1
|
Sridhar N, Iwase T, Xie X, Lee J, Damodaran S, Ueno NT. Paving the path ForwARd: Advances and challenges in androgen receptor targeting in breast cancer. Cancer Treat Rev 2025; 138:102958. [PMID: 40424861 DOI: 10.1016/j.ctrv.2025.102958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 05/04/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
The role of androgen receptors (AR) in breast cancer is crucial for preclinical and clinical research. While AR-targeted therapy is a standard treatment for prostate cancer, the application of this therapeutic strategy to breast cancer has not been established. Indeed, AR is expressed in around 60-90% of breast cancers, making it imperative that we learn more about its prognostic and predictive impacts and targeting potential in breast cancer. Over the past decade, AR-targeted therapies ─ including AR antagonists and selective AR modulators ─ have shown promise in breast cancer treatment. However, an incomplete understanding of AR's role across breast cancer subtypes hinders clinical application. The lack of standardized AR expression thresholds further complicates patient selection, underscoring the urgent need for biomarker-driven strategies to optimize AR-targeted approaches in breast cancer. In this review, we provide an overview of a clinical perspective of AR in breast cancer by discussing AR biology, AR as a biomarker, and AR-targeted therapy development. We present our review with a particular emphasis on the distinct roles of AR in ER-positive (ER+) and ER-negative (ER-) breast cancer subtypes. Finally, the paper addresses the hurdles that have impeded the development of a robust clinical landscape for AR-targeted therapies and possible solutions for overcoming these challenges.
Collapse
Affiliation(s)
- Nithya Sridhar
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Toshiaki Iwase
- Translational and Clinical Research Program, University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Xuemei Xie
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Jangsoon Lee
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Translational and Clinical Research Program, University of Hawai'i Cancer Center, Honolulu, HI, USA.
| |
Collapse
|
2
|
Srivastava TP, Dhar R, Karmakar S. Looking beyond the ER, PR, and HER2: what's new in the ARsenal for combating breast cancer? Reprod Biol Endocrinol 2025; 23:9. [PMID: 39833837 PMCID: PMC11744844 DOI: 10.1186/s12958-024-01338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Breast cancer (BrCa) is a complex and heterogeneous disease with diverse molecular subtypes, leading to varied clinical outcomes and posing significant treatment challenges. The increasing global burden of BrCa, particularly in low- and middle-income countries, underscores the urgent need for more effective therapeutic strategies. The androgen receptor (AR), expressed in a substantial proportion of breast cancer cases, has emerged as a potential biomarker and therapeutic target. In breast cancer, AR exhibits diverse functions across subtypes, often interacting with other hormone receptors, thereby influencing tumor progression and treatment responses. This intricate interplay is further complicated by the presence of constitutively expressed AR splice variants (AR-Vs) that drive resistance to AR-targeting therapies through structural rearrangements in the domains and activation of aberrant signaling pathways. Although AR-targeting drugs, initially developed for prostate cancer (PCa), have shown promise in AR-positive breast cancer, significant gaps remain in understanding AR's precise functions and therapeutic potential. The systemic management of breast cancer is guided primarily by theranostic biomarkers; ER, PR, HER2, and Ki67 which also dictate the breast cancer classification. The ubiquitous expression of AR in BrCa and the emergence of AR-Vs can assist the management of disease complementing the standard of care. This article provides a comprehensive overview of AR and its splice variants in the context of breast cancer, highlighting their prognostic and predictive value across different subtypes looking beyond the conventional ER, PR, and HER2 status. This review also raises the possibility of using AR splice variants in predicting tumor aggressiveness. From the settings of developing nations, this may provide useful insight by integrating recent advances in AR-targeted therapies and exploring their translational potential, emphasizing the critical need for further research to optimize AR-based therapeutic strategies for breast cancer management.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/therapy
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Female
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/genetics
- Receptors, Progesterone/metabolism
- Receptors, Progesterone/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Sun G, Zhao C, Han J, Wu S, Chen Y, Yao J, Li L. Regulatory mechanisms of steroid hormone receptors on gene transcription through chromatin interaction and enhancer reprogramming. Cell Oncol (Dordr) 2024; 47:2073-2090. [PMID: 39543064 DOI: 10.1007/s13402-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Regulation of steroid hormone receptors (SHRs) on transcriptional reprogramming is crucial for breast cancer progression. SHRs, including estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) play key roles in remodeling the transcriptome of breast cancer cells. However, the molecular mechanisms by which SHRs regulate chromatin landscape in enhancer regions and transcription factor interactions remain largely unknown. In this review, we summarized the regulatory effects of 3 types of SHRs (AR, PR, and GR) on gene transcription through chromatin interactions and enhancer reprogramming. Specifically, AR and PR exhibit bi-directional regulatory effects (both inhibitory and promoting) on ER-mediated gene transcription, while GR modulates the transcription of pro-proliferation genes in ER-positive breast cancer cells. In addition, we have presented four enhancer reprogramming mechanisms (transcription factor cooperation, pioneer factor binding, dynamic assisted loading, and tethering) and the multiple enhancer-promoter contact models. Based on these mechanisms and models, this review proposes that the combination of multiple therapy strategies such as agonists/antagonists of SHRs plus endocrine therapy and the adoption of the latest sequencing technologies are expected to improve the efficacy of ER positive breast cancer treatment.
Collapse
Affiliation(s)
- Ge Sun
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Chunguang Zhao
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Jing Han
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Shaoya Wu
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yan Chen
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jing Yao
- Cancer Center, Institute of Radiation Oncology, Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Li Li
- Gene Regulation and Diseases Lab, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
4
|
Kalvala J, Parks RM, Abdi J, Green AR, Cheung KL. Assessment of the Androgen Receptor in Older Women with Primary Breast Cancer: Association with a Panel of Biomarkers and Breast Cancer Specific Survival. Adv Ther 2023; 40:2820-2835. [PMID: 37118159 DOI: 10.1007/s12325-023-02504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/22/2023] [Indexed: 04/30/2023]
Abstract
INTRODUCTION Breast cancer in older women tends to have more favourable biology, compared to younger women. Androgen receptor (AR) is significant for breast tumour carcinogenesis; however, the role of AR in older women has not been fully explored. METHODS Surgical specimens were obtained from an existing series of 1758 older women (≥ 70 years) with primary breast cancer, treated in a single institution with long-term (≥ 37 years) follow-up. As part of previous work, it was possible to construct good quality tissue microarrays (TMAs) in 575 surgical specimens and a panel of 24 biomarkers was measured by immunohistochemistry (IHC) in these TMAs. AR positivity was assessed by IHC and defined as H-score ≥ 40. The relationship between AR in this cohort was compared to an equivalent group of younger women (< 70 years, n = 1708); the panel of 24 biomarkers and breast cancer specific survival (BCSS) in the older cohort. RESULTS AR was assessed in 509 samples. Overall, 59% of the older women cohort had positive expression of AR, compared to 63% in the younger cohort. AR positivity (regardless of age) was associated with smaller size of tumour, lower grade of tumour, lower tubule formation, lower nuclear polymorphism and lower mitotic frequency. AR positivity was associated with positive expression of oestrogen receptor (ER), progesterone receptor (PR), breast cancer gene 1 (BRCA1), cytokeratin (CK) 7/8, CK18, CK19, B cell lymphoma (Bcl)2 and Mucin 1 (Muc1) expression. Conversely, AR-positive expression was associated with negative expression of human epidermal growth factor receptor 2 (HER2), Ki-67, CK5, CK17, epidermal growth factor receptor (EGFR), and CD44 expression. Older women with AR-positive tumours had better BCSS compared to AR-negative tumours (p = 0.009). CONCLUSIONS There was no difference in AR expression between older and younger women with breast cancer. AR has prognostic potential in terms of BCSS. Further work is needed to investigate AR as a therapeutic target.
Collapse
Affiliation(s)
- Jahnavi Kalvala
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ruth M Parks
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jamal Abdi
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Kwok-Leung Cheung
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby, DE22 3DT, UK.
| |
Collapse
|
5
|
The Other Side of the Coin: May Androgens Have a Role in Breast Cancer Risk? Int J Mol Sci 2021; 23:ijms23010424. [PMID: 35008851 PMCID: PMC8745651 DOI: 10.3390/ijms23010424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer prevention is a major challenge worldwide. During the last few years, efforts have been made to identify molecular breast tissue factors that could be linked to an increased risk of developing the disease in healthy women. In this concern, steroid hormones and their receptors are key players since they are deeply involved in the growth, development and lifetime changes of the mammary gland and play a crucial role in breast cancer development and progression. In particular, androgens, by binding their own receptor, seem to exert a dichotomous effect, as they reduce cell proliferation in estrogen receptor α positive (ERα+) breast cancers while promoting tumour growth in the ERα negative ones. Despite this intricate role in cancer, very little is known about the impact of androgen receptor (AR)-mediated signalling on normal breast tissue and its correlation to breast cancer risk factors. Through an accurate collection of experimental and epidemiological studies, this review aims to elucidate whether androgens might influence the susceptibility for breast cancer. Moreover, the possibility to exploit the AR as a useful marker to predict the disease will be also evaluated.
Collapse
|
6
|
Gorczyca G, Wartalski K, Wiater J, Samiec M, Tabarowski Z, Duda M. Anabolic Steroids-Driven Regulation of Porcine Ovarian Putative Stem Cells Favors the Onset of Their Neoplastic Transformation. Int J Mol Sci 2021; 22:ijms222111800. [PMID: 34769230 PMCID: PMC8583785 DOI: 10.3390/ijms222111800] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Nandrolone (Ndn) and boldenone (Bdn), the synthetic testosterone analogues with strong anabolic effects, despite being recognized as potentially carcinogenic compounds, are commonly abused by athletes and bodybuilders, which includes women, worldwide. This study tested the hypothesis that different doses of Ndn and Bdn can initiate neoplastic transformation of porcine ovarian putative stem cells (poPSCs). Immunomagnetically isolated poPSCs were expanded ex vivo in the presence of Ndn or Bdn, for 7 and 14 days. Results show that pharmacological doses of both Ndn and Bdn, already after 7 days of poPSCs culture, caused a significant increase of selected, stemness-related markers of cancer cells: CD44 and CD133. Notably, Ndn also negatively affected poPSCs growth not only by suppressing their proliferation and mitochondrial respiration but also by inducing apoptosis. This observation shows, for the first time, that chronic exposure to Ndn or Bdn represents a precondition that might enhance risk of poPSCs neoplastic transformation. These studies carried out to accomplish detailed molecular characterization of the ex vivo expanded poPSCs and their potentially cancerous derivatives (PCDs) might be helpful to determine their suitability as nuclear donor cells (NDCs) for further investigations focused on cloning by somatic cell nuclear transfer (SCNT). Such investigations might also be indispensable to estimate the capabilities of nuclear genomes inherited from poPSCs and their PCDs to be epigenetically reprogrammed (dedifferentiated) in cloned pig embryos generated by SCNT. This might open up new possibilities for biomedical research aimed at more comprehensively recognizing genetic and epigenetic mechanisms underlying not only tumorigenesis but also reversal/retardation of pro-tumorigenic intracellular events.
Collapse
Affiliation(s)
- Gabriela Gorczyca
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland;
| | - Kamil Wartalski
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Krakow, Poland; (K.W.); (J.W.)
| | - Jerzy Wiater
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Krakow, Poland; (K.W.); (J.W.)
| | - Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland
- Correspondence: (M.S.); (M.D.)
| | - Zbigniew Tabarowski
- Department of Experimental Hematology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland;
| | - Małgorzata Duda
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland;
- Correspondence: (M.S.); (M.D.)
| |
Collapse
|
7
|
Cruz-Tapias P, Rubiano W, Rondón-Lagos M, Villegas VE, Rangel N. Intrinsic Subtypes and Androgen Receptor Gene Expression in Primary Breast Cancer. A Meta-Analysis. BIOLOGY 2021; 10:biology10090834. [PMID: 34571711 PMCID: PMC8466727 DOI: 10.3390/biology10090834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022]
Abstract
The androgen receptor (AR) is frequently expressed in breast cancer (BC), but its association with clinical and biological parameters of BC patients remains unclear. Here, we investigated the association of AR gene expression according to intrinsic BC subtypes by meta-analysis of large-scale microarray transcriptomic datasets. Sixty-two datasets including 10315 BC patients were used in the meta-analyses. Interestingly, AR mRNA level is significantly increased in patients categorized with less aggressive intrinsic molecular subtypes including, Luminal A compared to Basal-like (standardized mean difference, SMD: 2.12; 95% confidence interval, CI: 1.88 to 2.35; p < 0.001) or when comparing Luminal B to Basal-like (SMD: 1.53; CI: 1.33 to 1.72; p < 0.001). The same trend was observed when analyses were performed using immunohistochemistry-based surrogate subtypes. Consistently, the AR mRNA expression was higher in patients with low histological grade (p < 0.001). Furthermore, our data revealed higher levels of AR mRNA in BC patients expressing either estrogen or progesterone receptors (p < 0.001). Together, our findings indicate that high mRNA levels of AR are associated with BC subgroups with the less aggressive clinical features.
Collapse
Affiliation(s)
- Paola Cruz-Tapias
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (P.C.-T.); (M.R.-L.)
| | - Wilson Rubiano
- Hospital Universitario Mayor Méderi-Universidad del Rosario, 111411 Bogotá, Colombia;
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (P.C.-T.); (M.R.-L.)
| | - Victoria-E. Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia
- Correspondence: (V.-E.V.); (N.R.); Tel./Fax: +57-1-297-0200 (ext. 4029) (V.-E.V.); +57-1-3185087624 (N.R.)
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Correspondence: (V.-E.V.); (N.R.); Tel./Fax: +57-1-297-0200 (ext. 4029) (V.-E.V.); +57-1-3185087624 (N.R.)
| |
Collapse
|
8
|
LoRusso P, Hamilton E, Ma C, Vidula N, Bagley RG, Troy S, Annett M, Yu Z, Conlan MG, Weise A. A First-in-Human Phase 1 Study of a Novel Selective Androgen Receptor Modulator (SARM), RAD140, in ER+/HER2- Metastatic Breast Cancer. Clin Breast Cancer 2021; 22:67-77. [PMID: 34565686 DOI: 10.1016/j.clbc.2021.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION/BACKGROUND This first-in-human, phase 1 study aimed to characterize the safety, tolerability, maximum tolerated dose (MTD), pharmacokinetic (PK) profile, and antitumor activity of RAD140, an oral selective androgen receptor (AR) modulator (SARM). PATIENTS AND METHODS This dose-escalation study with a 3 + 3 design and PK expansion cohort enrolled postmenopausal women with ER+/HER2- metastatic breast cancer (mBC). Serum sex hormone-binding globulin (SHBG) and prostate-specific antigen (PSA) were used as surrogate markers of AR engagement. RESULTS Twenty-two (21 AR+) heavily pretreated mBC patients were enrolled. Dose levels included 50 mg (n = 6), 100 mg (n = 13), and 150 mg (n = 3) once daily (QD). Most frequent (> 10%) treatment-emergent adverse events (TEAEs) were elevated AST (59.1%), ALT (45.5%), and total blood bilirubin (27.3%), and vomiting, dehydration, and decreased appetite and weight (27.3% each). Grade 3/4 TEAEs occurred in 16 (72.7%) patients and included elevations in AST/ALT and hypophosphatemia (22.7% each). Treatment-related TEAEs occurred in 17 per 22 patients (77.3%); 7 (31.8%) were Grade 3; none were Grade 4. The half-life (t1/2) of 44.7 hours supported QD dosing. At the MTD of 100 mg/day, 1 patient with an ESR1 mutation at baseline had a partial response. Overall, clinical benefit rate at 24 weeks was 18.2%, and median progression-free survival was 2.3 months. SHBG decreased in 18 per 18 patients, and PSA increased in 16 per 20 patients. Paired baseline and on-treatment tumor biopsies demonstrated AR engagement. CONCLUSION RAD140 is a novel oral AR-targeted agent for the treatment of AR+/ER+/HER2- mBC with an acceptable safety profile and preliminary evidence of target engagement and antitumor activity.
Collapse
Affiliation(s)
| | - Erika Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology Nashville, Nashville, TN
| | - Cynthia Ma
- Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | | | - Amy Weise
- Barbara Ann Karmanos Cancer Center, Detroit, MI
| |
Collapse
|
9
|
Obesity and Androgen Receptor Signaling: Associations and Potential Crosstalk in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13092218. [PMID: 34066328 PMCID: PMC8125357 DOI: 10.3390/cancers13092218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is an increasing health challenge and is recognized as a breast cancer risk factor. Although obesity-related breast cancer mechanisms are not fully understood, this association has been linked to impaired hormone secretion by the dysfunctional obese adipose tissue (hyperplasic and hypertrophic adipocytes). Among these hormones, altered production of androgens and adipokines is observed, and both, are independently associated with breast cancer development. In this review, we describe and comment on the relationships reported between these factors and breast cancer, focusing on the biological associations that have helped to unveil the mechanisms by which signaling from androgens and adipokines modifies the behavior of mammary epithelial cells. Furthermore, we discuss the potential crosstalk between the two most abundant adipokines produced by the adipose tissue (adiponectin and leptin) and the androgen receptor, an emerging marker in breast cancer. The identification and understanding of interactions among adipokines and the androgen receptor in cancer cells are necessary to guide the development of new therapeutic approaches in order to prevent and cure obesity and breast cancer.
Collapse
|
10
|
Lupi SM, Sassi AN, Addis A, Rodriguez y Baena R. The Impact of Nandrolone Decanoate in the Osseointegration of Dental Implants in a Rabbit Model: Histological and Micro-Radiographic Results. MATERIALS 2021; 14:ma14092258. [PMID: 33925604 PMCID: PMC8123797 DOI: 10.3390/ma14092258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/23/2022]
Abstract
Despite high rates of osseointegration in healthy patients, complex cases present an increased risk of osseointegration failure when treated with dental implants. Furthermore, if immediate loading of the implants is used, maximizing the response of the host organism would be desirable. Anabolic steroids, such as Nandrolone Decanoate (ND), are reported to have beneficial clinical effects on various bone issues such as osteoporosis and bone fractures. However, their beneficial effects in promoting osseointegration in dental implant placement have not been documented. The study aimed to examine histological changes induced by ND in experimental dental implants in rabbit models. Two dental implants were placed in the tibias of 24 adult rabbits. Rabbits were allocated to one of two groups: control group or test group. Rabbits in the latter group were given nandrolone decanoate (15 mg/kg, immediately after implant placement and after 1 week). Micro-radiographic and histological analyses were assessed to characterize the morphological changes promoted by the nandrolone decanoate use. Total bone volume and fluorescence were significantly higher in the control group after 2 weeks. Such a difference between the two groups might indicate that, initially, nandrolone lengthens the non-specific healing period characteristic of all bone surgeries. However, after the beginning of the reparative processes, the quantity of newly formed bone appears to be significantly higher, indicating a positive stimulation of the androgen molecule on bone metabolism. Based on micro-radiology and fluorescence microscopy, nandrolone decanoate influenced bone regeneration in the implant site. The anabolic steroid nandrolone decanoate affects the healing processes of the peri-implant bone and therefore has the potential to improve the outcomes of implant treatment in medically complex patients.
Collapse
Affiliation(s)
- Saturnino Marco Lupi
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.N.S.); (R.R.y.B.)
- Correspondence:
| | - Alessandra Nicole Sassi
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.N.S.); (R.R.y.B.)
| | - Alessandro Addis
- CRABCC, Biotechnology Research Centre for Cardiothoracic Applications, 26027 Rivolta d’Adda, Italy;
| | - Ruggero Rodriguez y Baena
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.N.S.); (R.R.y.B.)
| |
Collapse
|
11
|
Ravindra S, Chavan S. Androgen receptor in breast cancer: A tissue microarray-based study. ARCHIVES OF MEDICINE AND HEALTH SCIENCES 2021. [DOI: 10.4103/amhs.amhs_5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Rangel N, Rondon-Lagos M, Annaratone L, Aristizábal-Pachon AF, Cassoni P, Sapino A, Castellano I. AR/ER Ratio Correlates with Expression of Proliferation Markers and with Distinct Subset of Breast Tumors. Cells 2020; 9:cells9041064. [PMID: 32344660 PMCID: PMC7226480 DOI: 10.3390/cells9041064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 01/11/2023] Open
Abstract
The co-expression of androgen (AR) and estrogen (ER) receptors, in terms of higher AR/ER ratio, has been recently associated with poor outcome in ER-positive (ER+) breast cancer (BC) patients. The aim of this study was to analyze if the biological aggressiveness, underlined in ER+ BC tumors with higher AR/ER ratio, could be due to higher expression of genes related to cell proliferation. On a cohort of 47 ER+ BC patients, the AR/ER ratio was assessed by immunohistochemistry and by mRNA analysis. The expression level of five gene proliferation markers was defined through TaqMan®-qPCR assays. Results were validated using 979 BC cases obtained from gene expression public databases. ER+ BC tumors with ratios of AR/ER ≥ 2 have higher expression levels of cellular proliferation genes than tumors with ratios of AR/ER < 2, in both the 47 ER+ BC patients (P < 0.001) and in the validation cohort (P = 0.005). Moreover, BC cases with ratios of AR/ER ≥ 2 of the validation cohort were mainly assigned to luminal B and HER2-enriched molecular subtypes, typically characterized by higher proliferation and poorer prognosis. These data suggest that joint routine evaluation of AR and ER expression may identify a unique subset of tumors, which show higher levels of cellular proliferation and therefore a more aggressive behavior.
Collapse
Affiliation(s)
- Nelson Rangel
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: or (N.R.); (I.C.); Tel.: +57-3185087624 (N.R.); +39-3298368290 (I.C.)
| | - Milena Rondon-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | | | - Paola Cassoni
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Isabella Castellano
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: or (N.R.); (I.C.); Tel.: +57-3185087624 (N.R.); +39-3298368290 (I.C.)
| |
Collapse
|
13
|
Contreras-Zárate MJ, Cittelly DM. Sex steroid hormone function in the brain niche: Implications for brain metastatic colonization and progression. Cancer Rep (Hoboken) 2020; 5:e1241. [PMID: 33350105 PMCID: PMC8022872 DOI: 10.1002/cnr2.1241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/04/2020] [Accepted: 01/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND While sex hormones and their receptors play well-known roles in progression of primary tumors through direct action on sex steroid hormone-responsive cancer cells, emerging evidence suggest that hormones also play important roles in metastatic progression by modulating the tumor microenvironment. Estrogens and androgens synthesized in gonads and within the brain influence memory, behavior, and outcomes of brain pathologies. Yet, their impact on brain metastatic colonization and progression is just beginning to be explored. RECENT FINDINGS Estradiol and testosterone cross the blood-brain barrier and are synthesized de novo in astrocytes and other cells within the adult brain. Circulating and brain-synthesized estrogens have been shown to promote brain metastatic colonization of tumors lacking estrogen receptors (ERs), through mechanisms involving the upregulation of growth factors and neurotrophins in ER+ reactive astrocytes. In this review, we discuss additional mechanisms by which hormones may influence brain metastases, through modulation of brain endothelial cells, astrocytes, and microglia. CONCLUSION A greater understanding of hormone-brain-tumor interactions may shed further light on the mechanisms underlying the adaptation of cancer cells to the brain niche, and provide therapeutic alternatives modulating the brain metastatic niche.
Collapse
Affiliation(s)
| | - Diana M Cittelly
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
14
|
Agriesti F, Tataranni T, Pacelli C, Scrima R, Laurenzana I, Ruggieri V, Cela O, Mazzoccoli C, Salerno M, Sessa F, Sani G, Pomara C, Capitanio N, Piccoli C. Nandrolone induces a stem cell-like phenotype in human hepatocarcinoma-derived cell line inhibiting mitochondrial respiratory activity. Sci Rep 2020; 10:2287. [PMID: 32041983 PMCID: PMC7010785 DOI: 10.1038/s41598-020-58871-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Nandrolone is a testosterone analogue with anabolic properties commonly abused worldwide, recently utilized also as therapeutic agent in chronic diseases, cancer included. Here we investigated the impact of nandrolone on the metabolic phenotype in HepG2 cell line. The results attained show that pharmacological dosage of nandrolone, slowing cell growth, repressed mitochondrial respiration, inhibited the respiratory chain complexes I and III and enhanced mitochondrial reactive oxygen species (ROS) production. Intriguingly, nandrolone caused a significant increase of stemness-markers in both 2D and 3D cultures, which resulted to be CxIII-ROS dependent. Notably, nandrolone negatively affected differentiation both in healthy hematopoietic and mesenchymal stem cells. Finally, nandrolone administration in mice confirmed the up-regulation of stemness-markers in liver, spleen and kidney. Our observations show, for the first time, that chronic administration of nandrolone, favoring maintenance of stem cells in different tissues would represent a precondition that, in addition to multiple hits, might enhance risk of carcinogenesis raising warnings about its abuse and therapeutic utilization.
Collapse
Affiliation(s)
- Francesca Agriesti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Italy
| | - Tiziana Tataranni
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Italy
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100, Foggia, Italy
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100, Foggia, Italy
| | - Ilaria Laurenzana
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Italy
| | - Vitalba Ruggieri
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Italy
| | - Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100, Foggia, Italy
| | - Carmela Mazzoccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Italy
| | - Monica Salerno
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania - A.O.U. "Policlinico - V. Emanuele", via S. Sofia, 87 - Sector 10, Building B - 95123, Catania, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100, Foggia, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Roma, Italy.,Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Cristoforo Pomara
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania - A.O.U. "Policlinico - V. Emanuele", via S. Sofia, 87 - Sector 10, Building B - 95123, Catania, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100, Foggia, Italy
| | - Claudia Piccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028, Rionero in Vulture, Italy. .,Department of Clinical and Experimental Medicine, University of Foggia, via L. Pinto c/o OO.RR., 71100, Foggia, Italy.
| |
Collapse
|
15
|
Amaral C, Augusto TV, Almada M, Cunha SC, Correia-da-Silva G, Teixeira N. The potential clinical benefit of targeting androgen receptor (AR) in estrogen-receptor positive breast cancer cells treated with Exemestane. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165661. [PMID: 31891807 DOI: 10.1016/j.bbadis.2019.165661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 12/09/2019] [Accepted: 12/24/2019] [Indexed: 01/19/2023]
Abstract
The development of acquired resistance to the aromatase inhibitors (AIs) used in clinic is being considered the major concern in estrogen-receptor positive (ER+) breast cancer therapy. Recently, androgen receptor (AR) has gained attention in the clinical setting, since it has been implicated in AIs-resistance, although, different roles for AR in cell fate have been described. In this work, our group elucidates, for the first time, the oncogenic role of AR in sensitive and resistant ER+ breast cancer cells treated with the potent third-generation steroidal AI Exemestane (Exe). We demonstrate that Exe promotes an overexpression/activation of AR, which has an oncogenic and pro-survival role in Exe-sensitive and Exe-resistant cells. Moreover, we also disclose that targeting AR with bicalutamide (CDX) in Exe-treated cells, enhances the efficacy of this AI in sensitive cells and re-sensitizes resistant cells to Exe treatment. Furthermore, by targeting AR in Exe-resistant cells, it is also possible to block the activation of the ERK1/2 and PI3K cell survival pathways, hamper ERα activation and increase ERβ expression. Thus, this study, highlights a new mechanism involved in Exe-acquired resistance, implicating AR as a key molecule in this setting and suggesting that Exe-resistant cells may have an AR-dependent but ER-independent mechanism. Hence we propose AR antagonism as a potential and attractive therapeutic strategy to overcome Exe-acquired resistance or to enhance the growth inhibitory properties of Exe on ER+ breast cancer cells, improving breast cancer treatment.
Collapse
Affiliation(s)
- Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Tiago V Augusto
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Marta Almada
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Sara C Cunha
- LAQV.REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| |
Collapse
|
16
|
Sang X, Han H, Li T, Lin SX. Mutual regulations and breast cancer cell control by steroidogenic enzymes: Dual sex-hormone receptor modulation upon 17β-HSD7 inhibition. J Steroid Biochem Mol Biol 2019; 193:105411. [PMID: 31207361 DOI: 10.1016/j.jsbmb.2019.105411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 12/23/2022]
Abstract
Reductive 17β-hydroxysteroid dehydrogenases (17β-HSDs) and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) play crucial roles in respectively regulating steroids and glucocorticoids for the progression of hormone-dependent breast cancer. Most studies focused on the function and individual regulation of these enzymes. However, mutual regulation of these enzymes and the induced modulation on the estrogen and androgen receptors for breast cancer promotion are not yet clear. In this study, MCF-7 and T47D cells were treated with inhibitors of 17β-HSD1, 17β-HSD7, aromatase or steroid sulfatase (STS), then mRNA levels of 17β-HSD7, STS, 11β-HSD 2, estrogen receptors α (ERα) and androgen receptor (AR) were determined by Q-PCR. ER negative cell line MDA-MB-231 was used as a negative control. Our results demonstrate that 17β-HSD7, STS and 11β-HSD2 are all regulated by the same estrogen estradiol via ERα. When the gene of ERα (ESR1) was knocked down, there was no longer significant mutual regulation of these enzymes. Our results demonstrate that important steroidogenic enzymes transcriptionally regulated by ERα, can be mutually closely correlated. Inhibition of one of them can reduce the expression of another, thereby amplifying the role of the inhibition. Furthermore, inhibition of 17β-HSD7 increases the expression of AR gene which is considered as a marker for better prognosis in ER + breast cancer, while maintaining ERα level. Thus, our mechanistic finding provides a base for further improving the endocrine therapy of ER + breast cancer, e.g., for selecting the target steroid enzymes, and for the combined targeting of human 17β-HSD7 and ERα.
Collapse
Affiliation(s)
- Xiaoye Sang
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada
| | - Hui Han
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada; Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Tang Li
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada.
| |
Collapse
|
17
|
Jing X, Liang H, Hao C, Hongxia L, Cui X. Analyses of an epigenetic switch involved in the activation of pioneer factor FOXA1 leading to the prognostic value of estrogen receptor and FOXA1 co-expression in breast cancer. Aging (Albany NY) 2019; 11:7442-7456. [PMID: 31562808 PMCID: PMC6782010 DOI: 10.18632/aging.102250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/02/2019] [Indexed: 12/30/2022]
Abstract
Forkhead box protein A1 (FOXA1) is a pioneer factor of estrogen receptor α (ER)–chromatin binding and function, yet the role of FOXA1 in breast cancer and the underlying molecular mechanisms have not yet been elucidated. To evaluate gene expression alterations during breast carcinogenesis, FOXA1 expression was analyzed using the Serial Analysis of Gene Expression Genie suite, a gene expression profiling interactive analysis, and Oncomine analyses. The correlation between methylation and expression was analyzed using the MEXPRESS tool and UCSC Xena browser. Then, the expression and prognostic value of FOXA1 was validated by our own breast cancer samples using RT-PCR. We obtained the following important results. (1) The expression level of FOXA1 was significantly higher in breast cancer than normal tissues. (2) ER, PR, HEGR-2, and nodal status were positively correlated with FOXA1 expression. (3) Among patients with ER+ tumors, those with higher FOXA1 expression levels had better survival probabilities. (4) The major mutation type in FOXA1 in breast cancer samples was missense mutations. (5) FOXA1 expression was significantly higher in ER+ breast tumors than in ER− tumors or normal tissues. Our findings suggest that the aberrant DNA hypomethylation of promoter regions is one mechanism underlying the aberrant expression of FOXA1 in ER+ breast cancer, which might be a potential indicator of favorable prognosis.
Collapse
Affiliation(s)
- Xuan Jing
- Department of Clinical Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Hongping Liang
- Department of Clinical Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Chonghua Hao
- Department of Clinical Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Li Hongxia
- Department of Oncology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliate of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
18
|
Venema CM, Bense RD, Steenbruggen TG, Nienhuis HH, Qiu SQ, van Kruchten M, Brown M, Tamimi RM, Hospers GAP, Schröder CP, Fehrmann RSN, de Vries EGE. Consideration of breast cancer subtype in targeting the androgen receptor. Pharmacol Ther 2019; 200:135-147. [PMID: 31077689 DOI: 10.1016/j.pharmthera.2019.05.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/26/2019] [Indexed: 02/05/2023]
Abstract
The androgen receptor (AR) is a drug target in breast cancer, and AR-targeted therapies have induced tumor responses in breast cancer patients. In this review, we summarized the role of AR in breast cancer based on preclinical and clinical data. Response to AR-targeted therapies in unselected breast cancer populations is relatively low. Preclinical and clinical data show that AR antagonists might have a role in estrogen receptor (ER)-negative/AR-positive tumors. The prognostic value of AR for patients remains uncertain due to the use of various antibodies and cut-off values for immunohistochemical assessment. To get more insight into the role of AR in breast cancer, we additionally performed a retrospective pooled analysis to determine the prognostic value of the AR using mRNA profiles of 7270 primary breast tumors. Our analysis shows that a higher AR mRNA level is associated with improved disease outcome in patients with ER-positive/human epidermal growth factor receptor 2 (HER2)-negative tumors, but with worse disease outcome in HER2-positive subgroups. In conclusion, next to AR expression, incorporation of additional tumor characteristics will potentially make AR targeting a more valuable therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Clasina M Venema
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rico D Bense
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tessa G Steenbruggen
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hilde H Nienhuis
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Si-Qi Qiu
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Michel van Kruchten
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Geke A P Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Carolina P Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
19
|
Pietri E, Massa I, Bravaccini S, Ravaioli S, Tumedei MM, Petracci E, Donati C, Schirone A, Piacentini F, Gianni L, Nicolini M, Campadelli E, Gennari A, Saba A, Campi B, Valmorri L, Andreis D, Fabbri F, Amadori D, Rocca A. Phase II Study of Dehydroepiandrosterone in Androgen Receptor-Positive Metastatic Breast Cancer. Oncologist 2019; 24:743-e205. [PMID: 30591548 PMCID: PMC6656524 DOI: 10.1634/theoncologist.2018-0243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/28/2018] [Indexed: 12/02/2022] Open
Abstract
LESSONS LEARNED The androgen receptor (AR) is present in most breast cancers (BC), but its exploitation as a therapeutic target has been limited.This study explored the activity of dehydroepiandrosterone (DHEA), a precursor being transformed into androgens within BC cells, in combination with an aromatase inhibitor (to block DHEA conversion into estrogens), in a two-stage phase II study in patients with AR-positive/estrogen receptor-positive/human epidermal growth receptor 2-negative metastatic BC.Although well tolerated, only 1 of 12 patients obtained a prolonged clinical benefit, and the study was closed after its first stage for poor activity. BACKGROUND Androgen receptors (AR) are expressed in most breast cancers, and AR-agonists have some activity in these neoplasms. We investigated the safety and activity of the androgen precursor dehydroepiandrosterone (DHEA) in combination with an aromatase inhibitor (AI) in patients with AR-positive metastatic breast cancer (MBC). METHODS A two-stage phase II study was conducted in two patient cohorts, one with estrogen receptor (ER)-positive (resistant to AIs) and the other with triple-negative MBC. DHEA 100 mg/day was administered orally. The combination with an AI aimed to prevent the conversion of DHEA into estrogens. The main endpoint was the clinical benefit rate. The triple-negative cohort was closed early. RESULTS Twelve patients with ER-positive MBC were enrolled. DHEA-related adverse events, reported in four patients, included grade 2 fatigue, erythema, and transaminitis, and grade 1 drowsiness and musculoskeletal pain. Clinical benefit was observed in one patient with ER-positive disease whose tumor had AR gene amplification. There was wide inter- and intra-patient variation in serum levels of DHEA and its metabolites. CONCLUSION DHEA showed excellent safety but poor activity in MBC. Although dose and patient selection could be improved, high serum level variability may hamper further DHEA development in this setting.
Collapse
Affiliation(s)
- Elisabetta Pietri
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Ilaria Massa
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Sara Bravaccini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Sara Ravaioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Maria Maddalena Tumedei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Caterina Donati
- Oncology Pharmacy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alessio Schirone
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Federico Piacentini
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | | | - Mario Nicolini
- Oncology Day Hospital Unit, Cervesi Hospital, Cattolica, Italy
| | | | - Alessandra Gennari
- Medical Oncology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Alessandro Saba
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Beatrice Campi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Linda Valmorri
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Daniele Andreis
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Dino Amadori
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Andrea Rocca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
20
|
Truong TH, Lange CA. Deciphering Steroid Receptor Crosstalk in Hormone-Driven Cancers. Endocrinology 2018; 159:3897-3907. [PMID: 30307542 PMCID: PMC6236424 DOI: 10.1210/en.2018-00831] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022]
Abstract
Steroid hormone receptors (SRs) have a multitude of functions in human biology and disease progression. The SR family of related ligand-activated transcription factors includes androgen, estrogen, glucocorticoid, mineralocorticoid, and progesterone receptors. Antiestrogen or estrogen receptor (ER)-targeted therapies to block ER action remain the primary treatment of luminal breast cancers. Although this strategy is successful, ∼40% of patients eventually relapse due to endocrine resistance. The majority of hormone-independent tumors retain some level of SR expression, but sidestep hormone ablation treatments. SRs are known to crosstalk extensively with kinase signaling pathways, and this interplay has been shown to bypass ER-targeted therapies in part by providing alternative proliferation and survival signals that enable hormone independence. Modified receptors adopt alternate conformations that resist antagonism or promote agonism. SR-regulated transcription and SR-binding events have been classically studied as single receptor events using single hormones. However, it is becoming increasingly evident that individual steroids and SRs rarely act alone. Emerging evidence shows that coexpressed SRs crosstalk with each other in hormone-driven cancers, such as breast and prostate. Crosstalk between related SRs allows them to modulate signaling and transcriptional responses to noncognate ligands. This flexibility can lead to altered genomic binding and subsequent changes in SR target gene expression. This review will discuss recent mechanistic advances in elucidating SR crosstalk and the implications for treating hormone-driven cancers. Understanding this crosstalk (i.e., both opposing and collaborative) is a critical step toward expanding and modernizing endocrine therapies and will ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
21
|
Gyovai A, Minorics R, Kiss A, Mernyák E, Schneider G, Szekeres A, Kerekes E, Ocsovszki I, Zupkó I. Antiproliferative Properties of Newly Synthesized 19-Nortestosterone Analogs Without Substantial Androgenic Activity. Front Pharmacol 2018; 9:825. [PMID: 30100876 PMCID: PMC6072853 DOI: 10.3389/fphar.2018.00825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/09/2018] [Indexed: 01/02/2023] Open
Abstract
19-Nortestosterone C-17 epimers with prominent antiproliferative properties have been previously described. In our present study, five novel 17α-19-nortestosterones (3-7) were synthesized to increase their beneficial biological activities with no associated undesired hormonal effects. The compounds were screened by a viability assay against a panel of human adherent gynecological cancer cell lines. Three of the tested derivatives (3-5) exhibited a remarkable inhibitory effect on the proliferation of HeLa cells with IC50 values lower than that of our reference agent cisplatin (CIS). These three active agents also displayed considerable cancer selectivity as evidenced by their weaker growth inhibitory effect on non-cancerous fibroblast cells compared to CIS. The most potent newly synthesized 17α-chloro derivative (3) was selected for additional experiments in order to characterize its mechanism of action. Since nandrolone (19-nortestosterone, 1) is a structural analog with selective antiproliferative action on cervical carcinoma cells, it was utilized as a positive control in these studies. A lactate dehydrogenase (LDH) assay demonstrated a moderate cytotoxic effect of the test compounds. Cell cycle disturbance and the elevation of the hypodiploid population elicited by the test agents were detected by flow cytometry following propidium staining. The proapoptotic effects of the tested steroids were confirmed by fluorescent microscopy and a caspase-3 activity assay. Treatment-related caspase-9 activation without a substantial change in caspase-8 activity indicates the induction of the intrinsic apoptotic pathway. The selected agents directly influence the rate of tubulin assembly as evidenced by a polymerization assay. Yeast-based reporter gene assay revealed that the androgenic activity of the novel 19-nortestosterone derivative 3 is by multiple orders of magnitude weaker than that of the reference agent 1. Based on the behavior of the examined compounds it can be concluded that a halogen substitution of the 19-nortestosterone scaffold at the 17α position may produce compounds with unique biological activities. The results of the present study support that structurally modified steroids with negligible hormonal activity are a promising basis for the research and development of novel anticancer agents.
Collapse
Affiliation(s)
- András Gyovai
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Renáta Minorics
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Anita Kiss
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - András Szekeres
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Erika Kerekes
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Imre Ocsovszki
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary.,Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary
| |
Collapse
|
22
|
Rangel N, Fortunati N, Osella-Abate S, Annaratone L, Isella C, Catalano MG, Rinella L, Metovic J, Boldorini R, Balmativola D, Ferrando P, Marano F, Cassoni P, Sapino A, Castellano I. FOXA1 and AR in invasive breast cancer: new findings on their co-expression and impact on prognosis in ER-positive patients. BMC Cancer 2018; 18:703. [PMID: 29970021 PMCID: PMC6029370 DOI: 10.1186/s12885-018-4624-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/21/2018] [Indexed: 11/10/2022] Open
Abstract
Background The role of forkhead-box A1 (FOXA1) and Androgen receptor (AR) in breast cancer (BC) has been extensively studied. However, the prognostic role of their co-expression in Estrogen receptor positive (ER+) BC has not been investigated so far. The aim of the present study was thus to assess the co-expression (protein and mRNA) of FOXA1 and AR in BC patients, in order to evaluate their prognostic impact according to ER status. Methods Immunohistochemical expression of AR and FOXA1 was evaluated on 479 consecutive BC, with complete clinical-pathological and follow up data. Fresh-frozen tissues from 65 cases were available. The expression of AR and FOXA1 with ER was validated using mRNA analyses. Survival and Cox proportional hazard analyses were used to evaluate the relationship between FOXA1, AR and prognosis. Results Expression of ER, AR and FOXA1 was observed in 78, 60 and 85% of cases respectively. Most AR+ cases (97%) were also FOXA1+. The level of FOXA1 mRNA positively correlated with level of both AR mRNA (r = 0.8975; P < 0.001) and ER mRNA (r = 0.7326; P < 0.001). In ER+ BC, FOXA1 was associated with a good prognosis independently of AR expression in the three subgroups analyzed (FOXA1+/AR+; FOXA1+/AR-; FOXA1−/AR-). Multivariate analyses confirmed that FOXA1 may provide more information than AR in Disease-Free Interval (DFI) of ER+ BC patients. Conclusion Our results suggest that in BC the expression of FOXA1 is directly related to the expression of AR. Despite that, FOXA1 is found as superior predicting marker of recurrences compared to AR in ER+ BC patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-4624-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nelson Rangel
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy.,Natural and Mathematical Sciences Faculty, University of the Rosario, Bogotá, Colombia
| | - Nicoletta Fortunati
- Oncological Endocrinology Unit, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Simona Osella-Abate
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy
| | | | | | - Letizia Rinella
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Jasna Metovic
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Renzo Boldorini
- Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Maggiore Hospital, Novara, Italy
| | | | - Pietro Ferrando
- Division of Breast Surgery, Department of General and Specialized Surgery, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Francesca Marano
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy.,Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Isabella Castellano
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126, Turin, Italy.
| |
Collapse
|
23
|
Liu X, Feng C, Liu J, Cao L, Xiang G, Liu F, Wang S, Jiao J, Niu Y. Androgen receptor and heat shock protein 27 co-regulate the malignant potential of molecular apocrine breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:90. [PMID: 29699584 PMCID: PMC5921986 DOI: 10.1186/s13046-018-0762-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/17/2018] [Indexed: 01/20/2023]
Abstract
Background The most striking feature of molecular apocrine breast cancer (MABC) is the expression of androgen receptor (AR). We report here the mechanism of the AR in regulating the behavior of MABC. Methods The MABC cell line, MDA-MB-453, and the nonMABC cell line, MCF7, were used in this study. The effect of dihydrotestosterone (DHT) and heat shock protein 27 (HSP27) on cell proliferation was quantified using the cell counter kit-8 (CCK8) and clonogenic assays in vitro and by a xenograft tumor model in vivo. The expression of the AR and HSP27 was analyzed using western blot, qPCR, and immunofluorescence assays. Complexes of the AR and HSP27 were detected by co-immunoprecipitation (Co-IP). Results In MDA-MB-453 cells, DHT promoted cell proliferation and stimulated AR and HSP27 translocation from the cytoplasm to the nucleus, whereas, it inhibited MCF7 cell growth, and only the AR translocated into the nucleus. HSP27 knock-down decreased the proliferative ability of MDA-MB-453 cells, which could be rescued by DHT, while HSP27 and DHT had synergistic effects on MCF7 cells. HSP27 phosphorylation was a prerequisite for AR translocation into the nucleus, especially phosphorylation on serine 82. In addition, DHT stimulated the tumorigenic and metastatic capacities of MDA-MB-453 cells, while HSP27 knock-down decreased the rate of tumor formation and induced apoptosis in cells. Conclusions The results suggest that HSP27 assists the AR in regulating the malignant behavior of MABC, and these findings might be helpful in the treatment of MABC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0762-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Changyun Feng
- Department of Maternal and Child Health Hospital of Linyi, Qinghe-South Road, Luozhuang District, Linyi, 276016, China
| | - Junjun Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Lu Cao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Guomin Xiang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Fang Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Shuling Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Jiao Jiao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Yun Niu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.
| |
Collapse
|
24
|
Rangel N, Rondon-Lagos M, Annaratone L, Osella-Abate S, Metovic J, Mano MP, Bertero L, Cassoni P, Sapino A, Castellano I. The role of the AR/ER ratio in ER-positive breast cancer patients. Endocr Relat Cancer 2018; 25:163-172. [PMID: 29386247 DOI: 10.1530/erc-17-0417] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 01/06/2023]
Abstract
The significance of androgen receptor (AR) in breast cancer (BC) management is not fully defined, and it is still ambiguous how the level of AR expression influences oestrogen receptor-positive (ER+) tumours. The aim of the present study was to analyse the prognostic impact of AR/ER ratio, evaluated by immunohistochemistry (IHC), correlating this value with clinical, pathological and molecular characteristics. We retrospectively selected a cohort of 402 ER+BC patients. On each tumour, IHC analyses for AR, ER, PgR, HER2 and Ki67 were performed and AR+ cases were used to calculate the AR/ER value. A cut-off of ≥2 was selected using receiver-operating characteristic (ROC) curve analyses. RNA from 19 cases with AR/ER≥2 was extracted and used for Prosigna-PAM50 assays. Tumours with AR/ER≥2 (6%) showed more frequent metastatic lymph nodes, larger size, higher histological grade and lower PgR levels than cases with AR/ER<2. Multivariate analysis confirmed that patients with AR/ER≥2 had worse disease-free interval (DFI) and disease-specific survival (DSS) (hazard ratios (HR) = 4.96 for DFI and HR = 8.69 for DSS, both P ≤ 0.004). According to the Prosigna-PAM50 assay, 63% (12/19) of these cases resulted in intermediate or high risk of recurrence categories. Additionally, although all samples were positive for ER assessed by IHC, the molecular test assigned 47.4% (9/19) of BCs to intrinsic non-luminal subtypes. In conclusion, the AR/ER ratio ≥2 identifies a subgroup of patients with aggressive biological features and may represent an additional independent marker of worse BC prognosis. Moreover, the Prosigna-PAM50 results indicate that a significant number of cases with AR/ER≥2 could be non-luminal tumours.
Collapse
Affiliation(s)
- Nelson Rangel
- Department of Medical SciencesUniversity of Turin, Turin, Italy
- Natural and Mathematical Sciences FacultyUniversidad del Rosario, Bogotá, Colombia
| | - Milena Rondon-Lagos
- School of Biological SciencesUniversidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | | | | | - Jasna Metovic
- Department of Medical SciencesUniversity of Turin, Turin, Italy
| | - Maria Piera Mano
- Department of Surgical SciencesUniversity of Turin, Turin, Italy
| | - Luca Bertero
- Department of Medical SciencesUniversity of Turin, Turin, Italy
| | - Paola Cassoni
- Department of Medical SciencesUniversity of Turin, Turin, Italy
| | - Anna Sapino
- Department of Medical SciencesUniversity of Turin, Turin, Italy
- Pathology UnitFondazione del Piemonte per l'Oncologia (FPO) Candiolo Cancer Institute (IRCCS), Candiolo, Italy
| | | |
Collapse
|
25
|
Wang C, Pan B, Zhu H, Zhou Y, Mao F, Lin Y, Xu Q, Sun Q. Prognostic value of androgen receptor in triple negative breast cancer: A meta-analysis. Oncotarget 2018; 7:46482-46491. [PMID: 27374089 PMCID: PMC5216811 DOI: 10.18632/oncotarget.10208] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/03/2016] [Indexed: 12/31/2022] Open
Abstract
Background Androgen receptor (AR) is a promising therapeutic target for breast cancer. However, its prognostic value remains controversial in triple negative breast cancer (TNBC). Here we present a meta-analysis to investigate the correlation between AR expression and TNBC prognosis. Results Thirteen relevant studies with 2826 TNBC patients were included. AR positive rate was 24.4%. AR+ patients tended to have lower tumor grade (p< 0.001), but more lymph node metastases (p < 0.01). AR positivity was associated with prolonged disease free survival (HR 0.809, 95% CI = 0.659-0.995, p < 0.05), but had no significant impact on overall survival (HR 1.270, 95% CI=0.904-1.782, p = 0.168). No difference in survival existed between subgroups using different AR or estrogen receptor cutoff values. Materials and methods Literature search was performed in Pubmed, Embase and Cochrane Central Register of Controlled Trials databases to identify relevant articles on AR and TNBC prognosis. Fixed- and random-effect meta-analyses were conducted based on the heterogeneity of included studies. Heterogeneity and impacts of covariates were further evaluated by subgroup analyses and meta-regression. Conclusion AR positivity is associated with lower risk of disease recurrence in TNBC. Further clinical studies are warranted to clarify its prognostic role on TNBC recurrence and survival.
Collapse
Affiliation(s)
- Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Bo Pan
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Hanjiang Zhu
- Department of Dermatology, University of California, San Francisco, CA, USA
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Feng Mao
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yan Lin
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qianqian Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
26
|
Yu Z, He S, Wang D, Patel HK, Miller CP, Brown JL, Hattersley G, Saeh JC. Selective Androgen Receptor Modulator RAD140 Inhibits the Growth of Androgen/Estrogen Receptor-Positive Breast Cancer Models with a Distinct Mechanism of Action. Clin Cancer Res 2017; 23:7608-7620. [PMID: 28974548 DOI: 10.1158/1078-0432.ccr-17-0670] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/14/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Steroidal androgens suppress androgen receptor and estrogen receptor positive (AR/ER+) breast cancer cells and were used to treat breast cancer, eliciting favorable response. The current study evaluates the activity and efficacy of the oral selective AR modulator RAD140 in in vivo and in vitro models of AR/ER+ breast cancer.Experimental Design: A series of in vitro assays were used to determine the affinity of RAD140 to 4 nuclear receptors and evaluate its tissue-selective AR activity. The efficacy and pharmacodynamics of RAD140 as monotherapy or in combination with palbociclib were evaluated in AR/ER+ breast cancer xenograft models.Results: RAD140 bound AR with high affinity and specificity and activated AR in breast cancer but not prostate cancer cells. Oral administration of RAD140 substantially inhibited the growth of AR/ER+ breast cancer patient-derived xenografts (PDX). Activation of AR and suppression of ER pathway, including the ESR1 gene, were seen with RAD140 treatment. Coadministration of RAD140 and palbociclib showed improved efficacy in the AR/ER+ PDX models. In line with efficacy, a subset of AR-repressed genes associated with DNA replication was suppressed with RAD140 treatment, an effect apparently enhanced by concurrent administration of palbociclib.Conclusions: RAD140 is a potent AR agonist in breast cancer cells with a distinct mechanism of action, including the AR-mediated repression of ESR1 It inhibits the growth of multiple AR/ER+ breast cancer PDX models as a single agent, and in combination with palbociclib. The preclinical data presented here support further clinical investigation of RAD140 in AR/ER+ breast cancer patients. Clin Cancer Res; 23(24); 7608-20. ©2017 AACR.
Collapse
Affiliation(s)
- Ziyang Yu
- Radius Health, Inc., Waltham, Massachusetts.
| | - Suqin He
- Radius Health, Inc., Waltham, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
27
|
Basile D, Cinausero M, Iacono D, Pelizzari G, Bonotto M, Vitale MG, Gerratana L, Puglisi F. Androgen receptor in estrogen receptor positive breast cancer: Beyond expression. Cancer Treat Rev 2017; 61:15-22. [PMID: 29078133 DOI: 10.1016/j.ctrv.2017.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 01/22/2023]
Abstract
In recent years, new therapeutic approaches have reshaped the overall strategy of breast cancer (BC) treatment and have markedly improved patient survival. This is, in part, due to novel therapies for estrogen receptor (ER)-positive BC. Unfortunately, many patients present de novo resistance to these therapies or develop an acquired resistance over time. Therefore, research is now focused on discovering new molecular targets to overcome these resistances. Interestingly, preclinical and clinical studies have shown a critical role for the cross-talk between androgen receptor (AR) and ER in luminal-like BC. AR is expressed in >60% of BC and in up to 90% of ERα-positive tumors. Multiple studies suggest that AR is associated with a favorable prognosis. However, AR overexpression and, in particular, the high AR:ER ratio, seem to be involved in resistance to hormonal treatment. In this setting, a group of BCs could benefit from AR-inhibitors; nevertheless, some ER-positive BC patients do not seem to benefit from this strategy. Therefore, it is crucial to identify biomarkers that would enable the selection of patients who might benefit from combination treatment with ER and AR inhibitors.
Collapse
Affiliation(s)
- Debora Basile
- Department of Oncology, University Hospital of Udine, Italy; School of Medical Oncology, Department of Medicine, University of Udine, Italy
| | - Marika Cinausero
- Department of Oncology, University Hospital of Udine, Italy; School of Medical Oncology, Department of Medicine, University of Udine, Italy
| | - Donatella Iacono
- Department of Oncology, University Hospital of Udine, Italy; School of Medical Oncology, Department of Medicine, University of Udine, Italy
| | - Giacomo Pelizzari
- Department of Oncology, University Hospital of Udine, Italy; School of Medical Oncology, Department of Medicine, University of Udine, Italy
| | - Marta Bonotto
- Department of Oncology, University Hospital of Udine, Italy; School of Medical Oncology, Department of Medicine, University of Udine, Italy
| | - Maria Grazia Vitale
- Department of Oncology, University Hospital of Udine, Italy; School of Medical Oncology, Department of Medicine, University of Udine, Italy
| | - Lorenzo Gerratana
- Department of Oncology, University Hospital of Udine, Italy; School of Medical Oncology, Department of Medicine, University of Udine, Italy.
| | - Fabio Puglisi
- School of Medical Oncology, Department of Medicine, University of Udine, Italy; Department of Clinical Oncology, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| |
Collapse
|
28
|
Baji Á, Kovács F, Mótyán G, Schneider G, Wölfling J, Sinka I, Zupkó I, Ocsovszki I, Frank É. Investigation of pH and substituent effects on the distribution ratio of novel steroidal ring D- and A-fused arylpyrazole regioisomers and evaluation of their cell-growth inhibitory effects in vitro. Steroids 2017; 126:35-49. [PMID: 28803210 DOI: 10.1016/j.steroids.2017.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022]
Abstract
Novel androstanopyrazoles have been efficiently synthesized from steroidal β-ketoaldehydes with different arylhydrazine hydrochlorides both under acidic and basic conditions. Knorr-type transformations of 16-hydroxymethylene-dehydroepiandrosterone containing its 1,3-dicarbonyl moiety on ring D, proved to be regioselective in pyridine at room temperature, while mixtures of regioisomers were obtained in acidic EtOH under reflux. Contrarily, the cyclocondensation reactions of 2-hydroxymethylene-dihydrotestosterone bearing its reactive functionalities on ring A, led to a mixture of pyrazole regioisomers in varying ratio depending on the applied medium. The regioisomeric distribution was found to depend on the electronic character of the substituent of the phenylhydrazine applied. After separating the related isomers by column chromatography, they were subjected to in vitro pharmacological studies to investigate their antiproliferative activities against three human breast malignant cell lines (MCF7, T47D, MDA-MB-231). Flow cytometry revealed that the most potent agents elicited a cell cycle disturbance on MDA-MB-231 and T47D cells.
Collapse
Affiliation(s)
- Ádám Baji
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Ferenc Kovács
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gergő Mótyán
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Izabella Sinka
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Imre Ocsovszki
- Department of Biochemistry, University of Szeged, Dóm tér 9, Szeged H-6720, Hungary
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| |
Collapse
|
29
|
Severson TM, Zwart W. A review of estrogen receptor/androgen receptor genomics in male breast cancer. Endocr Relat Cancer 2017; 24:R27-R34. [PMID: 28062545 DOI: 10.1530/erc-16-0225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023]
Abstract
Male breast cancer is a rare disease, of which little is known. In contrast to female breast cancer, the very vast majority of all cases are positive for estrogen receptor alpha (ERα), implicating the function of this steroid hormone receptor in tumor development and progression. Consequently, adjuvant treatment of male breast cancer revolves around inhibition of ERα. In addition, the androgen receptor (AR) gradually receives more attention as a relevant novel target in breast cancer treatment. Importantly, the rationale of treatment decision making is strongly based on parallels with female breast cancer. Yet, prognostic indicators are not necessarily the same in breast cancer between both genders, complicating translatability of knowledge developed in female breast cancer toward male patients. Even though ERα and AR are expressed both in female and male disease, are the genomic functions of both steroid hormone receptors conserved between genders? Recent studies have reported on mutational and epigenetic similarities and differences between male and female breast cancer, further suggesting that some features are strongly conserved between the two diseases, whereas others are not. This review critically discusses the recent developments in the study of male breast cancer in relation to ERα and AR action and highlights the potential future studies to further elucidate the genomic regulation of this rare disease.
Collapse
Affiliation(s)
- Tesa M Severson
- Division of Molecular Pathologythe Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Molecular Carcinogenesisthe Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathologythe Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
30
|
AR Signaling in Breast Cancer. Cancers (Basel) 2017; 9:cancers9030021. [PMID: 28245550 PMCID: PMC5366816 DOI: 10.3390/cancers9030021] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 12/31/2022] Open
Abstract
Androgen receptor (AR, a member of the steroid hormone receptor family) status has become increasingly important as both a prognostic marker and potential therapeutic target in breast cancer. AR is expressed in up to 90% of estrogen receptor (ER) positive breast cancer, and to a lesser degree, human epidermal growth factor 2 (HER2) amplified tumors. In the former, AR signaling has been correlated with a better prognosis given its inhibitory activity in estrogen dependent disease, though conversely has also been shown to increase resistance to anti-estrogen therapies such as tamoxifen. AR blockade can mitigate this resistance, and thus serves as a potential target in ER-positive breast cancer. In HER2 amplified breast cancer, studies are somewhat conflicting, though most show either no effect or are associated with poorer survival. Much of the available data on AR signaling is in triple-negative breast cancer (TNBC), which is an aggressive disease with inferior outcomes comparative to other breast cancer subtypes. At present, there are no approved targeted therapies in TNBC, making study of the AR signaling pathway compelling. Gene expression profiling studies have also identified a luminal androgen receptor (LAR) subtype that is dependent on AR signaling in TNBC. Regardless, there seems to be an association between AR expression and improved outcomes in TNBC. Despite lower pathologic complete response (pCR) rates with neoadjuvant therapy, patients with AR-expressing TNBC have been shown to have a better prognosis than those that are AR-negative. Clinical studies targeting AR have shown somewhat promising results. In this paper we review the literature on the biology of AR in breast cancer and its prognostic and predictive roles. We also present our thoughts on therapeutic strategies.
Collapse
|
31
|
Siddiqui M, Ahmad MS, Wahab AT, Yousuf S, Fatima N, Naveed Shaikh N, Rahman AU, Choudhary MI. Biotransformation of a potent anabolic steroid, mibolerone, with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina, and biological activity evaluation of its metabolites. PLoS One 2017; 12:e0171476. [PMID: 28234904 PMCID: PMC5325191 DOI: 10.1371/journal.pone.0171476] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/20/2017] [Indexed: 01/31/2023] Open
Abstract
Seven metabolites were obtained from the microbial transformation of anabolic-androgenic steroid mibolerone (1) with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina. Their structures were determined as 10β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (2), 6β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (3), 6β,10β,17β-trihydroxy-7α,17α-dimethylestr-4-en-3-one (4), 11β,17β-dihydroxy-(20-hydroxymethyl)-7α,17α-dimethylestr-4-en-3-one (5), 1α,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (6), 1α,11β,17β-trihydroxy-7α,17α-dimethylestr-4-en-3-one (7), and 11β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (8), on the basis of spectroscopic studies. All metabolites, except 8, were identified as new compounds. This study indicates that C. blakesleeana, and C. echinulata are able to catalyze hydroxylation at allylic positions, while M. phaseolina can catalyze hydroxylation of CH2 and CH3 groups of substrate 1. Mibolerone (1) was found to be a moderate inhibitor of β-glucuronidase enzyme (IC50 = 42.98 ± 1.24 μM) during random biological screening, while its metabolites 2-4, and 8 were found to be inactive. Mibolerone (1) was also found to be significantly active against Leishmania major promastigotes (IC50 = 29.64 ± 0.88 μM). Its transformed products 3 (IC50 = 79.09 ± 0.06 μM), and 8 (IC50 = 70.09 ± 0.05 μM) showed a weak leishmanicidal activity, while 2 and 4 were found to be inactive. In addition, substrate 1 (IC50 = 35.7 ± 4.46 μM), and its metabolite 8 (IC50 = 34.16 ± 5.3 μM) exhibited potent cytotoxicity against HeLa cancer cell line (human cervical carcinoma). Metabolite 2 (IC50 = 46.5 ± 5.4 μM) also showed a significant cytotoxicity, while 3 (IC50 = 107.8 ± 4.0 μM) and 4 (IC50 = 152.5 ± 2.15 μM) showed weak cytotoxicity against HeLa cancer cell line. Compound 1 (IC50 = 46.3 ± 11.7 μM), and its transformed products 2 (IC50 = 43.3 ± 7.7 μM), 3 (IC50 = 65.6 ± 2.5 μM), and 4 (IC50 = 89.4 ± 2.7 μM) were also found to be moderately toxic to 3T3 cell line (mouse fibroblast). Interestingly, metabolite 8 showed no cytotoxicity against 3T3 cell line. Compounds 1-4, and 8 were also evaluated for inhibition of tyrosinase, carbonic anhydrase, and α-glucosidase enzymes, and all were found to be inactive.
Collapse
Affiliation(s)
- Mahwish Siddiqui
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Malik Shoaib Ahmad
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Atia-tul- Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sammer Yousuf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Narjis Fatima
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nimra Naveed Shaikh
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Atta-ur- Rahman
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - M. Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Novel anti-inflammatory liposomal formulation for the pre-ocular tear film: In vitro and ex vivo functionality studies in corneal epithelial cells. Exp Eye Res 2017; 154:79-87. [DOI: 10.1016/j.exer.2016.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/07/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022]
|
33
|
Narayanan R, Dalton JT. Androgen Receptor: A Complex Therapeutic Target for Breast Cancer. Cancers (Basel) 2016; 8:cancers8120108. [PMID: 27918430 PMCID: PMC5187506 DOI: 10.3390/cancers8120108] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/01/2016] [Accepted: 11/23/2016] [Indexed: 12/29/2022] Open
Abstract
Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER) and human epidermal growth factor receptor (HER2) are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR) is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer.
Collapse
Affiliation(s)
- Ramesh Narayanan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| | - James T Dalton
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
34
|
Kono M, Fujii T, Lyons GR, Huo L, Bassett R, Gong Y, Karuturi MS, Tripathy D, Ueno NT. Impact of androgen receptor expression in fluoxymesterone-treated estrogen receptor-positive metastatic breast cancer refractory to contemporary hormonal therapy. Breast Cancer Res Treat 2016; 160:101-109. [PMID: 27663436 DOI: 10.1007/s10549-016-3986-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/16/2016] [Indexed: 01/22/2023]
Abstract
PURPOSE The purpose of this study is to evaluate survival outcome in patients with hormone receptor (HR)-positive (+) metastatic breast cancer (MBC) who received fluoxymesterone after disease progression while receiving contemporary hormonal therapy, as well as the association between estrogen receptor (ER)/androgen receptor (AR) status and survival outcome in these patients. METHODS We retrospectively identified 103 patients treated with fluoxymesterone for HR + MBC from 2000 to 2014 and with at least one previous hormonal therapy in a metastatic setting. RESULTS A median of 3 (range 1-10) hormonal therapies (aromatase inhibitors, tamoxifen, and/or fulvestrant) were received before fluoxymesterone; 33 patients discontinued fluoxymesterone before progression because of physician decision or adverse events including toxicity in 14 patients. Of the remaining 70 patients, 2 (3 %) had complete response, 7 (10 %) partial response, and 21 (30 %) stable disease for at least 6 months, yielding a clinical benefit rate of 43 %. The median PFS was 3.9 months (95 % CI 3.2-5.3 months). Multivariate analysis revealed no significant association between PFS and the type or number of prior systemic treatments. All 39 patients who had archived tumor slides available for AR staining had ER + carcinoma; 10 had ≥1 % but <10 %, 18 had ≥10 %, and 11 had no AR nuclear expression. AR positivity with various cutoffs (i.e. any AR + cells, ≥1 % AR + cells, or ≥10 % AR + cells) was not significantly associated with survival outcome. CONCLUSIONS Fluoxymesterone can be considered for patients whose ER + MBC progresses on contemporary hormonal therapy, regardless of the level of AR expression.
Collapse
Affiliation(s)
- Miho Kono
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1354, Houston, TX, 77030, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi Minamiku, Hiroshima, 7348553, Japan
| | - Takeo Fujii
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1354, Houston, TX, 77030, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Genevieve Ray Lyons
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Roland Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yun Gong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Meghan Sri Karuturi
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1354, Houston, TX, 77030, USA
| | - Debu Tripathy
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1354, Houston, TX, 77030, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1354, Houston, TX, 77030, USA. .,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
35
|
Linscott ML, Chung WCJ. Fibroblast Growth Factor 8 Expression in GT1-7 GnRH-Secreting Neurons Is Androgen-Independent, but Can Be Upregulated by the Inhibition of DNA Methyltransferases. Front Cell Dev Biol 2016; 4:34. [PMID: 27200347 PMCID: PMC4853385 DOI: 10.3389/fcell.2016.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/13/2016] [Indexed: 11/13/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8) is a potent morphogen that regulates the embryonic development of hypothalamic neuroendocrine cells. Indeed, using Fgf8 hypomorphic mice, we showed that reduced Fgf8 mRNA expression completely eliminated the presence of gonadotropin-releasing hormone (GnRH) neurons. These findings suggest that FGF8 signaling is required during the embryonic development of mouse GnRH neurons. Additionally, in situ hybridization studies showed that the embryonic primordial birth place of GnRH neurons, the olfactory placode, is highly enriched for Fgf8 mRNA expression. Taken together these data underscore the importance of FGF8 signaling for GnRH emergence. However, an important question remains unanswered: How is Fgf8 gene expression regulated in the developing embryonic mouse brain? One major candidate is the androgen receptor (AR), which has been shown to upregulate Fgf8 mRNA in 60-70% of newly diagnosed prostate cancers. Therefore, we hypothesized that ARs may be involved in the regulation of Fgf8 transcription in the developing mouse brain. To test this hypothesis, we used chromatin-immunoprecipitation (ChIP) assays to elucidate whether ARs interact with the 5'UTR region upstream of the translational start site of the Fgf8 gene in immortalized mouse GnRH neurons (GT1-7) and nasal explants. Our data showed that while AR interacts with the Fgf8 promoter region, this interaction was androgen-independent, and that androgen treatment did not affect Fgf8 mRNA levels, indicating that androgen signaling does not induce Fgf8 transcription. In contrast, inhibition of DNA methyltransferases (DNMT) significantly upregulated Fgf8 mRNA levels indicating that Fgf8 transcriptional activity may be dependent on DNA methylation status.
Collapse
Affiliation(s)
- Megan L Linscott
- Department of Biological Sciences, Kent State University Kent, OH, USA
| | - Wilson C J Chung
- Department of Biological Sciences, Kent State UniversityKent, OH, USA; School of Biomedical Sciences, Kent State UniversityKent, OH, USA
| |
Collapse
|
36
|
Thakkar A, Wang B, Picon-Ruiz M, Buchwald P, Ince TA. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat 2016; 157:77-90. [PMID: 27120467 PMCID: PMC4869778 DOI: 10.1007/s10549-016-3807-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022]
Abstract
Anti-estrogen and anti-HER2 treatments have been among the first and most successful examples of targeted therapy for breast cancer (BC). However, the treatment of triple-negative BC (TNBC) that lack estrogen receptor expression or HER2 amplification remains a major challenge. We previously discovered that approximately two-thirds of TNBCs express vitamin D receptor (VDR) and/or androgen receptor (AR) and hypothesized that TNBCs co-expressing AR and VDR (HR2-av TNBC) could be treated by targeting both of these hormone receptors. To evaluate the feasibility of VDR/AR-targeted therapy in TNBC, we characterized 15 different BC lines and identified 2 HR2-av TNBC lines and examined the changes in their phenotype, viability, and proliferation after VDR and AR-targeted treatment. Treatment of BC cell lines with VDR or AR agonists inhibited cell viability in a receptor-dependent manner, and their combination appeared to inhibit cell viability additively. Moreover, cell viability was further decreased when AR/VDR agonist hormones were combined with chemotherapeutic drugs. The mechanisms of inhibition by AR/VDR agonist hormones included cell cycle arrest and apoptosis in TNBC cell lines. In addition, AR/VDR agonist hormones induced differentiation and inhibited cancer stem cells (CSCs) measured by reduction in tumorsphere formation efficiency, high aldehyde dehydrogenase activity, and CSC markers. Surprisingly, we found that AR antagonists inhibited proliferation of most BC cell lines in an AR-independent manner, raising questions regarding their mechanism of action. In summary, AR/VDR-targeted agonist hormone therapy can inhibit HR2-av TNBC through multiple mechanisms in a receptor-dependent manner and can be combined with chemotherapy.
Collapse
Affiliation(s)
- A Thakkar
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami, Miami, FL, USA
| | - B Wang
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - M Picon-Ruiz
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - P Buchwald
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| | - Tan A Ince
- Sylvester Comprehensive Cancer Center, Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
- , Biomedical Research Building, Room 926, 1501 NW 10th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|
37
|
Chua VYL, Larma I, Harvey J, Thomas MA, Bentel JM. Activity of ABCG2 Is Regulated by Its Expression and Localization in DHT and Cyclopamine-Treated Breast Cancer Cells. J Cell Biochem 2016; 117:2249-59. [PMID: 26917208 DOI: 10.1002/jcb.25523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/22/2016] [Indexed: 01/06/2023]
Abstract
Elevated expression of the efflux transporter, ATP-binding cassette subfamily G isoform 2 (ABCG2) on the plasma membrane of cancer cells contributes to the development of drug resistance and is a key characteristic of cancer stem cells. In this study, gene expression analysis identified that treatment of the MCF-7 and T-47D breast cancer cell lines with the androgen, 5α-dihydrotestosterone (DHT), and the Hedgehog signaling inhibitor, cyclopamine downregulated ABCG2 mRNA levels. In MCF-7 cells, and in Hoechst 33342(lo) /CD44(hi) /CD24(lo) breast cancer stem-like cells isolated from MCF-7 cultures, ABCG2 was accumulated in cell-to-cell junction complexes and in large cytoplasmic aggresome-like vesicles. DHT treatments, which decreased cellular ABCG2 protein levels, led to diminished ABCG2 localization in both cell-to-cell junction complexes and in cytoplasmic vesicles. In contrast, cyclopamine, which did not alter ABCG2 protein levels, induced accumulation of ABCG2 in cytoplasmic vesicles, reducing its localization in cell-to-cell junction complexes. The reduced localization of ABCG2 at the plasma membrane of MCF-7 cells was associated with decreased efflux of the ABCG2 substrate, mitoxantrone, and increased sensitivity of cyclopamine-treated cultures to the cytotoxic effects of mitoxantrone. Together, these findings indicate that DHT and cyclopamine reduce ABCG2 activity in breast cancer cells by distinct mechanisms, providing evidence to advocate the adjunct use of analogous pharmaceutics to increase or prolong the efficacy of breast cancer treatments. J. Cell. Biochem. 117: 2249-2259, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vivian Y L Chua
- Anatomical Pathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.,School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Irma Larma
- Center for Microscopy, Characterization and Analysis, University of Western Australia, Crawley, Western Australia, Australia
| | - Jennet Harvey
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Marc A Thomas
- Anatomical Pathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Jacqueline M Bentel
- Anatomical Pathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
38
|
Hilborn E, Gacic J, Fornander T, Nordenskjöld B, Stål O, Jansson A. Androgen receptor expression predicts beneficial tamoxifen response in oestrogen receptor-α-negative breast cancer. Br J Cancer 2016; 114:248-55. [PMID: 26742006 PMCID: PMC4742586 DOI: 10.1038/bjc.2015.464] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/09/2015] [Accepted: 11/26/2015] [Indexed: 12/29/2022] Open
Abstract
Background: Although the androgen receptor (AR) is frequently expressed in breast cancer, its relevance in the disease is not fully understood. In addition, the relevance of AR in determining tamoxifen treatment efficiency requires evaluation. Purpose: To investigate the tamoxifen predictive relevance of the AR protein expression in breast cancer. Methods Patients were randomised to tamoxifen 40 mg daily for 2 or 5 years or to no endocrine treatment. Mean follow-up was 15 years. Hazard ratios were calculated with recurrence-free survival as end point. Results: In patients with oestrogen receptor (ER)-negative tumours, expression of AR predicted decreased recurrence rate with tamoxifen (hazard ratio (HR)=0.34; 95% confidence interval (CI)=0.14–0.81; P=0.015), whereas the opposite was seen in the AR− group (HR=2.92; 95% CI=1.16–7.31; P=0.022). Interaction test was significant P<0.001. Patients with triple-negative and AR+ tumours benefitted from tamoxifen treatment (HR=0.12; 95% CI=0.014–0.95 P=0.044), whereas patients with AR− tumours had worse outcome when treated with tamoxifen (HR=3.98; 95% CI=1.32–12.03; P=0.014). Interaction test was significant P=0.003. Patients with ER+ tumours showed benefit from tamoxifen treatment regardless of AR expression. Conclusions: AR can predict tamoxifen treatment benefit in patients with ER− tumours and triple-negative breast cancer.
Collapse
Affiliation(s)
- Erik Hilborn
- Division of Clinical sciences, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping S-581 85, Sweden
| | - Jelena Gacic
- Division of Clinical sciences, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping S-581 85, Sweden
| | - Tommy Fornander
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Bo Nordenskjöld
- Division of Clinical sciences, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping S-581 85, Sweden
| | - Olle Stål
- Division of Clinical sciences, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping S-581 85, Sweden.,Department of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Agneta Jansson
- Division of Clinical sciences, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping S-581 85, Sweden
| |
Collapse
|
39
|
Montt-Guevara MM, Shortrede JE, Giretti MS, Giannini A, Mannella P, Russo E, Genazzani AD, Simoncini T. Androgens Regulate T47D Cells Motility and Invasion through Actin Cytoskeleton Remodeling. Front Endocrinol (Lausanne) 2016; 7:136. [PMID: 27746764 PMCID: PMC5043384 DOI: 10.3389/fendo.2016.00136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/20/2016] [Indexed: 11/15/2022] Open
Abstract
The relationship between androgens and breast cancer is controversial. Androgens have complex effects on breast cancer progression and metastasis. Moreover, androgen receptor (AR) is expressed in approximately 70 to 90% of invasive breast carcinomas, which has prognostic relevance in basal-like cancers and in triple-negative breast cancers. Recent studies have associated the actin-binding proteins of the ezrin-radixin-moesin (ERM) family with metastasis in endocrine-sensitive cancers. We studied on T47D breast cancer cells whether androgens with different characteristics, such as testosterone (T), dihydrotestosterone (DHT), and dehydroepiandrosterone (DHEA) may regulate breast cancer cell motility and invasion through the control of actin remodeling. We demonstrate that androgens promote migration and invasion in T47D via Moesin activation. We show that T and DHEA exert their actions via the AR and estrogen receptor (ER), while the non-aromatizable androgen - DHT - only recruits AR. We further report that androgen induced significant changes in actin organization with pseudopodia along with membrane ruffles formation, and this process is mediated by Moesin. Our work identifies novel mechanisms of action of androgens on breast cancer cells. Through the modulation of Moesin, androgens alter the architecture of cytoskeleton in T47D breast cancer cell and promote cell migration and invasion. These results could help to understand the biological actions of androgens on breast cancer and, eventually, to develop new strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Maria Magdalena Montt-Guevara
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Jorge Eduardo Shortrede
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Silvia Giretti
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Giannini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Mannella
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Russo
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro David Genazzani
- Department of Obstetrics and Gynecology, Center for Gynecological Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- *Correspondence: Tommaso Simoncini,
| |
Collapse
|
40
|
Schneider G, Kiss A, Mernyák E, Benke Z, Wölfling J, Frank É, Bózsity N, Gyovai A, Minorics R, Zupkó I. Stereocontrolled synthesis of the four 16-hydroxymethyl-19-nortestosterone isomers and their antiproliferative activities. Steroids 2016; 105:113-20. [PMID: 26686898 DOI: 10.1016/j.steroids.2015.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/11/2015] [Accepted: 12/01/2015] [Indexed: 11/22/2022]
Abstract
Novel 16-hydroxymethyl-19-nortestosterone diastereomers were prepared by Birch reduction from the corresponding 3-methoxy-16-hydroxymethylestra-1,3,5(10)-trien-17-ol isomers with known configurations. The synthesized compounds are 16α- and 16β-hydroxymethyl-substituted 19-nortestosterone and their 17α-epimers. To prepare 17α-19-nortestosterone, the Mitsunobu inversion reaction of 19-nortestosterone with different alkyl and aryl carboxylic acids was chosen. Deacylation of the new compounds by the Zemplén method yielded the required 17α-19-nortestosterone. The antiproliferative activities of the structurally related compounds were determined in vitro through microculture tetrazolium assays on a panel of human adherent cervical (HeLa, SiHa and C33A), breast (MCF-7, MDA-MB-231, MDA-MB-361 and T47D) and ovarian (A2780) cell lines. The 17α epimer of 19-nortestosterone demonstrated considerable activity, selectively for HeLa cells, with a calculated IC50 of 0.65 μM. The reference compound, cisplatin, displayed an order of magnitude higher IC50 (12.4 μM). The cancer selectivity of 17α-19-nortestosterone was tested by MTT assay performed with noncancerous human fibroblast cell line MRC-5. The results indicated that 17α-19-nortestosterone selectively disturbs the viability of HeLa cells without greatly affecting other cancer cell types and intact fibroblasts.
Collapse
Affiliation(s)
- Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8., H-6720 Szeged, Hungary.
| | - Anita Kiss
- Department of Organic Chemistry, University of Szeged, Dóm tér 8., H-6720 Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8., H-6720 Szeged, Hungary
| | - Zsanett Benke
- Department of Organic Chemistry, University of Szeged, Dóm tér 8., H-6720 Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8., H-6720 Szeged, Hungary
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8., H-6720 Szeged, Hungary
| | - Noémi Bózsity
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - András Gyovai
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Renáta Minorics
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary.
| |
Collapse
|
41
|
McNamara KM, Sasano H. Beyond the C18 frontier: Androgen and glucocorticoid metabolism in breast cancer tissues: The role of non-typical steroid hormones in breast cancer development and progression. Steroids 2015; 103:115-22. [PMID: 26057662 DOI: 10.1016/j.steroids.2015.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/11/2022]
Abstract
Breast cancer's hormonal dependence is well known and has been so for a long time. However in the last two decades great advances have been made in understanding the local metabolism of steroids within tissue. In the form of aromatase inhibition this is already one of the mainstays of breast cancer therapy. This review aims to summarise briefly what is known in terms of the metabolism of C18 steroids but perhaps more importantly to touch on the new developments regarding the importance of the metabolism of androgens and glucocorticoids in breast tissue. It is our hope that this review should provide the reader with a "birds eye view" of the current state of knowledge regarding localised steroid metabolism in the breast.
Collapse
Affiliation(s)
- Keely May McNamara
- Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
42
|
Androgen receptor promotes tamoxifen agonist activity by activation of EGFR in ERα-positive breast cancer. Breast Cancer Res Treat 2015; 154:225-37. [PMID: 26487496 DOI: 10.1007/s10549-015-3609-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Abstract
Tamoxifen (Tam) resistance represents a significant clinical problem in estrogen receptor (ER) α-positive breast cancer. We previously showed that decreased expression of Rho guanine nucleotide dissociation inhibitor (Rho GDI) α, a negative regulator of the Rho GTPase pathway, is associated with Tam resistance. We now discover that androgen receptor (AR) is overexpressed in cells with decreased Rho GDIα and seek to determine AR's contribution to resistance. We engineered ERα-positive cell lines with stable knockdown (KD) of Rho GDIα (KD cells). Resistance mechanisms were examined using microarray profiling, protein-interaction studies, growth and reporter gene assays, and Western blot analysis combined with a specific AR antagonist and other signaling inhibitors. Tam-resistant tumors and cell lines with low Rho GDIα levels exhibited upregulated AR expression. Microarray of Rho GDIα KD cells indicated that activation of EGFR and ERα was associated with Tam treatment. When AR levels were elevated, interaction between AR and EGFR was detected. Constitutive and Tam-induced phosphorylation of EGFR and ERK1/2 was blocked by the AR antagonist Enzalutamide, suggesting that AR-mediated EGFR activation was a mechanism of resistance in these cells. Constitutive ERα phosphorylation and transcriptional activity was inhibited by Enzalutamide and the EGFR inhibitor gefitinib, demonstrating that AR-mediated EGFR signaling activated ERα. Tam exhibited agonist activity in AR overexpressing cells, stimulating ERα transcriptional activity and proliferation, which was blocked by Enzalutamide and gefitinib. We describe a novel model of AR-mediated Tam resistance through activation of EGFR signaling leading to ER activation in ERα-positive cells with low expression of Rho GDIα.
Collapse
|
43
|
Abstract
The androgen receptor (AR) is expressed in the majority of breast cancer and across the three main breast cancer subtypes. Historically, the oncogenic role of AR has best been described in molecular apocrine breast cancers, an estrogen receptor (ER)-/AR+ subtype which has a steroid response signature similar to that in the ER-positive breast cancer. The signalling effect of AR is likely to be different across breast cancer subtypes, and particularly important is its interaction with ER signalling. Despite the high frequency of AR expression in breast cancer, it is still not a standard clinical practice to use AR antagonists as therapy. Older trials of AR-directed therapies in breast cancer have had generally been disappointing. More recently, more potent, next-generation, AR-directed therapies have been developed in the context of prostate cancer. Here, we will review the emerging literature dissecting the role of AR signalling in a context-dependent manner in breast cancer and the renewed interest and wave of clinical trials targeting the AR in breast cancer.
Collapse
Affiliation(s)
- KeeMing Chia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | | | | | | |
Collapse
|
44
|
Maeda T, Nakanishi Y, Hirotani Y, Fuchinoue F, Enomoto K, Sakurai K, Amano S, Nemoto N. Immunohistochemical co-expression status of cytokeratin 5/6, androgen receptor, and p53 as prognostic factors of adjuvant chemotherapy for triple negative breast cancer. Med Mol Morphol 2015; 49:11-21. [PMID: 26009308 DOI: 10.1007/s00795-015-0109-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022]
Abstract
Triple negative breast cancer (TNBC) is immunohistochemically characterised by the lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor type 2 (HER2). TNBC is known for its poor prognosis and high recurrence probability. There is no effective targeted treatment for TNBC, but only adjuvant chemotherapies. There are two TNBC subtypes, basal-like and non-basal-like, which are defined based on positive cytokeratin (CK) 5/6 and/or epidermal growth factor receptor (EGFR) expression. In particular, CK5/6 expression is reported to correlate with TNBC recurrence. TNBC lacks ER-α expression, but some TNBCs are known to express the androgen receptor (AR). Moreover, although p53 accumulation is detected in various malignant tumors, its influence on adjuvant chemotherapy for patients with TNBC remains unclear. The aim of this study was to assess the combined immunohistochemical expression of CK 5/6, AR, and p53 as a potential prognostic marker of adjuvant chemotherapy for patients with TNBC. The expression of CK5/6, AR, and p53 in formalin-fixed and paraffin-embedded (FFPE) surgical sections from 52 patients with TNBC was analysed by immunohistochemistry (IHC) and the co-expression patterns in individual cells were investigated by immunofluorescent (IF) staining. Low AR expression was correlated with high clinical stage (P < 0.05) and low nuclear grade (P < 0.05). The expression of CK5/6 and p53 did not correlate with clinicopathological features. Patients who needed adjuvant chemotherapy presented the worst prognosis. In particular, when the IHC expression pattern was CK5/6 (-), AR (-), and p53 (+), the disease free survival (DFS) and overall survival (OS) were the worst. On the other hand, patients with AR (+) and p53 (-) TNBC presented a good prognosis. The analysis of the co-expression status of these three markers showed that no cells presented both AR and CK5/6 expression. Furthermore, TP53 mRNA expression was higher in patients with AR-negative TNBC (P < 0.05) and in patients with the worst prognosis (P < 0.05) than in the other patients. These results suggested that, in patients with CK5/6-negative TNBC, AR expression correlated with good prognosis, but p53 accumulation correlated with poor prognosis. The present IHC markers allowed us to predict the post-surgery prognosis of patients with TNBC. In conclusion, TNBCs are heterogeneous. Patients with the CK5/6 (-), AR (-), and p53 (+) TNBC subtype, evaluated by IHC, presented the worst prognosis. These IHC markers will be helpful to follow patients with TNBC.
Collapse
Affiliation(s)
- Tetsuyo Maeda
- Department of Breast Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Yoko Nakanishi
- Department of Pathology, Nihon University School of Medicine, 30-1 Ohyaguchi-kamimachi, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Yukari Hirotani
- Department of Pathology, Nihon University School of Medicine, 30-1 Ohyaguchi-kamimachi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Fumi Fuchinoue
- Department of Pathology, Nihon University School of Medicine, 30-1 Ohyaguchi-kamimachi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Katsuhisa Enomoto
- Department of Breast Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kenichi Sakurai
- Department of Breast Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Sadao Amano
- Department of Breast Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Norimichi Nemoto
- Department of Pathology, Nihon University School of Medicine, 30-1 Ohyaguchi-kamimachi, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
45
|
Segal CV, Koufaris C, Powell C, Gooderham NJ. Effects of treatment with androgen receptor ligands on microRNA expression of prostate cancer cells. Toxicology 2015; 333:45-52. [PMID: 25846647 DOI: 10.1016/j.tox.2015.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 11/26/2022]
Abstract
Post-transcriptional regulation by microRNA (miRNA) is an important aspect of androgen receptor (AR) signalling in prostate cancer cells. However, the global profiling of miRNA expression in prostate cancer cells following treatment with AR ligands has not been reported so far. In this study we examined the effect of treatment with two AR agonists (mibolerone (MIB) and dihydrotestosterone (DHT)) and an AR antagonist (bicalutamide (BIC)) on miRNA expression in the human androgen-dependent LNCaP prostate cancer cell line using microarray technology and verification of selected miRNA using quantitative real-time PCR (qRT-PCR). No miRNA was identified as differentially expressed following treatment with the AR antagonist BIC. In contrast, a number of common and compound-specific alterations in miRNA expression were observed following treatment with AR agonists. Unexpectedly it was found that treatment with the AR agonists resulted in the repression of miR-221, a miRNA previously established to be involved with prostate cancer development. This observation indicates that this miRNA may have a more complex role in prostate cancer development than considered previously. Treatment with MIB led to an induction of miR-210 expression, a hypoxia-related miRNA. This miRNA is reported to be involved in cell adaptation to hypoxia and thus induction in conditions of normoxia may be important in driving metabolic changes observed in prostate cancer. Thus examining the effect of AR agonists and antagonists on miRNA expression can provide novel insights into the response of cells to AR ligands and subsequent downstream events.
Collapse
Affiliation(s)
- Corrinne V Segal
- Department of Surgery & Cancer, Biomolecular Medicine, Imperial College London, London SW72AZ, UK
| | - Costas Koufaris
- Department of Cytogenetics and Genomics, Cyprus Institute of Neurology and Genetics, Cyprus
| | | | - Nigel J Gooderham
- Department of Surgery & Cancer, Biomolecular Medicine, Imperial College London, London SW72AZ, UK.
| |
Collapse
|
46
|
Andrieu T, Mani O, Goepfert C, Bertolini R, Guettinger A, Setoud R, Uh KY, Baker ME, Frey FJ, Frey BM. Detection and functional portrayal of a novel class of dihydrotestosterone derived selective progesterone receptor modulators (SPRM). J Steroid Biochem Mol Biol 2015; 147:111-23. [PMID: 25541437 DOI: 10.1016/j.jsbmb.2014.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 12/12/2014] [Accepted: 12/16/2014] [Indexed: 12/14/2022]
Abstract
In early pregnancy, abortion can be induced by blocking the actions of progesterone receptors (PR). However, the PR antagonist, mifepristone (RU38486), is rather unselective in clinical use because it also cross-reacts with other nuclear receptors. Since the ligand-binding domain of human progesterone receptor (hPR) and androgen receptor (hAR) share 54% identity, we hypothesized that derivatives of dihydrotestosterone (DHT), the cognate ligand for hAR, might also regulate the hPR. Compounds designed and synthesized in our laboratory were investigated for their affinities for hPRB, hAR, glucocorticoid receptor (hGRα) and mineralocorticoid receptor (hMR), using whole cell receptor competitive binding assays. Agonistic and antagonistic activities were characterized by reporter assays. Nuclear translocation was monitored using cherry-hPRB and GFP-hAR chimeric receptors. Cytostatic properties and apoptosis were tested on breast cancer cells (MCF7, T-47D). One compound presented a favorable profile with an apparent neutral hPRB antagonistic function, a selective cherry-hPRB nuclear translocation and a cytostatic effect. 3D models of human PR and AR with this ligand were constructed to investigate the molecular basis of selectivity. Our data suggest that these novel DHT-derivatives provide suitable templates for the development of new selective steroidal hPR antagonists.
Collapse
Affiliation(s)
- Thomas Andrieu
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland.
| | - Orlando Mani
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland.
| | - Christine Goepfert
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland.
| | - Reto Bertolini
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland.
| | - Andreas Guettinger
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland.
| | - Raschid Setoud
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland.
| | - Kayla Y Uh
- Department of Medicine, University of California, San Diego, La Jolla, USA.
| | - Michael E Baker
- Department of Medicine, University of California, San Diego, La Jolla, USA.
| | - Felix J Frey
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland.
| | - Brigitte M Frey
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland; Department of Clinical Research, University of Berne, Berne, Switzerland.
| |
Collapse
|
47
|
Abd-Elazeem MA, Abd-Elazeem MA. Claudin 4 expression in triple-negative breast cancer: correlation with androgen receptors and Ki-67 expression. Ann Diagn Pathol 2014; 19:37-42. [PMID: 25456318 DOI: 10.1016/j.anndiagpath.2014.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/28/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022]
Abstract
Breast cancer is the most common malignancy in women and the leading cause of cancer mortality worldwide. Triple-negative breast cancer (TNBC) is an important phenotype of breast cancer that accounts for a relatively small number of breast cancer cases but still represent a focus of increasing interest at the clinical, biological, and epidemiological level. Claudins are the major component of the tight junction, and only a few studies have addressed the role of claudins in breast cancer, especially TNBC. Androgen receptors (ARs), as members of the nuclear receptor superfamily, are known to be involved in a complex network of signaling pathways that collectively regulate cell proliferation. However, roles of AR in breast cancer development and progression have not been very clearly understood. The proliferation marker Ki-67 has been confirmed as an independent predictive and prognostic factor in early breast cancer. The aims of this study are to identify the clinicopathologic associations and prognostic value of claudin 4 expression in TNBC and to correlate claudin 4 expression with AR status and Ki-67 expression. Paraffin blocks obtained from 56 female patients with triple-negative primary invasive ductal breast carcinomas were analyzed for claudin 4, AR, and Ki-67 immunohistochemical expression. High levels of claudin 4 expression were detected in 66.1% of TNBC cases. There was a significant positive correlation with age, tumor size, grade, nodal status, metastasis, and Ki-67 expression (all P < .05) and negative correlation with AR status (P < .001). Androgen receptor showed positivity in 29 cases (51.78%). There was a statistical negative correlation with the all the studied clinicopathologic parameters, claudin 4 and Ki-67 expression. High claudin 4 expression, negative AR expression, and high Ki-67 index would provide a strong prognostic power to differentiate the patients with worse outcome among TNBC patients. Moreover, target treatment for TNBC cells expressing claudin 4 or AR enriched would be valuable for future therapies.
Collapse
Affiliation(s)
- Mona A Abd-Elazeem
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | |
Collapse
|
48
|
McNamara KM, Moore NL, Hickey TE, Sasano H, Tilley WD. Complexities of androgen receptor signalling in breast cancer. Endocr Relat Cancer 2014; 21:T161-81. [PMID: 24951107 DOI: 10.1530/erc-14-0243] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the clinical benefit of androgen-based therapeutics in breast cancer has been known since the 1940s, we have only recently begun to fully understand the mechanisms of androgen action in breast cancer. Androgen signalling pathways can have either beneficial or deleterious effects in breast cancer depending on the breast cancer subtype and intracellular context. This review discusses our current knowledge of androgen signalling in breast cancer, including the relationship between serum androgens and breast cancer risk, the prognostic significance of androgen receptor (AR) expression in different breast cancer subtypes and the downstream molecular pathways mediating androgen action in breast cancer cells. Intracrine androgen metabolism has also been discussed and proposed as a potential mechanism that may explain some of the reported differences regarding dichotomous androgen actions in breast cancers. A better understanding of AR signalling in this disease is critical given the current resurgence in interest in utilising contemporary AR-directed therapies for breast cancer and the need for biomarkers that will accurately predict clinical response.
Collapse
Affiliation(s)
- Keely M McNamara
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Nicole L Moore
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Theresa E Hickey
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Hironobu Sasano
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| | - Wayne D Tilley
- Department of PathologyTohoku University School of Medicine, Miyagi, Sendai, JapanDame Roma Mitchell Cancer Research LaboratoriesDiscipline of Medicine, The University of Adelaide and Hanson Institute, DX 650801, Adelaide, South Australia 5005, Australia
| |
Collapse
|
49
|
Chottanapund S, Van Duursen MBM, Navasumrit P, Hunsonti P, Timtavorn S, Ruchirawat M, Van den Berg M. Anti-aromatase effect of resveratrol and melatonin on hormonal positive breast cancer cells co-cultured with breast adipose fibroblasts. Toxicol In Vitro 2014; 28:1215-21. [PMID: 24929094 DOI: 10.1016/j.tiv.2014.05.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 12/29/2022]
Abstract
Targeting the estrogen pathway has been proven effective in the treatment for estrogen receptor positive breast cancer. There are currently two common groups of anti-estrogenic compounds used in the clinic; Selective Estrogen Receptor Modulators (SERMs, e.g. tamoxifen) and Selective Estrogen Enzyme Modulators (SEEMs e.g. letrozole). Among various naturally occurring, biologically active compounds, resveratrol and melatonin have been suggested to act as aromatase inhibitors, which make them potential candidates in hormonal treatment of breast cancer. Here we used a co-culture model in which we previously demonstrated that primary human breast adipose fibroblasts (BAFs) can convert testosterone to estradiol, which subsequently results in estrogen receptor-mediated breast cancer T47D cell proliferation. In the presence of testosterone in this model, we examined the effect of letrozole, resveratrol and melatonin on cell proliferation, estradiol (E2) production and gene expression of CYP19A1, pS2 and Ki-67. Both melatonin and resveratrol were found to be aromatase inhibitors in this co-culture system, albeit at different concentrations. Our co-culture model did not provide any indications that melatonin is also a selective estrogen receptor modulator. In the T47D-BAF co-culture, a melatonin concentration of 20 nM and resveratrol concentration of 20 μM have an aromatase inhibitory effect as potent as 20 nM letrozole, which is a clinically used anti-aromatase drug in breast cancer treatment. The SEEM mechanism of action of especially melatonin clearly offers potential advantages for breast cancer treatment.
Collapse
Affiliation(s)
- Suthat Chottanapund
- Division of Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok, Thailand; Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand; Center of Excellence on Environmental Health, Toxicology and Management of Chemicals, Bangkok, Thailand; Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Thailand.
| | - M B M Van Duursen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Panida Navasumrit
- Division of Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok, Thailand; Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand; Center of Excellence on Environmental Health, Toxicology and Management of Chemicals, Bangkok, Thailand
| | - Potchanee Hunsonti
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Supatchaya Timtavorn
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Mathuros Ruchirawat
- Division of Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok, Thailand; Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand; Center of Excellence on Environmental Health, Toxicology and Management of Chemicals, Bangkok, Thailand
| | - Martin Van den Berg
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
50
|
Abstract
Breast cancer (BC) is traditionally viewed as an oestrogen-dependent disease in which the androgen receptor (AR) is inhibitory, counteracting the oncogenic activity of oestrogen receptor α (ERα (ESR1)). Most probably as a result of this crosstalk, the AR has prognostic value in ER-positive disease, with AR positivity reported to correlate with a better prognosis. Activation of the AR pathway has been previously used as a therapeutic strategy to treat BC, but its usage declined following the introduction of the anti-oestrogen tamoxifen. More recently, it has been demonstrated that a subset of triple-negative BCs (molecular apocrine) are dependent upon androgen signalling for growth and therapies that inhibit androgen signalling, currently used for the treatment of prostate cancer, e.g. the antiandrogen bicalutamide and the CYP17 inhibitor abiraterone acetate are undergoing clinical trials to investigate their efficacy in this BC subtype. This review summarises the current knowledge of AR activity in BC.
Collapse
Affiliation(s)
- F M Fioretti
- Androgen Signalling LaboratoryDepartment of Surgery and Cancer, Imperial College London, London W12 0NN, UKMolecular OncologySchool of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - A Sita-Lumsden
- Androgen Signalling LaboratoryDepartment of Surgery and Cancer, Imperial College London, London W12 0NN, UKMolecular OncologySchool of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - C L Bevan
- Androgen Signalling LaboratoryDepartment of Surgery and Cancer, Imperial College London, London W12 0NN, UKMolecular OncologySchool of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - G N Brooke
- Androgen Signalling LaboratoryDepartment of Surgery and Cancer, Imperial College London, London W12 0NN, UKMolecular OncologySchool of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UKAndrogen Signalling LaboratoryDepartment of Surgery and Cancer, Imperial College London, London W12 0NN, UKMolecular OncologySchool of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| |
Collapse
|