1
|
Singh S, Liu Y, Burke M, Rayaprolu V, Stein SE, Hasan SS. Production and cryo-electron microscopy structure of an internally tagged SARS-CoV-2 spike ecto-domain construct. J Struct Biol X 2025; 11:100123. [PMID: 40046771 PMCID: PMC11880631 DOI: 10.1016/j.yjsbx.2025.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
The SARS-CoV-2 spike protein is synthesized in the endoplasmic reticulum of host cells, from where it undergoes export to the Golgi and the plasma membrane or retrieval from the Golgi to the endoplasmic reticulum. Elucidating the fundamental principles of this bidirectional secretion are pivotal to understanding virus assembly and designing the next generation of spike genetic vaccine with enhanced export properties. However, the widely used strategy of C-terminal affinity tagging of the spike cytosolic tail interferes with proper bidirectional trafficking. Hence, the structural and biophysical investigations of spike protein trafficking have been hindered by a lack of appropriate spike constructs. Here we describe a strategy for the internal tagging of the spike protein. Using sequence analyses and AlphaFold modeling, we identified a site down-stream of the signal sequence for the insertion of a twin-strep-tag, which facilitates purification of an ecto-domain construct from the extra-cellular medium of mammalian Expi293F cells. Mass spectrometry analyses show that the internal tag has minimal impact on N-glycan modifications, which are pivotal for spike-host interactions. Single particle cryo-electron microscopy reconstructions of the spike ecto-domain reveal conformational states compatible for ACE2 receptor interactions, further solidifying the feasibility of the internal tagging strategy. Collectively, these results present a substantial advance towards reagent development for the investigations of spike protein trafficking during coronavirus infection and genetic vaccination.
Collapse
Affiliation(s)
- Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Yi Liu
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg MD 20899, USA
| | - Meghan Burke
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg MD 20899, USA
| | - Vamseedhar Rayaprolu
- Pacific Northwest Cryo-EM Center, Oregon Health and Sciences University, Portland, OR 97201, USA
| | - Stephen E. Stein
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg MD 20899, USA
| | - S. Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore MD 21201, USA
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville MD 20850, USA
| |
Collapse
|
2
|
Maiwald SA, Schneider LA, Vollrath R, Liwocha J, Maletic MD, Swatek KN, Mulder MPC, Schulman BA. TRIP12 structures reveal HECT E3 formation of K29 linkages and branched ubiquitin chains. Nat Struct Mol Biol 2025:10.1038/s41594-025-01561-1. [PMID: 40419785 DOI: 10.1038/s41594-025-01561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/10/2025] [Indexed: 05/28/2025]
Abstract
Regulation by ubiquitin depends on E3 ligases forging chains of specific topologies, yet the mechanisms underlying the generation of atypical linkages remain largely elusive. Here we utilize biochemistry, chemistry, and cryo-EM to define the catalytic architecture producing K29 linkages and K29/K48 branches for the human HECT E3 TRIP12. TRIP12 resembles a pincer. One pincer side comprises tandem ubiquitin-binding domains, engaging the proximal ubiquitin to direct its K29 towards the ubiquitylation active site, and selectively capturing a distal ubiquitin from a K48-linked chain. The opposite pincer side-the HECT domain-precisely juxtaposes the ubiquitins to be joined, further ensuring K29 linkage specificity. Comparison to the prior structure visualizing K48-linked chain formation by UBR5 reveals a similar mechanism shared by two human HECT enzymes: parallel features of the E3s, donor and acceptor ubiquitins configure the active site around the targeted lysine, with E3-specific domains buttressing the acceptor for linkage-specific polyubiquitylation.
Collapse
Affiliation(s)
- Samuel A Maiwald
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Laura A Schneider
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- ISREC, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ronnald Vollrath
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Lyterian Therapeutics, South San Francisco, CA, USA
| | - Matthew D Maletic
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kirby N Swatek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Brenda A Schulman
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
3
|
Chen M. Building molecular model series from heterogeneous CryoEM structures using Gaussian mixture models and deep neural networks. Commun Biol 2025; 8:798. [PMID: 40415012 DOI: 10.1038/s42003-025-08202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 05/09/2025] [Indexed: 05/27/2025] Open
Abstract
Cryogenic electron microscopy (CryoEM) produces structures of macromolecules at near-atomic resolution. However, building molecular models with good stereochemical geometry from those structures can be challenging and time-consuming, especially when many structures are obtained from datasets with conformational heterogeneity. Here we present a model refinement protocol that automatically generates series of molecular models from CryoEM datasets, which describe the dynamics of the macromolecular system and have near-perfect geometry scores. This method makes it easier to interpret the movement of the protein complex from heterogeneity analysis and to compare the structural dynamics observed from CryoEM data with results from other experimental and simulation techniques.
Collapse
Affiliation(s)
- Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA.
| |
Collapse
|
4
|
Kucharska I, Ivanochko D, Hailemariam S, Inklaar MR, Kim HR, Teelen K, Stoter R, van de Vegte-Bolmer M, van Gemert GJ, Semesi A, McLeod B, Ki A, Lee WK, Rubinstein JL, Jore MM, Julien JP. Structural elucidation of full-length Pfs48/45 in complex with potent monoclonal antibodies isolated from a naturally exposed individual. Nat Struct Mol Biol 2025:10.1038/s41594-025-01532-6. [PMID: 40404982 DOI: 10.1038/s41594-025-01532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/12/2025] [Indexed: 05/24/2025]
Abstract
Biomedical interventions that block the transmission of Plasmodium falciparum (Pf) from humans to mosquitoes may be critical for malaria elimination. Pfs48/45, a gamete-surface protein essential for Pf development in the mosquito midgut, is a target of clinical-stage transmission-blocking vaccines and monoclonal antibodies (mAbs) that disrupt Pf transmission to mosquitoes. Antibodies directed to domain 3 of Pfs48/45 have been structurally and functionally described; however, in-depth information about other inhibitory epitopes on Pfs48/45 is currently limited. Here, we present a cryo-electron microscopy structure of full-length Pfs48/45 in complex with potent human mAbs targeting all three domains. Our data indicate that although Pfs48/45 domains 1 and 2 are rigidly coupled, there is substantial conformational flexibility between domains 2 and 3. Characterization of mAbs against domain 1 revealed the presence of a conformational epitope class that is largely conserved across Pf field isolates and is associated with recognition by potent antibodies. Our study provides insights into epitopes across full-length Pfs48/45 and has implications for the design of next-generation malaria interventions.
Collapse
Affiliation(s)
- Iga Kucharska
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Danton Ivanochko
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Sophia Hailemariam
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Maartje R Inklaar
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hee Ryung Kim
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Karina Teelen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rianne Stoter
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anthony Semesi
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Brandon McLeod
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ahyoung Ki
- Structural Analysis Team, New Drug Development Center, KBIO Osong Medical Innovation Foundation, Osong, Republic of Korea
| | - Won-Kyu Lee
- Structural Analysis Team, New Drug Development Center, KBIO Osong Medical Innovation Foundation, Osong, Republic of Korea
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Maurino VG. Next generation technologies for protein structure determination: challenges and breakthroughs in plant biology applications. JOURNAL OF PLANT PHYSIOLOGY 2025; 310:154522. [PMID: 40382917 DOI: 10.1016/j.jplph.2025.154522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Advancements in structural biology have significantly deepened our understanding of plant proteins, which are central to critical biological functions such as photosynthesis, metabolism, signal transduction, and structural architechture. Gaining insights into their structures is crucial for unraveling their functions and mechanisms, which in turn has profound implications for agriculture, biotechnology, and environmental sustainability. Traditional methods in protein structural biology often fall short in addressing large protein assemblies and membrane proteins, and, in particular the dynamics and structural features of proteins in the native cellular context. This paper explores how next-generation technologies are transforming the field of plant protein structural biology, offering powerful tools to overcome longstanding obstacles and enabling remarkable scientific breakthroughs. Key technologies discussed include advanced X-ray crystallography, Cryo-Electron microscopy, Nuclear Magnetic Resonance spectroscopy, Cross-linking mass spectrometry, and Artificial Intelligence-driven approaches. These technologies are examined in terms of their challenges, innovations, and application with particular emphasis on their relevance to plant systems. Future directions in plant protein structural biology are also discussed. Although technical details are not covered in depth, readers are referred to the primary literature for more comprehensive information.
Collapse
Affiliation(s)
- Veronica G Maurino
- Molecular Plant Physiology, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
6
|
Liu T, Xu L, Chung K, Sisto LJ, Hwang J, Zhang C, Van Zandt MC, Pyle AM. Molecular insights into de novo small-molecule recognition by an intron RNA structure. Proc Natl Acad Sci U S A 2025; 122:e2502425122. [PMID: 40339124 PMCID: PMC12088405 DOI: 10.1073/pnas.2502425122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/01/2025] [Indexed: 05/10/2025] Open
Abstract
Despite the promise of vastly expanding the druggable genome, rational design of RNA-targeting ligands remains challenging as it requires the rapid identification of hits and visualization of the resulting cocomplexes for guiding optimization. Here, we leveraged high-throughput screening, medicinal chemistry, and structural biology to identify a de novo splicing inhibitor against a large and highly folded fungal group I intron. High-resolution cryoEM structures of the intron in different liganded states not only reveal molecular interactions that rationalize experimental structure-activity relationship but also shed light on a unique strategy whereby RNA-associated metal ions and RNA conformation exhibit exceptional plasticity in response to small-molecule binding. This study reveals general principles that govern RNA-ligand recognition, the interplay between chemical bonding specificity, and dynamic responses within an RNA target.
Collapse
Affiliation(s)
- Tianshuo Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Ling Xu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- HHMI, Chevy Chase, MD 20815
| | - Kevin Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | - Luke J Sisto
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- New England Discovery Partners, Branford, CT 06405
| | - Jimin Hwang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Chengxin Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | | | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- HHMI, Chevy Chase, MD 20815
- Department of Chemistry, Yale University, New Haven, CT 06511
| |
Collapse
|
7
|
Schleich FA, Bale S, Guenaga J, Ozorowski G, Àdori M, Lin X, Castro Dopico X, Wilson R, Chernyshev M, Cotgreave AT, Mandolesi M, Cluff J, Doyle ED, Sewall LM, Lee WH, Zhang S, O'Dell S, Healy BS, Lim D, Lewis VR, Ben-Akiva E, Irvine DJ, Doria-Rose NA, Corcoran M, Carnathan D, Silvestri G, Wilson IA, Ward AB, Karlsson Hedestam GB, Wyatt RT. Vaccination of nonhuman primates elicits a broadly neutralizing antibody lineage targeting a quaternary epitope on the HIV-1 Env trimer. Immunity 2025:S1074-7613(25)00173-6. [PMID: 40339576 DOI: 10.1016/j.immuni.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/20/2025] [Accepted: 04/09/2025] [Indexed: 05/10/2025]
Abstract
The elicitation of cross-neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) by vaccination remains a major challenge. Here, we immunized previously Env-immunized nonhuman primates with a series of near-native trimers that possessed N-glycan deletions proximal to the conserved CD4 binding site (CD4bs) to focus B cells to this region. Following heterologous boosting with fully glycosylated trimers, we detected tier 2 cross-neutralizing activity in the serum of several animals. Isolation of 185 matched heavy- and light-chain sequences from Env-binding memory B cells from an early responder identified a broadly neutralizing antibody lineage, LJF-0034, which neutralized nearly 70% of an 84-member HIV-1 global panel. High-resolution cryoelectron microscopy (cryo-EM) structures revealed a bifurcated binding mode that bridged the CD4bs to V3 across the gp120:120 interface on two adjacent protomers, evading the proximal N276 glycan impediment to the CD4bs, allowing neutralization breadth. This quaternary epitope defines a potential target for future HIV-1 vaccine development.
Collapse
Affiliation(s)
| | - Shridhar Bale
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Javier Guenaga
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Gabriel Ozorowski
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Monika Àdori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xiaohe Lin
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Richard Wilson
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Alma Teresia Cotgreave
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jocelyn Cluff
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Esmeralda D Doyle
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Leigh M Sewall
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Wen-Hsin Lee
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Shiyu Zhang
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon S Healy
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Deuk Lim
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Vanessa R Lewis
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elana Ben-Akiva
- MIT, Koch Institute for Integrative Cancer Research and Department of Biological Engineering, Cambridge, MA, USA
| | - Darrell J Irvine
- MIT, Koch Institute for Integrative Cancer Research and Department of Biological Engineering, Cambridge, MA, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Diane Carnathan
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Ian A Wilson
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Andrew B Ward
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | | | - Richard T Wyatt
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA.
| |
Collapse
|
8
|
Hirst IJ, Chiang WT, Hu NJ, Scarff CA, Thompson RF, Darrow MC, Muench SP. Untangling the effects of flexibility and the AWI in cryoEM sample preparation: A case study using KtrA. J Struct Biol 2025; 217:108206. [PMID: 40324569 DOI: 10.1016/j.jsb.2025.108206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/10/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Single particle cryo-electron microscopy (cryoEM) is a powerful tool for elucidating the structures of biological macromolecules without requiring crystallisation or fixation. However, certain barriers to obtaining high-resolution structures persist, particularly during grid preparation when samples are in a thin liquid film. At this stage, extensive exposure to the air-water interface (AWI) can lead to subunit dissociation, denaturation, and preferred orientation of particles. Another obstacle to high-resolution cryoEM is molecular flexibility, which introduces heterogeneity in the dataset, weakening the signal during image processing. This study explores the effects of AWI interactions and molecular flexibility on the cryoEM density maps of KtrA, the soluble regulatory subunit of the potassium transporter KtrAB from Bacillus subtilis. From grids prepared using a standard blotting technique, we observed a lack of density in the C-lobe domains and preferred orientation. Modifications such as reducing AWI exposure through faster vitrification times (6 s vs ≤100 ms) notably improved C-lobe density. Moreover, the addition of cyclic di-AMP, which binds to the C-lobes, combined with a 100 ms plunge time, further enhanced C-lobe density and eliminated preferred orientation. These findings demonstrate that both AWI interactions and flexibility had to be addressed to obtain density for the C-lobe domains of KtrA. This study underscores the ongoing complexities in achieving high-resolution cryoEM for many samples.
Collapse
Affiliation(s)
- Isobel Jackson Hirst
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Wesley Tien Chiang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung City 402202, Taiwan
| | - Nien-Jen Hu
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung City 402202, Taiwan
| | - Charlotte A Scarff
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, Faculty of Medicine & Health & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Rebecca F Thompson
- Previous address: School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | | | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
9
|
Juen Z, Lu Z, Yu R, Chang AN, Wang B, Fitzpatrick AWP, Zuker CS. The structure of human sweetness. Cell 2025:S0092-8674(25)00456-8. [PMID: 40339580 DOI: 10.1016/j.cell.2025.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/03/2025] [Accepted: 04/15/2025] [Indexed: 05/10/2025]
Abstract
In humans, the detection and ultimately the perception of sweetness begin in the oral cavity, where taste receptor cells (TRCs) dedicated to sweet-sensing interact with sugars, artificial sweeteners, and other sweet-tasting chemicals. Human sweet TRCs express on their cell surface a sweet receptor that initiates the cascade of signaling events responsible for our strong attraction to sweet stimuli. Here, we describe the cryo-electron microscopy (cryo-EM) structure of the human sweet receptor bound to two of the most widely used artificial sweeteners-sucralose and aspartame. Our results reveal the structural basis for sweet detection, provide insights into how a single receptor mediates all our responses to such a wide range of sweet-tasting compounds, and open up unique possibilities for designing a generation of taste modulators informed by the structure of the human receptor.
Collapse
Affiliation(s)
- Zhang Juen
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Zhengyuan Lu
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ruihuan Yu
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Andrew N Chang
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Brian Wang
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anthony W P Fitzpatrick
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Charles S Zuker
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
10
|
Shahid T, Danazumi AU, Tehseen M, Alhudhali L, Clark AR, Savva CG, Hamdan SM, De Biasio A. Structural dynamics of DNA unwinding by a replicative helicase. Nature 2025; 641:240-249. [PMID: 40108462 PMCID: PMC12043514 DOI: 10.1038/s41586-025-08766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive study, several critical aspects of their function remain unresolved1: the site and mechanism of DNA strand separation, the mechanics of unwinding propagation, and the dynamic relationship between nucleotide hydrolysis and DNA movement. Here, using cryo-electron microscopy (cryo-EM), we show that the simian virus 40 large tumour antigen (LTag) helicase assembles in the form of head-to-head hexamers at replication origins, melting DNA at two symmetrically positioned sites to establish bidirectional replication forks. Through continuous heterogeneity analysis2, we characterize the conformational landscape of LTag on forked DNA under catalytic conditions, demonstrating coordinated motions that drive DNA translocation and unwinding. We show that the helicase pulls the tracking strand through DNA-binding loops lining the central channel, while directing the non-tracking strand out of the rear, in a cyclic process. ATP hydrolysis functions as an 'entropy switch', removing blocks to translocation rather than directly powering DNA movement. Our structures show the allosteric couplings between nucleotide turnover and subunit motions that enable DNA unwinding while maintaining dedicated exit paths for the separated strands. These findings provide a comprehensive model for replication fork establishment and progression that extends from viral to eukaryotic systems. More broadly, they introduce fundamental principles of the mechanism by which ATP-dependent enzymes achieve efficient mechanical work through entropy-driven allostery.
Collapse
Affiliation(s)
- Taha Shahid
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Ammar U Danazumi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Tehseen
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lubna Alhudhali
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alice R Clark
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Christos G Savva
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Samir M Hamdan
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Alfredo De Biasio
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
11
|
Gao L, Nowakowska MB, Selby K, Przykopanski A, Chen B, Krüger M, Douillard FP, Lam KH, Chen P, Huang T, Minton NP, Dorner MB, Dorner BG, Rummel A, Lindström M, Jin R. Botulinum neurotoxins exploit host digestive proteases to boost their oral toxicity via activating OrfXs/P47. Nat Struct Mol Biol 2025; 32:864-875. [PMID: 39838108 DOI: 10.1038/s41594-024-01479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Botulinum neurotoxins (BoNTs) rank among the most potent toxins and many of them are produced by bacteria carrying the orfX gene cluster that also encodes four nontoxic proteins (OrfX1, OrfX2, OrfX3 and P47). The orfX gene cluster is also found in the genomes of many non-BoNT-producing bacteria, often alongside genes encoding oral insecticidal toxins. However, the functions of these OrfXs and P47 remain elusive. Here, we demonstrate that the combined action of all four components (OrfXs and P47) drastically boosts the oral toxicity of BoNT in mice, following proteolytic activation by digestive proteases that oral toxins regularly confront. In particular, OrfX2 adopts a self-inhibiting state, engaging with BoNT through another clostridial protein, nontoxic non-hemagglutinin (NTNH), only after proteolytic activation. Cryo-electron microscopy studies unveil that two molecules of protease-activated OrfX2 simultaneously associate with NTNH, a binding mode crucial for boosting BoNT oral toxicity. Collectively, these studies offer novel insights into the physiological functions and regulatory mechanisms of OrfXs and P47 of BoNTs, shedding light on the pathogenesis of other bacterial toxins associated with homologous OrfXs and P47.
Collapse
Affiliation(s)
- Linfeng Gao
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Maria Barbara Nowakowska
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Katja Selby
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Baohua Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Maren Krüger
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - François Paul Douillard
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Ting Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Nigel Peter Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Martin Bernhard Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Brigitte Gertrud Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Rummel
- Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
12
|
Choi W, Li C, Chen Y, Wang Y, Cheng Y. Structural dynamics of human fatty acid synthase in the condensing cycle. Nature 2025; 641:529-536. [PMID: 39978408 PMCID: PMC12058526 DOI: 10.1038/s41586-025-08782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Long-chain fatty acids are the building blocks of fat in human bodies. In mammals, fatty acid synthase (FASN) contains multiple enzymatic domains to catalyse all chemical reactions needed for de novo fatty acid synthesis1. Although the chemical reactions carried out by these enzymatic domains are well defined, how the dimeric FASN with an open architecture continuously catalyses such reactions to synthesize a complete fatty acid remains elusive. Here, using a strategy of tagging and purifying endogenous FASN in HEK293T cells for single-particle cryo-electron microscopy studies, we characterized the structural dynamics of endogenous human FASN. We captured conformational snapshots of various functional substates in the condensing cycle and developed a procedure to analyse the particle distribution landscape of FASN with different orientations between its condensing and modifying wings. Together, our findings reveal that FASN function does not require a large rotational motion between its two main functional domains during the condensing cycle, and that the catalytic reactions in the condensing cycle carried out by the two monomers are unsynchronized. Our data thus provide a new composite view of FASN dynamics during the fatty acid synthesis condensing cycle.
Collapse
Affiliation(s)
- Wooyoung Choi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Chengmin Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Yifei Chen
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - YongQiang Wang
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Armeev GA, Moiseenko AV, Motorin NA, Afonin DA, Zhao L, Vasilev VA, Oleinikov PD, Glukhov GS, Peters GS, Studitsky VM, Feofanov AV, Shaytan AK, Shi X, Sokolova OS. Structure and dynamics of a nucleosome core particle based on Widom 603 DNA sequence. Structure 2025; 33:948-959.e5. [PMID: 40101710 DOI: 10.1016/j.str.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/03/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
Nucleosomes are fundamental elements of chromatin organization that participate in compacting genomic DNA and serve as targets for the binding of numerous regulatory proteins. Currently, over 500 different nucleosome structures are known. Despite the large number of nucleosome structures, all of them were formed on only about twenty different DNA sequences. Using cryo-electron microscopy, we determined the structure of the nucleosome formed on a high-affinity Widom 603 DNA sequence at 4 Å resolution; an atomic model was built. We proposed an integrative modeling approach to study the nucleosomal DNA unwrapping based on the cryoelectron microscopy (cryo-EM) data. We also demonstrated the DNA unwrapping of the Widom 603 nucleosome using small angle X-ray scattering and single particle Förster resonance energy transfer measurements. Our results are consistent with the asymmetry of nucleosomal DNA unwrapping. Our data revealed the dependence of nucleosome structure and dynamics on the sequence of nucleosomal DNA.
Collapse
Affiliation(s)
- Grigoriy A Armeev
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Andrey V Moiseenko
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nikita A Motorin
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitriy A Afonin
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Lei Zhao
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong 518172, China
| | - Veniamin A Vasilev
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Pavel D Oleinikov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Grigory S Glukhov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong 518172, China
| | - Georgy S Peters
- Faculty of Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vasily M Studitsky
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alexey V Feofanov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong 518172, China
| | - Alexey K Shaytan
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Xiangyan Shi
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong 518172, China
| | - Olga S Sokolova
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
14
|
Banari A, Samanta AK, Munke A, Laugks T, Bajt S, Grünewald K, Marlovits TC, Küpper J, Maia FRNC, Chapman HN, Oberthür D, Seuring C. Advancing time-resolved structural biology: latest strategies in cryo-EM and X-ray crystallography. Nat Methods 2025:10.1038/s41592-025-02659-6. [PMID: 40312512 DOI: 10.1038/s41592-025-02659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/11/2025] [Indexed: 05/03/2025]
Abstract
Structural biology offers a window into the functionality of molecular machines in health and disease. A fundamental challenge lies in capturing both the high-resolution structural details and dynamic changes that are essential for function. The high-resolution methods of X-ray crystallography and electron cryo-microscopy (cryo-EM) are mainly used to study ensembles of static conformations but can also capture crucial dynamic transition states. Here, we review the latest strategies and advancements in time-resolved structural biology with a focus on capturing dynamic changes. We describe recent technology developments for time-resolved sample preparation and delivery in the cryo-EM and X-ray fields and explore how these technologies could mutually benefit each other to advance our understanding of biology at the molecular and atomic scales.
Collapse
Affiliation(s)
- Amir Banari
- Centre for Structural Systems Biology, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Amit K Samanta
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Anna Munke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Tim Laugks
- Centre for Structural Systems Biology, Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - Saša Bajt
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Leibniz Institute of Virology, Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Thomas C Marlovits
- Centre for Structural Systems Biology, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Microbial and Molecular Sciences, Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Jochen Küpper
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Henry N Chapman
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Carolin Seuring
- Centre for Structural Systems Biology, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany.
- Department of Chemistry, Universität Hamburg, Hamburg, Germany.
- Department of Structural Cell Biology of Viruses, Leibniz Institute of Virology, Hamburg, Germany.
| |
Collapse
|
15
|
Chen X, Wang L, Xie J, Nowak JS, Luo B, Zhang C, Jia G, Zou J, Huang D, Glatt S, Yang Y, Su Z. RNA sample optimization for cryo-EM analysis. Nat Protoc 2025; 20:1114-1157. [PMID: 39548288 DOI: 10.1038/s41596-024-01072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
RNAs play critical roles in most biological processes. Although the three-dimensional (3D) structures of RNAs primarily determine their functions, it remains challenging to experimentally determine these 3D structures due to their conformational heterogeneity and intrinsic dynamics. Cryogenic electron microscopy (cryo-EM) has recently played an emerging role in resolving dynamic conformational changes and understanding structure-function relationships of RNAs including ribozymes, riboswitches and bacterial and viral noncoding RNAs. A variety of methods and pipelines have been developed to facilitate cryo-EM structure determination of challenging RNA targets with small molecular weights at subnanometer to near-atomic resolutions. While a wide range of conditions have been used to prepare RNAs for cryo-EM analysis, correlations between the variables in these conditions and cryo-EM visualizations and reconstructions remain underexplored, which continue to hinder optimizations of RNA samples for high-resolution cryo-EM structure determination. Here we present a protocol that describes rigorous screenings and iterative optimizations of RNA preparation conditions that facilitate cryo-EM structure determination, supplemented by cryo-EM data processing pipelines that resolve RNA dynamics and conformational changes and RNA modeling algorithms that generate atomic coordinates based on moderate- to high-resolution cryo-EM density maps. The current protocol is designed for users with basic skills and experience in RNA biochemistry, cryo-EM and RNA modeling. The expected time to carry out this protocol may range from 3 days to more than 3 weeks, depending on the many variables described in the protocol. For particularly challenging RNA targets, this protocol could also serve as a starting point for further optimizations.
Collapse
Affiliation(s)
- Xingyu Chen
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Wang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Xie
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jakub S Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yang Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Gadeberg TAF, Jørgensen MH, Olesen HG, Lorentzen J, Harwood SL, Almeida AV, Fruergaard MU, Jensen RK, Kanis P, Pedersen H, Tranchant E, Petersen SV, Thøgersen IB, Kragelund BB, Lyons JA, Enghild JJ, Andersen GR. Cryo-EM analysis of complement C3 reveals a reversible major opening of the macroglobulin ring. Nat Struct Mol Biol 2025; 32:884-895. [PMID: 39849196 DOI: 10.1038/s41594-024-01467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/03/2024] [Indexed: 01/25/2025]
Abstract
The C3 protein is the central molecule within the complement system and undergoes proteolytic activation to C3b in the presence of pathogens. Pattern-independent activation of C3 also occurs via hydrolysis, resulting in C3(H2O), but the structural details of C3 hydrolysis remain elusive. Here we show that the conformation of the C3(H2O) analog, C3MA, is indistinguishable from C3b. In contrast, the reaction intermediate C3* adopts a conformation dramatically different from both C3 and C3MA. In C3*, unlocking of the macroglobulin (MG) 3 domain creates a large opening in the MG ring through which the anaphylatoxin (ANA) domain translocates through a transient opening. C3MA formation is inhibited by an MG3-specific nanobody and prevented by linking the ANA domain to the C3 β-chain. Our study reveals an unexpected dynamic behavior of C3 and forms the basis for elucidation of the in vivo contribution of C3 hydrolysis and for controlling complement upon intravascular hemolysis and surface-contact-induced activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Philipp Kanis
- Department of Molecular Biology and Genetics, Aarhus, Denmark
| | - Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus, Denmark
| | - Emil Tranchant
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Birthe Brandt Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Anthony Lyons
- Department of Molecular Biology and Genetics, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus, Denmark
| | | | | |
Collapse
|
17
|
Wankowicz SA, Fraser JS. Advances in uncovering the mechanisms of macromolecular conformational entropy. Nat Chem Biol 2025; 21:623-634. [PMID: 40275100 PMCID: PMC12103944 DOI: 10.1038/s41589-025-01879-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/10/2025] [Indexed: 04/26/2025]
Abstract
During protein folding, proteins transition from a disordered polymer into a globular structure, markedly decreasing their conformational degrees of freedom, leading to a substantial reduction in entropy. Nonetheless, folded proteins retain substantial entropy as they fluctuate between the conformations that make up their native state. This residual entropy contributes to crucial functions like binding and catalysis, supported by growing evidence primarily from NMR and simulation studies. Here, we propose three major ways that macromolecules use conformational entropy to perform their functions; first, prepaying entropic cost through ordering of the ground state; second, spatially redistributing entropy, in which a decrease in entropy in one area is reciprocated by an increase in entropy elsewhere; third, populating catalytically competent ensembles, in which conformational entropy within the enzymatic scaffold aids in lowering transition state barriers. We also provide our perspective on how solving the current challenge of structurally defining the ensembles encoding conformational entropy will lead to new possibilities for controlling binding, catalysis and allostery.
Collapse
Affiliation(s)
- Stephanie A Wankowicz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Russell IC, Lee D, Wootten D, Sexton PM, Bumbak F. Cryoelectron microscopy as a tool for illuminating activation mechanisms of human class A orphan G protein-coupled receptors. Pharmacol Rev 2025; 77:100056. [PMID: 40286430 DOI: 10.1016/j.pharmr.2025.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are critically important medicinal targets, and the cryogenic electron microscopy (cryo-EM) revolution is providing novel high-resolution GPCR structures at a rapid pace. Orphan G protein-coupled receptors (oGPCRs) are a group of approximately 100 nonolfactory GPCRs for which endogenous ligands are unknown or not validated. The absence of modulating ligands adds difficulties to understanding the physiologic significance of oGPCRs and in the determination of high-resolution structures of isolated receptors that could facilitate drug discovery. Despite the challenges, cryo-EM structures of oGPCR-G protein complexes are emerging. This is being facilitated by numerous developments to stabilize GPCR-G protein complexes such as the use of dominant-negative G proteins, mini-G proteins, complex-stabilizing nanobodies or antibody fragments, and protein tethering methods. Moreover, many oGPCRs are constitutively active, which can facilitate complex formation in the absence of a known activating ligand. Consequently, in addition to providing templates for drug discovery, active oGPCR structures shed light on constitutive GPCR activation mechanisms. These comprise self-activation, whereby mobile extracellular portions of the receptor act as tethered agonists by occupying a canonical orthosteric-binding site in the transmembrane core, constitutive activity due to alterations to conserved molecular switches that stabilize inactive states of GPCRs, as well as receptors activated by cryptic ligands that are copurified with the receptor. Cryo-EM structures of oGPCRs are now being determined at a rapid pace and are expected to be invaluable tools for oGPCR drug discovery. SIGNIFICANCE STATEMENT: Orphan G protein-coupled receptors (GPCRs) provide large untapped potential for development of new medicines. Many of these receptors display constitutive activity, enabling structure determination and insights into observed GPCR constitutive activity including (1) self-activation by mobile receptor extracellular portions that function as tethered agonists, (2) modification of conserved motifs canonically involved in receptor quiescence and/or activation, and (3) activation by cryptic lipid ligands. Collectively, these studies advance fundamental understanding of GPCR function and provide opportunities for novel drug discovery.
Collapse
Affiliation(s)
- Isabella C Russell
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dongju Lee
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Denise Wootten
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Patrick M Sexton
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Fabian Bumbak
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
19
|
Bang I, Hattori T, Leloup N, Corrado A, Nyamaa A, Koide A, Geles K, Buck E, Koide S. Selective targeting of oncogenic hotspot mutations of the HER2 extracellular domain. Nat Chem Biol 2025; 21:706-715. [PMID: 39438724 DOI: 10.1038/s41589-024-01751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Oncogenic mutations in the extracellular domain (ECD) of cell-surface receptors could serve as tumor-specific antigens that are accessible to antibody therapeutics. Such mutations have been identified in receptor tyrosine kinases including HER2. However, it is challenging to selectively target a point mutant, while sparing the wild-type protein. Here we developed antibodies selective to HER2 S310F and S310Y, the two most common oncogenic mutations in the HER2 ECD, via combinatorial library screening and structure-guided design. Cryogenic-electron microscopy structures of the HER2 S310F homodimer and an antibody bound to HER2 S310F revealed that these antibodies recognize the mutations in a manner that mimics the dimerization arm of HER2 and thus inhibit HER2 dimerization. These antibodies as T cell engagers selectively killed a HER2 S310F-driven cancer cell line in vitro, and in vivo as a xenograft. These results validate HER2 ECD mutations as actionable therapeutic targets and offer promising candidates toward clinical development.
Collapse
Affiliation(s)
- Injin Bang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Takamitsu Hattori
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Nadia Leloup
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Alexis Corrado
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Atekana Nyamaa
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Akiko Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
- Division of Hematology Oncology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Ken Geles
- Black Diamond Therapeutics, New York, NY, USA
| | | | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Kinman LF, Carreira MV, Powell BM, Davis JH. Automated model-free analysis of cryo-EM volume ensembles with SIREn. Structure 2025; 33:974-987.e4. [PMID: 40068687 PMCID: PMC12055258 DOI: 10.1016/j.str.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/16/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
Cryogenic electron microscopy (cryo-EM) has the potential to capture snapshots of proteins in motion and generate hypotheses linking conformational states to biological function. This potential has been increasingly realized by the advent of machine learning models that allow 100s-1,000s of 3D density maps to be generated from a single dataset. How to identify distinct structural states within these volume ensembles and quantify their relative occupancies remain open questions. Here, we present an approach to inferring variable regions directly from a volume ensemble based on the statistical co-occupancy of voxels, as well as a 3D convolutional neural network that predicts binarization thresholds for volumes in an unbiased and automated manner. We show that these tools recapitulate known heterogeneity in a variety of simulated and real cryo-EM datasets and highlight how integrating these tools with existing data processing pipelines enables improved particle curation.
Collapse
Affiliation(s)
- Laurel F Kinman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Maria V Carreira
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Barrett M Powell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph H Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
21
|
Ghanim GE, Hu H, Boulanger J, Nguyen THD. Structural mechanism of LINE-1 target-primed reverse transcription. Science 2025; 388:eads8412. [PMID: 40048554 DOI: 10.1126/science.ads8412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/11/2025] [Indexed: 04/26/2025]
Abstract
Long interspersed element-1 (LINE-1) retrotransposons are the only active autonomous transposable elements in humans. They propagate by reverse transcribing their messenger RNA into new genomic locations by a process called target-primed reverse transcription (TPRT). In this work, we present four cryo-electron microscopy structures of the human LINE-1 TPRT complex, revealing the conformational dynamics of open reading frame 2 protein (ORF2p) and its extensive remodeling of the target DNA for TPRT initiation. We observe nicking of the DNA second strand during reverse transcription of the first strand. Structure prediction identifies high-confidence binding sites for LINE-1-associated factors-namely proliferating cell nuclear antigen (PCNA) and cytoplasmic poly(A)-binding protein 1 (PABPC1)-on ORF2p. Together with our structural data, this suggests a mechanism by which these factors regulate retrotransposition and supports a model for TPRT that accounts for retrotransposition outcomes observed in cells.
Collapse
Affiliation(s)
| | - Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
22
|
Yadav R, Han GW, Gati C. Molecular basis of human GABA transporter 3 inhibition. Nat Commun 2025; 16:3830. [PMID: 40268946 PMCID: PMC12019481 DOI: 10.1038/s41467-025-59066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
γ-Aminobutyric acid (GABA) transporters (GATs) are sodium- and chloride-dependent transporters that mediate the reuptake of the inhibitory neurotransmitter GABA after its release from synaptic vesicles. GAT3 transports GABA from the synaptic cleft into astrocytes and modulates synaptic signaling. GAT3 has been implicated in various neurological disorders and neurodegenerative diseases, rendering it a therapeutically important drug target. To understand the mechanism of transport and inhibition, here we determine cryo-electron microscopy structures of human GAT3 in its apo form and in complex with the selective inhibitor SNAP-5114. Unexpectedly, we have discovered that SNAP-5114 acts as a noncompetitive inhibitor at GAT3. SNAP-5114 binds at the orthosteric substrate binding pocket of GAT3 in its inward-open conformation, in agreement with its noncompetitive inhibition of GABA transport. In the apo state, GAT3 also adopts an inward-open conformation with the orthosteric substrate binding pocket exposed to cytoplasm, while an extensive network of interactions closes the extracellular gate. The structures, complemented with mutagenesis and radioligand uptake assays, show that the increased orthosteric substrate binding pocket volume and bulky moieties of SNAP-5114, drive the selective inhibition of GAT3 over GAT1. Our structural and functional studies reveal the mechanism of selective inhibition of GAT3 and provide a framework for GAT3-targeted rational drug design.
Collapse
Affiliation(s)
- Ravi Yadav
- The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Gye Won Han
- The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Cornelius Gati
- The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Goncalves MM, Uday AB, Forrester TJB, Currie SQW, Kim AS, Feng Y, Jitkova Y, Velyvis A, Harkness RW, Kimber MS, Schimmer AD, Zeytuni N, Vahidi S. Mechanism of allosteric activation in human mitochondrial ClpP protease. Proc Natl Acad Sci U S A 2025; 122:e2419881122. [PMID: 40232800 PMCID: PMC12036999 DOI: 10.1073/pnas.2419881122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Human ClpP protease contributes to mitochondrial protein quality control by degrading misfolded proteins. ClpP is overexpressed in cancers such as acute myeloid leukemia (AML), where its inhibition leads to the accumulation of damaged respiratory chain subunits and cell death. Conversely, hyperactivating ClpP with small-molecule activators, such as the recently discovered ONC201, disrupts mitochondrial protein degradation and impairs respiration in cancer cells. Despite its critical role in human health, the mechanism underlying the structural and functional properties of human ClpP remains elusive. Notably, human ClpP is paradoxically activated by active-site inhibitors. All available structures of human ClpP published to date are in the inactive compact or compressed states, surprisingly even when ClpP is bound to an activator molecule such as ONC201. Here, we present structures of human mitochondrial ClpP in the active extended state, including a pair of structures where ClpP is bound to an active-site inhibitor. We demonstrate that amino acid substitutions in the handle region (A192E and E196R) recreate a conserved salt bridge found in bacterial ClpP, stabilizing the extended active state and significantly enhancing ClpP activity. We elucidate the ClpP activation mechanism, highlighting a hormetic effect where substoichiometric inhibitor binding triggers an allosteric transition that drives ClpP into its active extended state. Our findings link the conformational dynamics of ClpP to its catalytic function and provide high-resolution structures for the rational design of potent and specific ClpP inhibitors, with implications for targeting AML and other disorders with ClpP involvement.
Collapse
Affiliation(s)
- Monica M. Goncalves
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Adwaith B. Uday
- Department of Anatomy and Cell Biology, McGill University, Montréal, QCH3A 0C7, Canada
| | - Taylor J. B. Forrester
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QCH3A 0C7, Canada
| | - S. Quinn W. Currie
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Angelina S. Kim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Yue Feng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Algirdas Velyvis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Robert W. Harkness
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Matthew S. Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Natalie Zeytuni
- Department of Anatomy and Cell Biology, McGill University, Montréal, QCH3A 0C7, Canada
- Centre de Recherche en Biologie Structurale, Montréal, QCH3G 0B1, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| |
Collapse
|
24
|
Miller AP, Reichow SL. Mechanism of small heat shock protein client sequestration and induced polydispersity. Nat Commun 2025; 16:3635. [PMID: 40240363 PMCID: PMC12003685 DOI: 10.1038/s41467-025-58964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Small heat shock proteins (sHSPs) act as first responders during cellular stress, sequestering destabilized proteins (clients) to prevent aggregation and facilitate refolding or degradation. This critical function, conserved across all life, is linked to proteostasis and protein misfolding diseases. However, the extreme molecular plasticity of sHSP/client complexes has limited mechanistic understanding. Here, we present high-resolution cryo-EM structures of Methanocaldococcus jannaschii sHSP (mjHSP16.5) in apo and multiple client-bound states. The ensemble reveals molecular mechanisms of client sequestration, highlighting cooperative chaperone-client interactions. Client engagement polarizes scaffold stability, promoting higher-order assembly and enhanced sequestration. Higher-order states suggest multiple sHSP/client assembly pathways, including subunit insertion at destabilized geometrical features. These findings provide critical insights into sHSP chaperone function and the interplay between polydispersity and client handling under stress.
Collapse
Affiliation(s)
- Adam P Miller
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, 97239, USA
- Vollum Institute, Oregon Health and Science Institute, Portland, OR, 97239, USA
| | - Steve L Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, 97239, USA.
- Vollum Institute, Oregon Health and Science Institute, Portland, OR, 97239, USA.
| |
Collapse
|
25
|
Chien CT, Maduke M, Chiu W. Single-particle cryogenic electron microscopy structure determination for membrane proteins. Curr Opin Struct Biol 2025; 92:103047. [PMID: 40228430 DOI: 10.1016/j.sbi.2025.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025]
Abstract
Membrane proteins are crucial to many cellular functions but are notoriously difficult for structural studies due to their instability outside their natural environment and their amphipathic nature with dual hydrophobic and hydrophilic regions. Single-particle cryogenic electron microscopy (cryo-EM) has emerged as a transformative approach, providing near-atomic-resolution structures without the need for crystallization. This review discusses advancements in cryo-EM, emphasizing membrane sample preparation and data processing techniques. It explores innovations in capturing membrane protein structures within native environments, analyzing their dynamics, binding partner interactions, lipid associations, and responses to electrochemical gradients. These developments continue to enhance our understanding of these vital biomolecules, advancing the contributions of structural biology for basic and translational biomedicine.
Collapse
Affiliation(s)
- Chih-Ta Chien
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Wah Chiu
- Departments of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
26
|
Gharpure A, Sulpizio A, Loeffler JR, Fernández-Quintero ML, Tran AS, Lairson LL, Ward AB. Distinct oligomeric assemblies of STING induced by non-nucleotide agonists. Nat Commun 2025; 16:3440. [PMID: 40216780 PMCID: PMC11992164 DOI: 10.1038/s41467-025-58641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
STING plays essential roles coordinating innate immune responses to processes that range from pathogenic infection to genomic instability. Its adaptor function is activated by cyclic dinucleotide (CDN) secondary messengers originating from self (2'3'-cGAMP) or bacterial sources (3'3'-CDNs). Different classes of CDNs possess distinct binding modes, stabilizing STING's ligand-binding domain (LBD) in either a closed or open conformation. The closed conformation, induced by the endogenous ligand 2'3'-cGAMP, has been extensively studied using cryo-EM. However, significant questions remain regarding the structural basis of STING activation by open conformation-inducing ligands. Using cryo-EM, we investigate potential differences in conformational changes and oligomeric assemblies of STING for closed and open conformation-inducing synthetic agonists. While we observe a characteristic 180° rotation for both classes, the open-LBD inducing agonist diABZI-3 uniquely induces a quaternary structure reminiscent but distinct from the reported autoinhibited state of apo-STING. Additionally, we observe slower rates of activation for this ligand class in functional assays, which collectively suggests the existence of a potential additional regulatory mechanism for open conformation-inducing ligands that involves head-to-head interactions and restriction of curved oligomer formation. These observations have potential implications in the selection of an optimal class of STING agonist in the context of a defined therapeutic application.
Collapse
Affiliation(s)
- Anant Gharpure
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Ariana Sulpizio
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Johannes R Loeffler
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | | | - Andy S Tran
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Luke L Lairson
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
27
|
Arkinson C, Dong KC, Gee CL, Costello SM, Soe AC, Hura GL, Marqusee S, Martin A. NUB1 traps unfolded FAT10 for ubiquitin-independent degradation by the 26S proteasome. Nat Struct Mol Biol 2025:10.1038/s41594-025-01527-3. [PMID: 40217121 DOI: 10.1038/s41594-025-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/04/2025] [Indexed: 04/25/2025]
Abstract
The ubiquitin-like modifier FAT10 targets hundreds of proteins in the mammalian immune system to the 26S proteasome for degradation. This degradation pathway requires the cofactor NUB1, yet the underlying mechanisms remain unknown. Here, we reconstituted a minimal in vitro system with human components and revealed that NUB1 uses the intrinsic instability of FAT10 to trap its N-terminal ubiquitin-like domain in an unfolded state and deliver it to the 26S proteasome for engagement, allowing the degradation of FAT10-ylated substrates in a ubiquitin-independent and p97-independent manner. Using hydrogen-deuterium exchange, structural modeling and site-directed mutagenesis, we identified the formation of an intricate complex with FAT10 that activates NUB1 for docking to the 26S proteasome, and our cryo-EM studies visualized the highly dynamic NUB1 complex bound to the proteasomal Rpn1 subunit during FAT10 delivery and the early stages of ATP-dependent degradation. These findings identified a previously unknown mode of cofactor-mediated, ubiquitin-independent substrate delivery to the 26S proteasome that relies on trapping partially unfolded states for engagement by the proteasomal ATPase motor.
Collapse
Affiliation(s)
- Connor Arkinson
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ken C Dong
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Christine L Gee
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Shawn M Costello
- Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA, USA
| | - Aimee Chi Soe
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Susan Marqusee
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Andreas Martin
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
28
|
Cao J, Belousoff MJ, Johnson RM, Keov P, Mariam Z, Deganutti G, Christopoulos G, Hick CA, Reedtz-Runge S, Glendorf T, Ballarín-González B, Raun K, Bayly-Jones C, Wootten D, Sexton PM. Structural and dynamic features of cagrilintide binding to calcitonin and amylin receptors. Nat Commun 2025; 16:3389. [PMID: 40204768 PMCID: PMC11982234 DOI: 10.1038/s41467-025-58680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Obesity is a major and increasingly prevalent chronic metabolic disease with numerous comorbidities. While recent incretin-based therapies have provided pharmaceutical inroads into treatment of obesity, there remains an ongoing need for additional medicines with distinct modes of action as independent or complementary therapeutics. Among the most promising candidates, supported by phase 1 and 2 clinical trials, is cagrilintide, a long-acting amylin and calcitonin receptor agonist. As such, understanding how cagrilintide functionally engages target receptors is critical for future development of this target class. Here, we determine structures of cagrilintide bound to Gs-coupled, active, amylin receptors (AMY1R, AMY2R, AMY3R) and calcitonin receptor (CTR) and compare cagrilintide interactions and the dynamics of receptor complexes with previously reported structures of receptors bound to rat amylin, salmon calcitonin or recently developed amylin-based peptides. These data reveal that cagrilintide has an amylin-like binding mode but, compared to other peptides, induces distinct conformational dynamics at calcitonin-family receptors that could contribute to its clinical efficacy.
Collapse
Affiliation(s)
- Jianjun Cao
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Rachel M Johnson
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Peak Proteins, Birchwood House, Larkwood Way, Macclesfield, Cheshire, UK
| | - Peter Keov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, Coventry, UK
| | | | - George Christopoulos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Caroline A Hick
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Tine Glendorf
- Research & Early Development, Novo Nordisk, Maaloev, Denmark
| | | | - Kirsten Raun
- Research & Early Development, Novo Nordisk, Maaloev, Denmark
| | - Charles Bayly-Jones
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
29
|
Vishwakarma R, Marechal N, Morichaud Z, Blaise M, Margeat E, Brodolin K. Single-stranded DNA drives σ subunit loading onto mycobacterial RNA polymerase to unlock initiation-competent conformations. Nucleic Acids Res 2025; 53:gkaf272. [PMID: 40240004 PMCID: PMC12000874 DOI: 10.1093/nar/gkaf272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Initiation of transcription requires the formation of the "open" promoter complex (RPo). For this, the σ subunit of bacterial RNA polymerase (RNAP) binds to the nontemplate strand of the -10 element sequence of promoters and nucleates DNA unwinding. This is accompanied by a cascade of conformational changes on RNAP, the exact mechanics of which remains elusive. Here, using single-molecule Förster resonance energy transfer and cryo-electron microscopy, we explored the conformational landscape of RNAP from the human pathogen Mycobacterium tuberculosis upon binding to a single-stranded DNA (ssDNA) fragment that includes the -10 element sequence (-10 ssDNA). We found that like the transcription activator RNAP-binding protein A, -10 ssDNA induced σ subunit loading onto the DNA/RNA channels of RNAP. This triggered RNAP clamp closure and unswiveling that are required for RPo formation and RNA synthesis initiation. Our results reveal a mechanism of ssDNA-guided RNAP maturation and identify the σ subunit as a regulator of RNAP conformational dynamics.
Collapse
Affiliation(s)
- Rishi Kishore Vishwakarma
- Institut de Recherche en Infectiologie de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
- Centre de Biologie Structurale, Univ Montpellier, CNRS, INSERM, Montpellier 34090, France
| | - Nils Marechal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
| | - Zakia Morichaud
- Institut de Recherche en Infectiologie de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
| | - Emmanuel Margeat
- Centre de Biologie Structurale, Univ Montpellier, CNRS, INSERM, Montpellier 34090, France
| | - Konstantin Brodolin
- Institut de Recherche en Infectiologie de Montpellier, Univ Montpellier, CNRS, Montpellier 34293, France
- INSERM Occitanie Méditerranée, Montpellier 34394, France
| |
Collapse
|
30
|
Cary BP, Hager MV, Mariam Z, Morris RK, Belousoff MJ, Deganutti G, Sexton PM, Wootten D, Gellman SH. Prolonged signaling of backbone-modified glucagon-like peptide- 1 analogues with diverse receptor trafficking. Proc Natl Acad Sci U S A 2025; 122:e2407574122. [PMID: 40168114 PMCID: PMC12002026 DOI: 10.1073/pnas.2407574122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/07/2025] [Indexed: 04/03/2025] Open
Abstract
Signal duration and subcellular location are emerging as important facets of G protein-coupled receptor (GPCR) function. The glucagon-like peptide-1 receptor (GLP-1R), a clinically relevant class B1 GPCR, stimulates production of the second messenger cyclic adenosine monophosphate (cAMP) upon activation by the native hormone, GLP-1. cAMP production continues after the hormone-receptor complex has been internalized via endocytosis. Here, we report GLP-1 analogues that induce prolonged signaling relative to GLP-1. A single β-amino acid substitution at position 18, with the residue derived from (S,S)-trans-2-aminocyclopentanecarboxylic acid (ACPC), enhances signaling duration with retention of receptor endocytosis. Pairing ACPC at position 18 with a second substitution, α-aminoisobutyric acid (Aib) at position 16, abrogates endocytosis, but prolonged signaling is maintained. Prolonged signaling is sensitive to the structure of the β residue at position 18. Cryoelectron microscopy structures of two GLP-1 analogues bound to the GLP-1R:Gs complex suggest substantial alterations to bound peptide structure and dynamics compared to the GLP-1:GLP-1R:Gs complex. These structural findings strengthen an emerging view that agonist dynamics in the receptor-bound state influence signaling profiles. Our results advance understanding of the structural underpinnings of receptor activation and introduce tools for exploring the impact of spatiotemporal signaling profiles following GLP-1R activation.
Collapse
Affiliation(s)
- Brian P. Cary
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Marlies V. Hager
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, CoventryCV1 5FB, United Kingdom
| | - Rylie K. Morris
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Matthew J. Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Giuseppe Deganutti
- Centre for Health and Life Sciences, Coventry University, CoventryCV1 5FB, United Kingdom
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
31
|
Sung MW, Hu K, Hurlimann LM, Lees JA, Fennell KF, West MA, Costales C, Rodrigues AD, Zimmermann I, Dawson RJP, Liu S, Han S. Cyclosporine A sterically inhibits statin transport by solute carrier OATP1B1. J Biol Chem 2025; 301:108484. [PMID: 40199401 DOI: 10.1016/j.jbc.2025.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
Members of the Organic Anion Transporter Polypeptides (OATP) are integral membrane proteins responsible for facilitating the transport of organic anions across the cell membrane. OATP1B1 (SLCO1B1), the prototypic OATP family member, is the most abundant uptake transporter in the liver and a key mediator of the hepatic uptake and clearance of numerous endogenous and xenobiotic compounds. It serves as a locus of important drug-drug interactions, such as those between statins and cyclosporine A, and carries the potential to enable liver-targeting therapeutics. In this study, we report cryo-EM structures of OATP1B1 and its complexes with one of its statin substrates, atorvastatin, and an inhibitor, cyclosporine A. This structural analysis has yielded insights into the mechanisms underlying the OATP1B1-mediated transport of statins and the inhibitory effect of cyclosporine A. These findings contribute to a better understanding of the molecular processes involved in drug transport and offer potential avenues for the development of targeted medications for liver-related conditions.
Collapse
Affiliation(s)
- Min Woo Sung
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | - Kuan Hu
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | | | - Joshua A Lees
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | - Kimberly F Fennell
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | - Mark A West
- Pharmacokinetics, Dynamics, and Metabolism, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | - Chester Costales
- Pharmacokinetics, Dynamics, and Metabolism, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | - Amilcar David Rodrigues
- Pharmacokinetics, Dynamics, and Metabolism, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA
| | | | | | - Shenping Liu
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA.
| | - Seungil Han
- Discovery Sciences, Discovery & Early Development, Pfizer Inc, Groton, Connecticut, USA.
| |
Collapse
|
32
|
Herbine K, Nayak AR, Zamudio-Ochoa A, Temiakov D. Structural Basis for Promoter Recognition and Transcription Factor Binding and Release in Human Mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647028. [PMID: 40236250 PMCID: PMC11996575 DOI: 10.1101/2025.04.03.647028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Transcription in human mitochondria is driven by a core apparatus consisting of a Pol A family RNA polymerase (mtRNAP), the initiation factors TFAM and TFB2M, and the elongation factor TEFM. While earlier structures of initiation and elongation complexes provided valuable snapshots, they represent isolated stages of a highly dynamic and multistep process. Critical aspects of mitochondrial transcription-such as DNA recognition and melting, promoter escape, and the release of initiation factors-remain poorly understood. Here, we present a series of cryo-EM structures that capture the transcription complex as it transitions from the initial open promoter complex to the processive elongation complex through intermediate stages. Our data reveal new determinants of promoter specificity, the sequential disengagement of mtRNAP from TFAM and the promoter, the release of TFB2M, and the recruitment of TEFM. Together, these findings provide a detailed molecular mechanism underlying transcription in human mitochondria.
Collapse
|
33
|
Karimullina E, Guo Y, Khan HM, Emde T, Quade B, Di Leo R, Otwinowski Z, Tieleman DP, Borek D, Savchenko A. Structural architecture of TolQ-TolR inner membrane protein complex from opportunistic pathogen Acinetobacter baumannii. SCIENCE ADVANCES 2025; 11:eadq9845. [PMID: 40184442 PMCID: PMC11970459 DOI: 10.1126/sciadv.adq9845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
Gram-negative bacteria harness the proton motive force (PMF) within their inner membrane (IM) to uphold cell envelope integrity, an indispensable aspect for both division and survival. The IM TolQ-TolR complex is the essential part of the Tol-Pal system, serving as a conduit for PMF energy transfer to the outer membrane. Here we present cryo-electron microscopy reconstructions of Acinetobacter baumannii TolQ in apo and TolR-bound forms at atomic resolution. The apo TolQ configuration manifests as a symmetric pentameric pore, featuring a transmembrane funnel leading toward a cytoplasmic chamber. In contrast, the TolQ-TolR complex assumes a proton nonpermeable stance, characterized by the TolQ pentamer's flexure to accommodate the TolR dimer, where two protomers undergo a translation-based relationship. Our structure-guided analysis and simulations support the rotor-stator mechanism of action, wherein the rotation of the TolQ pentamer harmonizes with the TolR protomers' interplay. These findings broaden our mechanistic comprehension of molecular stator units empowering critical functions within the Gram-negative bacterial cell envelope.
Collapse
Affiliation(s)
- Elina Karimullina
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
| | - Yirui Guo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Ligo Analytics, 2207 Chunk Ct., Dallas, TX 75206, USA
| | - Hanif M. Khan
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary T2N 1N4, Canada
| | - Tabitha Emde
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bradley Quade
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rosa Di Leo
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
- Department of Chemical Engineering and Applied Sciences, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Zbyszek Otwinowski
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - D. Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary T2N 1N4, Canada
| | - Dominika Borek
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexei Savchenko
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
| |
Collapse
|
34
|
Mai X, Wang Y, Wang X, Liu M, Teng F, Liu Z, Su MY, Stjepanovic G. Structural basis for membrane remodeling by the AP5-SPG11-SPG15 complex. Nat Struct Mol Biol 2025:10.1038/s41594-025-01500-0. [PMID: 40175557 DOI: 10.1038/s41594-025-01500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/27/2025] [Indexed: 04/04/2025]
Abstract
The human spastizin (spastic paraplegia 15, SPG15) and spatacsin (spastic paraplegia 11, SPG11) complex is involved in the formation of lysosomes, and mutations in these two proteins are linked with hereditary autosomal-recessive spastic paraplegia. SPG11-SPG15 can cooperate with the fifth adaptor protein complex (AP5) involved in membrane sorting of late endosomes. We employed cryogenic-electron microscopy and in silico predictions to investigate the structural assemblies of the SPG11-SPG15 and AP5-SPG11-SPG15 complexes. The W-shaped SPG11-SPG15 intertwined in a head-to-head fashion, and the N-terminal region of SPG11 is required for AP5 complex interaction and assembly. The AP5 complex is in a super-open conformation. Our findings reveal that the AP5-SPG11-SPG15 complex can bind PI3P molecules, sense membrane curvature and drive membrane remodeling in vitro. These studies provide insights into the structure and function of the spastic paraplegia AP5-SPG11-SPG15 complex, which is essential for the initiation of autolysosome tubulation.
Collapse
Affiliation(s)
- Xinyi Mai
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yang Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Xi Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Ming Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Fei Teng
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Ming-Yuan Su
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| | - Goran Stjepanovic
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
35
|
Basse Hansen S, Flygaard RK, Kjaergaard M, Nissen P. Structure of the [Ca]E2P intermediate of Ca 2+-ATPase 1 from Listeria monocytogenes. EMBO Rep 2025; 26:1709-1723. [PMID: 40016426 PMCID: PMC11977196 DOI: 10.1038/s44319-025-00392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/05/2025] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
Active transport by P-type Ca2+-ATPases maintain internal calcium stores and a low cytosolic calcium concentration. Structural studies of mammalian sarco/endoplasmic reticulum Ca2+-ATPases (SERCA) have revealed several steps of the transport cycle, but a calcium-releasing intermediate has remained elusive. Single-molecule FRET studies of the bacterial Ca2+-ATPase LMCA1 revealed an intermediate of the transition between so-called [Ca]E1P and E2P states and suggested that calcium release from this intermediate was the essentially irreversible step of transport. Here, we present a 3.5 Å resolution cryo-EM structure for a four-glycine insertion mutant of LMCA1 in a lipid nanodisc obtained under conditions with calcium and ATP and adopting such an intermediate state, denoted [Ca]E2P. The cytosolic domains are positioned in the E2P-like conformation, while the calcium-binding transmembrane (TM) domain adopts a calcium-bound E1P-ADP-like conformation. Missing density for the E292 residue at the calcium site (the equivalent of SERCA1a E309) suggests flexibility and a site poised for calcium release and proton uptake. The structure suggests a mechanism where ADP release and re-organization of the cytoplasmic domains precede calcium release.
Collapse
Affiliation(s)
- Sara Basse Hansen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark
| | - Rasmus Kock Flygaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark
- The Danish National Research Foundation Center for Proteins in Memory (PROMEMO), Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark.
- The Danish National Research Foundation Center for Proteins in Memory (PROMEMO), Aarhus, Denmark.
| |
Collapse
|
36
|
Shah A, Zhang X, Snee M, Lockhart-Cairns MP, Levy CW, Jowitt TA, Birchenough HL, Dean L, Collins R, Dodd RJ, Roberts ARE, Enghild JJ, Mantovani A, Fontana J, Baldock C, Inforzato A, Richter RP, Day AJ. The structural organisation of pentraxin-3 and its interactions with heavy chains of inter-α-inhibitor regulate crosslinking of the hyaluronan matrix. Matrix Biol 2025; 136:52-68. [PMID: 39814214 DOI: 10.1016/j.matbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections. To better understand the physiological and pathological roles of PTX3 we have analysed how its quaternary structure underpins HA crosslinking via its interactions with HCs. A combination of X-ray crystallography, cryo-electron microscopy (cryo-EM) and AlphaFold predictive modelling revealed that the C-terminal pentraxin domains of the PTX3 octamer are arranged in a central cube, with two long extensions on either side, each formed from four protomers assembled into tetrameric coiled-coil regions, essentially as described by (Noone et al., 2022; doi:10.1073/pnas.2208144119). From crystallography and cryo-EM data, we identified a network of inter-protomer salt bridges that facilitate the assembly of the octamer. Small angle X-ray scattering (SAXS) validated our model for the octameric protein, including the analysis of two PTX3 constructs: a tetrameric 'Half-PTX3' and a construct missing the 24 N-terminal residues (Δ1-24_PTX3). SAXS determined a length of ∼520 Å for PTX3 and, combined with 3D variability analysis of cryo-EM data, defined the flexibility of the N-terminal extensions. Biophysical analyses revealed that the prototypical heavy chain HC1 does not interact with PTX3 at pH 7.4, consistent with our previous studies showing that, at this pH, PTX3 only associates with HC•HA complexes if they are formed in its presence. However, PTX3 binds to HC1 at acidic pH, and can also be incorporated into pre-formed HC•HA complexes under these conditions. This provides a novel mechanism for the regulation of PTX3-mediated HA crosslinking (e.g., during inflammation), likely mediated by a pH-dependent conformational change in HC1. The PTX3 octamer was found to associate simultaneously with up to eight HC1 molecules and, thus, has the potential to form a major crosslinking node within HC•HA matrices, i.e., where the physical and biochemical properties of resulting matrices could be tuned by the HC/PTX3 composition.
Collapse
Affiliation(s)
- Anokhi Shah
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Xiaoli Zhang
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, LS2 9JT Leeds, UK
| | - Matthew Snee
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Michael P Lockhart-Cairns
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Colin W Levy
- Manchester Institute of Biotechnology, University of Manchester, Manchester Academic Health Science Centre, Manchester M1 7DN, UK
| | - Thomas A Jowitt
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Holly L Birchenough
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Louisa Dean
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Richard Collins
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Rebecca J Dodd
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Abigail R E Roberts
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, LS2 9JT Leeds, UK
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; IRCCS Humanitas Research Hospital, Rozzano, Italy; Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK
| | - Clair Baldock
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; IRCCS Humanitas Research Hospital, Rozzano, Italy.
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, LS2 9JT Leeds, UK.
| | - Anthony J Day
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PL, United Kingdom.
| |
Collapse
|
37
|
Xiao X, Schut GJ, Feng X, Nguyen DMN, Huang H, Wang S, Li H, Adams MWW. Cryo-EM structures define the electron bifurcating flavobicluster and ferredoxin binding site in an archaeal Nfn-Bfu transhydrogenase. J Biol Chem 2025; 301:108410. [PMID: 40107619 PMCID: PMC12018979 DOI: 10.1016/j.jbc.2025.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/13/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Flavin-based electron bifurcation couples exergonic and endergonic redox reactions in one enzyme complex to circumvent thermodynamic barriers and minimize free energy loss. Two unrelated enzymes designated NfnSL and NfnABC catalyze the NADPH-dependent reduction of ferredoxin and NAD. Bifurcation by NfnSL resides with a single FAD but the bifurcation mechanism of NfnABC, which represents the diverse and ubiquitous Bfu enzyme family, is completely different and largely unknown. Using cryo-EM structures of an archaeal NfnABC, we show that its bifurcation site is a flavobicluster consisting of FMN, one [4Fe-4S] and one [2Fe-2S] cluster where zinc atoms replace two additional clusters previously identified in other Bfu enzymes. NADH binds to the flavobicluster site of NfnABC and induces conformational changes that allow ferredoxin to bind between the C-terminal domains of NfnC and NfnB. Site-directed mutational analyses support the proposed mechanism that is likely conserved in all members of the Bfu enzyme family.
Collapse
Affiliation(s)
- Xiansha Xiao
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Haiyan Huang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Shuning Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
38
|
Kim S, Park JG, Choi SH, Kim JW, Jin MS. Cryo-EM structures reveal the H +/citrate symport mechanism of Drosophila INDY. Life Sci Alliance 2025; 8:e202402992. [PMID: 39884835 PMCID: PMC11782487 DOI: 10.26508/lsa.202402992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Drosophila I'm Not Dead Yet (INDY) functions as a transporter for citrate, a key metabolite in the citric acid cycle, across the plasma membrane. Partial deficiency of INDY extends lifespan, akin to the effects of caloric restriction. In this work, we use cryo-electron microscopy to determine structures of INDY in the presence and absence of citrate and in complex with the well-known inhibitor 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS) at resolutions ranging from 2.7 to 3.6 Å. Together with functional data obtained in vitro, the INDY structures reveal the H+/citrate co-transport mechanism, in which aromatic residue F119 serves as a one-gate element. They also provide insight into how protein-lipid interactions at the dimerization interface affect the stability and function of the transporter, and how DIDS disrupts the transport cycle.
Collapse
Affiliation(s)
- Subin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jun Gyou Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Seung Hun Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Ji Won Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
39
|
George JT, Burman N, Wilkinson RA, de Silva S, McKelvey-Pham Q, Buyukyoruk M, Dale A, Landman H, Graham A, DeLuca SZ, Wiedenheft B. Structural basis of antiphage defense by an ATPase-associated reverse transcriptase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645336. [PMID: 40196496 PMCID: PMC11974896 DOI: 10.1101/2025.03.26.645336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Reverse transcriptases (RTs) have well-established roles in the replication and spread of retroviruses and retrotransposons. However, recent evidence suggests that RTs have been conscripted by cells for diverse roles in antiviral defense. Here we determine structures of a type I-A retron, which explain how RNA, DNA, RT, HNH-nuclease and four molecules of an SMC-family ATPase assemble into a 364 kDa complex that provides phage defense. We show that phage-encoded nucleases trigger degradation of the retron-associated DNA, leading to disassembly of the retron and activation of the HNH nuclease. The HNH nuclease cleaves tRNASer, stalling protein synthesis and arresting viral replication. Taken together, these data reveal diverse and paradoxical roles for RTs in the perpetuation and elimination of genetic parasites.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Nathaniel Burman
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Royce A. Wilkinson
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Senuri de Silva
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Quynh McKelvey-Pham
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Murat Buyukyoruk
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Adelaide Dale
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Hannah Landman
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Ava Graham
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Steven Z. DeLuca
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Blake Wiedenheft
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| |
Collapse
|
40
|
Gumpper RH, Jain MK, Kim K, Sun R, Sun N, Xu Z, DiBerto JF, Krumm BE, Kapolka NJ, Kaniskan HÜ, Nichols DE, Jin J, Fay JF, Roth BL. The structural diversity of psychedelic drug actions revealed. Nat Commun 2025; 16:2734. [PMID: 40108183 PMCID: PMC11923220 DOI: 10.1038/s41467-025-57956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
There is currently a resurgence in exploring the utility of classical psychedelics to treat depression, addiction, anxiety disorders, cluster headaches, and many other neuropsychiatric disorders. A biological target of these compounds, and a hypothesized target for their therapeutic actions, is the 5-HT2A serotonin receptor. Here, we present 7 cryo-EM structures covering all major compound classes of psychedelic and non-psychedelic agonists, including a β-arrestin-biased compound RS130-180. Identifying the molecular interactions between various psychedelics and the 5-HT2A receptor reveals both common and distinct motifs among the examined psychedelic chemotypes. These findings lead to a broader mechanistic understanding of 5-HT2A activation, which can catalyze the development of novel chemotypes with potential therapeutic utility and fewer side effects.
Collapse
Affiliation(s)
- Ryan H Gumpper
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | - Manish K Jain
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kuglae Kim
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, Korea
| | - Renhong Sun
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ning Sun
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhongli Xu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- EvE Bio, LLC, Durham, NC, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | | | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David E Nichols
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan F Fay
- Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
41
|
Xu D, Thomas WC, Burnim AA, Ando N. Conformational landscapes of a class I ribonucleotide reductase complex during turnover reveal intrinsic dynamics and asymmetry. Nat Commun 2025; 16:2458. [PMID: 40075098 PMCID: PMC11903788 DOI: 10.1038/s41467-025-57735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Understanding the structural dynamics associated with enzymatic catalysis has been a long-standing goal of biochemistry. With the advent of modern cryo-electron microscopy (cryo-EM), it has become conceivable to redefine a protein's structure as the continuum of all conformations and their distributions. However, capturing and interpreting this information remains challenging. Here, we use classification and deep-learning-based analyses to characterize the conformational heterogeneity of a class I ribonucleotide reductase (RNR) during turnover. By converting the resulting information into physically interpretable 2D conformational landscapes, we demonstrate that RNR continuously samples a wide range of motions while maintaining surprising asymmetry to regulate the two halves of its turnover cycle. Remarkably, we directly observe the appearance of highly transient conformations needed for catalysis, as well as the interaction of RNR with its endogenous reductant thioredoxin also contributing to the asymmetry and dynamics of the enzyme complex. Overall, this work highlights the role of conformational dynamics in regulating key steps in enzyme mechanisms.
Collapse
Affiliation(s)
- Da Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - William C Thomas
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Audrey A Burnim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
42
|
Kretsch RC, Li S, Pintilie G, Palo MZ, Case DA, Das R, Zhang K, Chiu W. Complex water networks visualized by cryogenic electron microscopy of RNA. Nature 2025:10.1038/s41586-025-08855-w. [PMID: 40068818 DOI: 10.1038/s41586-025-08855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
The stability and function of biomolecules are directly influenced by their myriad interactions with water1-16. Here we investigated water through cryogenic electron microscopy (cryo-EM) on a highly solvated molecule: the Tetrahymena ribozyme. By using segmentation-guided water and ion modelling (SWIM)17,18, an approach combining resolvability and chemical parameters, we automatically modelled and cross-validated water molecules and Mg2+ ions in the ribozyme core, revealing the extensive involvement of water in mediating RNA non-canonical interactions. Unexpectedly, in regions where SWIM does not model ordered water, we observed highly similar densities in both cryo-EM maps. In many of these regions, the cryo-EM densities superimpose with complex water networks predicted by molecular dynamics, supporting their assignment as water and suggesting a biophysical explanation for their elusiveness to conventional atomic coordinate modelling. Our study demonstrates an approach to unveil both rigid and flexible waters that surround biomolecules through cryo-EM map densities, statistical and chemical metrics, and molecular dynamics simulations.
Collapse
Affiliation(s)
- Rachael C Kretsch
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Shanshan Li
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Grigore Pintilie
- Department of Bioengineering and James Clark Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Z Palo
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Rhiju Das
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Kaiming Zhang
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Wah Chiu
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Bioengineering and James Clark Center, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
43
|
Gilles MA, Singer A. Cryo-EM heterogeneity analysis using regularized covariance estimation and kernel regression. Proc Natl Acad Sci U S A 2025; 122:e2419140122. [PMID: 40009640 PMCID: PMC11892586 DOI: 10.1073/pnas.2419140122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/09/2025] [Indexed: 02/28/2025] Open
Abstract
Proteins and the complexes they form are central to nearly all cellular processes. Their flexibility, expressed through a continuum of states, provides a window into their biological functions. Cryogenic electron microscopy (cryo-EM) is an ideal tool to study these dynamic states as it captures specimens in noncrystalline conditions and enables high-resolution reconstructions. However, analyzing the heterogeneous distributions of conformations from cryo-EM data is challenging. We present RECOVAR, a method for analyzing these distributions based on principal component analysis (PCA) computed using a REgularized COVARiance estimator. RECOVAR is fast, robust, interpretable, expressive, and competitive with state-of-the-art neural network methods on heterogeneous cryo-EM datasets. The regularized covariance method efficiently computes a large number of high-resolution principal components that can encode rich heterogeneous distributions of conformations and does so robustly thanks to an automatic regularization scheme. The reconstruction method based on adaptive kernel regression resolves conformational states to a higher resolution than all other tested methods on extensive independent benchmarks while remaining highly interpretable. Additionally, we exploit favorable properties of the PCA embedding to estimate the conformational density accurately. This density allows for better interpretability of the latent space by identifying stable states and low free-energy motions. Finally, we present a scheme to navigate the high-dimensional latent space by automatically identifying these low free-energy trajectories. We make the code freely available at https://github.com/ma-gilles/recovar.
Collapse
Affiliation(s)
| | - Amit Singer
- Department of Mathematics, Princeton University, Princeton, NJ08544
- Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ08544
| |
Collapse
|
44
|
Godsora BKJ, Das P, Mishra PK, Sairaman A, Kaledhonkar S, Punekar NS, Bhaumik P. Conformational flexibility associated with remote residues regulates the kinetic properties of glutamate dehydrogenase. Protein Sci 2025; 34:e70038. [PMID: 39981924 PMCID: PMC11843732 DOI: 10.1002/pro.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 02/22/2025]
Abstract
Glutamate dehydrogenase (GDH) is a pivotal metabolic enzyme in all living organisms, and some of the GDHs exhibit substrate-dependent homotropic cooperativity. However, the mode of allosteric communication during the homotropic effect in GDHs remains poorly understood. In this study, we examined two homologous GDHs, Aspergillus niger GDH (AnGDH) and Aspergillus terreus GDH (AtGDH), with differing substrate utilization kinetics to uncover the factors driving their distinct behavior. We report the crystal structures and first-ever cryo-EM structures of apo- AtGDH and AnGDH that captured arrays of conformational ensembles. A wider mouth opening (~ 21 Å) is observed for the cooperative AnGDH as compared to the non-cooperative AtGDH (~17 Å) in their apo states. A network of interactions related to the substitutions in Domain II influence structural flexibility in these GDHs. Remarkably, we have identified a distant substitution (R246 to S) in Domain II, as a part of this network, which can impact the mouth opening and converts non-cooperative AtGDH into a cooperative enzyme. Our study demonstrates that remote residues can influence structural and kinetic properties in homologous GDHs.
Collapse
Affiliation(s)
| | - Parijat Das
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiMaharashtraIndia
| | - Prasoon Kumar Mishra
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiMaharashtraIndia
| | - Anjali Sairaman
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiMaharashtraIndia
| | - Sandip Kaledhonkar
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiMaharashtraIndia
| | - Narayan S. Punekar
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiMaharashtraIndia
- Present address:
Department of Biosciences and BioengineeringIndian Institute of Technology DharwadDharwadKarnatakaIndia
| | - Prasenjit Bhaumik
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiMaharashtraIndia
| |
Collapse
|
45
|
Ojha AA, Blackwell R, Cruz-Chú ER, Dsouza R, Astore MA, Schwander P, Hanson SM. The ManifoldEM method for cryo-EM: a step-by-step breakdown accompanied by a modern Python implementation. Acta Crystallogr D Struct Biol 2025; 81:89-104. [PMID: 40019002 DOI: 10.1107/s2059798325001469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
Resolving continuous conformational heterogeneity in single-particle cryo-electron microscopy (cryo-EM) is a field in which new methods are now emerging regularly. Methods range from traditional statistical techniques to state-of-the-art neural network approaches. Such ongoing efforts continue to enhance the ability to explore and understand the continuous conformational variations in cryo-EM data. One of the first methods was the manifold embedding approach or ManifoldEM. However, comparing it with more recent methods has been challenging due to software availability and usability issues. In this work, we introduce a modern Python implementation that is user-friendly, orders of magnitude faster than its previous versions and designed with a developer-ready environment. This implementation allows a more thorough evaluation of the strengths and limitations of methods addressing continuous conformational heterogeneity in cryo-EM, paving the way for further community-driven improvements.
Collapse
Affiliation(s)
- Anupam Anand Ojha
- Center for Computational Biology and Center for Computational Mathematics, Flatiron Institute, New York, NY 10010, USA
| | - Robert Blackwell
- Scientific Computing Core, Flatiron Institute, New York, NY 10010, USA
| | - Eduardo R Cruz-Chú
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Raison Dsouza
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Miro A Astore
- Center for Computational Biology and Center for Computational Mathematics, Flatiron Institute, New York, NY 10010, USA
| | - Peter Schwander
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Sonya M Hanson
- Center for Computational Biology and Center for Computational Mathematics, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
46
|
Yabukarski F. Ensemble-function relationships: From qualitative to quantitative relationships between protein structure and function. J Struct Biol 2025; 217:108152. [PMID: 39577782 DOI: 10.1016/j.jsb.2024.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Structure-function relationships are deeply rooted in modern biochemistry and structural biology and have provided the basis for our understanding of how protein structure defines function. While structure-function relationships continue to provide invaluable qualitative information, they cannot, in principle, provide the quantitative information ultimately needed to fully understand how proteins function and to make quantitative predictions about changes in activity from changes in sequence and structure. These limitations appear to arise from fundamental principles of physics, which dictate that proteins exist as interchanging ensembles of conformations, rather than as static structures that underly conventional structure-function relationships. This perspective discusses the concept of ensemble-function relationships as quantitative relationships that build on and extend traditional structure-function relationships. The concepts of free energy landscapes and conformational ensembles and their application to proteins are reviewed. The perspective summarizes a range of approaches that can provide conformational ensemble information and focuses on X-ray crystallography methods for obtaining experimental protein conformational ensembles. Focusing on enzymes as archetypes of protein function, recent literature examples are reviewed that used ensemble-function relationships to understand how protein residues contribute to function and how changes in protein sequence and structure impact activity, leading to new models and providing previously inaccessible mechanistic insights. Potential applications of conformational ensembles and ensemble-function relationships to protein design are examined. The perspective concludes with current limitations of the ensemble-function relationships and potential paths forward toward the next generation of quantitative ensemble-function models.
Collapse
Affiliation(s)
- Filip Yabukarski
- Protein Homeostasis Structural Biology Group, Bristol Myers Squibb, San Diego, CA 92121, United States.
| |
Collapse
|
47
|
Ashaduzzaman M, Taheri A, Lee YRJ, Tang Y, Guo F, Fried SD, Liu B, Al-Bassam J. Cryo-EM structures of the Plant Augmin reveal its intertwined coiled-coil assembly, antiparallel dimerization and NEDD1 binding mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640204. [PMID: 40034650 PMCID: PMC11875243 DOI: 10.1101/2025.02.25.640204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Microtubule (MT) branch nucleation is fundamental for building parallel MT networks in eukaryotic cells. In plants and metazoans, MT branch nucleation requires Augmin and NEDD1 proteins which bind along MTs and then recruit and activate the gamma-tubulin ring complex (γ-TuRC). Augmin is a fork-shaped assembly composed of eight coiled-coil subunits, while NEDD1 is a WD40 β-propellor protein that bridges across MTs, Augmin, and γ-TuRC during MT branch nucleation. Here, we reconstitute hetero-tetrameric and hetero-octameric Arabidopsis thaliana Augmin assemblies, resolve their subunit interactions using crosslinking mass spectrometry and determine 3.7 to 7.3-Å cryo-EM structures for the V-junction and extended regions of Augmin. These structures allowed us to generate a complete de novo plant Augmin model that reveals the long-range multi coiled-coil interfaces that stabilize its 40-nm hetero-octameric fork-shaped organization. We discovered the dual calponin homology (CH) domain forming its MT binding site at the end of its V-junction undertake open and closed conformations. We determined a 12-Å dimeric Augmin cryo-EM structure revealing Augmin undergoes anti-parallel dimerization through two conserved surfaces along Augmin's extended region. We reconstituted the NEDD1 WD40 β-propellor with Augmin revealing it directly binds on top its V-junction and enhances Augmin dimerization. Our studies suggest that cooperativity between the Augmin dual CH domains and NEDD1 WD40 binding site may regulate Augmin V-junction dual binding to MT lattices. This unique V-shaped dual binding and organization anchors Augmins along MTs generating a platform to recruit γ-TuRC and activate branched MT nucleation.
Collapse
Affiliation(s)
- Md Ashaduzzaman
- Department of Molecular Cellular Biology, University of California, Davis, CA, USA
| | - Aryan Taheri
- Department of Molecular Cellular Biology, University of California, Davis, CA, USA
- Present address: Molecular Cell Biology Department, University of California, Berkeley, CA, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Yuqi Tang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Fei Guo
- Department of Molecular Cellular Biology, University of California, Davis, CA, USA
| | - Stephen D. Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Jawdat Al-Bassam
- Department of Molecular Cellular Biology, University of California, Davis, CA, USA
| |
Collapse
|
48
|
Ito F, Zhen J, Xie G, Huang H, Silva JC, Wu TT, Zhou ZH. Structure of the Kaposi's sarcoma-associated herpesvirus gB in post-fusion conformation. J Virol 2025; 99:e0153324. [PMID: 39818969 PMCID: PMC11852774 DOI: 10.1128/jvi.01533-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
Discovered in 1994 in lesions of an AIDS patient, Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the gammaherpesvirus subfamily of the Herpesviridae family, which contains a total of nine that infect humans. These viruses all contain a large envelope glycoprotein, glycoprotein B (gB), that is required for viral fusion with host cell membrane to initial infection. Although the atomic structures of five other human herpesviruses in their postfusion conformation and one in its prefusion conformation are known, the atomic structure of KSHV gB has not been reported. Here, we report the first structure of the KSHV gB ectodomain determined by single-particle cryogenic electron microscopy (cryoEM). Despite a similar global fold between herpesvirus gB, KSHV gB possesses local differences not shared by its relatives in other herpesviruses. The glycosylation sites of gB are arranged in belts down the symmetry axis with distinct localization compared to that of other herpesviruses, which occludes certain antibody binding sites. An extended glycan chain observed in domain I (DI), located proximal to the host membrane, may suggest its possible role in host cell attachment. Local flexibility of domain IV (DIV) governed by molecular hinges at its interdomain junctions identifies a means for enabling conformational change. A mutation in the domain III (DIII) central helix disrupts incorporation of gB into KSHV virions despite adoption of a canonical fold in vitro. Taken together, this study reveals mechanisms of structural variability of herpesvirus fusion protein gB and informs its folding and immunogenicity.IMPORTANCEIn 1994, a cancer-causing virus was discovered in lesions of AIDS patients, which was later named Kaposi's sarcoma-associated herpesvirus (KSHV). As the latest discovered human herpesvirus, KSHV has been classified into the gammaherpesvirus subfamily of the Herpesviridae. In this study, we have expressed KSHV gB and employed cryogenic electron microscopy (cryoEM) to determine its first structure. Importantly, our structure resolves some glycans beyond the first sugar moiety. These glycans are arranged in a pattern unique to KSHV, which impacts the antigenicity of KSHV gB. Our structure also reveals conformational flexibility caused by molecular hinges between domains that provide clues into the mechanism behind the drastic change between prefusion and postfusion states.
Collapse
Affiliation(s)
- Fumiaki Ito
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
| | - James Zhen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Guodong Xie
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
| | - Haigen Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Juan C. Silva
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
49
|
Sherlock ME, Langeberg CJ, Segar KE, Kieft JS. A conserved class of viral RNA structures regulates translation reinitiation through dynamic ribosome interactions. Cell Rep 2025; 44:115236. [PMID: 39893634 PMCID: PMC11921876 DOI: 10.1016/j.celrep.2025.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/27/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Certain viral RNAs encode proteins downstream of their main open reading frame, expressed through "termination-reinitiation" events. In some cases, structures located upstream of the first stop codon within these viral RNAs bind the ribosome, inhibiting ribosome recycling and inducing reinitiation. We used bioinformatics methods to identify new examples of viral reinitiation-stimulating RNAs and experimentally verified their secondary structure and function. We determined the structure of a representative viral RNA-ribosome complex using cryoelectron microscopy (cryo-EM). 3D classification and variability analyses reveal that the viral RNA structure can sample a range of conformations while remaining tethered to the ribosome, enabling the ribosome to find a reinitiation start site within a limited range of mRNA sequence. Evaluating the conserved features and constraints of this entire RNA class within the context of the cryo-EM reconstruction provides insight into mechanisms enabling reinitiation, a translation regulation strategy employed by many other viral and eukaryotic systems.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Conner J Langeberg
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katherine E Segar
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
50
|
Di Trani JM, Yu J, Courbon GM, Lobez Rodriguez AP, Cheung CY, Liang Y, Coupland CE, Bueler SA, Cook GM, Brzezinski P, Rubinstein JL. Cryo-EM of native membranes reveals an intimate connection between the Krebs cycle and aerobic respiration in mycobacteria. Proc Natl Acad Sci U S A 2025; 122:e2423761122. [PMID: 39969994 PMCID: PMC11874196 DOI: 10.1073/pnas.2423761122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
To investigate the structure of the mycobacterial oxidative phosphorylation machinery, we prepared inverted membrane vesicles from Mycobacterium smegmatis, enriched for vesicles containing complexes of interest, and imaged the vesicles with electron cryomicroscopy. We show that this analysis allows determination of the structure of both mycobacterial ATP synthase and the supercomplex of respiratory complexes III and IV in their native membrane. The latter structure reveals that the enzyme malate:quinone oxidoreductase (Mqo) physically associates with the respiratory supercomplex, an interaction that is lost on extraction of the proteins from the lipid bilayer. Mqo catalyzes an essential reaction in the Krebs cycle, and in vivo survival of mycobacterial pathogens is compromised when its activity is absent. We show with high-speed spectroscopy that the Mqo:supercomplex interaction enables rapid electron transfer from malate to the supercomplex. Further, the respiratory supercomplex is necessary for malate-driven, but not NADH-driven, electron transport chain activity and oxygen consumption. Together, these findings indicate a connection between the Krebs cycle and aerobic respiration that directs electrons along a single branch of the mycobacterial electron transport chain.
Collapse
Affiliation(s)
- Justin M. Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Jiacheng Yu
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Gautier M. Courbon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Ana Paula Lobez Rodriguez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin9016, New Zealand
| | - Yingke Liang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Claire E. Coupland
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Stephanie A. Bueler
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin9016, New Zealand
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD4000, Australia
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - John L. Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ONM5G 1L7, Canada
| |
Collapse
|