpendicular to the fibril alignment became apparent in the transparent membrane when the pH was adjusted from acidic (pH = 2.5) to neutral (pH = 7) conditions. In addition, a 1.35-fold increase was observed in the amplitude of the shear piezoelectricity of the transparent membrane. The structure and piezoelectric properties of the opaque membrane were not significantly affected by the neutralization process. The results highlight the presence of an additional translational order in the transparent membrane in the direction perpendicular to the fibril alignment. The piezoelectric response of both membrane types was found to be an order of magnitude lower than that of collagen fibrils in rat tail tendon. This reduced response is attributed to less-ordered molecular assembly than is present in D-periodic collagen fibrils, as evidenced by the absence of D-periodicity in the membranes.
Collapse
Affiliation(s)
- D Denning
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
49
|
Warden SJ, Galley MR, Hurd AL, Wallace JM, Gallant MA, Richard JS, George LA. Elevated mechanical loading when young provides lifelong benefits to cortical bone properties in female rats independent of a surgically induced menopause. Endocrinology 2013; 154:3178-87. [PMID: 23782938 PMCID: PMC3749484 DOI: 10.1210/en.2013-1227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/07/2013] [Indexed: 11/19/2022]
Abstract
Exercise that mechanically loads the skeleton is advocated when young to enhance lifelong bone health. Whether the skeletal benefits of elevated loading when young persist into adulthood and after menopause are important questions. This study investigated the influence of a surgically induced menopause in female Sprague-Dawley rats on the lifelong maintenance of the cortical bone benefits of skeletal loading when young. Animals had their right forearm extrinsically loaded 3 d/wk between 4 and 10 weeks of age using the forearm axial compression loading model. Left forearms were internal controls and not loaded. Animals were subsequently detrained (restricted to cage activities) for 94 weeks (until age 2 years), with ovariectomy (OVX) or sham-OVX surgery being performed at 24 weeks of age. Loading enhanced midshaft ulna cortical bone mass, structure, and estimated strength. These benefits persisted lifelong and contributed to loaded ulnas having greater strength after detraining. Loading also had effects on cortical bone quality. The benefits of loading when young were not influenced by a surgically induced menopause because there were no interactions between loading and surgery. However, OVX had independent effects on cortical bone mass, structure, and estimated strength at early postsurgery time points (up to age 58 weeks) and bone quality measures. These data indicate skeletal loading when young had lifelong benefits on cortical bone properties that persisted independent of a surgically induced menopause. This suggests that skeletal loading associated with exercise when young may provide lifelong antifracture benefits by priming the skeleton to offset the cortical bone changes associated with aging and menopause.
Collapse
Affiliation(s)
- Stuart J Warden
- Center for Translational Musculoskeletal Research, School of Medicine, Indiana University, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Fang M, Holl MMB. Variation in type I collagen fibril nanomorphology: the significance and origin. BONEKEY REPORTS 2013; 2:394. [PMID: 24422113 DOI: 10.1038/bonekey.2013.128] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/20/2013] [Accepted: 06/27/2013] [Indexed: 12/26/2022]
Abstract
Although the axial D-periodic spacing is a well-recognized nanomorphological feature of type I collagen fibrils, the existence of a distribution of values has been largely overlooked since its discovery seven decades ago. Studies based on single fibril measurements occasionally noted variation in D-spacing values, but accredited it with no biological significance. Recent quantitative characterizations supported that a 10-nm collagen D-spacing distribution is intrinsic to collagen fibrils in various tissues as well as in vitro self-assembly of reconstituted collagen. In addition, the distribution is altered in Osteogenesis Imperfecta and long-term estrogen deprivation. Bone collagen is organized into lamellar sheets of bundles at the micro-scale, and D-spacings within a bundle of a lamella are mostly identical, whereas variations among different bundles contribute to the full-scale distribution. This seems to be a very general phenomenon for the protein as the same type of D-spacing/bundle organization is observed for dermal and tendon collagen. More research investigation of collagen nanomorphology in connection to bone biology is required to fully understand these new observations. Here we review the data demonstrating the existence of a D-spacing distribution, the impact of disease on the distribution and possible explanations for the origin of D-spacing variations based on various collagen fibrillogenesis models.
Collapse
Affiliation(s)
- Ming Fang
- Department of Chemistry, University of Michigan , Ann Arbor, MI, USA
| | | |
Collapse
|