1
|
Li L, Zhou Y, Zhou W, Liu Y, Mei J. Fibroblast growth factor 7 facilitates invasion of human trophoblast cells through the JNK pathway during pregnancy. Placenta 2025; 167:87-94. [PMID: 40344910 DOI: 10.1016/j.placenta.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
INTRODUCTION This study investigates the role of FGF7 in trophoblast invasion under high estrogen and progesterone levels, focusing on the JNK signaling pathway. The aim is to demonstrate that FGF7 enhances human trophoblast cell invasion via JNK activation, crucial for establishing pregnancy. METHODS We investigated the expression of FGF7 in primary human trophoblasts to evaluate the effects of elevated estrogen and progesterone levels on trophoblast invasion. The study focused on the role of FGF7 in gestational regulation and its mechanism of activating the JNK signaling pathway through FGFR2. RESULTS The study unveiled that FGF7 and FGFR2 are expressed in trophoblast cells during normal pregnancies, with the expression of FGF7 being upregulated by estrogen and progesterone. In trophoblastic cells, FGF7 activates the MAPK/JNK signaling pathway, resulting in upregulation of MMP-2 and MMP-9 expression, concomitant downregulation of TIMP-1 and TIMP-2 expression, and ultimately enhanced invasive capacity. However, in cases of recurrent spontaneous abortion (RSA), the levels of FGF7/FGFR2 expression exhibited a notable decrease. These results indicate that the involvement of FGF7/FGFR2 could be significant in maintaining normal pregnancy by regulating trophoblast invasiveness, and their impaired expression could contribute to RSA. DISCUSSION The present study elucidates the role of FGF7 in facilitating trophoblast invasion through activation of the MAPK/JNK pathway and upregulation of MMPs, thereby providing potential therapeutic insights for recurrent spontaneous abortion (RSA) attributed to impaired trophoblast invasion.
Collapse
Affiliation(s)
- Lijuan Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China; School of Graduate, Dalian Medical University, Dalian, China
| | - Yu Zhou
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jie Mei
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Khymenets O, Vilarroya O, Benet G, Feixas G, Arranz Betegon A, McLeod MD, Pozo OJ. Profile of steroid metabolites in human breast milk in different stages of lactation. Food Funct 2025. [PMID: 40277187 PMCID: PMC12023736 DOI: 10.1039/d4fo05713a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/02/2025] [Indexed: 04/26/2025]
Abstract
Breast milk (BM), as an optimal food, provides the newborn with a variety of minor compounds relevant for health and wellbeing. Endogenous steroids, also minor constituents, are mainly secreted in BM as conjugated metabolites. Recent research has revealed the relevance of steroid conjugates in many physiological processes. Thus, their presence in BM appears to be very intriguing, especially in relation to breastfeeding. The objective of our study was to profile conjugated steroid metabolites present in BM in relation to the lactation stage, and to promote further evaluation of their importance in breastfeeding. For this purpose, we developed and used a direct UHPLC-MS/MS metabolomics approach capable to detect more than 60 conjugated metabolites (mono-sulfated, mono-glucuronylated, bis-sulfated and sulfate-glucuronylated) from all steroid families. We compared the occurrence of these metabolites in samples collected from breastfeeding mothers and stratified by lactation stages: colostrum, transitional and mature milk. Our results showed that many biologically relevant conjugated steroids are secreted in BM. Their concentrations were highest in colostrum, decreased remarkably in transitional and were much lower in mature milk, with some exceptions. The profile of metabolites also differed considerably between lactation stages. The approximate daily secretion in BM indicated that infants are exposed to significant oral doses of steroid conjugates during the first week of lactation. The supply of these metabolites in BM declined and became constant after the second week postpartum. Overall, our data provide a foundation for further investigation on the physiological relevance of BM secreted steroid metabolites in relation to both mother and child.
Collapse
Affiliation(s)
- Olha Khymenets
- Applied Metabolomics Research Group, Neurosciences Research Programme, Hospital del Mar Research Institute, Barcelona, Spain.
| | - Oscar Vilarroya
- Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Barcelona, Spain
- Neuroimaging Research Group, Neurosciences Programme, Hospital del Mar Research Institute, Barcelona, Spain
| | - Georgina Benet
- Neuroimaging Research Group, Neurosciences Programme, Hospital del Mar Research Institute, Barcelona, Spain
| | - Georgina Feixas
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Clínic and Hospital Sant Joan de Deu, Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Angela Arranz Betegon
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Clínic and Hospital Sant Joan de Deu, Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Malcolm D McLeod
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Neurosciences Research Programme, Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
3
|
Hinchliffe E, Heazell A. Profiling neuroactive steroids in pregnancy. A non-derivatised liquid chromatography tandem mass spectrometry method for the quantitation of allopregnanolone and four related isomers in maternal serum. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1256:124541. [PMID: 40054418 DOI: 10.1016/j.jchromb.2025.124541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/28/2025] [Accepted: 02/23/2025] [Indexed: 04/07/2025]
Abstract
Neuroactive steroids are metabolites of progesterone, synthesised during pregnancy by the placenta. Here, we describe development of a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for quantitation of allopregnanolone, pregnanolone, isopregnanolone, epipregnanolone and allopregnan-20α-ol-3-one in maternal serum. Following addition of deuterated internal standards, 200 μL of serum was subjected to solid phase extraction. Chromatography was performed using a pentafluorophenyl column, and LC-MS/MS on a Sciex 6500+. Sample injection volume was 20 μL, and injection-to-injection time 10.0 min. The assay was validated according to published guidelines; assay linearity and lower limit of quantification were suitable for analysis of each steroid in maternal serum, for all analytes mean recoveries were 100 % ± 15 %, intra- and inter-assay imprecision <15 %, and matrix effects negligible, and specificity experiments confirmed nil interference from a wide range of endogenous metabolites of progesterone. The method was applied to human serum samples obtained from a large cohort of third trimester pregnancies which were subsequently characterised by normal fetal and maternal outcomes, and relationships between maternal neuroactive steroid concentrations and fetal gestational age assessed. Positive correlations between maternal serum concentration and fetal gestational age were observed for isopregnanolone, allopregnanolone and allopregnan-20α-ol-3-one. The LC-MS/MS method offers significant advantages over previously published approaches for quantitation of neuroactive steroids in human maternal serum, notably obviating the need for derivatisation, whilst achieving exceptional specificity. Characterisation of normal maternal neuroactive steroid concentrations will aid future research as dysregulated placental progesterone metabolism is observed in pregnancies with poor outcomes.
Collapse
Affiliation(s)
- Edward Hinchliffe
- Dept Clinical Biochemistry, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Alexander Heazell
- Maternal and Fetal Health Research Centre, School of Biomedicine, University of Manchester, Manchester, UK; Department of Obstetrics, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
4
|
Lahti-Pulkkinen M, Räikkönen K, Basiukajc A, Lee P, Denham SG, Simpson JP, Villa P, Hämäläinen E, Laivuori H, Kajantie E, Heinonen K, Girchenko P, Reynolds RM, Homer NZ. Determination of steroid reference intervals in a pregnancy population. J Steroid Biochem Mol Biol 2025; 248:106691. [PMID: 39921041 DOI: 10.1016/j.jsbmb.2025.106691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Steroids, including mineralocorticoids, glucocorticoids, and sex hormones play a critical role in pregnancy. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis offers an opportunity to conduct simultaneous multiplex steroid analysis within a given sample. This paper describes the LC-MS/MS steroid analysis method developed for assessing plasma specific reference ranges of 18 steroids from plasma samples (200 µL) of pregnant women participating in the PREDO study. Samples were prepared using supported liquid extraction and analyzed on an Acquity I-Class UPLC and a QTrap6500 + mass spectrometer. Mass spectrometry parameters were optimized for each steroid and chromatographic separation of 18 steroids was developed. Changes in steroid levels across pregnancy were assessed. Samples were collected after an overnight fast between 07:00 and 09:00. Data from 257 samples from 96 women with uncomplicated pregnancy (women with pre-pregnancy normal weight and no diabetes or hypertensive disorders before or during pregnancy, who delivered a live child at ≥ 37 weeks of gestation with appropriate for gestational age birth weight) were analyzed to calculate steroid reference ranges over three time points, between 11.6 and 14.3, 17.7-22.9, and 25.6-29.0 pregnancy weeks. Levels of progestogens, glucocorticoids, mineralocorticoids, estrogens, their precursors, and metabolites increased significantly across pregnancy. Androgen levels remained stable, except for a decrease in 5α-dihydrotestosterone. The LC-MS/MS method also showed validity in analyses of 917 samples of 328 women with complicated pregnancies. The method is suitable for the analysis of 18 steroids in plasma during pregnancy and the investigation of pregnancy complications, fetal growth, and development after birth.
Collapse
Affiliation(s)
- Marius Lahti-Pulkkinen
- Department of Psychology, Faculty of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Finnish Institute for Health and Welfare, Helsinki, Finland; Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Katri Räikkönen
- Department of Psychology, Faculty of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Finland
| | - Agnieszka Basiukajc
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Patricia Lee
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Scott G Denham
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Joanna P Simpson
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Pia Villa
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Finland
| | - Esa Hämäläinen
- Department of Clinical Chemistry, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, and Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Eero Kajantie
- Finnish Institute for Health and Welfare, Helsinki, Finland; Clinical Medicine Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Department of Clinical and Molecular Medicine, Norwegian University for Science and Technology, Trondheim, Norway
| | - Kati Heinonen
- Department of Psychology, Faculty of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Welfare Sciences, Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Polina Girchenko
- Department of Psychology, Faculty of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Clinical Medicine Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Rebecca M Reynolds
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Natalie Zm Homer
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
5
|
Xiang J, Zhong M, Zhang Q, Zhu Y, Pan P, Li H, Fei Q, Ou R, Ge RS, Zhang W. Effects of parabens on human and rat placental 3β-hydroxysteroid dehydrogenase isoforms: Structure activity relationship and docking analysis. J Steroid Biochem Mol Biol 2025; 245:106638. [PMID: 39566855 DOI: 10.1016/j.jsbmb.2024.106638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Parabens are widely used as preservatives in personal care products and are linked to potential disruptions in placental steroidogenesis. However, their exact impact remains unclear. This study aimed to explore the inhibition, mechanisms, structure-activity relationships (SAR) of parabens on human placental 3β-hydroxysteroid dehydrogenase type 1 (h3β-HSD1) and its rat counterpart, r3β-HSD4.3β-HSD activity was assayed in placental microsomes using pregnenolone as substrate and HPLC-MS/MS to measure progesterone and the effects of parabens on 3β-HSD was evaluated and SAR was performed. The research identified their inhibition against h3β-HSD1, with nonylparaben showing the highest potency (IC50, 4.17 µM), followed by phenylparaben, heptylparaben, hexylparaben, benzylparaben, butylparaben, propylparaben, and ethylparaben. The inhibition was characterized as mixed/noncompetitive. Additionally, these parabens inhibited progesterone secretion in human JAr cells at ≤100 µM. Similar trends were observed for r3β-HSD4. Docking simulations indicated that parabens interact with NAD+ and steroid-binding sites of both enzymes. A negative correlation between LogP, molecular weight, volume, and alcohol chain carbon with IC50 values highlighted the role of carbon chain length in determining inhibitory efficacy. The inhibitory potency of parabens on 3β-HSD is significantly influenced by their structural attributes, particularly the length of their carbon chains and LogP values.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Mingzhu Zhong
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qianjin Fei
- Reproductive Medicine Centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| | - Rongying Ou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Ren-Shan Ge
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Weibing Zhang
- Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| |
Collapse
|
6
|
Wang Z, Liang C, Shi LL, Zhu CS, Wang S, Nakayama SF, Kido T, Sun XL, Shan J. Associations Between Heavy Metal Exposure from Milk and Steroid Hormones in Mothers. Biol Trace Elem Res 2024:10.1007/s12011-024-04466-0. [PMID: 39633227 DOI: 10.1007/s12011-024-04466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Environmental exposure to heavy metals is ubiquitous. However, its relationship with steroid hormone levels is not well understood, particularly in pregnant women. This study investigated the association between prenatal heavy metal exposure and steroid hormone levels in an e-waste disposal area in China. We analyzed the Cd, Cr, Mn, Pb, Cu, and As concentrations in 102 human milk samples collected 4 weeks after delivery. Multiple regression analysis was used to assess the associations and interactions between heavy metals and steroidal hormones. We found positive associations between Mn and estrone and estriol (estrone: β = 0.713, 95%CI = 0.046, 1.381 and estriol: β = 1.290, 95%CI = 0.494, 2.085) and between Cd and progesterone (β = 0.280; 95%CI = 0.053, 0.506). We observed negative associations between Cr and estrone and estriol (estrone: β = - 0.757, 95%CI = - 1.473, - 0.041 and estriol: β = - 1.354, 95%CI = - 2.209, - 0.499). At last, we found that Pb was negatively associated with estrone (estrone: β = - 0.537, 95%CI = - 1.053, - 0.020). Our results suggest that exposure to heavy metals may affect steroid hormone levels in mothers living in an e-waste recycling area in China.
Collapse
Affiliation(s)
- Zheng Wang
- School of Medicine, Jiaxing University, Jiaxing, China
- School of Medicine, and The First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Caixia Liang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Li Li Shi
- School of Medicine, Jiaxing University, Jiaxing, China
| | - Cheng-Sheng Zhu
- Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Shenghang Wang
- School of Public Health, Shandong University, Jinan, China
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Teruhiko Kido
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Xian Liang Sun
- School of Medicine, and The First Affiliated Hospital, Huzhou University, Huzhou, China.
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Jiancong Shan
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China.
| |
Collapse
|
7
|
Gong C, Chen Z, Tang Y, Lu H, Chen S, Zhu Y, Ge RS, Zhao J. Aromatase as a novel target of parabens in human and rat placentas: 3D-quantitative structure-activity relationship and docking analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117244. [PMID: 39461234 DOI: 10.1016/j.ecoenv.2024.117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Aromatase (CYP19A1), a pivotal enzyme in the biosynthesis of estradiol from testosterone, is predominantly expressed in reproductive tissues including placentas. This study investigated the effects of paraben acid and nine parabens on the activity of human and rat CYP19A1 using microsomes derived from human and rat placentas and on estradiol secretion in human choriocarcinoma BeWo cells. The results showed that propyl, butyl, hexyl, heptyl, and nonyl parabens significantly inhibited human CYP19A1 activity, with IC50 values of 66.37, 61.08, 55.65, 48.26, and 27.24 μM, respectively. In BeWo cells, these parabens notably diminished estradiol secretion at concentrations of 100 μM. Similarly, rat CYP19A1 was inhibited by these parabens, with IC50 values of 98.07, 70.10, 41.30, 27.93, and 6.33 μM for propyl, butyl, hexyl, heptyl, and nonyl parabens, respectively. Kinetic analysis identified these compounds as mixed inhibitors. Bivariate correlation analysis revealed a negative correlation between the partition coefficient value, molecular weight, the number of carbon atoms in the alcohol moiety, as well as heavy atom number and IC50 values. Three-dimensional quantitative structure-activity relationship analysis highlighted the critical role of hydrophobic regions in determining inhibitory potency. Docking studies suggested that parabens interact with the heme-iron binding site of both human and rat CYP19A1. This study elucidates the inhibitory effects of various parabens on CYP19A1 and their binding mechanisms, thereby providing a deeper understanding of their potential impact on estrogen biosynthesis.
Collapse
Affiliation(s)
- Chaochao Gong
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhuoqi Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Han Lu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Sailing Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Male Health and Environment of Wenzhou, Zhejiang 325000, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Male Health and Environment of Wenzhou, Zhejiang 325000, China.
| | - Junzhao Zhao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
8
|
Chen J, Zhu H, Chen Y, Pan S, Liang H, Song X, Wu Q, Yuan W, Miao M, Wang Z. The Role of Placental DNA Methylation at Reproduction-Related Genes in Associations between Prenatal Bisphenol Analogues Exposure and the Digit Ratio in Children at Age 4: A Birth Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11320-11330. [PMID: 38898774 DOI: 10.1021/acs.est.4c03764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Placental DNA methylation (DNAm) may be a potential mechanism underlying the effects of prenatal bisphenol analogues (BPs) exposure on reproductive health. Based on the Shanghai-Minhang Birth Cohort Study (S-MBCS), this study investigated associations of placental DNAm at reproduction-related genes with prenatal BPs exposure and children's digit ratios at age 4 using multiple linear regression models, and mediation analysis was further used to examine the mediating role of placental DNAm in the associations between prenatal BPs exposure and digit ratios among 345 mother-child pairs. Prenatal exposure to bisphenol A (BPA) was associated with hypermethylation at Protocadherin 8 (PCDH8), RBMX Like 2 (RBMXL2), and Sperm Acrosome Associated 1 (SPACA1), while bisphenol F (BPF) exposure was associated with higher methylation levels of Fibroblast Growth Factor 13 (FGF13). Consistent patterns were found in associations between higher DNAm at the 4 genes and increased digit ratios. Further mediation analysis showed that about 15% of the effect of BPF exposure on increased digit ratios was mediated by placental FGF13 methylation. In conclusion, the altered placental DNAm status might be a mediator underlying the feminizing effect of prenatal BPs exposure.
Collapse
Affiliation(s)
- Jiaxian Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Haijun Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Yafei Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Shuqin Pan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Xiuxia Song
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| |
Collapse
|
9
|
Liang S, Zhao Y, Liu X, Wang Y, Yang H, Zhuo D, Fan F, Guo M, Luo G, Fan Y, Zhang L, Lv X, Chen X, Li SS, Jin X. Prenatal progesterone treatment modulates fetal brain transcriptome and impacts adult offspring behavior in mice. Physiol Behav 2024; 281:114549. [PMID: 38604593 DOI: 10.1016/j.physbeh.2024.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Maternal exposure to elevated levels of steroid hormones during pregnancy is associated with the development of chronic conditions in offspring that manifest in adulthood. However, the effects of progesterone (P4) administration during early pregnancy on fetal development and subsequent offspring behavior remain poorly understood. In this study, we aimed to investigate the effects of P4 treatment during early pregnancy on the transcript abundance in the fetal brain and assess the behavioral consequences in the offspring during adolescence and adulthood. Using RNA-seq analysis, we examined the impact of P4 treatment on the fetal brain transcriptome in a dosage-dependent manner. Our results revealed differential regulation of genes involved in neurotransmitter transport, synaptic transmission, and transcriptional regulation. Specifically, we observed bidirectional regulation of transcription factors (TFs) by P4 at different doses, highlighting the critical role of these TFs in neurodevelopment. To assess behavioral outcomes, we conducted open field and elevated plus maze tests. Offspring treated with low-dose P4 (LP4) displayed increased exploratory behavior during both adolescence and adulthood. In contrast, the high-dose P4 (HP4) group exhibited impaired exploration and heightened anxiety-like behaviors compared to the control mice. Moreover, in a novel object recognition test, HP4-treated offspring demonstrated impaired object recognition memory during both developmental stages. Additionally, both LP4 and HP4 groups showed reduced social interaction in the three-chamber test. These results suggest that prenatal exposure to P4 exerts a notable influence on the expression of genes associated with neurodevelopment and may induce alterations in behavioral characteristics in progeny, highlighting the need to monitor progesterone levels during pregnancy for long-term impacts on fetal brain development and behavior.
Collapse
Affiliation(s)
- Shuang Liang
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Ying Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Xiuwei Liu
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Yan Wang
- Jiujiang Maternal and Child Health Hospital, China
| | | | - Donghai Zhuo
- School of Medicine, Nankai University, Tianjin, China
| | - Feifei Fan
- School of Medicine, Nankai University, Tianjin, China
| | - Miao Guo
- School of Medicine, Nankai University, Tianjin, China
| | - Gan Luo
- Tianjin Medical University, Tianjin, China
| | - Yonggang Fan
- School of Medicine, Nankai University, Tianjin, China
| | - Lingzhu Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Xinxin Lv
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Chen
- School of Medicine, Nankai University, Tianjin, China; Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| | - Shan-Shan Li
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin, China; Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China.
| |
Collapse
|
10
|
Hao T, Zhao X, Ji Z, Xia M, Lu H, Sang J, Wang S, Li L, Ge RS, Zhu Q. UV-filter benzophenones suppress human, pig, rat, and mouse 11β-hydroxysteroid dehydrogenase 1: Structure-activity relationship and in silico docking analysis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109900. [PMID: 38518984 DOI: 10.1016/j.cbpc.2024.109900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Benzophenone chemicals (BPs) have been developed to prevent the adverse effects of UV radiation and they are widely contaminated. 11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1) catalyze the conversion of inactive glucocorticoid to active glucocorticoid, playing critical role in many physiological function. However, the direct effect of BPs on human, pig, rat, and mouse 11β-HSD1 remains unclear. In this study, we screened the inhibitory strength of 12 BPs on 4 species, and performed the structure-activity relationship (SAR) and in silico docking analysis. The inhibitory potency of BPs was: for human 11β-HSD1, BP6 (IC50 = 18.76 μM) > BP8 (40.84 μM) > BP (88.89 μM) > other BPs; for pig 11β-HSD1, BP8 (45.57 μM) > BP6 (59.44 μM) > BP2 (65.12 μM) > BP (135.56 μM) > other BPs; for rat 11β-HSD1, BP7 (67.17 μM) > BP (68.83 μM) > BP8 (133.04 μM) > other BPs; and for mouse 11β-HSD1, BP8 (41.41 μM) > BP (50.61 μM) > other BPs. These BP chemicals were mixed/competitive inhibitors of these 11β-HSD1 enzymes. The 2,2'-dihydroxy substitutions in two benzene rings play a key role in enhancing the effectiveness of inhibiting 11β-HSD1, possibly via increasing hydrogen bond interactions. Docking analysis shows that these BPs bind to NADPH/glucocorticoid binding sites and forms hydrogen bonds with catalytic residues Ser and/or Tyr. In conclusion, this study demonstrates that BP chemicals can inhibit 11β-HSD1 from 4 species, and there are subtle species-dependent difference in the inhibitory strength and structural variations of BPs.
Collapse
Affiliation(s)
- Ting Hao
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Xin Zhao
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Zhongyao Ji
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Miaomiao Xia
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Han Lu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianmin Sang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Shaowei Wang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Linxi Li
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China.
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Qiqi Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
11
|
Zhang W, Su M, Lin H, Pan C, Tang Y, Ge RS, Fei Q. The metabolic activation of pentachlorophenol to chloranil as a potent inhibitor of human and rat placental 3β-hydroxysteroid dehydrogenases. Toxicol Lett 2024; 395:40-49. [PMID: 38555059 DOI: 10.1016/j.toxlet.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Pentachlorophenol (PCP) is a widely used pesticide. However, whether PCP and its metabolite chloranil have endocrine-disrupting effects by inhibiting placental 3β-hydroxysteroid dehydrogenase 1 (3β-HSD1) remains unclear. The study used in vitro assays with human and rat placental microsomes to measure 3β-HSD activity as well as human JAr cells to evaluate progesterone production. The results showed that PCP exhibited moderate inhibition of human 3β-HSD1, with an IC50 value of 29.83 μM and displayed mixed inhibition in terms of mode of action. Conversely, chloranil proved to be a potent inhibitor, demonstrating an IC50 value of 147 nM, and displaying a mixed mode of action. PCP significantly decreased progesterone production by JAr cells at 50 μM, while chloranil markedly reduced progesterone production at ≥1 μM. Interestingly, PCP and chloranil moderately inhibited rat placental homolog 3β-HSD4, with IC50 values of 27.94 and 23.42 μM, respectively. Dithiothreitol (DTT) alone significantly increased human 3β-HSD1 activity. Chloranil not PCP mediated inhibition of human 3β-HSD1 activity was completely reversed by DTT and that of rat 3β-HSD4 was partially reversed by DTT. Docking analysis revealed that both PCP and chloranil can bind to the catalytic domain of 3β-HSDs. The difference in the amino acid residue Cys83 in human 3β-HSD1 may explain why chloranil is a potent inhibitor through its interaction with the cysteine residue of human 3β-HSD1. In conclusion, PCP is metabolically activated to chloranil as a potent inhibitor of human 3β-HSD1.
Collapse
Affiliation(s)
- Weibing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ming Su
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hao Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chengshuang Pan
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 32500, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ren-Shan Ge
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Qianjin Fei
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 32500, China.
| |
Collapse
|
12
|
Czamara D, Dieckmann L, Lahti-Pulkkinen M, Cruceanu C, Henrich W, Plagemann A, Räikkönen K, Braun T, Binder EB, Lahti J, Entringer S. Sex differences in DNA methylation across gestation: a large scale, cross-cohort, multi-tissue analysis. Cell Mol Life Sci 2024; 81:177. [PMID: 38600394 PMCID: PMC11006734 DOI: 10.1007/s00018-024-05208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Biological sex is a key variable influencing many physiological systems. Disease prevalence as well as treatment success can be modified by sex. Differences emerge already early in life and include pregnancy complications and adverse birth outcomes. The placenta is a critical organ for fetal development and shows sex-based differences in the expression of hormones and cytokines. Epigenetic regulation, such as DNA methylation (DNAm), may underlie the previously reported placental sexual dimorphism. We associated placental DNAm with fetal sex in three cohorts. Individual cohort results were meta-analyzed with random-effects modelling. CpG-sites differentially methylated with sex were further investigated regarding pathway enrichment, overlap with methylation quantitative trait loci (meQTLs), and hits from phenome-wide association studies (PheWAS). We evaluated the consistency of findings across tissues (CVS, i.e. chorionic villus sampling from early placenta, and cord blood) as well as with gene expression. We identified 10,320 epigenome-wide significant sex-differentially methylated probes (DMPs) spread throughout the epigenome of the placenta at birth. Most DMPs presented with lower DNAm levels in females. DMPs mapped to genes upregulated in brain, were enriched for neurodevelopmental pathways and significantly overlapped with meQTLs and PheWAS hits. Effect sizes were moderately correlated between CVS and placenta at birth, but only weakly correlated between birth placenta and cord blood. Sex differential gene expression in birth placenta was less pronounced and implicated genetic regions only marginally overlapped with those associated with differential DNAm. Our study provides an integrative perspective on sex-differential DNAm in perinatal tissues underscoring the possible link between placenta and brain.
Collapse
Affiliation(s)
- Darina Czamara
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Linda Dieckmann
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Marius Lahti-Pulkkinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Cristiana Cruceanu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Wolfgang Henrich
- Department of Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Andreas Plagemann
- Department of Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Experimental Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, HUS Helsinki University Hospital, Helsinki, Finland
| | - Thorsten Braun
- Department of Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Experimental Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sonja Entringer
- Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany.
- Department of Pediatrics, Health and Disease Research Program, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
13
|
Sang J, Wang H, Yu Y, Ji Z, Xia M, Hao T, Li L, Ge RS. Azole fungicides inhibit human and rat gonadal 3β-hydroxysteroid dehydrogenases: Structure-activity relationship and in silico docking analysis. Food Chem Toxicol 2023; 180:114028. [PMID: 37703925 DOI: 10.1016/j.fct.2023.114028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/28/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Azole fungicides are widely used in the agricultural industry to control fungal infections in crops. However, recent studies have shown that some azole fungicides inhibit the activity of 3β-hydroxysteroid dehydrogenases (3β-HSDs) in the gonads. Out of the 16 azole fungicides tested, 8 were found to inhibit human KGN cell 3β-HSD2 with IC50 values of less than 100 μM. The strongest inhibitor was difenoconazole, with an IC50 value of 1.88 μM. In contrast, only 3 of the azole fungicides inhibited rat testicular 3β-HSD1, which was less sensitive to inhibition. Azole fungicides potently inhibited progesterone secretion by KGN cells under basal and forskolin stimulated conditions at ≥ 5 μM. The inhibitory strength of azole fungicides was determined by their lipophilicity (LogP), molecular weight, pKa, and binding energy. A pharmacophore analysis revealed that the hydrogen bond acceptor-lipid group was a critical feature required for inhibition. Overall, these findings suggest that the use of azole fungicides have unintended consequences on reproductive health due to their inhibition of gonadal 3β-HSDs. Key words: Azole fungicides; steroid hormones; 3β-hydroxysteroid dehydrogenase; docking analysis; lipophilicity.
Collapse
Affiliation(s)
- Jianmin Sang
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hong Wang
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Yu
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhongyao Ji
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Miaomiao Xia
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ting Hao
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Linxi Li
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Ren-Shan Ge
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
14
|
Plusquin M, Wang C, Cosemans C, Roels HA, Vangeneugden M, Lapauw B, Fiers T, T'Sjoen G, Nawrot TS. The association between newborn cord blood steroids and ambient prenatal exposure to air pollution: findings from the ENVIRONAGE birth cohort. Environ Health 2023; 22:63. [PMID: 37674219 PMCID: PMC10483875 DOI: 10.1186/s12940-023-01010-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Knowledge of whether prenatal exposure to ambient air pollution disrupts steroidogenesis is currently lacking. We investigated the association between prenatal ambient air pollution and highly accurate measurements of cord blood steroid hormones from the androgenic pathway.This study included 397 newborns born between the years 2010 and 2015 from the ENVIRONAGE cohort in Belgium of whom six cord blood steroid levels were measured: 17α-hydroxypregnenolone, 17α-hydroxyprogesterone, dehydroepiandrosterone, pregnenolone, androstenedione, and testosterone. Maternal ambient exposure to PM2.5 (particles with aerodynamic diameter ≤ 2.5 μm), NO2, and black carbon (BC) were estimated daily during the entire pregnancy using a high-resolution spatiotemporal model. The associations between the cord blood steroids and the air pollutants were tested and estimated by first fitting linear regression models and followed by fitting weekly prenatal exposures to distributed lag models (DLM). These analyses accounted for possible confounders, coexposures, and an interaction effect between sex and the exposure. We examined mixture effects and critical exposure windows of PM2.5, NO2 and BC on cord blood steroids via the Bayesian kernel machine regression distributed lag model (BKMR-DLM).An interquartile range (IQR) increment of 7.96 µg/m3 in PM2.5 exposure during pregnancy trimester 3 was associated with an increase of 23.01% (99% confidence interval: 3.26-46.54%) in cord blood levels of 17α-hydroxypregnenolone, and an IQR increment of 0.58 µg/m³ in BC exposure during trimester 1 was associated with a decrease of 11.00% (99% CI: -19.86 to -0.012%) in cord blood levels of androstenedione. For these two models, the DLM statistics identified sensitive gestational time windows for cord blood steroids and ambient air pollution exposures, in particular for 17α-hydroxypregnenolone and PM2.5 exposure during trimester 3 (weeks 28-36) and for androsterone and BC exposure during early pregnancy (weeks 2-13) as well as during mid-pregnancy (weeks 18-26). We identified interaction effects between pollutants, which has been suggested especially for NO2.Our results suggest that prenatal exposure to ambient air pollutants during pregnancy interferes with steroid levels in cord blood. Further studies should investigate potential early-life action mechanisms and possible later-in-life adverse effects of hormonal disturbances due to air pollution exposure.
Collapse
Affiliation(s)
| | - Congrong Wang
- Centre for Environmental Sciences, UHasselt, Diepenbeek, Belgium
| | | | - Harry A Roels
- Centre for Environmental Sciences, UHasselt, Diepenbeek, Belgium
| | | | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Tom Fiers
- Department of Clinical Pathology, Ghent University Hospital, Ghent, Belgium
| | - Guy T'Sjoen
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, UHasselt, Diepenbeek, Belgium
- Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
15
|
Koskivuori J, Voutilainen R, Storvik M, Häkkinen MR, Uusitalo L, Keski-Nisula L, Backman K, Auriola S, Lehtonen M. Comparative steroid profiling of newborn hair and umbilical cord serum highlights the role of fetal adrenals, placenta, and pregnancy outcomes in fetal steroid metabolism. J Steroid Biochem Mol Biol 2023; 232:106357. [PMID: 37390977 DOI: 10.1016/j.jsbmb.2023.106357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Previous steroid hormone studies concerning pregnancy and newborns have mainly focused on glucocorticoids; wider steroid profiles have been less commonly investigated. Here, we performed a comparative analysis of 17 steroids from newborn hair and umbilical cord serum at the time of delivery. The study participants (n = 42, 50% girls) were a part of the Kuopio Birth Cohort and represent usual Finnish pregnancies. The hair and cord serum samples were analyzed with liquid chromatography high resolution mass spectrometry and triple quadrupole tandem mass spectrometry, respectively. We detected high individual variations in steroid hormone concentrations in both sample matrices. The concentrations of cortisol (F), corticosterone (B), estrone (E1), estradiol (E2), dehydroepiandrosterone (DHEA), 11β-hydroxyandostenedione (11bOHA4), 5α-androstanedione (DHA4), and 17α-hydroxypregnenolone (17OHP5) correlated positively between cord serum and newborn hair samples. In addition, F and 11bOHA4 concentrations correlated positively with each other in both newborn hair and cord serum samples. The cortisone-to-cortisol ratio (E/F) was significantly higher in cord serum than in newborn hair samples reflecting high placental 11βHSD2 enzyme activity. Only minor sex differences in steroid concentrations were observed; higher testosterone (T) and 11-deoxycortisol (S) with lower 11bOHA4 in male cord serum, and higher DHEA, androstenedione (A4) and 11bOHA4 in female newborn hair samples. Parity and delivery mode were the most significant pregnancy- and birth-related parameters associating with F and some other adrenocortical steroid concentrations. This study provides novel information about intrauterine steroid metabolism in late pregnancy and typical concentration ranges for several newborn hair steroids, including also 11-oxygenated androgens.
Collapse
Affiliation(s)
- Johanna Koskivuori
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70210 Kuopio, Finland.
| | - Raimo Voutilainen
- Department of Pediatrics, Kuopio University Hospital, P.O. Box 100, 70029 Kuopio, Finland; Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Markus Storvik
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70210 Kuopio, Finland
| | - Merja R Häkkinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70210 Kuopio, Finland; Department of Health Security, Finnish Institute for Health and Welfare, Neulaniementie 4, 70210 Kuopio, Finland
| | - Lauri Uusitalo
- Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland
| | - Leea Keski-Nisula
- Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland
| | - Katri Backman
- Department of Pediatrics, Kuopio University Hospital, P.O. Box 100, 70029 Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70210 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1B, 70210 Kuopio, Finland
| |
Collapse
|
16
|
Stanczyk FZ, Archer DF. Biosynthesis of estetrol in human pregnancy: Potential pathways. J Steroid Biochem Mol Biol 2023; 232:106359. [PMID: 37390976 DOI: 10.1016/j.jsbmb.2023.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Estetrol (E4) has emerged as a novel and highly promising estrogen for therapeutic use. E4 is a weak natural estrogen produced only in pregnancy. Because of its novelty, there is considerable interest by clinicians in how it is produced in pregnancy. Although the fetal liver plays a key role in its production, the placenta is also involved. A current view is that estradiol (E2) formed in the placenta enters the fetal compartment and is then rapidly sulfated. E2 sulfate then undergoes 15α-/16α-hydroxylation in the fetal liver thereby forming E4 sulfate (phenolic pathway). However, another pathway involving 15α,16α-dihydroxy-DHEAS formed in the fetal liver and converted to E4 in the placenta also plays a significant role (neutral pathway). It is not known which pathway predominates, but both pathways appear to be important in E4 biosynthesis. In this commentary, we summarize the well-established pathways in the formation of estrogens in the nonpregnant and pregnant female. We then review what is known about the biosynthesis of E4 and describe the 2 proposed pathways involving the fetus and placenta.
Collapse
Affiliation(s)
- Frank Z Stanczyk
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - David F Archer
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
17
|
Piasek M, Škrgatić L, Sulimanec A, Orct T, Sekovanić A, Kovačić J, Katić A, Branović Čakanić K, Pizent A, Brajenović N, Jurič A, Brčić Karačonji I, Kljaković-Gašpić Z, Tariba Lovaković B, Lazarus M, Stasenko S, Miškulin I, Jurasović J. Effects of Maternal Cigarette Smoking on Trace Element Levels and Steroidogenesis in the Maternal-Placental-Fetal Unit. TOXICS 2023; 11:714. [PMID: 37624219 PMCID: PMC10459679 DOI: 10.3390/toxics11080714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
This study evaluates the interaction of toxic elements cadmium (Cd) and lead (Pb) due to exposure from cigarette smoking, essential elements, and steroidogenesis in the maternal-placental-fetal unit. In a cohort of 155 healthy, postpartum women with vaginal term deliveries in clinical hospitals in Zagreb, Croatia, samples of maternal blood/serum and urine, placental tissue, and umbilical cord blood/serum were collected at childbirth. The biomarkers determined were concentrations of Cd, Pb, iron (Fe), zinc (Zn), copper (Cu), and selenium (Se), and steroid hormones progesterone and estradiol in maternal and umbilical cord blood and the placenta. Three study groups were designated based on self-reported data on cigarette smoking habits and confirmed by urine cotinine levels: never smokers (n = 71), former smokers (n = 48), and active smokers (n = 36). Metal(loid)s, steroid hormones, urine cotinine, and creatinine levels were analyzed by ICP-MS, ELISA, GC-MS, and spectrophotometry. Cigarette smoking during pregnancy was associated with increased Cd levels in maternal, placental, and fetal compartments, Pb in the placenta, and with decreased Fe in the placenta. In active smokers, decreased progesterone and estradiol concentrations in cord blood serum were found, while sex steroid hormones did not change in either maternal serum or placenta. This study provides further evidence regarding toxic and essential metal(loid) interactions during prenatal life, and new data on sex steroid disruption in cord serum related to cigarette smoking. The results indicate that umbilical cord sex steroid levels may be a putative early marker of developmental origins of the future burden of disease related to harmful prenatal exposure to cigarette smoke.
Collapse
Affiliation(s)
- Martina Piasek
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Lana Škrgatić
- University Hospital Centre, Petrova 13, 10000 Zagreb, Croatia; (L.Š.); (I.M.)
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Antonija Sulimanec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Tatjana Orct
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Ankica Sekovanić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Jelena Kovačić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Anja Katić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | | | - Alica Pizent
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Nataša Brajenović
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Andreja Jurič
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Irena Brčić Karačonji
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Zorana Kljaković-Gašpić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Blanka Tariba Lovaković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Maja Lazarus
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Sandra Stasenko
- Merkur University Hospital, Zajčeva ulica 19, 10000 Zagreb, Croatia;
| | - Iva Miškulin
- University Hospital Centre, Petrova 13, 10000 Zagreb, Croatia; (L.Š.); (I.M.)
| | - Jasna Jurasović
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| |
Collapse
|
18
|
Abstract
The adrenal cortex undergoes multiple structural and functional rearrangements to satisfy the systemic needs for steroids during fetal life, postnatal development, and adulthood. A fully functional adrenal cortex relies on the proper subdivision in regions or 'zones' with distinct but interconnected functions, which evolve from the early embryonic stages to adulthood, and rely on a fine-tuned gene network. In particular, the steroidogenic activity of the fetal adrenal is instrumental in maintaining normal fetal development and growth. Here, we review and discuss the most recent advances in our understanding of embryonic and fetal adrenal development, including the known causes for adrenal dys-/agenesis, and the steroidogenic pathways that link the fetal adrenal with the hormone system of the mother through the fetal-placental unit. Finally, we discuss what we think are the major open questions in the field, including, among others, the impact of osteocalcin, thyroid hormone, and other hormone systems on adrenal development and function, and the reliability of rodents as models of adrenal pathophysiology.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
| | - Therina du Toit
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
| | - Christa E Flück
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland
| |
Collapse
|
19
|
Hayward-Piatkovskyi B, Gonyea CR, Pyle SC, Lingappan K, Gleghorn JP. Sex-related external factors influence pulmonary vascular angiogenesis in a sex-dependent manner. Am J Physiol Heart Circ Physiol 2023; 324:H26-H32. [PMID: 36367696 PMCID: PMC9762957 DOI: 10.1152/ajpheart.00552.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a disease with a significant sexual dimorphism where males have a disadvantage compared with their female counterparts. Although mechanisms behind this sexual dimorphism are poorly understood, sex differences in angiogenesis have been identified as one possible source of the male disadvantage in BPD. Pulmonary angiogenesis was assessed in vitro using a bead sprouting assay with pooled male or female human pulmonary microvascular endothelial cells (HPMECs, 18-19 wk gestation, canalicular stage of human lung development) in standard (sex-hormone containing) and hormone-stripped medium. We identified sex-specific phenotypes in angiogenesis where male HPMECs produce fewer but longer sprouts compared with female HPMECs. The presence of sex hormones from standard culture medium modifies the male HPMEC phenotype with shorter and fewer sprouts but does not influence the female phenotype. Using a conditioned medium model, we further characterized the influence of the sex-specific secretome. Male and female HPMECs secrete factors that increase the maximum length of sprouts in female, but not male HPMECs. The presence of sex hormones abolishes this response. The male HPMEC secretome inhibits angiogenic sprouting in male HPMECs in the absence of sex hormones. Taken together, these results demonstrate that the pulmonary endothelial cell phenotypes are influenced by sex hormones and sex-specific secreted factors in a sex-dependent manner.NEW & NOTEWORTHY We identified a sex-specific phenotype wherein male HPMECs produce fewer but longer sprouts than females. Surprisingly, the presence of sex hormones only modifies the male phenotype, resulting in shorter and even fewer sprouts. Furthermore, we found the sex-specific secretome has a sex-dependent influence on angiogenesis that is also sex-hormone sensitive. These new and surprising findings point to the unappreciated role of sex and sex-related exogenous factors in early developmental angiogenesis.
Collapse
Affiliation(s)
| | - Cailin R Gonyea
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Sienna C Pyle
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Krithika Lingappan
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason P Gleghorn
- Department of Biological Sciences, University of Delaware, Newark, Delaware
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
20
|
Shi L, Meng F, Wang S, Hu Z, Li J, Tian F, Wang H, Zhu Y, Wang Y, Ge RS, Li H. Effects of phenolic compounds on 3β-hydroxysteroid dehydrogenase activity in human and rat placenta: Screening, mode of action, and docking analysis. J Steroid Biochem Mol Biol 2023; 225:106202. [PMID: 36241036 DOI: 10.1016/j.jsbmb.2022.106202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Human 3β-hydroxysteroid dehydrogenase type I (HSD3B1) and rat type IV (HSD3B4) in placentas catalyze the conversion of pregnenolone to progesterone, which plays a key role in maintaining pregnancy. Many phenolic compounds potentially inhibit HSD3B in placentas as endocrine disruptors. In this study, the effects of 16 phenolic compounds on the activity of human HSD3B1 and rat HSD3B4 were determined and the structure-activity relationship was compared. HSD3B1 in human placental microsomes and HSD3B4 in rat placental microsomes were used to measure their activities and pregnenolone and NAD+ were used as substrates. Of the 16 phenolic compounds, 4-nonylphenol, pentabromophenol, and 2-bromophenol resulted in residual human HSD3B1 activity lower than 50 % and 4-nonylphenol and pentabromophenol resulted in residual rat HSD3B4 activity lower than 50 %. 4-Nonylphenol, pentabromophenol, and 2-bromophenol were mixed inhibitors of human HSD3B1, with Ki values of 2.31, 3.58 and 4.86 µM, respectively, while 4-nonylphenol and pentabromophenol were noncompetitive inhibitors of rat HSD3B4 with Ki values of 20.86 and 141.8 µM. Molecular docking showed that 4-nonylphenol, pentabromophenol, and 2-bromophenol docked to the active sites of human HSD3B1 and rat HSD3B4, and the shift of residue S125 in human HSD3B1 to T125 in rat HSD3B4 could explain the species-dependent difference in their inhibitory potency and mode of action. This study demonstrates that 4-nonylphenol, pentabromophenol, and 2-bromophenol are mixed inhibitors of human placental HSD3B1, while 4-nonylphenol and pentabromophenol are noncompetitive inhibitors of rat HSD3B4, possibly blocking the placental steroidogenesis.
Collapse
Affiliation(s)
- Lei Shi
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fangyan Meng
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhiyan Hu
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jingjing Li
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fuhong Tian
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Haixing Wang
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China.
| | - Huitao Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
21
|
Pourquet A, Teoli J, Bouty A, Renault L, Roucher F, Mallet D, Rigaud C, Dijoud F, Mouriquand P, Mure PY, Sanlaville D, Ecochard R, Plotton I. Steroid profiling in the amniotic fluid: reference range for 12 steroids and interest in 21-hydroxylase deficiency. J Clin Endocrinol Metab 2022; 108:e129-e138. [PMID: 36402139 DOI: 10.1210/clinem/dgac656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Determination of steroid levels in the amniotic fluid gives some insight on foetal adrenal and gonadal functions. Our objectives were to establish reference ranges of 12 steroid levels throughout pregnancy and to compare them with steroid levels from pregnancies with foetuses presenting 21-hydroxylase deficiency (21OHD). MATERIALS AND METHODS Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was applied to 145 "control" amniotic fluid samples from gynaecology activity (12 + 6 to 32 + 4 Gestational Weeks, GW). The following steroids were analysed according to gestational age and compared to 23 amniotic fluid samples from foetuses with classic 21-hydroxylase deficiency confirmed by molecular studies: delta-4-androstenedione (D4), dehydroepiandrosterone (DHEA), 17-hydroxyprogesterone (17OHP), 11-deoxycortisol (11OH), 21-deoxycortisol (21OH), corticosterone, deoxycorticosterone (DOC), testosterone, pregnenolone, 17-hydroxypregnenolone (17Pregn), cortisol and cortisone. Chromosomal sex was determined by karyotype and gestational age by biometric measurements. RESULTS Analysis of "control" samples showed a statistically significant difference for D4 and testosterone levels according to foetal sex. Cortisol, corticosterone, and DOC had lower concentrations before 20 GW than after 20 GW, whereas 17Pregn and pregnenolone had higher concentrations before 20 GW. This allowed us to establish age- and sex-dependant reference values. We observed higher 21OH, 17Pregn, D4 and testosterone levels in females 21OHD than female controls. The ratios 17OHP/17Pregn, D4/DHEA and 11OH/17OHP appeared discriminant for the diagnosis of 21OHD. CONCLUSION Our study provides information on foetal steroidogenesis and suggests reference values for 12 steroids during pregnancy. This allows a prenatal diagnosis of 21-hydroxylase deficiency within 24 hours and might be useful in the diagnosis of other variations of sex development (VSD).
Collapse
Affiliation(s)
- Anne Pourquet
- Department of Clinical Biochemistry, University Hospital of Lyon, Lyon, France
- Department of Pediatric Surgery, University Hospital of Lyon, Lyon, France
- Claude Bernard Lyon 1 University
| | - Jordan Teoli
- Department of Clinical Biochemistry, University Hospital of Lyon, Lyon, France
- Claude Bernard Lyon 1 University
| | - Aurore Bouty
- Department of Pediatric Surgery, University Hospital of Lyon, Lyon, France
- Claude Bernard Lyon 1 University
| | - Lucie Renault
- Department of Clinical Biochemistry, University Hospital of Lyon, Lyon, France
- Claude Bernard Lyon 1 University
| | - Florence Roucher
- Department of Clinical Biochemistry, University Hospital of Lyon, Lyon, France
- Claude Bernard Lyon 1 University
| | - Delphine Mallet
- Department of Clinical Biochemistry, University Hospital of Lyon, Lyon, France
- Claude Bernard Lyon 1 University
| | - Chantal Rigaud
- Department of Clinical Biochemistry, University Hospital of Lyon, Lyon, France
| | - Frédérique Dijoud
- Department of Pathology, University Hospital of Lyon, Lyon, France
- Claude Bernard Lyon 1 University
| | - Pierre Mouriquand
- Department of Pediatric Surgery, University Hospital of Lyon, Lyon, France
- Claude Bernard Lyon 1 University
| | - Pierre-Yves Mure
- Department of Pediatric Surgery, University Hospital of Lyon, Lyon, France
- Claude Bernard Lyon 1 University
| | - Damien Sanlaville
- Department of Medical Genetics, University Hospital of Lyon, Lyon, France
- Claude Bernard Lyon 1 University
| | - René Ecochard
- Department of Biostatistics, University Hospital of Lyon, Lyon, France
- Claude Bernard Lyon 1 University
| | - Ingrid Plotton
- Department of Clinical Biochemistry, University Hospital of Lyon, Lyon, France
- Claude Bernard Lyon 1 University
| |
Collapse
|
22
|
Feng Y, Lian X, Guo K, Zhang G, Huang X. A comprehensive analysis of metabolomics and transcriptomics to reveal major metabolic pathways and potential biomarkers of human preeclampsia placenta. Front Genet 2022; 13:1010657. [PMID: 36263435 PMCID: PMC9574103 DOI: 10.3389/fgene.2022.1010657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The etiology of preeclampsia (PE) remains unclear. With the utilization of metabolomics, dysregulated production of several metabolic components in human plasma, such as lipids, amino acids, androgens and estrogens, was found to be important in the pathogenesis of PE. Transcriptomics adds more in-depth information, and the integration of transcriptomics and metabolomics may yield further insight into PE pathogenesis than either one alone.Objectives: We investigated the placental metabolomics and transcriptomics of PE patients to identify affected metabolic pathways and potential biological targets for exploring the disease pathogenesis.Methods: Integrated transcriptomics and metabolomics were used to analyze five paired human placentas from patients with severe PE and normal pregnancies. This was followed by further validation of our findings in a publicly available dataset of 173 PE vs. 157 control placentas. In addition, weighted gene coexpression network construction was performed to assess the correlation between genetic alterations and diseases.Results: We identified 66 and 41 differentially altered metabolites in negative and positive ion modes, respectively, in the PE group compared to the control group, and found 2,560 differentially expressed genes. Several pathways were aberrantly altered in the PE placenta at both the metabolic and transcriptional levels, including steroid hormone biosynthesis, the cAMP signaling pathway, neuroactive ligand–receptor interactions, taste transduction and prion diseases. Additionally, we found 11 differential metabolites and 11 differentially expressed genes involved in the steroid hormone biosynthesis pathway, indicating impaired metabolism of steroid hormones in the PE placenta. Furthermore, we found that CYP11A1, HSD3B2, and HSD17B6 are highly correlated with diseases.Conclusion: Our findings provide a profile of the dysregulated steroid hormone biosynthesis in PE placenta, we observed a dysregulated cortisol-to-cortisone ratio, testosterone accumulation, decreased testosterone downstream metabolites, impaired production of estrone and estriol, and aberrant hydroxylation and methylation of estradiol. Disorders of placental steroid hormone metabolism might be a consequence or a compensatory change in pathological placentation in PE, which underscores the need to investigate the physiology of steroid hormone metabolites in the etiology of PE.
Collapse
Affiliation(s)
- Yan Feng
- Fetal Care Center, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinlei Lian
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Kaimin Guo
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guanglan Zhang
- Fetal Care Center, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xuan Huang
- Fetal Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xuan Huang,
| |
Collapse
|
23
|
Abstract
Androgens are essential sex steroid hormones for both sexes. Testosterone (T) is the predominant androgen in males, while in adult females, T concentrations are about 15-fold lower and androgen precursors are converted to estrogens. T is produced primarily in testicular Leydig cells in men, while in women precursors are biosynthesised in the adrenal cortex and ovaries and converted into T in the periphery. The biosynthesis of T occurs via a series of enzymatic reactions in steroidogenic organs. Notably, the more potent androgen, dihydrotestosterone, may be synthesized from T in the classic pathway, however, alternate metabolic pathways also exist. The classic action of androgens on target organs is mediated through the androgen receptor, which regulates nuclear receptor gene transcription. However, the androgen-androgen receptor complex may also interact directly with membrane proteins or signaling molecules to exert more rapid effects. This review summarizes the current knowledge of androgen biosynthesis, mechanisms of action and endocrine effects in human biology, and relates these effects to respective human congenital and acquired disorders.
Collapse
Affiliation(s)
- Rawda Naamneh Elzenaty
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Switzerland.
| | - Therina du Toit
- Department of Biomedical Research, University of Bern, Switzerland.
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland.
| |
Collapse
|
24
|
Firestein MR, Romeo RD, Winstead H, Goldman DA, Grobman WA, Haas D, Mercer B, Parker C, Parry S, Reddy U, Silver R, Simhan H, Wapner RJ, Champagne FA. Elevated prenatal maternal sex hormones, but not placental aromatase, are associated with child neurodevelopment. Horm Behav 2022; 140:105125. [PMID: 35131524 DOI: 10.1016/j.yhbeh.2022.105125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 01/08/2023]
Abstract
Fetal exposure to testosterone may contribute to vulnerability for autism spectrum disorder (ASD). It is hypothesized that placental aromatase prevents fetal exposure to maternal testosterone, however, this pathway and the implications for child neurodevelopment have not been fully explored. We examined the relationships between prenatal maternal testosterone and estradiol at 19.2 ± 1.3 weeks, cord blood testosterone and estradiol at birth, placental aromatase mRNA expression, and neurodevelopment using the Social Communication Questionnaire (SCQ), the Behavioral Assessment System for Children, 3rd Edition (BASC-3), and the Empathizing Quotient for Children (EQ-C) at 4.5-6.5 years of age in a sample of 270 Nulliparous-Mothers-to-be (nuMoM2b) study participants. Maternal testosterone levels were positively associated with SCQ scores, but the association was not significant after adjusting for maternal age at delivery, nor was there a significant interaction with sex. Maternal estradiol levels were negatively associated with BASC-3 Clinical Probability scores among males (n = 139). We report a significant interaction effect of cord blood testosterone and fetal sex on both total SCQ scores and t-scores on the Developmental Social Disorders subscale. Placental aromatase was not associated with any neurodevelopmental or hormone measure, but under conditions of low placental aromatase expression, high maternal testosterone was positively associated with SCQ scores in males (n = 46). No other associations between hormone levels and neurodevelopment were significant. Our findings provide a foundation for further investigation of the mechanisms through which maternal sex hormones and placental steroidogenesis may affect fetal hormone production and neurobehavior.
Collapse
Affiliation(s)
- Morgan R Firestein
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA.
| | - Russell D Romeo
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, USA
| | | | - Danielle A Goldman
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - William A Grobman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David Haas
- Department of Obstetrics and Gynecology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Brian Mercer
- Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Samuel Parry
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Uma Reddy
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Robert Silver
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA
| | - Hyagriv Simhan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronald J Wapner
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | | |
Collapse
|
25
|
Hill M, Pařízek A, Šimják P, Koucký M, Anderlová K, Krejčí H, Vejražková D, Ondřejíková L, Černý A, Kancheva R. Steroids, steroid associated substances and gestational diabetes mellitus. Physiol Res 2021. [DOI: 10.33549//physiolres.934794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As gestational diabetes mellitus (GDM) is both a frequent and serious complication, steroid levels in pregnancy are extremely elevated and their role in pregnancy is crucial, this review focuses on the role of steroids and related substances in the GDM pathophysiology. Low SHBG levels are associated with insulin resistance and hyperinsulinemia, while also predicting a predisposition to GDM. Other relevant agents are placental hormones such as kisspeptin and CRH, playing also an important role beyond pregnancy, but which are synthesized here in smaller amounts in the hypothalamus. These hormones affect both the course of pregnancy as well as the synthesis of pregnancy steroids and may also be involved in the GDM pathophysiology. Steroids, whose biosynthesis is mainly provided by the fetal adrenal glands, placenta, maternal adrenal glands, and both maternal and fetal livers, are also synthesized in limited amounts directly in the pancreas and may influence the development of GDM. These substances involve the sulfated Δ5 steroids primarily acting via modulating different ion channels and influencing the development of GDM in different directions, mostly diabetogenic progesterone and predominantly anti-diabetic estradiol acting both in genomic and non-genomic way, androgens associated with IR and hyperinsulinemia, neuroactive steroids affecting the pituitary functioning, and cortisol whose production is stimulated by CRH but which suppresses its pro-inflammatory effects. Due to the complex actions of steroids, studies assessing their predominant effect and studies assessing their predictive values for estimating predisposition to GDM are needed.
Collapse
Affiliation(s)
- M Hill
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ondřejíková L, Pařízek A, Šimják P, Vejražková D, Velíková M, Anderlová K, Vosátková M, Krejčí H, Koucký M, Kancheva R, Dušková M, Vaňková M, Bulant J, Hill M. Altered Steroidome in Women with Gestational Diabetes Mellitus: Focus on Neuroactive and Immunomodulatory Steroids from the 24th Week of Pregnancy to Labor. Biomolecules 2021; 11:1746. [PMID: 34944390 PMCID: PMC8698588 DOI: 10.3390/biom11121746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 12/19/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a complication in pregnancy, but studies focused on the steroidome in patients with GDM are not available in the public domain. This article evaluates the steroidome in GDM+ and GDM- women and its changes from 24 weeks (± of gestation) to labor. The study included GDM+ (n = 44) and GDM- women (n = 33), in weeks 24-28, 30-36 of gestation and at labor and mixed umbilical blood after delivery. Steroidomic data (101 steroids quantified by GC-MS/MS) support the concept that the increasing diabetogenic effects with the approaching term are associated with mounting progesterone levels. The GDM+ group showed lower levels of testosterone (due to reduced AKR1C3 activity), estradiol (due to a shift from the HSD17B1 towards HSD17B2 activity), 7-oxygenated androgens (competing with cortisone for HSD11B1 and shifting the balance from diabetogenic cortisol towards the inactive cortisone), reduced activities of SRD5As, and CYP17A1 in the hydroxylase but higher CYP17A1 activity in the lyase step. With the approaching term, the authors found rising activities of CYP3A7, AKR1C1, CYP17A1 in its hydroxylase step, but a decline in its lyase step, rising conjugation of neuroinhibitory and pregnancy-stabilizing steroids and weakening AKR1D1 activity.
Collapse
Affiliation(s)
- Leona Ondřejíková
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Antonín Pařízek
- Department of Gynecology and Obstetrics, First Faculty of Medicine, General University Hospital in Prague, Charles University in Prague, 128 08 Prague, Czech Republic; (A.P.); (P.Š.); (K.A.); (H.K.); (M.K.)
| | - Patrik Šimják
- Department of Gynecology and Obstetrics, First Faculty of Medicine, General University Hospital in Prague, Charles University in Prague, 128 08 Prague, Czech Republic; (A.P.); (P.Š.); (K.A.); (H.K.); (M.K.)
| | - Daniela Vejražková
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Marta Velíková
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Kateřina Anderlová
- Department of Gynecology and Obstetrics, First Faculty of Medicine, General University Hospital in Prague, Charles University in Prague, 128 08 Prague, Czech Republic; (A.P.); (P.Š.); (K.A.); (H.K.); (M.K.)
| | - Michala Vosátková
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Hana Krejčí
- Department of Gynecology and Obstetrics, First Faculty of Medicine, General University Hospital in Prague, Charles University in Prague, 128 08 Prague, Czech Republic; (A.P.); (P.Š.); (K.A.); (H.K.); (M.K.)
| | - Michal Koucký
- Department of Gynecology and Obstetrics, First Faculty of Medicine, General University Hospital in Prague, Charles University in Prague, 128 08 Prague, Czech Republic; (A.P.); (P.Š.); (K.A.); (H.K.); (M.K.)
| | - Radmila Kancheva
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Michaela Dušková
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Markéta Vaňková
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Josef Bulant
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| | - Martin Hill
- Institute of Endocrinology, 116 94 Prague, Czech Republic; (L.O.); (D.V.); (M.V.); (M.V.); (R.K.); (M.D.); (M.V.); (J.B.)
| |
Collapse
|
27
|
Simons NE, van Limburg Stirum EVJ, van Wassenaer-Leemhuis AG, Finken MJJ, Aarnoudse-Moens CSH, Oosterlaan J, van Baar A, Roseboom TJ, Lim AC, van Wely M, de Boer MA, Painter RC, Pajkrt E, Oudijk MA, van T Hooft J. Long-term follow-up of children exposed in-utero to progesterone treatment for prevention of preterm birth: study protocol of the AMPHIA follow-up. BMJ Open 2021; 11:e053066. [PMID: 34548367 PMCID: PMC8458362 DOI: 10.1136/bmjopen-2021-053066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Preterm birth is one of the main problems in obstetrics, and the most important cause of neonatal mortality, morbidity and neurodevelopmental impairment. Multiple gestation is an important risk factor for preterm birth, with up to 50% delivering before 37 weeks. Progesterone has a role in maintaining pregnancy and is frequently prescribed to prevent (recurrent) preterm birth and improve pregnancy outcomes in high-risk patients. However, little is known about its long-term effects in multiple gestations. The objective of this follow-up study is to assess long-term benefits and harms of prenatal exposure to progesterone treatment in multiple gestations on child development. METHODS AND ANALYSIS This is a follow-up study of a multicentre, double-blind, placebo-controlled randomised trial (AMPHIA trial, ISRCTN40512715). Between 2006 and 2009 women with a multiple gestation were randomised at 16-20 weeks of gestation to weekly injections 250 mg 17α-hydroxyprogesterone caproate or placebo, until 36 weeks of gestation or delivery. The current long-term follow-up will assess all children (n=1355) born to mothers who participated in the AMPHIA trial, at 11-14 years of age, with internationally validated questionnaires, completed by themselves, their parents and their teachers. MAIN OUTCOMES ARE CHILD COGNITION AND BEHAVIOUR Additional outcomes are death (perinatal and up to age 14), gender identity, educational performance and health-related problems. We will use intention-to-treat analyses comparing experimental and placebo group. To adjust for the correlation between twins, general linear mixed-effects models will be used. ETHICS AND DISSEMINATION Amsterdam UMC MEC provided a waiver for the Medical Research Involving Human Subjects Act (W20_234#20.268). Results will be disseminated through peer-reviewed journals and summaries shared with stakeholders, patients and participants. This protocol is published before analysis of the results. TRIAL REGISTRATION NUMBER NL8933.
Collapse
Affiliation(s)
- Noor E Simons
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Emilie V J van Limburg Stirum
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Aleid G van Wassenaer-Leemhuis
- Department of Neonatology and Paediatrics, Emma Children's Hospital, Amsterdam Reproduction & Development, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Martijn J J Finken
- Department of Paediatric Endocrinology, Emma Children's Hospital Amsterdam, Amsterdam Reproduction & Development, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Cornelieke S H Aarnoudse-Moens
- Department of Neonatology and Paediatrics, Emma Children's Hospital, Amsterdam Reproduction & Development, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Jaap Oosterlaan
- Department of Paediatrics, Emma Children's Hospital, Amsterdam Reproduction & Development, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Anneloes van Baar
- Child and Adolescent Studies, Utrecht University, Utrecht, The Netherlands
| | - Tessa J Roseboom
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Arianne C Lim
- Department of Obstetrics and Gynaecology, Maastricht UMC, Maastricht, The Netherlands
| | - Madelon van Wely
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Marjon A de Boer
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Rebecca C Painter
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Eva Pajkrt
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Martijn A Oudijk
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Janneke van T Hooft
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| |
Collapse
|
28
|
du Toit T, Swart AC. Turning the spotlight on the C11-oxy androgens in human fetal development. J Steroid Biochem Mol Biol 2021; 212:105946. [PMID: 34171490 DOI: 10.1016/j.jsbmb.2021.105946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/28/2022]
Abstract
Research into the biosynthesis of C11-oxy C19 steroids during human fetal development, specifically fetal adrenal development and during the critical period of sex differentiation, is currently lacking. Cortisol, which possesses a C11-hydroxyl moiety has, however, been firmly established in this context. Compelling questions are whether the C11-oxy C19 steroids (11β-hydroxyandrostenedione, 11β-hydroxytestosterone, 11-ketoandrostenedione and 11-ketotestosterone [11KT]) and the C11-oxy C21 steroids (11β-hydroxyprogesterone and 11-ketoprogesterone) are biosynthesised during gestation, and whether these hormones circulate between the placenta and the developing fetus, and between the placenta and the mother. This review will consider the role of cortisol, 11KT and 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) in determining the sex of teleost fish, while these hormones and 11βHSD2 will also be discussed with regards to murine mammals. The focus of the review will shift to highlight the potential role of C11-oxy steroids in human fetal development based on the timely expression of steroidogenic enzymes in the adrenal, testes and ovary, as well as in the placenta; summarising reported evidence of C11-oxy steroids in neonatal life.
Collapse
Affiliation(s)
- Therina du Toit
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa; Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
29
|
Simons NE, Leeuw M, van’t Hooft J, Limpens J, Roseboom TJ, Oudijk MA, Pajkrt E, Finken MJJ, Painter RC. The long-term effect of prenatal progesterone treatment on child development, behaviour and health: a systematic review. BJOG 2021; 128:964-974. [PMID: 33112462 PMCID: PMC8246867 DOI: 10.1111/1471-0528.16582] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Progesterone is widely used in prenatal care. However, long-term effects of prenatal progesterone treatment on child development are unclear. OBJECTIVES To evaluate long-term outcomes in children after prenatal progesterone treatment. SEARCH STRATEGY MEDLINE, Embase and Cochrane Central Register of Controlled Trials from inception to 24 May 2020. SELECTION CRITERIA Randomised controlled trials (RCTs) reporting outcomes in children born to women who received progesterone treatment (compared with placebo or another intervention) during any trimester in pregnancy. DATA COLLECTION AND ANALYSIS Two authors independently selected and extracted data. We used the Cochrane Risk of Bias tool for randomised trials and Quality In Prognosis Studies. MAIN RESULTS Of 388 papers, we included seven articles based on five RCTs, comprising 4222 measurements of children aged 6 months to 8 years. All studies compared progesterone to placebo in second and/or third trimester for the prevention of preterm birth. Meta-analysis (two studies, n = 890 children) showed no difference in neurodevelopment as assessed by the Bayley-III Cognitive Composite score at 2 years between children exposed to progesterone versus placebo (Standardised Mean Difference -0.04, 95% Confidence Interval -0.26 to 0.19), I2 = 22%. Heterogeneity prohibited additional meta-analyses. Other long-term outcomes showed no differences. CONCLUSIONS Our systematic review comprising a multitude of developmental measurements with a broad age range did not find evidence of benefit or harm in offspring prenatally exposed to progesterone treatment for the prevention of preterm birth. We identified an urgent need for follow-up studies of prenatal progesterone administration in early pregnancy and effects in offspring beyond early childhood. TWEETABLE ABSTRACT Progesterone to prevent preterm birth: no effect on child development. Outcomes after first trimester progesterone are unclear.
Collapse
Affiliation(s)
- NE Simons
- Department of ObstetricsAmsterdam Reproduction and Development Research InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - M Leeuw
- Department of ObstetricsAmsterdam Reproduction and Development Research InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - J van’t Hooft
- Department of ObstetricsAmsterdam Reproduction and Development Research InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - J Limpens
- Medical LibraryResearch SupportAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - TJ Roseboom
- Department of ObstetricsAmsterdam Reproduction and Development Research InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Epidemiology and Data ScienceAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - MA Oudijk
- Department of ObstetricsAmsterdam Reproduction and Development Research InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - E Pajkrt
- Department of ObstetricsAmsterdam Reproduction and Development Research InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - MJJ Finken
- Department of Paediatric EndocrinologyEmma Children’s HospitalAmsterdam UMCAmsterdamThe Netherlands
| | - RC Painter
- Department of ObstetricsAmsterdam Reproduction and Development Research InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
30
|
Zhang J, Yang M, Luan P, Jia W, Liu Q, Ma Z, Dang J, Lu H, Ma Q, Wang Y, Mu C, Huo Z. Associations Between Cytochrome P450 (CYP) Gene Single-Nucleotide Polymorphisms and Second-to-Fourth Digit Ratio in Chinese University Students. Med Sci Monit 2021; 27:e930591. [PMID: 33723203 PMCID: PMC7980499 DOI: 10.12659/msm.930591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cytochrome P450 (CYP) genes are necessary for the production or metabolism of fetal sex hormones during pregnancy. The second-to-fourth digit ratio (2D: 4D) is formed in the early stage of human fetal development and considered an indicator reflecting prenatal sex steroids levels. We explored the association between 2D: 4D and single-nucleotide polymorphisms (SNPs) of CYP. MATERIAL AND METHODS Correlation analysis between 2D: 4D and 8 SNPs, rs2687133 (CPY3A7), rs7173655 (CYP11A1), rs1004467, rs17115149, and rs2486758 (CYP17A1), and rs4646, rs2255192, rs4275794 (CYP19A1), was performed using data from 426 female and 412 male Chinese university students. SNP genotyping was conducted using PCR. Digit lengths were photographed and measured by image processing software. RESULTS rs2486758 (CYP17A1) correlated with left hand 2D: 4D in men (P=0.026), and rs1004467 (CYP17A1) correlated with right hand 2D: 4D in men (P=0.008) and the whole population (P=0.032). In men, allele G rs1004467 decreased right hand 2D: 4D, while allele C of rs2486758 increased left hand 2D: 4D. In women, left hand 2D: 4D was higher in genotypes with allele A of SNP rs4646 (CYP19A1) under the dominant genetic model; female DR-L was higher in genotypes with allele T of rs17115149 (CYP11A1). SNPs rs2687133 (CYP3A7) and rs1004467 (CYP17A1) were significantly correlated with right hand 2D: 4D (P=0.0107). CONCLUSIONS SNPs rs1004467 and rs2486758 of CYP17A1 are significant in the relationship between 2D: 4D and CYP gene polymorphisms under different conditions. SNP interactions between CYP genes probably impact 2D: 4D. The correlation between 2D: 4D and some sex hormone-related diseases may be due to the effect of CYP variants on the 2 phenotypes.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Mengyi Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Pengfei Luan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Wei Jia
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Qiujun Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Zhanbing Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Jie Dang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Hong Lu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Qian Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Yanfeng Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Chunlan Mu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Zhenghao Huo
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education/Key Laboratory of Reproduction and Genetics/Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- Department of Biology, Gansu Medical College, Pingliang, Gansu, P.R. China
| |
Collapse
|
31
|
Olesti E, Boccard J, Visconti G, González-Ruiz V, Rudaz S. From a single steroid to the steroidome: Trends and analytical challenges. J Steroid Biochem Mol Biol 2021; 206:105797. [PMID: 33259940 DOI: 10.1016/j.jsbmb.2020.105797] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022]
Abstract
For several decades now, the analysis of steroids has been a key tool in the diagnosis and monitoring of numerous endocrine pathologies. Thus, the available methods used to analyze steroids in biological samples have dramatically evolved over time following the rapid pace of technology and scientific knowledge. This review aims to synthetize the advances in steroids' analysis, from classical approaches considering only a few steroids or a limited number of steroid ratios, up to the new steroid profiling strategies (steroidomics) monitoring large sets of steroids in biological matrices. In this context, the use of liquid chromatography coupled to mass spectrometry has emerged as the technique of choice for the simultaneous determination of a high number of steroids, including phase II metabolites, due to its sensitivity and robustness. However, the large dynamic range to be covered, the low natural abundance of some key steroids, the selectivity of the analytical methods, the extraction protocols, and the steroid ionization remain some of the current challenges in steroid analysis. This review provides an overview of the different analytical workflows available depending on the number of steroids under study. Special emphasis is given to sample treatment, acquisition strategy, data processing, steroid identification and quantification using LC-MS approaches. This work also outlines how the availability of steroid standards, the need for complementary analytical strategies and the improvement of calibration approaches are crucial for achieving complete steroidome quantification.
Collapse
Affiliation(s)
- Eulalia Olesti
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Julien Boccard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Gioele Visconti
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland.
| |
Collapse
|
32
|
Desoye G, Herrera E. Adipose tissue development and lipid metabolism in the human fetus: The 2020 perspective focusing on maternal diabetes and obesity. Prog Lipid Res 2020; 81:101082. [PMID: 33383022 DOI: 10.1016/j.plipres.2020.101082] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
During development, the human fetus accrues the highest proportion of fat of all mammals. Precursors of fat lobules can be found at week 14 of pregnancy. Thereafter, they expand, filling with triacylglycerols during pregnancy. The resultant mature lipid-filled adipocytes emerge from a developmental programme of embryonic stem cells, which is regulated differently than adult adipogenesis. Fetal triacylglycerol synthesis uses glycerol and fatty acids derived predominantly from glycolysis and lipogenesis in liver and adipocytes. The fatty acid composition of fetal adipose tissue at the end of pregnancy shows a preponderance of palmitic acid, and differs from the mother. Maternal diabetes mellitus does not influence this fatty acid profile. Glucose oxidation is the main source of energy for the fetus, but mitochondrial fatty acid oxidation also contributes. Indirect evidence suggests the presence of lipoprotein lipase in fetal adipose tissue. Its activity may be increased under hyperinsulinemic conditions as in maternal diabetes mellitus and obesity, thereby contributing to increased triacylglycerol deposition found in the newborns of such pregnancies. Fetal lipolysis is low. Changes in the expression of genes controlling metabolism in fetal adipose tissue appear to contribute actively to the increased neonatal fat mass found in diabetes and obesity. Many of these processes are under endocrine regulation, principally by insulin, and show sex-differences. Novel fatty acid derived signals such as oxylipins are present in cord blood with as yet undiscovered function. Despite many decades of research on fetal lipid deposition and metabolism, many key questions await answers.
Collapse
Affiliation(s)
- G Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
| | - E Herrera
- Faculties of Pharmacy and Medicine, University CEU San Pablo, Madrid, Spain.
| |
Collapse
|
33
|
Kamin HS, Bhatt SS, Mulligan CJ, Kertes DA. Dehydroepiandrosterone at birth: Response to stress and relation to demographic, pregnancy and delivery factors. J Neuroendocrinol 2020; 32:e12906. [PMID: 33006172 DOI: 10.1111/jne.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 11/27/2022]
Abstract
Enhanced production of dehydroepiandrosterone (DHEA) by the foetal hypothalamic-pituitary-adrenal (HPA) axis enables maturational events critical for labour induction and neonatal adaptation. Despite knowledge of the interconnected nature of maternal and foetal physiology and dramatic changes in DHEA production after birth, few studies have examined DHEA levels in newborns and none have examined DHEA's response to acute stress. Understanding normative patterns of early DHEA activity is needed to accurately assess functioning of the biological stress system with relevance for health and development. The present study analysed DHEA concentrations and change after stress among 93 newborns and associations with pregnancy, delivery and demographic risk factors. Three saliva samples, collected prior to and following a blood draw stressor, were used to determine baseline and stress reactive DHEA levels. Mothers self-reported on health behaviours during pregnancy. Data on obstetric factors were obtained from medical records. DHEA levels declined from pre- to post-stressor assessments. Results also showed that post-stressor DHEA change was significantly associated with administration of medications used to treat pain and accelerate labour. However, there was no significant variation in DHEA pre-stress levels or change after stress as a function of time after birth. By capturing DHEA levels after birth, the present study provides a window into prenatal health of the HPA system. The study also advances knowledge of DHEA in newborns by providing data on reference levels and important covariates. This information on basic adrenal physiology provides a foundation that can be expanded on to enhance understanding of early hypothalamic-pituitary-adrenal axis activity.
Collapse
Affiliation(s)
- Hayley S Kamin
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Samarth S Bhatt
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Connie J Mulligan
- Department of Anthropology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Darlene A Kertes
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Robinson JF, Hamilton EG, Lam J, Chen H, Woodruff TJ. Differences in cytochrome p450 enzyme expression and activity in fetal and adult tissues. Placenta 2020; 100:35-44. [PMID: 32818874 DOI: 10.1016/j.placenta.2020.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/09/2020] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Human cytochrome p450 (CYP) enzyme expression and activity is lower in the fetus as compared to the adult; however, limited quantitative data exists regarding the specific differences in magnitude or the degree of inducibility due to environmental factors. METHODS We utilized a combination of in silico- and molecular-based approaches to profile and compare CYP expression/activity in human adult liver and fetal tissues. Using public datasets, we evaluated human CYP expression between: 1) placenta vs. adult livers; 2) fetal vs. adult livers; or 3) five compartments of the human placenta. We generated new experimental data, characterizing expression levels of nine CYPs in placenta/fetal liver vs. adult liver. In a subset of samples, we evaluated CYP3A4 activity. Finally, we summarized evidence of human fetal CYP expression/activity and environmental exposures during pregnancy. RESULTS In silico, CYPs were predominately expressed at higher levels in the adult liver vs. fetal tissues, with a few noted exceptions. Sixty percent of CYP enzymes were expressed at nominal levels in the placenta. In wet-lab analyses, we observed significant CYP-specific differences in expression/activity between adult and fetal tissues; CYP2E1 and -3A4 were expressed significantly lower in fetal vs. adult livers, while CYP2J2 levels were similar. DISCUSSION We provide a qualitative review of the expression of the CYP enzyme family in critical sites of xenobiotic distribution during human pregnancy and novel quantitative data regarding fetal CYP expression and activity during mid-gestation. Data outputs may be a resource for modeling predictions of chemical distribution and sensitivity.
Collapse
Affiliation(s)
- Joshua F Robinson
- Program on Reproductive Health and the Environment, University of California, San Francisco (UCSF), San Francisco, CA, USA; Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| | - Emily G Hamilton
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Juleen Lam
- Program on Reproductive Health and the Environment, University of California, San Francisco (UCSF), San Francisco, CA, USA; Department of Health Sciences, California State University East Bay (CSUEB), Hayward, CA, USA
| | - Hao Chen
- Program on Reproductive Health and the Environment, University of California, San Francisco (UCSF), San Francisco, CA, USA; Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
35
|
High binding site occupancy of corticosteroid-binding globulin by progesterone increases fetal free cortisol concentrations. Eur J Obstet Gynecol Reprod Biol 2020; 251:129-135. [PMID: 32502768 DOI: 10.1016/j.ejogrb.2020.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/25/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Corticosteroid-binding globulin (CBG) binds and transports cortisol in the circulation in high cortisol-binding affinity (haCBG) and low affinity (laCBG) forms, the latter resulting from enzyme cleavage to target cortisol delivery at sites of inflammation. CBG also has substantial progesterone binding affinity, 3-fold less than cortisol. Progesterone and cortisol are important in the maintenance of pregnancy and in fetal development, respectively. The interactions of cortisol, progesterone and CBG affinity forms have not been studied together. We examined the interaction between progesterone and cortisol with CBG during fetal development. STUDY DESIGN A retrospective cohort analysis of 351 neonates born between January and December 2012 at the Women's and Children's Hospital, Adelaide, South Australia. Cord blood serum samples were collected immediately following delivery. Clinical data was provided by hospital records. Total cortisol, free cortisol, total progesterone, total CBG and haCBG were measured by immunoassay. RESULTS Cord blood total and free cortisol, and progesterone concentrations increased with gestational age. Cord blood progesterone concentrations were 100-fold luteal and 10-fold those in late pregnancy maternal circulation. The proportion of haCBG to total CBG was similar to that in healthy non-pregnant adults. However, free cortisol comprised approximately 15% of total cortisol, 3-fold higher than that in adults. CONCLUSION In a manner unique to fetal life, very high progesterone concentrations are capable of elevating free cortisol concentrations through competition with cortisol at CBG's hormone binding site, without altered binding affinity through CBG cleavage or altered CBG hormone-binding affinity. High circulating fetal progesterone concentrations compete for CBG binding with cortisol, leading to a 3-fold increase in the free cortisol fraction in cord blood. Higher free-to-bound cortisol may alter fetal cortisol distribution facilitating cortisol's roles such as neurodevelopment in concert with dehydroepiandrosterone (sulfate) and lung maturation, or support cortisol action at times of low ambient cortisol. This mechanism may underlie the known association between cortisol, progesterone and CBG, and be relevant principally in the fetal circulation due to the high progesterone concentrations encountered.
Collapse
|
36
|
Hill M, Hána V, Velíková M, Pařízek A, Kolátorová L, Vítků J, Škodová T, Šimková M, Šimják P, Kancheva R, Koucký M, Kokrdová Z, Adamcová K, Černý A, Hájek Z, Dušková M, Bulant J, Stárka L. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol Res 2019; 68:179-207. [PMID: 31037947 DOI: 10.33549/physiolres.934124] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Steroid profiling helps various pathologies to be rapidly diagnosed. Results from analyses investigating steroidogenic pathways may be used as a tool for uncovering pathology causations and proposals of new therapeutic approaches. The purpose of this study was to address still underutilized application of the advanced GC-MS/MS platform for the multicomponent quantification of endogenous steroids. We developed and validated a GC-MS/MS method for the quantification of 58 unconjugated steroids and 42 polar conjugates of steroids (after hydrolysis) in human blood. The present method was validated not only for blood of men and non-pregnant women but also for blood of pregnant women and for mixed umbilical cord blood. The spectrum of analytes includes common hormones operating via nuclear receptors as well as other bioactive substances like immunomodulatory and neuroactive steroids. Our present results are comparable with those from our previously published GC-MS method as well as the results of others. The present method was extended for corticoids and 17alpha-hydroxylated 5alpha/ß-reduced pregnanes, which are useful for the investigation of alternative "backdoor" pathway. When comparing the analytical characteristics of the present and previous method, the first exhibit by far higher selectivity, and generally higher sensitivity and better precision particularly for 17alpha-hydroxysteroids.
Collapse
Affiliation(s)
- M Hill
- Department of Steroid Hormones and Proteohormones, Institute of Endocrinology, Národní 8, 116 94, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li H, Lampe JN. Neonatal cytochrome P450 CYP3A7: A comprehensive review of its role in development, disease, and xenobiotic metabolism. Arch Biochem Biophys 2019; 673:108078. [PMID: 31445893 DOI: 10.1016/j.abb.2019.108078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022]
Abstract
The human cytochrome P450 CYP3A7, once thought to be an enzyme exclusive to fetal livers, has more recently been identified in neonates and developing infants as old as 24 months post-gestational age. CYP3A7 has been demonstrated to metabolize two endogenous compounds that are known to be important in the growth and development of the fetus and neonate, namely dehydroepiandrosterone sulfate (DHEA-S) and all-trans retinoic acid (atRA). In addition, it is also known to metabolize a variety of drugs and xenobiotics, albeit generally to a lesser extent relative to CYP3A4/5. CYP3A7 is an important component in the development and protection of the fetal liver and additionally plays a role in certain disease states, such as cancer and adrenal hyperplasia. Ultimately, a full understanding of the expression, regulation, and metabolic properties of CYP3A7 is needed to provide neonates with appropriate individualized pharmacotherapy. This article summarizes the current state of knowledge of CYP3A7, including its discovery, distribution, alleles, RNA splicing, expression and regulation, metabolic properties, substrates, and inhibitors.
Collapse
Affiliation(s)
- Haixing Li
- Sino-German Joint Research Institute Nanchang University, 235 East Nanjing Road, Nanchang, 330047, Jiangxi, PR China
| | - Jed N Lampe
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Mail Stop C238, 12850 E. Montview Blvd., Aurora, CO, 80045, USA.
| |
Collapse
|
38
|
Jin S, Sun X, Liu Q, Liang H, Li C, Mao Z, Song C, Xia W, Li Y, Xu S. Steroid Hormones in Cord Blood Mediate the Association Between Maternal Prepregnancy BMI and Birth Weight. Obesity (Silver Spring) 2019; 27:1338-1346. [PMID: 31207092 DOI: 10.1002/oby.22524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/19/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Maternal overweight has been associated with increasing offspring birth weight, but epidemiological data on potential biological mechanisms are limited. This study aimed to examine whether steroid hormones mediate the association between maternal prepregnancy BMI (pre-BMI) and birth weight. METHODS This study involving 2,039 participants was conducted from an ongoing cohort study in Wuhan, China. Mediation analysis was used to identify the extent to which steroid hormones mediated associations. RESULTS Each one-unit increase in pre-BMI was significantly associated with lower log2 -transformed cord blood levels of cortisol and corticosterone. Levels of cortisol and corticosterone were also negatively associated with birth weight. It was estimated that corticosterone mediated 3.48% of the association between pre-BMI and birth weight, and no significant mediation effect was observed in cortisol. After stratification by maternal gestational weight gain (GWG; within or in excess of the Institute of Medicine [IOM] guidelines), the associations of pre-BMI with cortisol and corticosterone levels were significant in the women with GWG > IOM but not in women with GWG ≤ IOM. When the mediation analysis in the women with GWG > IOM was limited, the mediation effects of cord blood cortisol and corticosterone were both significant (P < 0.05). CONCLUSIONS Cord blood cortisol and corticosterone partially mediate the association of increased maternal pre-BMI with higher birth weight.
Collapse
Affiliation(s)
- Shuna Jin
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Liu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huifang Liang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunhui Li
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengwu Song
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
39
|
Zhu Q, Pan P, Chen X, Wang Y, Zhang S, Mo J, Li X, Ge RS. Human placental 3β-hydroxysteroid dehydrogenase/steroid Δ5,4-isomerase 1: Identity, regulation and environmental inhibitors. Toxicology 2019; 425:152253. [PMID: 31351905 DOI: 10.1016/j.tox.2019.152253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/27/2019] [Accepted: 07/24/2019] [Indexed: 12/30/2022]
Abstract
Human placental 3β-hydroxysteroid dehydrogenase/steroid Δ5, 4-isomerase 1 (HSD3B1), a high-affinity type I enzyme, uses pregnenolone to make progesterone, which is critical for maintenance of pregnancy. HSD3B1 is located in the mitochondrion and the smooth endoplasmic reticulum of placental cells and is encoded by HSD3B1 gene. HSD3B1 contains GATA and TEF-5 regulatory elements. Many endocrine disruptors, including phthalates, methoxychlor and its metabolite, organotins, and gossypol directly inhibit placental HSD3B1 thus blocking progesterone production. In this review, we discuss the placental HSD3B1, its gene regulation, biochemistry, subcellular location, and inhibitors from the environment.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuxiu Chen
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Song Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaying Mo
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
40
|
Wang Y, Dong Y, Fang Y, Lv Y, Zhu Q, Li X, Lian Q, Ge RS. Diethylstilbestrol inhibits human and rat 11β-hydroxysteroid dehydrogenase 2. Endocr Connect 2019; 8:1061-1069. [PMID: 31247589 PMCID: PMC6652260 DOI: 10.1530/ec-19-0288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/26/2019] [Indexed: 11/13/2022]
Abstract
Glucocorticoid hormone might cause intrauterine growth restriction. The glucocorticoid-metabolizing enzyme 11β-hydroxysteroid dehydrogenase 2 (HSD11B2) in the placenta eliminates excess levels of glucocorticoids during pregnancy. The aim of the current study was to define the effects of diethylstilbestrol (DES) on HSD11B2 activity in the mammalian placentas and identify its mode of action. Rat and human placental microsomal HSD11B2 were incubated with different concentrations of DES, and IC50 values were determined. The mode of action was analyzed by incubation of DES together with substrates, glucocorticoid and NAD+. DES suppressed rat and human HSD11B2 with IC50 values of 5.33 and 12.62 μM, respectively. DES was a competitive inhibitor of rat and human HSD11B2 when steroid substrates were added, while it was an uncompetitive inhibitor when cofactor NAD+ was exposed. Oral administration of DES (0.5 mg/kg) to the rat delayed the cortisol metabolism in adult female Sprague-Dawley rats, as indicated by the increases in cortisol's elimination half-life, maximum concentration and area under the curve. In conclusion, DES is a potent HSD11B2 inhibitor, possibly contributing to the intrauterine growth restriction.
Collapse
Affiliation(s)
- Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yaoyao Dong
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinghui Fang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Lv
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
41
|
Birchenall KA, Welsh GI, López Bernal A. Metabolite Changes in Maternal and Fetal Plasma Following Spontaneous Labour at Term in Humans Using Untargeted Metabolomics Analysis: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091527. [PMID: 31052173 PMCID: PMC6539865 DOI: 10.3390/ijerph16091527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022]
Abstract
The mechanism of human labour remains poorly understood, limiting our ability to manage complications of parturition such as preterm labour and induction of labour. In this study we have investigated the effect of labour on plasma metabolites immediately following delivery, comparing cord and maternal plasma taken from women who laboured spontaneously and delivered vaginally with women who were delivered via elective caesarean section and did not labour. Samples were analysed using ultra high-performance liquid chromatography-tandem mass spectrometry. Welch’s two-sample t-test was used to identify any significant differences. Of 826 metabolites measured, 26.9% (222/826) were significantly altered in maternal plasma and 21.1% (174/826) in cord plasma. Labour involves changes in many maternal organs and poses acute metabolic demands in the uterus and in the fetus and these are reflected in our results. While a proportion of these differences are likely to be secondary to the physiological demands of labour itself, these results present a comprehensive picture of the metabolome in the maternal and fetal circulations at the time of delivery and can be used to guide future studies. We discuss potential causal pathways for labour including endocannabinoids, ceramides, sphingolipids and steroids. Further work is necessary to confirm the specific pathways involved in the spontaneous onset of labour.
Collapse
Affiliation(s)
- Katherine A Birchenall
- Department of Obstetrics and Gynaecology, St Michael's Hospital, Bristol BS2 8EG, UK.
- Translational Health Sciences, University of Bristol, Bristol BS1 3NY, UK.
| | - Gavin I Welsh
- Translational Health Sciences, University of Bristol, Bristol BS1 3NY, UK.
| | - Andrés López Bernal
- Department of Obstetrics and Gynaecology, St Michael's Hospital, Bristol BS2 8EG, UK.
- Translational Health Sciences, University of Bristol, Bristol BS1 3NY, UK.
| |
Collapse
|
42
|
Pitarch-Motellón J, Fabregat-Cabello N, Le Goff C, Roig-Navarro AF, Sancho-Llopis JV, Cavalier E. Comparison of isotope pattern deconvolution and calibration curve quantification methods for the determination of estrone and 17β-estradiol in human serum. J Pharm Biomed Anal 2019; 171:164-170. [PMID: 31003006 DOI: 10.1016/j.jpba.2019.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 12/18/2022]
Abstract
A Liquid Chromatography coupled to tandem mass spectrometry (LC-MS/MS) based method have been developed for the determination of the main estrogen compounds -estrone (E1) and 17β-estradiol (E2)- in human serum. Two isotope dilution mass spectrometry (IDMS) quantification procedures have been used: a classical calibration curve-based method were compared to a recently developed isotope pattern deconvolution (IPD) method. IPD is based on isotopic abundance measurements and multiple linear regression. Validation was performed in terms of intra-assay repeatability (n = 5), inter-assay reproducibility (n = 9) and accuracy using spiked steroid-free serum at 5 concentration levels and 3 certified reference materials. Both methodologies meet EMEA requirements yielding recoveries between 79-106% and coefficient of variations of 1.7-8.3% along all experiments. Limits of quantification as low as 5 ng/L were achieved. 40 real samples were analysed for comparison purposes showing a great correlation between calibration and IPD concentration values. Real samples were also quantified by routine immunoassay analysis, which showed a significant proportional bias of 2.55 for E1 and good correlation for E2. While methods were considered suitable for routine or countercheck analysis within the context of hospital's needs, IPD has demonstrated to be faster and cost saving.
Collapse
Affiliation(s)
- J Pitarch-Motellón
- Research Institute for Pesticides and Water, Universitat Jaume I, Castelló, Spain
| | - N Fabregat-Cabello
- Department of Clinical Chemistry, University of Liège, CHU Sart-Tilman, Liège, Belgium; Hematology and Hemotherapy group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
| | - C Le Goff
- Department of Clinical Chemistry, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - A F Roig-Navarro
- Research Institute for Pesticides and Water, Universitat Jaume I, Castelló, Spain
| | - J V Sancho-Llopis
- Research Institute for Pesticides and Water, Universitat Jaume I, Castelló, Spain
| | - E Cavalier
- Department of Clinical Chemistry, University of Liège, CHU Sart-Tilman, Liège, Belgium.
| |
Collapse
|
43
|
Greaves RF, Wudy SA, Badoer E, Zacharin M, Hirst JJ, Quinn T, Walker DW. A tale of two steroids: The importance of the androgens DHEA and DHEAS for early neurodevelopment. J Steroid Biochem Mol Biol 2019; 188:77-85. [PMID: 30557606 DOI: 10.1016/j.jsbmb.2018.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022]
Abstract
DHEA and DHEAS are neuroactive neurosteroids that interact with several major receptor systems in the brain, including sigma (σ), glutamate, and GABA-A receptors. It has been recognized as early as 1952, that the loss of DHEA/DHEAS in adult life is associated with neuropsychiatric disorders (eg schizophrenia, depression). However, the mechanistic role for DHEA/DHEAS in any of these domains remains speculative, not the least because the presence of these androgens in the adrenal gland and brain is largely confined to humans and only some non-human primates. DHEA and DHEAS are dynamically regulated from before birth and before the onset of puberty, and therefore an understanding of the synthesis, regulation, and functions of this important androgen pathway warrants attention. Here, we draw attention to the possible modulating influence of DHEA/DHEAS in early brain development from fetal life to the remarkable increase of these steroids in early childhood - the adrenarche. We propose that the pre-pubertal DHEA/DHEAS surge plays a key role in modulating early brain development, perhaps by prolonging brain plasticity during childhood to allow the pre-adolescent brain to adapt and re-wire in response to new, and ever-changing social challenges. Nonetheless, the aetiology of neurodevelopmental phenomena in relation to DHEA/DHEAS synthesis and action cannot be easily studied in humans due to the obvious ethical restrictions on mechanistic studies, the uncertainty of predicting the future mental characteristics of individuals, and the difficulty of conducting retrospective investigations based on pre-birth and/or neonatal complications. We discuss new opportunities for animal studies to resolve these important questions.
Collapse
Affiliation(s)
- Ronda F Greaves
- School of Health & Biomedical Sciences, RMIT University - Bundoora Campus, Melbourne, 3083, Australia; Murdoch Children's Research Institute, Parkville, Victoria, Australia; Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Laboratory, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Emilio Badoer
- School of Health & Biomedical Sciences, RMIT University - Bundoora Campus, Melbourne, 3083, Australia
| | - Margaret Zacharin
- Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Diabetes and Endocrinology, Royal Children's Hospital, Parkville, Victoria, 3052, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, Mothers and Babies Research Centre, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tracey Quinn
- Merck Serono Australia Pty Ltd, Frenchs Forest, NSW, 2086, Australia
| | - David W Walker
- School of Health & Biomedical Sciences, RMIT University - Bundoora Campus, Melbourne, 3083, Australia.
| |
Collapse
|
44
|
Pluchino N, Ansaldi Y, Genazzani AR. Brain intracrinology of allopregnanolone during pregnancy and hormonal contraception. Horm Mol Biol Clin Investig 2019; 37:hmbci-2018-0032. [PMID: 30739099 DOI: 10.1515/hmbci-2018-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/20/2019] [Indexed: 02/01/2023]
Abstract
Allopregnanolone (ALLO) has a crucial role in brain development and remodeling. Reproductive transitions associated with endocrine changes affect synthesis and activity of ALLO with behavioral/affective consequences. Pregnancy is characterized by an increased synthesis of progesterone/ALLO by the placenta, maternal and fetal brains. This suggests the critical role of these steroids in maternal brain adaptation during pregnancy and the development of the fetal brain. ALLO is brain protective during complications of pregnancy, such as preterm delivery or intrauterine growth restriction (IUGR), reducing the impact of hypoxia, and excitotoxic brain damage. Negative behavioral consequences of altered progesterone/ALLO maternal brain adaptation have been also hypothesized in the post-partum and targeting ALLO is a promising treatment. Hormonal contraception may alter ALLO action, although the effects are mostly related to a specific class of progestins. Understanding the interactions between ALLO and the endocrine environment is crucial for more effective and tailored hormonal treatments.
Collapse
Affiliation(s)
- Nicola Pluchino
- University Hospital of Geneva, Division of Gynecology and Obstetrics, Genéve, Switzerland
| | - Yveline Ansaldi
- University Hospital of Geneva, Division of Gynecology and Obstetrics, Genéve, Switzerland
| | | |
Collapse
|
45
|
Šimják P, Hill M, Pařízek A, Vítek L, Velíková M, Dušková M, Kancheva R, Bulant J, Koucký M, Kokrdová Z, Adamcová K, Černý A, Hájek Z, Stárka L. May circulating steroids reveal a predisposition to intrahepatic cholestasis of pregnancy in non-pregnant women? Physiol Res 2018; 67:S499-S510. [PMID: 30484676 DOI: 10.33549/physiolres.934028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a frequent liver disorder, mostly occurring in the third trimester. ICP is not harmful to the mothers but threatens the fetus. The authors evaluated steroid alterations in maternal and mixed umbilical blood to elucidate their role in the ICP development. Ten women with ICP were included in the study. Steroids in the maternal blood were measured by Gas Chromatography-Mass Spectrometry (GC-MS) (n=58) and RIA (n=5) at the diagnosis of ICP, labor, day 5 postpartum, week 3 postpartum and week 6 postpartum. The results were evaluated by ANOVA consisting of the subject factor, between subject factors ICP, gestational age at the diagnosis of ICP and gestational age at labor, within-subject factor Stage and ICP × Stage interaction. The 17 controls were firstly examined in the week 36 of gestation. ICP patients showed reduced CYP17A1 activity in the C17,20 lyase step thus shifting the balance between the toxic conjugated pregnanediols and harmless sulfated 5alpha/beta-reduced-17-oxo C19 steroids. Hence, more toxic metabolites originating in maternal liver from the placental pregnanes may penetrate backward to the fetal circulation. As these alterations persist in puerperium, the circulating steroids could be potentially used for predicting the predisposition to ICP even before next pregnancy.
Collapse
Affiliation(s)
- P Šimják
- Department of Gynecology and Obstetrics, General University Hospital and First Faculty of Medicine, Charles University in Prague, Czech Republic, Department of Steroids and Proteohormones, Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Quantification of fetal steroids in nails of neonates to quantify prenatal stress and growth restriction. Biol Psychol 2018; 140:81-85. [PMID: 30543835 DOI: 10.1016/j.biopsycho.2018.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 01/17/2023]
Abstract
This study assesses the impact of prenatal stress and intrauterine growth restriction (IUGR) on the dehydroepiandrosterone (DHEA) and dehydroepiandrosteronesulfate (DHEAS) concentrations in nails of newborns. Nail samples were gained from 56 newborn infants. The concentration of DHEA and DHEAS was measured by liquid chromatography/tandem mass spectrometry. Prenatal stress was assessed by the Prenatal Distress Questionnaire and by the Life Experience Survey. Prenatal stress was not associated with infant nail DHEA or DHEAS concentrations. The concentration of DHEA and DHEAS was decreased in infants with IUGR (DHEA: p = 0.037, DHEAS p < 0.01). Nail-DHEAS increased with gestational age (p < 0.01). In this study prenatal life event stress or pregnancy specific stress do not correlate with higher DHEA or DHEAS concentrations in nails of newborns. Concentration of DHEAS is rather affected by length of gestation. Our approach is an easily applicable method to assess intrauterine life with the potential to give insights in the activity of fetal hormone systems and mechanism underlying fetal programming.
Collapse
|
47
|
du Toit T, Finken MJJ, Hamer HM, Heijboer AC, Swart AC. C11-oxy C 19 and C11-oxy C 21 steroids in neonates: UPC 2-MS/MS quantification of plasma 11β-hydroxyandrostenedione, 11-ketotestosterone and 11-ketoprogesterone. Steroids 2018; 138:1-5. [PMID: 29883615 DOI: 10.1016/j.steroids.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to identify the C11-oxy C19 and C11-oxy C21 steroids in male and female neonate plasma. At birth, the most abundant C11-oxy steroids detected in neonatal plasma were 11β-hydroxyandrostenedione, ∼13 nM, and 11-ketoprogesterone, ∼23 nM. C11-oxy C19 steroids were higher than C19 steroids in neonatal plasma, 22.2 nM vs 5.4 nM. The inclusion of C11-oxy C19 and C21 steroid reference ranges in routine steroid analyses will assist the characterization of disorders associated with impaired steroidogenic enzyme expression and the identification of potential biomarkers.
Collapse
Affiliation(s)
- Therina du Toit
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Martijn J J Finken
- Department of Pediatric Endocrinology, VU University Medical Center, Amsterdam, The Netherlands
| | - Henrike M Hamer
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Annemieke C Heijboer
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
48
|
Boda H, Nghi TN, Nishijo M, Thao PN, Tai PT, Van Luong H, Anh TH, Morikawa Y, Nishino Y, Nishijo H. Prenatal dioxin exposure estimated from dioxins in breast milk and sex hormone levels in umbilical cord blood in Vietnamese newborn infants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:1312-1318. [PMID: 29751436 DOI: 10.1016/j.scitotenv.2017.09.214] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/26/2017] [Accepted: 09/20/2017] [Indexed: 06/08/2023]
Abstract
Dioxin concentrations remain elevated in the environment and humans residing near the former US Air Force base in Bien Hoa city, South Vietnam. We recruited 210 mother-infant pairs for whom breast milk dioxin levels were reported in our previous study. Cord blood samples were collected from 162 mother-infant pairs. We selected 16 cord blood samples with a volume over 20mL and fat content of ≥0.03g. Toxic equivalent levels of polychlorinated dibenzodioxins and polychlorinated dibenzofurans (TEQ-PCDD/Fs) and concentrations of 17 congeners, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), in cord blood were measured and compared with levels in breast milk (Study 1). Levels of 2,3,7,8-TCDD and TEQ-PCDD/Fs in cord blood samples were highly and significantly correlated with those in breast milk samples in the same pairs. This suggests dioxins in breast milk reflect prenatal dioxin exposure. Estradiol (E2) and testosterone (TS) were measured in cord blood serum from 162 samples. Associations between dioxins in breast milk and cord blood sex hormones were analyzed by infant sex, after adjusting for confounding factors (Study 2). Increased levels of TEQ-PCDD/Fs in breast milk were associated with decreased cord blood TS in girls. In boys, a significant reduction of cord blood TS was observed in those exposed to 2,3,7,8-TCDD at high levels (≥5.5pg/g lipid). There was no significant association between E2 and dioxins in breast milk in either sex. These results suggest increased prenatal dioxin exposure is associated with decreased cord TS, but in boys, only high level of 2,3,7,8-TCDD influence cord blood TS.
Collapse
Affiliation(s)
- Hitomi Boda
- Department of Maternity Nursing, and Midwifery, School of Nursing, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan; Department of Public Health, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | - Tran Ngoc Nghi
- Rehabilitation, Medical Administration, Ministry of Health, Vietnam Government, Hanoi, Viet Nam
| | - Muneko Nishijo
- Department of Public Health, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | - Pham Ngoc Thao
- Department of Public Health, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | - Pham The Tai
- Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Hoang Van Luong
- Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Tran Hai Anh
- Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Yuko Morikawa
- Department of Maternity Nursing, and Midwifery, School of Nursing, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | - Yoshikazu Nishino
- Department of Public Health, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
49
|
Miranda A, Sousa N. Maternal hormonal milieu influence on fetal brain development. Brain Behav 2018; 8:e00920. [PMID: 29484271 PMCID: PMC5822586 DOI: 10.1002/brb3.920] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/15/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022] Open
Abstract
An adverse maternal hormonal environment during pregnancy can be associated with abnormal brain growth. Subtle changes in fetal brain development have been observed even for maternal hormone levels within the currently accepted physiologic ranges. In this review, we provide an update of the research data on maternal hormonal impact on fetal neurodevelopment, giving particular emphasis to thyroid hormones and glucocorticoids. Thyroid hormones are required for normal brain development. Despite serum TSH appearing to be the most accurate indicator of thyroid function in pregnancy, maternal serum free T4 levels in the first trimester of pregnancy are the major determinant of postnatal psychomotor development. Even a transient period of maternal hypothyroxinemia at the beginning of neurogenesis can confer a higher risk of expressive language and nonverbal cognitive delays in offspring. Nevertheless, most recent clinical guidelines advocate for targeted high-risk case finding during first trimester of pregnancy despite universal thyroid function screening. Corticosteroids are determinant in suppressing cell proliferation and stimulating terminal differentiation, a fundamental switch for the maturation of fetal organs. Not surprisingly, intrauterine exposure to stress or high levels of glucocorticoids, endogenous or synthetic, has a molecular and structural impact on brain development and appears to impair cognition and increase anxiety and reactivity to stress. Limbic regions, such as hippocampus and amygdala, are particularly sensitive. Repeated doses of prenatal corticosteroids seem to have short-term benefits of less respiratory distress and fewer serious health problems in offspring. Nevertheless, neurodevelopmental growth in later childhood and adulthood needs further clarification. Future studies should address the relevance of monitoring the level of thyroid hormones and corticosteroids during pregnancy in the risk stratification for impaired postnatal neurodevelopment.
Collapse
Affiliation(s)
- Alexandra Miranda
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Department of Obstetrics and GynecologyHospital de BragaBragaPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinic Academic Center ‐ 2CABragaPortugal
| |
Collapse
|
50
|
Lundell AC, Ryberg H, Vandenput L, Rudin A, Ohlsson C, Tivesten Å. Umbilical cord blood androgen levels in girls and boys assessed by gas chromatography-tandem mass spectrometry. J Steroid Biochem Mol Biol 2017; 171:195-200. [PMID: 28373106 DOI: 10.1016/j.jsbmb.2017.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/14/2017] [Accepted: 03/30/2017] [Indexed: 11/21/2022]
Abstract
Androgen exposure of the fetus during gestation plays an important role in human physiology and pathophysiology, but assessment of androgens, in particular dihydrotestosterone (DHT), in human umbilical cord blood is technically challenging. The aim of this study was to assess umbilical cord androgen levels, including DHT, at birth by a highly sensitive assay, and study their association with sex of the infant, sex-hormone-binding globulin (SHBG) levels, and gestational age at delivery. Swedish infants (27 girls, 26 boys) were recruited at maternity care clinics in Southern Sweden. Umbilical cord blood levels of dehydroepiandrosterone (DHEA), androstenedione, testosterone and DHT at delivery were assessed by a gas chromatography-tandem mass spectrometry assay. Cord blood levels of DHT were 2.4-fold higher in boys (median 27.8pg/mL) than in girls (11.5pg/mL), while the sex difference was less pronounced for testosterone (1.3-fold higher in boys) and non-significant for DHEA and androstenedione. Gestational age at delivery associated inversely with DHT levels in boys and with DHEA levels in girls. There was a strong inverse correlation between SHBG and DHEA in both sexes, while there were no associations between SHBG and testosterone or DHT levels. In conclusion, using state of the art technology, we report that there is a pronounced sexual dimorphism in human umbilical cord blood DHT levels. The possibility to assess a complete androgen profile in human cord blood opens up for future increased understanding of the biological impact of the fetal androgen milieu.
Collapse
Affiliation(s)
- Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Ryberg
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Liesbeth Vandenput
- Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Åsa Tivesten
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Sahlgrenska University Hospital, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden.
| |
Collapse
|