1
|
Kumar K, Angdisen J, Ma J, Datta K, Fornace AJ, Suman S. Simulated Galactic Cosmic Radiation Exposure-Induced Mammary Tumorigenesis in ApcMin/+ Mice Coincides with Activation of ERα-ERRα-SPP1 Signaling Axis. Cancers (Basel) 2024; 16:3954. [PMID: 39682141 DOI: 10.3390/cancers16233954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Exposure to galactic cosmic radiation (GCR) is a breast cancer risk factor for female astronauts on deep-space missions. However, the specific signaling mechanisms driving GCR-induced breast cancer have not yet been determined. METHODS This study aimed to investigate the role of the estrogen-induced ERα-ERRα-SPP1 signaling axis in relation to mammary tumorigenesis in female ApcMin/+ mice exposed to simulated GCR (GCRsim) at 100-110 days post-exposure. RESULTS In GCRsim-exposed mice, we observed marked elevations in serum estradiol, increased ductal overgrowth, ERα activation, and upregulation of ERα target genes with pro-tumorigenic functions in mammary tissues that was coupled with a higher mammary tumorigenesis, relative to control. Additionally, the ERα target gene Esrra, which encodes ERRα, was also upregulated along with its oncogenic target gene Spp1, indicating the activation of the ERα-ERRα-SPP1 axis in mouse mammary tissues after GCRsim exposure. Using a human tissue microarray and human breast cancer gene expression analysis, we also highlighted the conserved nature of the ERα-ERRα-SPP1 signaling in human breast cancer development. CONCLUSIONS We identified the ERα-ERRα-SPP1 signaling axis as a potential key mediator in GCR-induced breast cancer with conserved activation in human breast cancer. These findings suggest that targeting this pathway could serve as a potential target for therapeutic intervention to safeguard female astronauts during and after a prolonged outer space mission.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jerry Angdisen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jinwenrui Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Moon DO. Deciphering the Role of BCAR3 in Cancer Progression: Gene Regulation, Signal Transduction, and Therapeutic Implications. Cancers (Basel) 2024; 16:1674. [PMID: 38730626 PMCID: PMC11083344 DOI: 10.3390/cancers16091674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This review comprehensively explores the gene BCAR3, detailing its regulation at the gene, mRNA, and protein structure levels, and delineating its multifunctional roles in cellular signaling within cancer contexts. The discussion covers BCAR3's involvement in integrin signaling and its impact on cancer cell migration, its capability to induce anti-estrogen resistance, and its significant functions in cell cycle regulation. Further highlighted is BCAR3's modulation of immune responses within the tumor microenvironment, a novel area of interest that holds potential for innovative cancer therapies. Looking forward, this review outlines essential future research directions focusing on transcription factor binding studies, isoform-specific expression profiling, therapeutic targeting of BCAR3, and its role in immune cell function. Each segment builds towards a holistic understanding of BCAR3's operational mechanisms, presenting a critical evaluation of its therapeutic potential in oncology. This synthesis aims to not only extend current knowledge but also catalyze further research that could pivotally influence the development of targeted cancer treatments.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201 Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
3
|
Yan CY, Zhao ML, Wei YN, Zhao XH. Mechanisms of drug resistance in breast cancer liver metastases: Dilemmas and opportunities. Mol Ther Oncolytics 2023; 28:212-229. [PMID: 36860815 PMCID: PMC9969274 DOI: 10.1016/j.omto.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in females worldwide, and the liver is one of the most common sites of distant metastases in breast cancer patients. Patients with breast cancer liver metastases face limited treatment options, and drug resistance is highly prevalent, leading to a poor prognosis and a short survival. Liver metastases respond extremely poorly to immunotherapy and have shown resistance to treatments such as chemotherapy and targeted therapies. Therefore, to develop and to optimize treatment strategies as well as to explore potential therapeutic approaches, it is crucial to understand the mechanisms of drug resistance in breast cancer liver metastases patients. In this review, we summarize recent advances in the research of drug resistance mechanisms in breast cancer liver metastases and discuss their therapeutic potential for improving patient prognoses and outcomes.
Collapse
Affiliation(s)
- Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
4
|
Kumar K, Moon BH, Datta K, Fornace AJ, Suman S. Simulated galactic cosmic radiation (GCR)-induced expression of Spp1 coincide with mammary ductal cell proliferation and preneoplastic changes in Apc Min/+ mouse. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:116-122. [PMID: 36682820 DOI: 10.1016/j.lssr.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 06/17/2023]
Abstract
Female astronauts inevitably exposed to galactic cosmic radiation (GCR) are considered at a greater risk for mammary cancer development. The purpose of this study is to assess the status of mammary cancer-associated preneoplasia markers after GCR and γ-ray irradiation using a mouse model of human mammary cancer. Female ApcMin/+ mice were irradiated to 50 cGy of either γ-ray (137Cs) or full-spectrum simulated galactic cosmic radiation (GCR) (33-beam), and at 110 - 120 days post-irradiation mice were euthanized, and normal-appearing mammary tissues were analyzed for histological and molecular markers of preneoplasia. Whole-mount staining, hematoxylin and eosin-based histological assessment, and Cyclin D1 immunohistochemistry (IHC) were performed to analyze ductal outgrowth and cell proliferation. Additionally, mRNA expression of known mammary preneoplasia markers (Muc1, Exo1, Foxm1, Depdc1a, Nusap1, Spp1, and Rrm2) was analyzed using qPCR, and their respective protein expression was validated using immunohistochemistry. A significant increase in ductal outgrowth and cell proliferation in mammary tissues of GCR-irradiated mice was noted which indicates a higher risk of mammary cancer, relative to γ-rays. Increased mRNA and protein expression of Spp1 was observed in the GCR group, relative to γ-rays. This study demonstrates the plausibility of Spp1 as a preneoplasia marker in the early detection of mammary cancer after space radiation exposure.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States of America
| | - Bo-Hyun Moon
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States of America
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States of America
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States of America; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, United States of America
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States of America.
| |
Collapse
|
5
|
Kashyap D, Garg VK, Sandberg EN, Goel N, Bishayee A. Oncogenic and Tumor Suppressive Components of the Cell Cycle in Breast Cancer Progression and Prognosis. Pharmaceutics 2021; 13:pharmaceutics13040569. [PMID: 33920506 PMCID: PMC8072616 DOI: 10.3390/pharmaceutics13040569] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer, a disease of inappropriate cell proliferation, is strongly interconnected with the cell cycle. All cancers consist of an abnormal accumulation of neoplastic cells, which are propagated toward uncontrolled cell division and proliferation in response to mitogenic signals. Mitogenic stimuli include genetic and epigenetic changes in cell cycle regulatory genes and other genes which regulate the cell cycle. This suggests that multiple, distinct pathways of genetic alterations lead to cancer development. Products of both oncogenes (including cyclin-dependent kinase (CDKs) and cyclins) and tumor suppressor genes (including cyclin-dependent kinase inhibitors) regulate cell cycle machinery and promote or suppress cell cycle progression, respectively. The identification of cyclins and CDKs help to explain and understand the molecular mechanisms of cell cycle machinery. During breast cancer tumorigenesis, cyclins A, B, C, D1, and E; cyclin-dependent kinase (CDKs); and CDK-inhibitor proteins p16, p21, p27, and p53 are known to play significant roles in cell cycle control and are tightly regulated in normal breast epithelial cells. Following mitogenic stimuli, these components are deregulated, which promotes neoplastic transformation of breast epithelial cells. Multiple studies implicate the roles of both types of components-oncogenic CDKs and cyclins, along with tumor-suppressing cyclin-dependent inhibitors-in breast cancer initiation and progression. Numerous clinical studies have confirmed that there is a prognostic significance for screening for these described components, regarding patient outcomes and their responses to therapy. The aim of this review article is to summarize the roles of oncogenic and tumor-suppressive components of the cell cycle in breast cancer progression and prognosis.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India;
| | | | - Elise N. Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Neelam Goel
- University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, Punjab, India
- Correspondence: (N.G.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (N.G.); or (A.B.)
| |
Collapse
|
6
|
Attia YM, Shouman SA, Salama SA, Ivan C, Elsayed AM, Amero P, Rodriguez-Aguayo C, Lopez-Berestein G. Blockade of CDK7 Reverses Endocrine Therapy Resistance in Breast Cancer. Int J Mol Sci 2020; 21:ijms21082974. [PMID: 32340192 PMCID: PMC7215326 DOI: 10.3390/ijms21082974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022] Open
Abstract
Cyclin-dependent kinase (CDK)-7 inhibitors are emerging as promising drugs for the treatment of different types of cancer that show chemotherapy resistance. Evaluation of the effects of CDK7 inhibitor, THZ1, alone and combined with tamoxifen is of paramount importance. Thus, in the current work, we assessed the effects of THZ1 and/or tamoxifen in two estrogen receptor-positive (ER+) breast cancer cell lines (MCF7) and its tamoxifen resistant counterpart (LCC2) in vitro and in xenograft mouse models of breast cancer. Furthermore, we evaluated the expression of CDK7 in clinical samples from breast cancer patients. Cell viability, apoptosis, and genes involved in cell cycle regulation and tamoxifen resistance were determined. Tumor volume and weight, proliferation marker (Ki67), angiogenic marker (CD31), and apoptotic markers were assayed. Bioinformatic data indicated CDK7 expression was associated with negative prognosis, enhanced pro-oncogenic pathways, and decreased response to tamoxifen. Treatment with THZ1 enhanced tamoxifen-induced cytotoxicity, while it inhibited genes involved in tumor progression in MCF-7 and LCC2 cells. In vivo, THZ1 boosted the effect of tamoxifen on tumor weight and tumor volume, reduced Ki67 and CD31 expression, and increased apoptotic cell death. Our findings identify CDK7 as a possible therapeutic target for breast cancer whether it is sensitive or resistant to tamoxifen therapy.
Collapse
Affiliation(s)
- Yasmin M. Attia
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo 11796, Egypt; (Y.M.A.); (S.A.S.)
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
| | - Samia A. Shouman
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo 11796, Egypt; (Y.M.A.); (S.A.S.)
| | - Salama A. Salama
- Pharmacology & Toxicology Department, Al-Azhar University, Cairo 11675, Egypt
- Correspondence: ; Tel.: +20-109-550-8894
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abdelrahman M. Elsayed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
- Pharmacology & Toxicology Department, Al-Azhar University, Cairo 11675, Egypt
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Maqbool SN, Lim SC, Park KC, Hanif R, Richardson DR, Jansson PJ, Kovacevic Z. Overcoming tamoxifen resistance in oestrogen receptor-positive breast cancer using the novel thiosemicarbazone anti-cancer agent, DpC. Br J Pharmacol 2020; 177:2365-2380. [PMID: 31975484 DOI: 10.1111/bph.14985] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Breast cancer is the leading cause of death in women worldwide, with resistance to current therapeutic strategies, including tamoxifen, causing major clinical challenges and leading to more aggressive and metastatic disease. To address this, novel strategies that can inhibit the mechanisms responsible for tamoxifen resistance need to be assessed. EXPERIMENTAL APPROACH We examined the effect of the novel, clinically-trialled, thiosemicarbazone anti-cancer agent, DpC, and its potential as a combination therapy with the clinically used estrogen receptor (ER) antagonist, tamoxifen, using both tamoxifen-resistant and -sensitive, human breast cancer cells (MDA-MB-453, MDA-MB-231 and MCF-7) in 2D and 3D cell-culture. Synergy was assessed using the Chou-Talalay method. The molecular and anti-proliferative effects of these agents and their combination was examined via Western blot, immunofluorescence and colony formation assays. KEY RESULTS Combinations of tamoxifen with DpC were highly synergistic, leading to potent inhibition of cell proliferation, colony formation, and ER-α transcriptional activity. The combination also more efficiently reduced major molecular drivers of proliferation of tamoxifen-resistant cells, including c-Myc, cyclin D1, and p-AKT, while up-regulating the cell cycle inhibitor, p27, and inhibiting oncogenic phosphorylation of ER-α at Ser167. Assessing these effects using 3D cell culture further confirmed the greater effects of DpC combined with tamoxifen in reducing ER-α expression, and that of the proliferation marker, Ki-67, in both tamoxifen-sensitive and -resistant MCF-7 spheroids. CONCLUSIONS AND IMPLICATIONS These studies demonstrate that the synergistic combination of DpC with tamoxifen could be a promising new therapeutic strategy to overcome tamoxifen resistance in ER-positive breast cancer.
Collapse
Affiliation(s)
- Sundus N Maqbool
- Molecular Pathology and Pharmacology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Atta-ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Syer C Lim
- Molecular Pathology and Pharmacology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | - Kyung Chan Park
- Molecular Pathology and Pharmacology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | - Rumeza Hanif
- Atta-ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Des R Richardson
- Molecular Pathology and Pharmacology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | - Patric J Jansson
- Molecular Pathology and Pharmacology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | - Zaklina Kovacevic
- Molecular Pathology and Pharmacology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Azim HA, Dawood S, El-Saghir N, Kassem L, Azim HA. Understanding the benefits and challenges of first-line cyclin-dependent kinases 4 and 6 inhibitors in advanced breast cancer among postmenopausal women. Breast J 2019; 26:630-642. [PMID: 31709685 DOI: 10.1111/tbj.13637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023]
Abstract
Endocrine therapy (ET) has been regarded for many years as the standard treatment for patients with hormone receptor-positive (ER+), HER2-negative (HER2-) advanced breast cancer (ABC) without visceral crisis. However, the efficacy of single-agent ET is constrained by the development of resistance, attributed to alterations in several intracellular signaling pathways, including those related to cell cycle dysregulation. The cyclin-dependent kinases 4 and 6 (CDK4/6) are principal regulators of cell cycle progression from the G1-phase into the DNA synthesis (S)-phase. In vitro inhibition of CDK4/6 activity has potent antiproliferative properties against luminal breast cancer cell lines, which are enhanced when combined with traditional ET. This has led to a substantial interest in targeting this pathway to overcome endocrine resistance in the clinic. Three selective CDK4/6 inhibitors (palbociclib, ribociclib, and abemaciclib) have been approved as first-line therapy in combination with an aromatase inhibitor, or fulvestrant in the case of ribociclib in patients with ER+/HER2- ABC. To date, there is no clue as to which subgroup of patients might benefit most from these combinations. Here, we outline some of the established approaches to overcome endocrine resistance, with special emphasis on the unique mechanism of action of CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Hamdy A Azim
- Department of Clinical Oncology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Cairo Oncology Centre, Cairo, Egypt
| | - Shaheenah Dawood
- Department of Medical Oncology, Mediclinic City Hospital, Comprehensive Cancer Center, Dubai Health Care City, Dubai, UAE
| | - Nagi El-Saghir
- American University of Beirut Medical Center, Beirut, Lebanon
| | - Loay Kassem
- Department of Clinical Oncology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Cairo Oncology Centre, Cairo, Egypt
| | - Hatem A Azim
- American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
9
|
Davison Z, Nicholson RI, Hiscox S, Heard CM. Co-Administration of Fish Oil With Signal Transduction Inhibitors Has Anti-Migration Effects in Breast Cancer Cell Lines, in vitro. Open Biochem J 2018; 12:130-148. [PMID: 30288178 PMCID: PMC6142674 DOI: 10.2174/1874091x01812010130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
Background: There is an urgent need for new therapies to treat cancer metastasis. Fish oil, with high omega 3 fatty acid content, has shown anticancer activity and signal transduction inhibitors have shown anti-metastatic properties. Objective: To provide preliminary in vitro data on the anti-migration potential of signal transduction inhibitors and co-administered fish oil. Methods: MCF-7, TamR and FasR breast cancer cell lines were used to determine the effects of combinations of PD98059, LY294002 and fish oil in growth assays. Modulations of p-Src and COX-2, both mediators of motility and invasion, were then determined by Western blotting and IHC to ascertain effects on migration potential. Results: Migration rates for the three cell lines examined were ranked: FasR>TamR>MCF-7 (p <0.05). Addition of fish oil reduced the number of TamR cells migrating after 48h (p <0.05), while the addition of PD98059 and LY294002 also decreased migratory potential of TamR cells (p <0.05). Addition of PD98059 and LY294002 to TamR cells did not result in a significant decrease in p-Src levels; as was the case when PD98059, LY294002 and 4-hydroxytamoxifen were added to MCF-7 cells. However, the co-administration of fish oil markedly reduced p-Src and COX-2 expression in both cell lines. Conclusion: Co-administration of a commercial fish oil with signal transduction inhibitors results in decreased cell migration via an unknown co-operative mechanism and could constitute a novel approach for the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Zoë Davison
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, CF10 3NB, Cardiff, United Kingdom
| | - Robert I Nicholson
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, CF10 3NB, Cardiff, United Kingdom
| | - Stephen Hiscox
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, CF10 3NB, Cardiff, United Kingdom
| | - Charles M Heard
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, CF10 3NB, Cardiff, United Kingdom
| |
Collapse
|
10
|
Petrossian K, Kanaya N, Lo C, Hsu PY, Nguyen D, Yang L, Yang L, Warden C, Wu X, Pillai R, Bernal L, Huang CS, Kruper L, Yuan Y, Somlo G, Mortimer J, Chen S. ERα-mediated cell cycle progression is an important requisite for CDK4/6 inhibitor response in HR+ breast cancer. Oncotarget 2018; 9:27736-27751. [PMID: 29963233 PMCID: PMC6021239 DOI: 10.18632/oncotarget.25552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/19/2018] [Indexed: 01/01/2023] Open
Abstract
While ER has multiple biological effects, ER-cyclin D1-CDK4/6-RB is a critical pathway for the action of estrogen on the cell cycle, especially for breast cancers that rely on estrogen for growth. The latest and most efficient CDK4/6 inhibitors target the phosphorylation of retinoblastoma (RB) tumor suppressor gene; thus, altering levels of many cell cycle molecules. Estrogen receptor (ER)+/HER2- breast cancers have shown great progression free survival when CDK4/6 inhibitors are combined with endocrine therapies. Here we report the mechanism of antiestrogen (fulvestrant) combination with CDK4/6 inhibitors is due to synergism in the suppression of ER-mediated cell cycle progression. Furthermore, we performed single cell analysis of cells from an estrogen dependent/hormone receptor-positive patient derived xenograft (PDX) tumor model treated with palbociclib. These single cells expressed various levels of ER and RB which are involved in cell cycle regulation; and the response to palbociclib treatment relies not only on the ER-cyclin D1-CDK4/6-RB pathway but it is also dependent on elevated levels of ER and/or RB. Our preclinical studies show that palbociclib response is dependent on cells with ER, which is directly involved in cell cycle progression in hormone receptor positive (HR+) breast cancer.
Collapse
Affiliation(s)
- Karineh Petrossian
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Chiao Lo
- Department of Breast Health, National Taiwan University Hospital, Taipei City, Taiwan
| | - Pei-Yin Hsu
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Duc Nguyen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Lixin Yang
- Molecular Pathology Core, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Lu Yang
- Integrative Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Charles Warden
- Integrative Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Raju Pillai
- Molecular Pathology Core, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Lauren Bernal
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Chiun-Sheng Huang
- Department of Breast Health, National Taiwan University Hospital, Taipei City, Taiwan
| | - Laura Kruper
- Department of Surgery, City of Hope Medical Center, Duarte, CA, United States
| | - Yuan Yuan
- Department of Medical Oncology and Therapeutics Research, City of Hope Medical Center, Duarte, CA, United States
| | - George Somlo
- Department of Medical Oncology and Therapeutics Research, City of Hope Medical Center, Duarte, CA, United States
| | - Joanne Mortimer
- Department of Medical Oncology and Therapeutics Research, City of Hope Medical Center, Duarte, CA, United States
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| |
Collapse
|
11
|
Mechanisms of resistance to EZH2 inhibitors in diffuse large B-cell lymphomas. Blood 2018; 131:2125-2137. [PMID: 29572378 DOI: 10.1182/blood-2017-08-804344] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/17/2018] [Indexed: 01/01/2023] Open
Abstract
Resistance to targeted therapies has become increasingly prevalent. We noted that resistance to different targeted therapies occurs by largely common mechanisms. In this study, we used this information for identifying the mechanisms of resistance to enhancer of zeste homolog 2 (EZH2) inhibitors in diffuse large B-cell lymphoma (DLBCL) harboring EZH2 mutations. We discovered that EZH2 inhibitor-resistant DLBCL cells showed activation of the insulin-like growth factor 1 receptor (IGF-1R), MEK, and phosphoinositide-3-kinase (PI3K) pathways. Constitutive activation of IGF-1R, MEK, or PI3K pathways was sufficient to confer resistance to EZH2 inhibitors in DLBCL. The activation of the PI3K/AKT and MAPK pathways decreased TNFSF10 and BAD expression through a FOXO3-dependent mechanism, which was required for the antitumor effects of EZH2i GSK126. We also identified multiple acquired mutations in EZH2 inhibitor-resistant DLBCL cell lines. These mutations independently conferred resistance to EZH2 inhibitors. Mechanistically, cellular thermal shift assays revealed that the acquired EZH2 mutations that confer resistance to EZH2 inhibitors prevent EZH2 inhibitor binding to the EZH2 mutants. Notably, EZH2 inhibitor GSK126- and EPZ-6438-resistant DLBCL cells remained sensitive to the EZH2 inhibitor UNC1999 and embryonic ectoderm development protein inhibitor EED226, which provides an opportunity to treat DLBCLs that are resistant to these drugs. Collectively, our results underpin the importance for developing a unified approach for forestalling drug resistance by prospectively considering lessons learned from the use of different targeted therapeutic agents.
Collapse
|
12
|
Chen S, Yao F, Xiao Q, Liu Q, Yang Y, Li X, Jiang G, Kuno T, Fang Y. EZH2 inhibition sensitizes tamoxifen‑resistant breast cancer cells through cell cycle regulation. Mol Med Rep 2017; 17:2642-2650. [PMID: 29207119 DOI: 10.3892/mmr.2017.8160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/21/2017] [Indexed: 11/06/2022] Open
Abstract
Enhancer of zeste homologue 2 (EZH2), a catalytic subunit of polycomb repressive complex 2, is overexpressed in a number of different tumors including breast cancer, and serves important roles in cell cycle regulation, proliferation, apoptosis, tumorigenesis and drug resistance. However, it remains unclear whether EZH2 contributes to tamoxifen resistance in breast cancer. In the present study, the role of EZH2 in tamoxifen resistance in MCF‑7 cells was investigated. EZH2 was overexpressed in MCF‑7 tamoxifen‑resistant (MCF‑7 TamR) cells. EZH2 overexpression decreased the sensitivity of MCF‑7 cells to tamoxifen, and EZH2 knockdown improved the sensitivity of MCF‑7 TamR cells to tamoxifen. Furthermore, EZH2 knockdown induced cell cycle arrest in MCF‑7 TamR cells, accompanied by a decrease in cyclin D1 expression and an increase in p16 expression. EZH2 knockdown reduced p16 gene methylation in MCF‑7 TamR cells. These findings suggested that EZH2 overexpression may contribute to tamoxifen resistance in breast cancer, and EZH2 inhibition may reverse tamoxifen resistance in breast cancer by regulating the cell cycle via the demethylation of the p16 gene. Thus, EZH2 inhibitors may be effective for treating tamoxifen resistance in breast cancer.
Collapse
Affiliation(s)
- Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| | - Yikun Yang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| | - Xuejuan Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| | - Guanglie Jiang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| |
Collapse
|
13
|
Liu CY, Wu CY, Petrossian K, Huang TT, Tseng LM, Chen S. Treatment for the endocrine resistant breast cancer: Current options and future perspectives. J Steroid Biochem Mol Biol 2017; 172:166-175. [PMID: 28684381 DOI: 10.1016/j.jsbmb.2017.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/31/2017] [Accepted: 07/01/2017] [Indexed: 02/07/2023]
Abstract
Endocrine resistance remains a challenge and an unmet need for managing hormone receptor-positive breast cancer. The mechanisms of endocrine resistance are multifaceted and are likely to evolve over time following various single or combination therapies. The purpose of this review article is to provide general understanding of molecular basis of endocrine resistance of breast cancer and to offer comprehensive review on current treatment options and potential new treatment strategies for endocrine resistant breast cancers. Last but not the least, we discuss current challenges and future directions for management of endocrine resistant breast cancers.
Collapse
Affiliation(s)
- Chun-Yu Liu
- Division of Medical Oncology, Department of Oncology, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Yun Wu
- Division of Medical Oncology, Department of Oncology, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Karineh Petrossian
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, United States
| | - Tzu-Ting Huang
- Division of Medical Oncology, Department of Oncology, Taiwan
| | - Ling-Ming Tseng
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, United States.
| |
Collapse
|
14
|
Xiong R, Zhao J, Gutgesell LM, Wang Y, Lee S, Karumudi B, Zhao H, Lu Y, Tonetti DA, Thatcher GRJ. Novel Selective Estrogen Receptor Downregulators (SERDs) Developed against Treatment-Resistant Breast Cancer. J Med Chem 2017; 60:1325-1342. [PMID: 28117994 DOI: 10.1021/acs.jmedchem.6b01355] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Resistance to the selective estrogen receptor modulator tamoxifen and to aromatase inhibitors that lower circulating estradiol occurs in up to 50% of patients, generally leading to an endocrine-independent ER+ phenotype. Selective ER downregulators (SERDs) are able to ablate ER and thus, theoretically, to prevent survival of both endocrine-dependent and -independent ER+ tumors. The clinical SERD fulvestrant is hampered by intramuscular administration and undesirable pharmacokinetics. Novel SERDs were designed using the 6-OH-benzothiophene (BT) scaffold common to arzoxifene and raloxifene. Treatment-resistant (TR) ER+ cell lines (MCF-7:5C and MCF-7:TAM1) were used for optimization, followed by validation in the parent endocrine-dependent cell line (MCF-7:WS8), in 2D and 3D cultures, using ERα in-cell westerns, ERE-luciferase, and cell viability assays, with 2 (GDC-0810/ARN-810) used for comparison. Two BT SERDs with superior in vitro activity to 2 were studied for bioavailability and shown to cause regression of a TR, endocrine-independent ER+ xenograft superior to that with 2.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Jiong Zhao
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Lauren M Gutgesell
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Yueting Wang
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Sue Lee
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Bhargava Karumudi
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Huiping Zhao
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Yunlong Lu
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Debra A Tonetti
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| |
Collapse
|
15
|
Brechbuhl HM, Finlay-Schultz J, Yamamoto TM, Gillen AE, Cittelly DM, Tan AC, Sams SB, Pillai MM, Elias AD, Robinson WA, Sartorius CA, Kabos P. Fibroblast Subtypes Regulate Responsiveness of Luminal Breast Cancer to Estrogen. Clin Cancer Res 2016; 23:1710-1721. [PMID: 27702820 DOI: 10.1158/1078-0432.ccr-15-2851] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 01/02/2023]
Abstract
Purpose: Antiendocrine therapy remains the most effective treatment for estrogen receptor-positive (ER+) breast cancer, but development of resistance is a major clinical complication. Effective targeting of mechanisms that control the loss of ER dependency in breast cancer remains elusive. We analyzed breast cancer-associated fibroblasts (CAF), the largest component of the tumor microenvironment, as a factor contributing to ER expression levels and antiendocrine resistance.Experimental Design: Tissues from patients with ER+ breast cancer were analyzed for the presence of CD146-positive (CD146pos) and CD146-negative (CD146neg) fibroblasts. ER-dependent proliferation and tamoxifen sensitivity were evaluated in ER+ tumor cells cocultured with CD146pos or CD146neg fibroblasts. RNA sequencing was used to develop a high-confidence gene signature that predicts for disease recurrence in tamoxifen-treated patients with ER+ breast cancer.Results: We demonstrate that ER+ breast cancers contain two CAF subtypes defined by CD146 expression. CD146neg CAFs suppress ER expression in ER+ breast cancer cells, decrease tumor cell sensitivity to estrogen, and increase tumor cell resistance to tamoxifen therapy. Conversely, the presence of CD146pos CAFs maintains ER expression in ER+ breast cancer cells and sustains estrogen-dependent proliferation and sensitivity to tamoxifen. Conditioned media from CD146pos CAFs with tamoxifen-resistant breast cancer cells are sufficient to restore tamoxifen sensitivity. Gene expression profiles of patient breast tumors with predominantly CD146neg CAFs correlate with inferior clinical response to tamoxifen and worse patient outcomes.Conclusions: Our data suggest that CAF composition contributes to treatment response and patient outcomes in ER+ breast cancer and should be considered a target for drug development. Clin Cancer Res; 23(7); 1710-21. ©2016 AACR.
Collapse
Affiliation(s)
- Heather M Brechbuhl
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado.
| | | | - Tomomi M Yamamoto
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado
| | - Austin E Gillen
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado
| | - Diana M Cittelly
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Aik-Choon Tan
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado
| | - Sharon B Sams
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Manoj M Pillai
- Section of Hematology, Division of Hematology, Yale Cancer Center and Yale University School of Medicine, New Haven, Connecticut
| | - Anthony D Elias
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado
| | - William A Robinson
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado.
| |
Collapse
|
16
|
Won HS, Lee KM, Oh JE, Nam EM, Lee KE. Inhibition of β-Catenin to Overcome Endocrine Resistance in Tamoxifen-Resistant Breast Cancer Cell Line. PLoS One 2016; 11:e0155983. [PMID: 27196739 PMCID: PMC4873201 DOI: 10.1371/journal.pone.0155983] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/06/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The β-catenin signaling is important in cell growth and differentiation and is frequently dysregulated in various cancers. The most well-known mechanism of endocrine resistance is cross-talk between the estrogen receptor (ER) and other growth factor signaling, such as phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway. In the present study, we investigated whether β-catenin could be a potential target to overcome endocrine resistance in breast cancer. METHODS We established tamoxifen-resistant (TamR) cell line via long-term exposure of MCF-7 breast cancer cells to gradually increasing concentrations of tamoxifen. The levels of protein expression and mRNA transcripts were determined using western blot analysis and real-time quantitative PCR. The transcriptional activity of β-catenin was measured using luciferase activity assay. RESULTS TamR cells showed a mesenchymal phenotype, and exhibited a relatively decreased expression of ER and increased expression of human epidermal growth factor receptor 2 and the epidermal growth factor receptor. We confirmed that the expression and transcriptional activity of β-catenin were increased in TamR cells compared with control cells. The expression and transcriptional activity of β-catenin were inhibited by β-catenin small-molecule inhibitor, ICG-001 or β-catenin siRNA. The viability of TamR cells, which showed no change after treatment with tamoxifen, was reduced by ICG-001 or β-catenin siRNA. The combination of ICG-001 and mTOR inhibitor, rapamycin, yielded an additive effect on the inhibition of viability in TamR cells. CONCLUSION These results suggest that β-catenin plays a role in tamoxifen-resistant breast cancer, and the inhibition of β-catenin may be a potential target in tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Hye Sung Won
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung Mee Lee
- Division of Hematology-Oncology, Departments of Internal Medicine, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Ju Eon Oh
- Division of Hematology-Oncology, Departments of Internal Medicine, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Eun Mi Nam
- Division of Hematology-Oncology, Departments of Internal Medicine, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Kyoung Eun Lee
- Division of Hematology-Oncology, Departments of Internal Medicine, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
- * E-mail:
| |
Collapse
|
17
|
Mitra P, Yang RM, Sutton J, Ramsay RG, Gonda TJ. CDK9 inhibitors selectively target estrogen receptor-positive breast cancer cells through combined inhibition of MYB and MCL-1 expression. Oncotarget 2016; 7:9069-83. [PMID: 26812885 PMCID: PMC4891027 DOI: 10.18632/oncotarget.6997] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/17/2016] [Indexed: 11/25/2022] Open
Abstract
Our previous studies showed that MYB is required for proliferation of, and confers protection against apoptosis on, estrogen receptor-positive (ER(+ve)) breast cancer cells, which are almost invariably also MYB(+ve). We have also shown that MYB expression in ER(+ve) breast cancer cells is regulated at the level of transcriptional elongation and as such, is suppressed by CDK9i. Here we examined the effects of CDK9i on breast cancer cells and the involvement of MYB in these effects. ER(+ve) breast cancer cell lines including MCF-7 were much more sensitive (> 10 times) to killing by CDK9i than ER(-ve)/MYB(-ve) cells. Moreover, surviving cells showed a block at the G2/M phase of the cell cycle. Importantly, ectopic MYB expression conferred resistance to apoptosis induction, cell killing and G2/M accumulation. Expression of relevant MYB target genes including BCL2 and CCNB1 was suppressed by CDK9 inhibition, and this too was reversed by ectopic MYB expression. Nevertheless, inhibition of BCL2 alone either by MYB knockdown or by ABT-199 treatment was insufficient for significant induction of apoptosis. Further studies implied that suppression of MCL-1, a well-documented target of CDK9 inhibition, was additionally required for apoptosis induction, while maximal levels of apoptosis induced by CDK9i are likely to also involve inhibition of BCL2L1 expression. Taken together these data suggest that MYB regulation of BCL2 underlies the heightened sensitivity of ER(+ve) compared to ER(-ve) breast cancer cells to CDK9 inhibition, and that these compounds represent a potential therapeutic for ER(+ve) breast cancers and possibly other MYB-dependent cancers.
Collapse
Affiliation(s)
- Partha Mitra
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| | - Ren-Ming Yang
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| | - James Sutton
- Novartis Institute for Biomedical Research, Emeryville, CA, USA
| | - Robert G. Ramsay
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Thomas J. Gonda
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Schwaederlé M, Daniels GA, Piccioni DE, Fanta PT, Schwab RB, Shimabukuro KA, Parker BA, Kurzrock R. Cyclin alterations in diverse cancers: Outcome and co-amplification network. Oncotarget 2015; 6:3033-42. [PMID: 25596748 PMCID: PMC4413635 DOI: 10.18632/oncotarget.2848] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022] Open
Abstract
Cyclin genes are key regulatory components of the cell cycle. With the development of new agents, cyclin-related genes are becoming increasingly important as they can be targeted. Yet, the biological implications of these alterations have not been fully studied. Clinical characteristics and outcome parameters were compared for patients harboring cyclin alterations versus not. CCN alterations were found in 13% of our population (50/392; all amplifications) and were associated with breast cancer (P < 0.0001), a higher median number of concomitant molecular alterations (P < 0.0001), and liver metastases (P = 0.046). Harboring a cyclin amplification was not associated with overall survival, the time to metastasis/recurrence, nor with the best progression-free survival. In a Cox regression model, gastrointestinal histology (P < 0.0001), PTEN (P < 0.0001), and CDK alterations (P = 0.041) had a significant association with poorer overall survival. CCN amplifications significantly correlated with alterations in FGF/FGFR family genes as well as in MET and ARFRP1. An extended correlation study shed light on a network of co-amplifications influenced in part by genes that were localized on the same amplicons. CCN amplifications are common across cancers and had distinctive biological associations. Customized combinations targeting the cyclin pathway as well as the extended co-amplification network may be necessary in order to address resistance mechanisms.
Collapse
Affiliation(s)
- Maria Schwaederlé
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| | - Gregory A Daniels
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| | - David E Piccioni
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| | - Paul T Fanta
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| | - Richard B Schwab
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| | - Kelly A Shimabukuro
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| | - Barbara A Parker
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| |
Collapse
|
19
|
Göthlin Eremo A, Tina E, Wegman P, Stål O, Fransén K, Fornander T, Wingren S. HER4 tumor expression in breast cancer patients randomized to treatment with or without tamoxifen. Int J Oncol 2015; 47:1311-20. [PMID: 26238412 DOI: 10.3892/ijo.2015.3108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/25/2015] [Indexed: 11/06/2022] Open
Abstract
The human epidermal growth factor receptor (HER) 4 is a relative of HER2 and has been associated to endocrine breast cancer and prediction of tamoxifen response. In addition to PI3K/Akt and MAPK pathway activation, ligand binding to HER4 triggers proteolytic cleavage and release of an intracellular receptor domain (4ICD) with signaling properties. The aim of the present study was to analyze HER4 protein expression and intracellular localization in breast cancer tissue from patients randomized to treatment with or without adjuvant tamoxifen. To investigate HER4 expression and localization in response to estradiol (E2) and 4-hydroxytamoxifen (4-OHT) exposure, we also performed in vitro studies. Cytoplasmic, nuclear and membrane expression of HER4 protein was evaluated by immunohistochemical staining in tumor tissue from 912 breast cancer patients. Three different breast epithelia cancer cell lines were exposed to E2 and 4-OHT and mRNA expression was analyzed using qPCR. Further, nuclear and cytoplasmic proteins were separated and analyzed with western blotting. We found an association between nuclear HER4 protein expression and ER-positivity (P=0.004). Furthermore, significant association was found between cytoplasmic HER4 and ER-negativity (P<0.0005), PgR-negativity (P<0.0005), tumor size >20 mm (P=0.001) and HER2-negativity (P=0.008). However, no overall significance of HER4 on recurrence-free survival was found. After E2 exposure, HER4 mRNA and protein expression had decreased in two cell lines in vitro yet no changes in nuclear or cytoplasmic protein fractions were seen. In conclusion, nuclear HER4 seem to be co-located with ER, however, we did not find support for overall HER4 expression in independently predicting response of tamoxifen treatment. The possible influence of separate isoforms was not tested and future studies may further evaluate HER4 significance.
Collapse
Affiliation(s)
- Anna Göthlin Eremo
- Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Elisabet Tina
- Clinical Research Centre, Örebro University Hospital, SE-701 85 Örebro, Sweden
| | - Pia Wegman
- Department of Clinical Genetics, University Hospital, SE-581 85 Linköping, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE-581 85 Linköping, Sweden
| | - Karin Fransén
- Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Tommy Fornander
- Department of Oncology, Karolinska University Hospital, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Sten Wingren
- Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
20
|
Zhang W, Xu J, Shi Y, Sun Q, Zhang Q, Guan X. The novel role of miRNAs for tamoxifen resistance in human breast cancer. Cell Mol Life Sci 2015; 72:2575-84. [PMID: 25782411 PMCID: PMC11113898 DOI: 10.1007/s00018-015-1887-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 01/04/2023]
Abstract
The selective estrogen receptor modulator tamoxifen is the most commonly used treatment for patients with ER-positive breast cancer. However, tumor cells often develop resistance to tamoxifen therapy, which is a major obstacle limiting the success of breast cancer treatment. miRNAs, as oncogenic or tumor suppressor genes, regulate the expression and function of their related target genes to affect the biological behaviors of cancer cells, including cancer initiation, progression, metastasis, and therapeutic resistance. In detail, many miRNAs associated with breast cancer tamoxifen resistance have been identified, which offer new targets for breast cancer therapy. Here, we review the miRNAs involved in regulation of tamoxifen resistance in human breast cancer and the mechanism of how the modulation of miRNAs may regulate the sensitivity of breast cancer cells to tamoxifen. We also discuss the future prospects of studies about miRNAs in regulation of tamoxifen resistance and miRNA-based therapeutics for tamoxifen resistance breast cancer patients.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Jing Xu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Yaqin Shi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Qian Sun
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Qun Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| |
Collapse
|
21
|
Gao YRE, Walters KA, Desai R, Zhou H, Handelsman DJ, Simanainen U. Androgen receptor inactivation resulted in acceleration in pubertal mammary gland growth, upregulation of ERα expression, and Wnt/β-catenin signaling in female mice. Endocrinology 2014; 155:4951-63. [PMID: 25076121 DOI: 10.1210/en.2014-1226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The androgen receptor (AR) is widely expressed in mammary cells of female mammals including humans and mice, indicating a possible role for AR-mediated androgen actions in breast development, function, and pathology, although the specific mechanisms remain unclear. To elucidate the mechanisms of androgen action in mammary gland physiology and development, we used AR-knockout (AR(Δex3)KO) female mice with a universally expressed, transcriptionally inactive AR protein harboring an in-frame deletion of its second zinc finger. Although in sexually mature wild-type (WT) and AR(ex3Δ)KO females, the mammary epithelial growth was fully extended to the edge of the fat pad, during puberty, AR(ex3Δ)KO females exhibit significantly accelerated mammary ductal growth and an increased number of terminal end buds compared with WT females. Accelerated AR(ex3Δ)KO female mammary growth was associated with significantly increased mammary epithelial ERα expression and activated Wnt/β-catenin signaling as shown by increased Wnt4 expression and accumulation of nuclear β-catenin. These findings are consistent with increased mammary estrogen exposure although ovarian estradiol content was unchanged compared with WT females. Furthermore, treatment with the potent pure androgen DHT markedly reduced ductal extension and terminal end bud numbers in WT but not in AR(Δex3)KO females, further supporting the concept that AR-mediated, androgen-induced suppression of murine mammary growth is a physiological characteristic of puberty. In summary, our findings reveal an inhibitory role of AR-mediated androgen actions in pubertal mammary gland development by reducing epithelial cell proliferation and could be mediated by regulation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yan Ru Ellen Gao
- Andrology Laboratory (Y.R.G., K.A.W., R.D., D.J.H., U.S.) and Bone research Program (H.Z.), ANZAC Research Institute, University of Sydney, Sydney New South Wales 2139, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Effect of angiotensin receptor blockade on prevention and reversion of tamoxifen-resistant phenotype in MCF-7 cells. Tumour Biol 2014; 36:893-900. [PMID: 25304158 DOI: 10.1007/s13277-014-2713-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/05/2014] [Indexed: 01/17/2023] Open
Abstract
Tamoxifen (TAM) is a standard adjuvant endocrine therapy in postmenopausal breast cancer patients, but innate or acquired TAM resistance has remained to be a therapeutic challenge for clinicians. The aim of this study was to explore the possible participation of renin-angiotensin system (RAS) in the acquisition of TAM resistance and try to prevent and regress the resistance using an angiotensin II receptor type-1 (AGTR1) blocker, losartan. Establishment of TAM-resistant (TAM-R) cells was accomplished by continuous exposure of MCF-7 cells to 1 μmol/L TAM. MTT (3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed to determine cell growth. Moreover, messenger RNA (mRNA) expression levels of AGTR1 and angiotensin II receptor type-2 (AGTR2) were measured by quantitative real-time polymerase chain reaction. A significant increase of AGTR1 and AGTR2 transcripts was observed in TAM-R cells compared to MCF-7 cells. Interestingly, losartan-TAM combination effectively resensitized TAM-R cells to tamoxifen treatment by inducing cell death. Therefore, our findings suggest an important role of RAS in acquired TAM resistance and targeting of RAS by losartan may overcome TAM resistance phenomenon and provide a novel avenue for treatment of resistant breast cancers.
Collapse
|
23
|
Su ML, Chang TM, Chiang CH, Chang HC, Hou MF, Li WS, Hung WC. Inhibition of chemokine (C-C motif) receptor 7 sialylation suppresses CCL19-stimulated proliferation, invasion and anti-anoikis. PLoS One 2014; 9:e98823. [PMID: 24915301 PMCID: PMC4051673 DOI: 10.1371/journal.pone.0098823] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/07/2014] [Indexed: 12/31/2022] Open
Abstract
Chemokine (C-C motif) receptor 7 (CCR7) is involved in lymph-node homing of naive and regulatory T cells and lymphatic metastasis of cancer cells. Sialic acids comprise a group of monosaccharide units that are added to the terminal position of the oligosaccharide chain of glycoproteins by sialyation. Recent studies suggest that aberrant sialylation of receptor proteins contributes to proliferation, motility, and drug resistance of cancer cells. In this study, we addressed whether CCR7 is a sialylated receptor protein and tried to elucidate the effect of sialylation in the regulation of signal transduction and biological function of CCR7. Our results demonstrated that α-2, 3-sialyltransferase which catalyze sialylation reaction in vivo was overexpressed in breast tumor tissues and cell lines. Lectin blot analysis clearly demonstrated that CCR7 receptor was sialyated in breast cancer cells. Chemokine (C-C motif) ligand 19 (CCL19), the cognate ligand for CCR7, induced the activation of extracellular signal-regulated kinase (ERK) and AKT signaling and increased the expression of cell cycle regulatory proteins and proliferation of breast cancer cells. When cells were pre-treated with a sialyltransferase inhibitor AL10 or sialidase, CCL19-induced cell growth was significantly suppressed. CCL19 also increased invasion and prevented anoikis by up-regulating pro-survival proteins Bcl-2 and Bcl-xL. Inhibition of sialylation by AL10 totally abolished these effects. Finally, we showed that AL10 inhibited tumorigenicity of breast cancer in experimental animals. Taken together, we demonstrate for the first time that CCR7 receptor is a sialylated protein and sialylation is important for the paracrine stimulation by its endogenous ligand CCL19. In addition, inhibition of aberrant sialylation of CCR7 suppresses proliferation and invasion and triggers anoikis in breast cancer cells. Targeting of sialylation enzymes may be a novel strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Mei-Lin Su
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan, Republic of China
| | - Tsung-Ming Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, Republic of China
| | - Chi-Hsiang Chiang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, Republic of China
| | - Han-Chen Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ming-Feng Hou
- Department of Surgery, College of Medicine, Kaohsiung Medical University, and Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan, Republic of China
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| | - Wen-Shan Li
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
- * E-mail: (WCH); (WSL)
| | - Wen-Chun Hung
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan, Republic of China
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, Republic of China
- * E-mail: (WCH); (WSL)
| |
Collapse
|
24
|
Viedma-Rodríguez R, Baiza-Gutman L, Salamanca-Gómez F, Diaz-Zaragoza M, Martínez-Hernández G, Ruiz Esparza-Garrido R, Velázquez-Flores MA, Arenas-Aranda D. Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (review). Oncol Rep 2014; 32:3-15. [PMID: 24841429 DOI: 10.3892/or.2014.3190] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/03/2014] [Indexed: 11/06/2022] Open
Abstract
Anti-estrogens such as tamoxifen are widely used in the clinic to treat estrogen receptor-positive breast tumors. Patients with estrogen receptor-positive breast cancer initially respond to treatment with anti-hormonal agents such as tamoxifen, but remissions are often followed by the acquisition of resistance and, ultimately, disease relapse. The development of a rationale for the effective treatment of tamoxifen-resistant breast cancer requires an understanding of the complex signal transduction mechanisms. In the present study, we explored some mechanisms associated with resistance to tamoxifen, such as pharmacologic mechanisms, loss or modification in estrogen receptor expression, alterations in co-regulatory proteins and the regulation of the different signaling pathways that participate in different cellular processes such as survival, proliferation, stress, cell cycle, inhibition of apoptosis regulated by the Bcl-2 family, autophagy, altered expression of microRNA, and signaling pathways that regulate the epithelial-mesenchymal transition in the tumor microenvironment. Delineation of the molecular mechanisms underlying the development of resistance may aid in the development of treatment strategies to enhance response and compromise resistance.
Collapse
Affiliation(s)
- Rubí Viedma-Rodríguez
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Luis Baiza-Gutman
- Unit of Morphology and Function, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Los Reyes Iztacala, State of Mexico, Mexico
| | - Fabio Salamanca-Gómez
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | | | - Guadalupe Martínez-Hernández
- Unit of Morphology and Function, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Los Reyes Iztacala, State of Mexico, Mexico
| | - Ruth Ruiz Esparza-Garrido
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Miguel Angel Velázquez-Flores
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Diego Arenas-Aranda
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| |
Collapse
|
25
|
Zhang L, Ren X, Cheng Y, Huber-Keener K, Liu X, Zhang Y, Yuan YS, Yang JW, Liu CG, Yang JM. Identification of Sirtuin 3, a mitochondrial protein deacetylase, as a new contributor to tamoxifen resistance in breast cancer cells. Biochem Pharmacol 2013; 86:726-33. [PMID: 23856293 DOI: 10.1016/j.bcp.2013.06.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 02/07/2023]
Abstract
The current study reports a previously unappreciated role of Sirtuin 3 (SIRT3), a mitochondrial protein deacetylase, in altering sensitivity of breast cancer cells to tamoxifen (Tam), a commonly used anti-estrogen agent. We showed that SIRT3 was significantly up-regulated at both mRNA and protein levels in the Tam-resistance human breast cancer cell line MTR-3, which was derived from MCF-7 line by continuous selective culture in the presence of 1μM of Tam for two years. We further demonstrated that SIRT3 was rapidly up-regulated in the sensitive MCF-7 cells following exposure to Tam. Transfection of MCF-7 cells with a SIRT3 expression plasmid decreased cellular sensitivity to Tam and blocked the Tam-induced apoptosis. Furthermore, silencing of SIRT3 expression in MTR-3 cells sensitized the resistant cells to Tam and enhanced apoptotic cell death. MTR-3 cells with silencing of SIRT3 expression showed increases in the mitochondrial content of ERβ, ROS level and apoptosis. These results not only uncovered a new role for SIRT3 in cancer but also identified this mitochondrial protein deacetylase as a previously unrecognized factor that participates in regulation of Tam sensitivity in breast cancer cells. Thus, SIRT3 might be considered as a potential target for overcoming Tam resistance in treatment of breast cancer.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacology and The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huber-Keener KJ, Liu X, Wang Z, Wang Y, Freeman W, Wu S, Planas-Silva MD, Ren X, Cheng Y, Zhang Y, Vrana K, Liu CG, Yang JM, Wu R. Differential gene expression in tamoxifen-resistant breast cancer cells revealed by a new analytical model of RNA-Seq data. PLoS One 2012; 7:e41333. [PMID: 22844461 PMCID: PMC3402532 DOI: 10.1371/journal.pone.0041333] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 06/25/2012] [Indexed: 02/07/2023] Open
Abstract
Resistance to tamoxifen (Tam), a widely used antagonist of the estrogen receptor (ER), is a common obstacle to successful breast cancer treatment. While adjuvant therapy with Tam has been shown to significantly decrease the rate of disease recurrence and mortality, recurrent disease occurs in one third of patients treated with Tam within 5 years of therapy. A better understanding of gene expression alterations associated with Tam resistance will facilitate circumventing this problem. Using a next generation sequencing approach and a new bioinformatics model, we compared the transcriptomes of Tam-sensitive and Tam-resistant breast cancer cells for identification of genes involved in the development of Tam resistance. We identified differential expression of 1215 mRNA and 513 small RNA transcripts clustered into ERα functions, cell cycle regulation, transcription/translation, and mitochondrial dysfunction. The extent of alterations found at multiple levels of gene regulation highlights the ability of the Tam-resistant cells to modulate global gene expression. Alterations of small nucleolar RNA, oxidative phosphorylation, and proliferation processes in Tam-resistant cells present areas for diagnostic and therapeutic tool development for combating resistance to this anti-estrogen agent.
Collapse
Affiliation(s)
- Kathryn J. Huber-Keener
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Xiuping Liu
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhong Wang
- The Center for Statistical Genetics, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Yaqun Wang
- The Center for Statistical Genetics, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Willard Freeman
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Song Wu
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, New York, United States of America
| | - Maricarmen D. Planas-Silva
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Xingcong Ren
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Yan Cheng
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Yi Zhang
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Kent Vrana
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jin-Ming Yang
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Rongling Wu
- The Center for Statistical Genetics, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| |
Collapse
|
27
|
Hengst JA, Wang X, Sk UH, Sharma AK, Amin S, Yun JK. Development of a sphingosine kinase 1 specific small-molecule inhibitor. Bioorg Med Chem Lett 2010; 20:7498-502. [PMID: 21050755 DOI: 10.1016/j.bmcl.2010.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 12/11/2022]
Abstract
The sphingolipid metabolic pathway represents a potential source of new therapeutic targets for numerous hyperproliferative/inflammatory diseases. Targets such as the sphingosine kinases (SphKs) have been extensively studied and numerous strategies have been employed to develop inhibitors against these enzymes. Herein, we report on the optimization of our novel small-molecule inhibitor SKI-I (N'-[(2-hydroxy-1-naphthyl)methylene]-3-(2-naphthyl)-1H-pyrazole-5-carbohydrazide) and the identification of a SphK1-specific analog, SKI-178, that is active in vitro and in vivo. This SphK1 specific small-molecule, non-lipid like, inhibitor will be of use to elucidate the roles of SphK1 and SphK2 in the development/progression of hyperproliferative and/or inflammatory diseases.
Collapse
Affiliation(s)
- Jeremy A Hengst
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA
| | | | | | | | | | | |
Collapse
|
28
|
Louie MC, McClellan A, Siewit C, Kawabata L. Estrogen receptor regulates E2F1 expression to mediate tamoxifen resistance. Mol Cancer Res 2010; 8:343-52. [PMID: 20215421 DOI: 10.1158/1541-7786.mcr-09-0395] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiestrogen resistance often develops with prolonged exposure to hormone therapies, including tamoxifen, and is a major problem in the treatment of breast cancer. Understanding the mechanisms involved in the development of antiestrogen resistance is an important step in the development of new targeted therapies. Two forms of antiestrogen resistance exist: de novo resistance and acquired resistance. To mimic acquired resistance, we have established a tamoxifen-resistant breast cancer cell line (MCF-7TamR) by treating parental MCF-7 cells with tamoxifen over a period of 6 months to select for cells with the resistant phenotype. Characterization of the MCF-7TamR cells under normal, hormone-deprived, and tamoxifen-treated conditions suggests that these cells continue to grow in the presence of tamoxifen. Additionally, a greater percentage of resistant cells enter the S phase under tamoxifen conditions, compared with parental MCF-7 cells. Consistent with these growth results, molecular analysis indicates that tamoxifen-resistant cells express higher levels of cyclin E1, cdk2, ACTR, and E2F1. Faslodex or ICI 182, 780 (ICI)-mediated degradation of estrogen receptor (ER) reduced the proliferation of these cells, as well as the level of E2F1 expression in tamoxifen-resistant cells, suggesting that tamoxifen resistance and E2F1 expression are in part dependent on ER. We further showed that tamoxifen enhances the ERalpha/Sp-1 interaction and promotes the recruitment of ERalpha and Sp-1 to the proximal promoter of E2F1 in resistant cells. Collectively, our findings suggest that tamoxifen resistance is a result of increased ERalpha/Sp-1 interaction, which enhances the expression of E2F1 to promote tamoxifen resistance.
Collapse
Affiliation(s)
- Maggie C Louie
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, USA.
| | | | | | | |
Collapse
|
29
|
Fan P, Yue W, Wang JP, Aiyar S, Li Y, Kim TH, Santen RJ. Mechanisms of resistance to structurally diverse antiestrogens differ under premenopausal and postmenopausal conditions: evidence from in vitro breast cancer cell models. Endocrinology 2009; 150:2036-45. [PMID: 19179445 PMCID: PMC2671908 DOI: 10.1210/en.2008-1195] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study questioned whether the mechanisms of resistance to antiestrogens differ when acquired under premenopausal (Pre-M) vs. postmenopausal (PM) conditions and whether structurally diverse antiestrogens induce adaptation of differing signaling pathways. To address this issue, we conducted systematic studies under Pre-M vs. PM culture conditions with long-term exposure to different antiestrogens and examined the resultant "specific biologic signatures" of the various resistant cells. Estradiol stimulated growth and inhibited apoptosis of "pre-menopausal" antiestrogen-resistant cells but exerted opposite effects on their "post-menopausal" counterparts. Under Pre-M conditions, tamoxifen (TAM)-resistant cells exhibited a marked translocation of estrogen receptor alpha from the nucleus into the cytoplasm, whereas this occurred to a lesser extent under PM conditions. MCF-7 cells exposed to PM but not Pre-M conditions exhibited up-regulation of basal epidermal growth factor (EGF) receptor (EGFR) levels, an effect exaggerated in cells exposed to 4-hydroxytamoxifen. Differing effects occurred in response to structurally divergent antiestrogens. Long-term treatment with both 4-hydroxytamoxifen and ICI182,780 increased EGFR levels, but this was not seen in response to TAM. Surprisingly, EGF administration slightly increased cell number in TAM-resistant cells, whereas only increasing cell weight and decreasing cell number in EGFR overexpressing-resistant cells. To assess potential differences among various parental cell lines, we induced resistance in cell lines obtained from other laboratories and confirmed the results from our own parental cells with minor differences. Together, these data demonstrate that culture of breast cancer cells under Pre-M and PM conditions and structurally diverse antiestrogens results in adaptive responses with differing biological signatures.
Collapse
Affiliation(s)
- Ping Fan
- University of Virginia Health Sciences System, Department of Internal medicine, P.O. Box 801416, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhao Y, Planas-Silva MD. Mislocalization of cell-cell adhesion complexes in tamoxifen-resistant breast cancer cells with elevated c-Src tyrosine kinase activity. Cancer Lett 2008; 275:204-12. [PMID: 19026486 DOI: 10.1016/j.canlet.2008.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/29/2008] [Accepted: 10/14/2008] [Indexed: 11/17/2022]
Abstract
c-Src activation has been implicated in metastasis of tamoxifen-resistant breast cancer. Here we investigated how c-Src activity affects cell adhesion using a tamoxifen-resistant variant of MCF-7 cells (MTR-3) containing elevated c-Src activity. In MTR-3 cells, adhesion proteins beta-catenin and E-cadherin are mislocalized, forming novel structures perpendicular to cell-cell junctions. c-Src is associated with beta-catenin/E-cadherin complexes and beta-catenin tyrosine phosphorylation is enhanced. Blocking c-Src tyrosine kinase activity decreased beta-catenin tyrosine phosphorylation and restored localization of beta-catenin and E-cadherin at cell-cell junctions. These findings suggest that inhibition of c-Src signaling may prevent metastasis of tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
31
|
Tan XL, Nieters A, Kropp S, Hoffmeister M, Brenner H, Chang-Claude J. The association of cyclin D1 G870A and E-cadherin C-160A polymorphisms with the risk of colorectal cancer in a case control study and meta-analysis. Int J Cancer 2008; 122:2573-80. [PMID: 18196581 DOI: 10.1002/ijc.23363] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cyclin D1 (CCND1) and E-cadherin (CDH1) have been shown to be important genes of the beta-catenin/LEF pathway that is involved in colorectal carcinogenesis. However, epidemiological studies on relationship between genetic variants of these two genes and colorectal cancer (CRC) have shown inconsistent results. In a population-based case-control study (498 cases and 600 controls), we assessed the association of CCND1 G870A and CDH1 C-160A polymorphisms with CRC risk. Multivariable logistic regression analysis was used to estimate the association between genotypes, environmental exposures and CRC risk, adjusting for potential confounders. Compared to common homozygotes, the OR for heterozygous and homozygote variant genotype was 1.08 (95% CI, 0.80-1.46) in CCND1 and 0.97 (95% CI, 0.75-1.25) in CDH1. Neither tumor stage nor location showed an association with genetic susceptibility. However, a significant interaction between hormone replacement therapy (HRT) and CCND1 genotypes in CRC risk was found among postmenopausal women (p(interaction) = 0.02). The risk reduction associated with HRT was substantial (OR, 0.09; 95% CI, 0.02-0.35) in women who were GG homozygous. A meta-analyses including 11 published studies on CCND1 G870A in addition to our study showed a slightly increased risk of CRC for carriers of the A allele (OR, 1.19; 95% CI, 1.06-1.34); however, there was some indication of publication bias. We conclude that the CCND1 G870A and CDH1 C-160A polymorphisms are not associated with the risk of CRC in the German population. However, the CCND1 G870A polymorphism may modify the protective effect of postmenopausal hormone use on the development of CRC.
Collapse
Affiliation(s)
- Xiang-Lin Tan
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Kirkegaard T, Nielsen KV, Jensen LB, Campbell FM, Müller S, Tovey SM, Brown S, Cooke TG, Bartlett JMS. Genetic alterations of CCND1 and EMSY in breast cancers. Histopathology 2008; 52:698-705. [DOI: 10.1111/j.1365-2559.2008.03007.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Cell cycle machinery: links with genesis and treatment of breast cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 630:189-205. [PMID: 18637492 DOI: 10.1007/978-0-387-78818-0_12] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Loss of normal growth control is a hallmark of cancer. Thus, understanding the mechanisms of tissue-specific, normal growth regulation and the changes that occur during tumorigenesis may provide insights of both diagnostic and therapeutic importance. Control of cell proliferation in the normal mammary gland is steroid hormone (estrogen and progestin)-dependent, involves complex interactions with other hormones, growth factors and cytokines and ultimately converges on activation of three proto-oncogenes (c-Myc, cyclin D1 and cyclin E1) that are rate limiting for the G1 to S phase transition during normal cell cycle progression. Mammary epithelial cell-specific overexpression of these genes induces mammary carcinoma in mice, while cyclin D1 null mice have arrested mammary gland development and are resistant to carcinoma induced by the neu/erbB2 and ras oncogenes. Furthermore, c-Myc, cyclins D1, E1 and E2 are commonly overexpressed in primary breast cancer where elevated expression is often associated with a more aggressive disease phenotype and an adverse patient outcome. This may be due in part to overexpression of these genes conferring resistance to endocrine therapies since in vitro studies provide compelling evidence that overexpression of c-Myc and to a lesser extent cyclin D1 and cyclin E1, attenuate the growth inhibitory effects of SERMS, antiestrogens and progestins in breast cancer cells. Thus, abnormal regulation of the expression of cell cycle molecules, involved in the steroidal control of cell proliferation in the mammary gland, are likely to be directly involved in the development, progression and therapeutic responsiveness of breast cancer. Furthermore, a more detailed understanding of these pathways may identify new targets for therapeutic intervention particularly in endocrine-unresponsive and endocrine-resistant disease.
Collapse
|
34
|
Riggins RB, Schrecengost RS, Guerrero MS, Bouton AH. Pathways to tamoxifen resistance. Cancer Lett 2007; 256:1-24. [PMID: 17475399 PMCID: PMC2533271 DOI: 10.1016/j.canlet.2007.03.016] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/15/2007] [Accepted: 03/15/2007] [Indexed: 02/07/2023]
Abstract
Therapies that target the synthesis of estrogen or the function of estrogen receptor(s) have been developed to treat breast cancer. While these approaches have proven to be beneficial to a large number of patients, both de novo and acquired resistance to these drugs is a significant problem. Recent advances in our understanding of the molecular mechanisms that contribute to resistance have provided a means to begin to predict patient responses to these drugs and develop rational approaches for combining therapeutic agents to circumvent or desensitize the resistant phenotype. Here, we review common mechanisms of antiestrogen resistance and discuss the implications for prediction of response and design of effective combinatorial treatments.
Collapse
Affiliation(s)
- Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057
| | - Randy S. Schrecengost
- Department of Microbiology and Cancer Center, Box 800734, University of Virginia Health System, Charlottesville, VA 22908-0734
| | - Michael S. Guerrero
- Department of Microbiology and Cancer Center, Box 800734, University of Virginia Health System, Charlottesville, VA 22908-0734
| | - Amy H. Bouton
- Department of Microbiology and Cancer Center, Box 800734, University of Virginia Health System, Charlottesville, VA 22908-0734
| |
Collapse
|
35
|
Kilker RL, Planas-Silva MD. Cyclin D1 is necessary for tamoxifen-induced cell cycle progression in human breast cancer cells. Cancer Res 2007; 66:11478-84. [PMID: 17145896 DOI: 10.1158/0008-5472.can-06-1755] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the success of tamoxifen in treating hormone-responsive breast cancer, its use is limited by the development of resistance to the drug. Understanding the pathways involved in the growth of tamoxifen-resistant cells may lead to new ways to treat tamoxifen-resistant breast cancer. Here, we investigate the role of cyclin D1, a mediator of estrogen-dependent proliferation, in growth of tamoxifen-resistant cells using a cell culture model of acquired resistance to tamoxifen. We show that tamoxifen and 4-hydroxytamoxifen (OHT) promoted cell cycle progression of tamoxifen-resistant cells after growth-arrest mediated by the estrogen receptor down-regulator ICI 182,780. Down-regulation of cyclin D1 with small interfering RNA blocked basal cell growth of tamoxifen-resistant cells and induction of cell proliferation by OHT. In addition, pharmacologic inhibition of phosphatidylinositol 3-kinase/Akt or mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 pathways decreased basal cyclin D1 expression and impaired OHT-mediated cyclin D1 induction and cell cycle progression. These findings indicate that cyclin D1 expression is necessary for proliferation of tamoxifen-resistant cells and for tamoxifen-induced cell cycle progression. These results suggest that therapeutic strategies to block cyclin D1 expression or function may inhibit development and growth of tamoxifen-resistant tumors.
Collapse
Affiliation(s)
- Robin L Kilker
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
36
|
Aneja R, Zhou J, Zhou B, Chandra R, Joshi HC. Treatment of hormone-refractory breast cancer: apoptosis and regression of human tumors implanted in mice. Mol Cancer Ther 2006; 5:2366-77. [PMID: 16985071 DOI: 10.1158/1535-7163.mct-06-0205] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Following surgery, the hormone dependence of breast tumors is exploited for therapy using antagonists such as tamoxifen, although occasional hormone-resistant clones do appear. Another chemotherapeutic strategy uses microtubule inhibitors such as taxanes. Unfortunately, these agents elicit toxicities such as leukocytopenia, diarrhea, alopecia, and peripheral neuropathies and are also associated with the emergence of drug resistance. We have previously described a tubulin-binding, natural compound, noscapine, that was nontoxic and triggered apoptosis in many cancer types albeit at 10 mumol/L or higher concentrations depending on the cell type. We now show that a synthetic analogue of noscapine, 9-bromonoscapine, is approximately 10-fold to 15-fold more potent than noscapine in inhibiting cell proliferation and induces apoptosis following G2-M arrest in hormone-insensitive human breast cancers (MDA-MB-231). Furthermore, a clear loss of mitochondrial membrane potential, release of cytochrome c, activation of the terminal caspase-3, and the cleavage of its substrates such as poly(ADP-ribose) polymerase, suggest an intrinsic apoptotic mechanism. Taken together, these data point to a mitochondrially mediated apoptosis of hormone-insensitive breast cancer cells. Human tumor xenografts in nude mice showed significant tumor volume reduction and a surprising increase in longevity without signs of obvious toxicity. Thus, our data provide compelling evidence that 9-bromonoscapine can be useful for the therapy of hormone-refractory breast cancer.
Collapse
Affiliation(s)
- Ritu Aneja
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
37
|
Planas-Silva MD, Bruggeman RD, Grenko RT, Smith JS. Overexpression of c-Myc and Bcl-2 during progression and distant metastasis of hormone-treated breast cancer. Exp Mol Pathol 2006; 82:85-90. [PMID: 17046747 DOI: 10.1016/j.yexmp.2006.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Revised: 09/08/2006] [Accepted: 09/12/2006] [Indexed: 11/19/2022]
Abstract
The aim of this study was to identify molecules involved in the proliferation and survival of recurrent estrogen receptor (ER)-positive breast cancer at the site of metastasis. Most studies of biomarkers are done using the initial primary breast tumor whereas pathological studies of breast cancer lesions after distant recurrence are scarce. Here we evaluated the expression of the oncogenes c-Myc and Bcl-2, mediators of estrogen-dependent proliferation and survival, during breast cancer progression and relapse after adjuvant hormonal therapy. Using a preclinical model of tamoxifen-resistant growth, we found overexpression of c-Myc in all (3/3) and of Bcl-2 in most (2/3) tamoxifen resistant-breast cancer variants. To determine whether c-Myc and Bcl-2 are expressed during breast cancer progression in the clinics we identified breast cancer patients who had received adjuvant hormonal therapy for the treatment of their localized disease and had later experienced relapse. From 583 patients who had received adjuvant hormonal therapy a total of 82 experienced recurrence. Nevertheless, only 22 patients had had a biopsy of their metastatic lesion done after relapse. Twenty-one biopsies were useful for this biomarker study. These biopsies were obtained mostly (20) from breast cancer patients who had received tamoxifen as their adjuvant hormonal therapy. One patient had received an aromatase inhibitor instead. Our results showed that almost all (20) metastatic recurrences expressed ER. Expression of c-Myc was observed in 18 out of 19 metastatic lesions scored while expression of Bcl-2 was detected in 17 out of 21 metastatic tumors. A correlation between ER expression and Bcl-2, but not with c-Myc, was found in these recurrent metastatic lesions. In addition, c-Myc expression was correlated with the nuclear grade of the metastatic lesion. Thus, the frequent expression of c-Myc and Bcl-2 in metastatic breast cancer recurrences suggests that combining hormonal therapy with strategies to block c-Myc and Bcl-2 may prevent growth of ER-positive breast cancer at the site of metastasis.
Collapse
|
38
|
Aneja R, Lopus M, Zhou J, Vangapandu SN, Ghaleb A, Yao J, Nettles JH, Zhou B, Gupta M, Panda D, Chandra R, Joshi HC. Rational design of the microtubule-targeting anti-breast cancer drug EM015. Cancer Res 2006; 66:3782-91. [PMID: 16585205 DOI: 10.1158/0008-5472.can-05-2962] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We studied in silico docking of noscapine onto tubulin, combined with calculations of surface charge, pi-pi, van der Waals, and hydrogen bonding interactions, to rationally design a new compound, EM015. This tubulin-binding semisynthetic compound is a selective and potent anti-breast cancer agent and displays a 20-fold lower IC(50) against many tumor cells compared with our founding compound, (S)-6,7-dimethoxy-3-((R)-4-methoxy-6-methyl-5,6,7,8-tetrahydro[1,3]-dioxolo-[4,5-g]isoquinolin-5-yl)isobenzo-furan-1(3H)-one (noscapine). Furthermore, EM015 is also effective against a variety of drug-resistant cells. Surprisingly, the cell cycle profile of nontumorigenic normal cells is not affected. Many antimicrotubule cancer drugs in clinic today, particularly taxanes and Vincas, face challenges including frequent visits to the hospital for prolonged i.v. infusions, toxicities, and tumor recurrences due to drug resistance. EM015, on the other hand, is orally available, regresses breast tumor xenografts in nude mice models, and increases longevity. Furthermore, we have failed to observe any detectable toxicity in tissues, such as liver, kidney, spleen, lung, heart, and brain, as well as neurons, which are common targets of antimicrotubule drug therapy. Thus, EM015 has a great promise in the clinic.
Collapse
Affiliation(s)
- Ritu Aneja
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Huang WS, Tang R, Lin PY, Changchien CR, Chen JS, Chiang JM, Yeh CY, Wang JY, Hsieh LL. Impact of the cyclin D1 A870G polymorphism on susceptibility to sporadic colorectal cancer in Taiwan. Dis Colon Rectum 2006; 49:602-8. [PMID: 16552496 DOI: 10.1007/s10350-005-0311-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Cyclin D1 is a regulatory protein involved in the cell cycle of both normal and neoplastic cells. Polymorphism of this gene at codon 242 in exon 4 has impacts on risk of the early-age onset in several malignant neoplasms, including colorectal cancer. This investigation was designed to evaluate the effect of cyclin D1 gene polymorphism on the risk of colorectal cancer in Chinese migrants of the Taiwanese population. METHODS We enrolled 831 primary sporadic colorectal cancer patients as the study group and 1,052 age-gender matched healthy individuals as the control group (1,883 total cases) for present study. Cyclin D1 genotypes (AA, AG, GG) were determined using PCR-RFLP analysis on genomic DNA. RESULTS The frequency of G allele was 39.89 percent and 40.96 percent in the study group and the control group, respectively (P = 0.02). The patients were divided into three age groups for statistical analysis. The younger male patients had a higher frequency of AA/AG genotype compared with the controls (odds ratio, 2.75; 95 percent confidence interval, 1-7.9). The effect of AA/AG genotype on colorectal cancer risk was statistically significant for male patients (odds ratio, 1.34; 95 percent confidence interval, 1.04-1.72), but such phenomenon was not observed in female patients. CONCLUSIONS Our study suggests that the effect of cyclin D1 gene polymorphism on colorectal cancer risk is only observed in males and AA/AG genotype of cyclin D1 gene is associated with a higher risk of colorectal cancer in the younger patients within the Taiwanese population.
Collapse
Affiliation(s)
- Wen-Shih Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Putz City, Chiayi County, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Planas-Silva MD, Waltz PK, Kilker RL. Estrogen induces death of tamoxifen-resistant MCF-7 cells: contrasting effect of the estrogen receptor downregulator fulvestrant. J Steroid Biochem Mol Biol 2006; 98:193-8. [PMID: 16464573 DOI: 10.1016/j.jsbmb.2005.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 10/05/2005] [Indexed: 11/24/2022]
Abstract
A common problem in breast cancer therapy is resistance to the antiestrogen tamoxifen. However, tamoxifen-resistant breast tumors can still respond to other hormonal therapies. In animal models of tamoxifen-resistant breast cancer cells, physiological levels of estrogen can induce tumor regression. Recently, the estrogen receptor downregulator fulvestrant was shown to promote tumor growth of tamoxifen-resistant cells when added in combination with physiological levels of estrogen. Here, we show, using a cell culture model, that continuous exposure of tamoxifen-resistant cells to physiological levels of estrogen leads to cell death. Addition of the estrogen receptor downregulator fulvestrant prevents estrogen-induced death in a dose-dependent manner. Our data indicate that endogenous levels of estrogen affect the response of tamoxifen-resistant cells to fulvestrant. These results suggest that failure of fulvestrant to inhibit tumor growth in some tamoxifen-resistant patients may be due to endogenous estrogen levels. Moreover, these studies support short-term treatment with estrogen as a second-line hormonal therapy for tamoxifen-resistant breast cancer.
Collapse
|
41
|
Planas-Silva MD, Bruggeman RD, Grenko RT, Stanley Smith J. Role of c-Src and focal adhesion kinase in progression and metastasis of estrogen receptor-positive breast cancer. Biochem Biophys Res Commun 2006; 341:73-81. [PMID: 16412380 DOI: 10.1016/j.bbrc.2005.12.164] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2005] [Accepted: 12/21/2005] [Indexed: 11/19/2022]
Abstract
The non-receptor tyrosine kinases c-Src and focal adhesion kinase (Fak) mediate signal transduction pathways that regulate cell proliferation, survival, invasion, and metastasis. Here, we investigated whether c-Src and Fak are activated during progression of hormone-dependent breast cancer. Maximally active c-Src was overexpressed in a subset of tamoxifen-resistant variants and in metastases of recurrent hormone-treated breast cancer. Active Fak was also frequently observed in these tumors. We also show that estrogen receptor (ER) can bind to Fak and that estrogen can modulate Fak autophosphorylation supporting a cross-talk between these two pathways. Inhibition of c-Src activity blocked proliferation of all tamoxifen-resistant variants, suggesting that inhibitors of c-Src-Fak activity may delay or prevent progression and metastasis of ER-positive tumors. These studies also raise the possibility that fully active forms of c-Src and Fak in breast tumors may be biomarkers to predict tamoxifen resistance and/or risk of recurrence in ER-positive breast cancer.
Collapse
|