1
|
Li C, Tan X, Deng D, Kong C, Feng L, Wang W, Lin K, Li Y, Lei Q, Liu L, Tao T, Pan R, Li G, Wu S. A Dopamine-Modified Hyaluronic Acid-Based Mucus Carrying Phytoestrogen and Urinary Exosome for Thin Endometrium Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407750. [PMID: 39115352 DOI: 10.1002/adma.202407750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Indexed: 09/28/2024]
Abstract
Thin endometrium (TE) is closely associated with infertility in reproductive medicine. Estrogen therapy gains unsatisfactory outcomes. In this study, an artificial mucus based on dopamine (L-DOPA)-modified hyaluronic acid combining phytoestrogen cajaninstilbene acid and rat urinary exosomes (CUEHD) is constructed for TE treatment using a rat TE model. In the rat TE model, the dominant elastic behavior and adhesive properties of CUEHD guarantee adequate retention, rendering superior synergistic treatment efficacy and favorable biosafety characteristics. CUEHD treatment significantly increases endometrial thickness and promotes receptivity and fertility. Mechanistically, estrogen homeostasis, inflammation inhibition, and endometrial regeneration are achieved through the crosstalk between ER-NLRP3-IL1β and Wnt-β catenin-TGFβ-smad signaling pathways. Moreover, the therapeutic potential of exosomes from human urine and adipose tissue-derived stem cells (ADSCs) and rat ADSCs are also demonstrated, indicating extensive use of the artificial mucus system. Thus, this study illustrates a platform combining phytoestrogen and exosomes with promising implications for TE treatment.
Collapse
Affiliation(s)
- Chenchen Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Xiyang Tan
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518004, China
| | - Dashi Deng
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Chenfan Kong
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518004, China
| | - Lida Feng
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Weijing Wang
- Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Kaida Lin
- Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Yuqing Li
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Qifang Lei
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Lisha Liu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Tao Tao
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Ruile Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P. R. China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China
| |
Collapse
|
2
|
Chen G, Zhou T, Cao J, Li X, Zhu C, Wang L, Zou G, Liang H. Roles of estrogen receptors during sexual reversal in Pelodiscus sinensis. Mol Biol Rep 2024; 51:634. [PMID: 38727746 DOI: 10.1007/s11033-024-09482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/26/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The Chinese soft-shelled turtle, Pelodiscus sinensis, exhibits distinct sexual dimorphism, with the males growing faster and larger than the females. During breeding, all-male offspring can be obtained using 17β-estradiol (E2). However, the molecular mechanisms underlying E2-induced sexual reversal have not yet been elucidated. Previous studies have investigated the molecular sequence and expression characteristics of estrogen receptors (ERs). METHODS AND RESULTS In this study, primary liver cells and embryos of P. sinensis were treated with ER agonists or inhibitors. Cell incubation experiments revealed that nuclear ERs (nERs) were the main pathway for the transmission of estrogen signals. Our results showed that ERα agonist (ERα-ag) upregulated the expression of Rspo1, whereas ERα inhibitor (ERα-Inh) downregulated its expression. The expression of Dmrt1 was enhanced after ERα-Inh + G-ag treatment, indicating that the regulation of male genes may not act through a single estrogen receptor, but a combination of ERs. In embryos, only the ERα-ag remarkably promoted the expression levels of Rspo1, Wnt4, and β-catenin, whereas the ERα-Inh had a suppressive effect. Additionally, Dmrt1, Amh, and Sox9 expression levels were downregulated after ERβ inhibitor (ERβ-Inh) treatment. GPER agonist (G-ag) has a significant promotion effect on Rspo1, Wnt4, and β-catenin, while the inhibitor G-Inh does not affect male-related genes. CONCLUSIONS Overall, these results suggest that ERs play different roles during sexual reversal in P. sinensis and ERα may be the main carrier of estrogen-induced sexual reversal in P. sinensis. Further studies need to be performed to analyze the mechanism of ER action.
Collapse
Affiliation(s)
- Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China
| | - Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China
| | - Jizeng Cao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiang Li
- Anhui Xijia Agricultural Development Co. Ltd, Bengbu, 233700, China
| | - Chengjun Zhu
- Anhui Xijia Agricultural Development Co. Ltd, Bengbu, 233700, China
| | - Long Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China.
| |
Collapse
|
3
|
Rubab ZE, Naz S, Ashraf M, Shahid S, Rehman R. Identification of a Single Nucleotide Polymorphism of Vitamin D Receptor (VDR) and Vitamin D Binding Protein (VDBP) Gene and Its Dysregulated Pathway Through VDR-VDBP Interaction Network Analysis in Vitamin D-Deficient Infertile Females. Cureus 2024; 16:e55602. [PMID: 38586664 PMCID: PMC10995750 DOI: 10.7759/cureus.55602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
INTRODUCTION The prevalence of female infertility in Pakistan is currently estimated at 22%, and emerging research suggests that vitamin D (VD) deficiency (VDD) may play a significant role in influencing female fertility. The focus of this study was to investigate the single nucleotide polymorphism (SNP) patterns within the VD binding protein (VDBP). The study aimed to explore dysregulated pathways and gene enrichment through an interaction network analysis, specifically focusing on the interplay between the VD receptor (VDR) and VDBP in females experiencing unexplained infertility (UI) coupled with VDD. METHODS A cross-sectional study was conducted on VD-deficient, fertile, and UI female subjects. VDBP and VDR were assessed by enzyme-linked immunoassay and genotyping performed. FunRich (version 3.1.3; http://funrich.org/index.html) was employed for analysis of the identified proteins: VDR and VDBP and with their mapped gene datasets, gene enrichment, and protein-protein interaction (PPI) network. RESULTS The mean VD and VDR values of infertile females were significantly lower than those of fertile females. VDBP in infertile females (median (IQR)): 296.05 (232.58-420.23)) was lower than that of fertile females (469.9 (269.57-875.55), (p=0.01)). On sequence analysis, a mutation rs 4588 SNP (Thr 436 Lys) was found in exon 11 of the VDBP gene of UI females, but no mutation in exons 8 and 9 of the VDR gene, with some insignificant intronic variants, was observed. The proteins such as plasma membrane estrogen receptor signaling pathway (p < 0.001), VDR, SMAD3, NCOR1, CREBBP, NCOA1, STAT1, GRB2, PPP2CA, TP53, and NCOA2 were enriched after biological pathway grouping when VDR was made the focused gene and directly interacting with VDBP. CONCLUSION The females with UI exhibited significantly low VD, VDBP, and VDR. The plasma membrane estrogen receptor signaling pathway was enriched in VDD infertile females.
Collapse
Affiliation(s)
- Zil E Rubab
- Department of Biochemistry, Ziauddin University, Karachi, PAK
| | - Sumaira Naz
- Department of Obstetrics and Gynaecology, The Aga Khan University, Karachi, PAK
| | - Mussarat Ashraf
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, PAK
| | - Saba Shahid
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, PAK
| | - Rehana Rehman
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, PAK
| |
Collapse
|
4
|
Davis D, Dovey J, Sagoshi S, Thaweepanyaporn K, Ogawa S, Vasudevan N. Steroid hormone-mediated regulation of sexual and aggressive behaviour by non-genomic signalling. Steroids 2023; 200:109324. [PMID: 37820890 DOI: 10.1016/j.steroids.2023.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Sex and aggression are well studied examples of social behaviours that are common to most animals and are mediated by an evolutionary conserved group of interconnected nuclei in the brain called the social behaviour network. Though glucocorticoids and in particular estrogen regulate these social behaviours, their effects in the brain are generally thought to be mediated by genomic signalling, a slow transcriptional regulation mediated by nuclear hormone receptors. In the last decade or so, there has been renewed interest in understanding the physiological significance of rapid, non-genomic signalling mediated by steroids. Though the identity of the membrane hormone receptors that mediate this signalling is not clearly understood and appears to be different in different cell types, such signalling contributes to physiologically relevant behaviours such as sex and aggression. In this short review, we summarise the evidence for this phenomenon in the rodent, by focusing on estrogen and to some extent, glucocorticoid signalling. The use of these signals, in relation to genomic signalling is manifold and ranges from potentiation of transcription to the possible transduction of environmental signals.
Collapse
Affiliation(s)
- DeAsia Davis
- School of Biological Sciences, University of Reading, United Kingdom
| | - Janine Dovey
- School of Biological Sciences, University of Reading, United Kingdom
| | - Shoko Sagoshi
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States; Laboratory of Behavioural Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | | | - Sonoko Ogawa
- Laboratory of Behavioural Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, United Kingdom.
| |
Collapse
|
5
|
Morita T. Seeking an Important Role on Metabolomics—Effects of β-Estradiol on Lipoprotein Metabolism in Mammary Tumors. YAKUGAKU ZASSHI 2022; 142:1191-1199. [DOI: 10.1248/yakushi.22-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tetsuo Morita
- Department of Biochemistry, Faculty and Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
6
|
Xu XL, Huang ZY, Yu K, Li J, Fu XW, Deng SL. Estrogen Biosynthesis and Signal Transduction in Ovarian Disease. Front Endocrinol (Lausanne) 2022; 13:827032. [PMID: 35299973 PMCID: PMC8921451 DOI: 10.3389/fendo.2022.827032] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/03/2022] [Indexed: 12/01/2022] Open
Abstract
Estrogen mainly binds to estrogen receptors (ERs) to regulate menstrual cycles and reproduction. The expression of ERalpha (ERα), ERbeta (ERβ), and G-protein-coupled estrogen receptor (GPER) mRNA could be detected in ovary, suggesting that they play an important role in estrogen signal transduction in ovary. And many studies have revealed that abnormal expression of estrogen and its receptors is closely related to ovarian disease or malignant tumors. With the continuous development and research of animal models, tissue-specific roles of both ERα and ERβ have been demonstrated in animals, which enable people to have a deeper understanding of the potential role of ER in regulating female reproductive diseases. Nevertheless, our current understanding of ERs expression and function in ovarian disease is, however, incomplete. To elucidate the biological mechanism behind ERs in the ovary, this review will focus on the role of ERα and ERβ in polycystic ovary syndrome (PCOS), ovarian cancer and premature ovarian failure (POF) and discuss the major challenges of existing therapies to provide a reference for the treatment of estrogen target tissue ovarian diseases.
Collapse
Affiliation(s)
- Xue-Ling Xu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Yuan Huang
- Department of Metabolism, Digestion and Reproduction, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Kun Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jun Li
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiang-Wei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Clark S, Pollard K, Rainville J, Vasudevan N. Immunoblot Detection of the Phosphorylation of the Estrogen Receptor α as an Outcome of GPR30 /GPER1 Activation. Methods Mol Biol 2022; 2418:25-39. [PMID: 35119657 DOI: 10.1007/978-1-0716-1920-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphorylation of the serine residues in estrogen receptor (ER) α is important in transcriptional activation. Hence, methods to detect such posttranslational modification events are valuable. We describe, in detail, the analysis of the phosphorylated ERα by electrophoretic separation of proteins and subsequent immunoblotting techniques. In particular, phosphorylation of the ERα is one possible outcome of activation of the putative membrane estrogen receptor (mER), GPR30 or GPER1. Hence, phosphorylation represents a crosstalk event between GPR30 and ERα and may be important in estrogen-regulated physiology.
Collapse
Affiliation(s)
- Sara Clark
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Kevin Pollard
- Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Jennifer Rainville
- Department of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | |
Collapse
|
8
|
Farhadi Z, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Esmailidehaj M, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Rezvani ME, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Shahbazian M, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Jafary F, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Ghafari MA, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Alizade J, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Azizian H, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. A review of the Effects of 17 β-Estradiol on Endoplasmic Reticulum Stress: Mechanisms and Pathway. PHYSIOLOGY AND PHARMACOLOGY 2021; 0:0-0. [DOI: 10.52547/phypha.26.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
9
|
Kong D, Li J, Li N, Zhang S, Xu Y. Multiple bioanalytical methods reveal a thyroid-disrupting mechanism related to the membrane receptor integrin α vβ 3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116933. [PMID: 33773180 DOI: 10.1016/j.envpol.2021.116933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a manufactured chemical, is suitable for large-scale production and has extensive applications. Although restricted for use, DEHP is still ubiquitous in the environment and shows potential to disrupt the structure or function of the thyroid system. However, its toxic mechanism is complex and not clearly understood. In this study, a battery of methods was employed to investigate DEHP-induced thyroid-disrupting effects and their mechanism of action, focusing on a newly discovered membrane receptor-mediated mechanism. The results showed that DEHP promoted rat pituitary tumor (GH3) cell proliferation and c-fos gene expression at environment level concentrations (2 and 5 μmol/L) in a manner similar to that of the natural thyroid hormone 3,3',5-triiodo-L-thyronine (T3). The macromolecule DEHP-BSA cannot pass through the cell membrane to interact with nuclear receptors but upregulated the c-fos gene expression when administered at concentrations comparable to DEHP concentrations; molecular docking demonstrated that DEHP has affinity for the membrane receptor integrin αvβ3; DEHP at 2 μmol/L upregulated the β3 gene expression in GH3 cells; after the addition of integrin αvβ3-inhibiting RGD peptide, DEHP-induced c-fos gene upregulation decreased. All of these findings support the supposition that DEHP-induced thyroid-disrupting effects might be mediated by the membrane receptor integrin αvβ3. Moreover, DEHP activated the downstream extracellular regulated protein kinase (ERK1/2) pathway, upregulating the gene expression of raf-1, MEK-1 and MAPK1 and increasing the protein levels of p-ERK; interestingly, ERK1/2 activation and c-fos upregulation induced by DEHP were attenuated by PD98059 (an ERK1/2 inhibitor). Taken together, the data suggest that the membrane receptor integrin αvβ3 and the downstream ERK1/2 pathway might be involved in DEHP-induced thyroid-disrupting effects. This study provides new insight into the thyroid-disrupting effect and the underlying mechanism and will advance the effort to construct adverse outcome pathways of DEHP and other thyroid hormone disrupting chemicals.
Collapse
Affiliation(s)
- Dongdong Kong
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shurong Zhang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Torromino G, Maggi A, De Leonibus E. Estrogen-dependent hippocampal wiring as a risk factor for age-related dementia in women. Prog Neurobiol 2020; 197:101895. [PMID: 32781107 DOI: 10.1016/j.pneurobio.2020.101895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Women are more prone than men to develop age-related dementia, such as Alzheimer's disease (AD). This has been linked to the marked decrease in circulating estrogens during menopause. This review proposes to change this perspective and consider women's vulnerability to developing AD as a consequence of sex differences in the neurobiology of memory, focusing on the hippocampus. The hippocampus of cognitively impaired subjects tends to shrink with age; however, in many cases, this can be prevented by exercise or cognitive training, suggesting that if you do not use the hippocampus you lose it. We will review the developmental trajectory of sex steroids-regulated differences on the hippocampus, proposing that the overall shaping action of sex-steroids results in a lower usage of the hippocampus in females, which in turn makes them more vulnerable to the effects of ageing, the "network fragility hypothesis". To explain why women rely less on hippocampus-dependent strategies, we propose a "computational hypothesis" that is based on experimental evidence suggesting that the direct effects of estrogens on hippocampal synaptic and structural plasticity during the estrous-cycle confers instability to the memory-dependent hippocampal network. Finally, we propose to counteract AD with training and/or treatments, such as orienteering, which specifically favour the use of the hippocampus.
Collapse
Affiliation(s)
- Giulia Torromino
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy.
| |
Collapse
|
11
|
Abou-Ismail MY, Citla Sridhar D, Nayak L. Estrogen and thrombosis: A bench to bedside review. Thromb Res 2020; 192:40-51. [PMID: 32450447 PMCID: PMC7341440 DOI: 10.1016/j.thromres.2020.05.008] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/12/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Estrogen, in the clinical setting is used primarily for contraception and hormone replacement therapy. It has been well established that estrogen increases the risk of both arterial and venous thrombosis. While estrogen is known to induce a prothrombotic milieu through various effects on the hemostatic pathways, the exact molecular mechanism leading to those effects is not known. The most common clinical presentation of estrogen-related thrombosis is venous thromboembolism (VTE) of the deep veins of the legs or pulmonary vessels, usually within the first few months of use. Estrogen has also been associated with increased risk of "unusual site" thromboses, as well as arterial thrombosis. Women at high-risk of thrombosis need careful evaluation and counseling for contraception, pregnancy, menopausal hormonal therapy and other estrogen-related conditions or treatments in order to lower the risk of thromboses. We review the most recent evidence on management of high-estrogen states in women at high-risk of thrombosis, as well as emerging data on unique populations such as transgender women. More studies are needed to better understand the pathophysiology of hormone-related thrombosis, as well as more comprehensive techniques to stratify risks for thrombosis so as to enable tailoring of recommendations for each individual.
Collapse
Affiliation(s)
- Mouhamed Yazan Abou-Ismail
- Case Western Reserve University, Cleveland, OH, United States of America; University Hospitals Cleveland Medical Center, Cleveland, OH, United States of America
| | - Divyaswathi Citla Sridhar
- Case Western Reserve University, Cleveland, OH, United States of America; Rainbow Babies & Children's Hospital, Cleveland, OH, United States of America
| | - Lalitha Nayak
- Case Western Reserve University, Cleveland, OH, United States of America; University Hospitals Cleveland Medical Center, Cleveland, OH, United States of America.
| |
Collapse
|
12
|
Tang ZR, Zhang R, Lian ZX, Deng SL, Yu K. Estrogen-Receptor Expression and Function in Female Reproductive Disease. Cells 2019; 8:E1123. [PMID: 31546660 PMCID: PMC6830311 DOI: 10.3390/cells8101123] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 01/13/2023] Open
Abstract
Estrogen receptors (ER) include ER alpha, ER beta and new membrane receptor G protein-coupled receptor 30 (GPR30). Estrogen receptors are key receptors to maintain ovarian granulosa cell differentiation, follicle and oocyte growth and development, and ovulation function. The abnormal functions of estrogen, its receptors, and estradiol synthesis-related enzymes are closely related to clinical reproductive endocrine diseases, such as polycystic ovary syndrome (PCOS) and endometriosis (EMS). At present, hormone therapy is the main treatment for ovarian-related diseases, and a stable hormone environment is established by regulating ovarian function. In recent years, some estrogen-related drugs have made great progress, such as clomiphene, which is a nonsteroidal antiestrogen drug in clinical application. This article elaborates on the regulatory role of estrogen and its nuclear receptors and membrane receptors in oocyte development, especially female reproductive diseases related to the abnormal expression of estrogen and its receptors. We also highlighted the latest advances of treatment strategy for these diseases and the application of related targeted small molecule drugs in clinical research and treatment, so as to provide reference for the treatment of female reproductive diseases.
Collapse
Affiliation(s)
- Zi-Run Tang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Rui Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Pollard KJ, Daniel JM. Nuclear estrogen receptor activation by insulin-like growth factor-1 in Neuro-2A neuroblastoma cells requires endogenous estrogen synthesis and is mediated by mutually repressive MAPK and PI3K cascades. Mol Cell Endocrinol 2019; 490:68-79. [PMID: 30986444 PMCID: PMC6520186 DOI: 10.1016/j.mce.2019.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 02/01/2023]
Abstract
Non-canonical mechanisms of estrogen receptor activation may continue to support women's cognitive health long after cessation of ovarian function. These mechanisms of estrogen receptor activation may include ligand-dependent actions via locally synthesized neuroestrogens and ligand-independent actions via growth factor-dependent activation of intracellular kinase cascades. We tested the hypothesis that ligand-dependent and ligand-independent mechanisms interact to activate nuclear estrogen receptors in the Neuro-2A neuroblastoma cell line in the absence of exogenous estrogens. Transcriptional output of estrogen receptors was measured following treatment with insulin-like growth factor-1 (IGF-1) in the presence of specific inhibitors for mitogen-activated protein kinase (MAPK), phosphoinositde-3 kinase (PI3K), and neuroestrogen synthesis. Results indicate that IGF-1-dependent activation of nuclear estrogen receptors is mediated by MAPK, is opposed PI3K, and requires concomitant endogenous neuroestrogen synthesis. We conclude that both cellular signaling context and endogenous ligand availability are important modulators of ligand-independent nuclear estrogen receptor activation.
Collapse
Affiliation(s)
- Kevin J Pollard
- Tulane Brain Institute, Tulane University, 200 Flower Hall, New Orleans, LA, 70118, USA; Neuroscience Program, Tulane University, 200 Flower Hall, New Orleans, LA, 70118, USA.
| | - Jill M Daniel
- Tulane Brain Institute, Tulane University, 200 Flower Hall, New Orleans, LA, 70118, USA; Neuroscience Program, Tulane University, 200 Flower Hall, New Orleans, LA, 70118, USA; Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, LA, 70118, USA
| |
Collapse
|
14
|
Lin YS, Lu SY, Wu HP, Chang CF, Chiu YT, Yang HT, Chao PM. Is frying oil a dietary source of an endocrine disruptor? Anti-estrogenic effects of polar compounds from frying oil in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:18-27. [PMID: 30412894 DOI: 10.1016/j.ecoenv.2018.10.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
The objective was to investigate endocrine-disrupting effects of polar compounds from oxidized frying oil. Estrogenicity of polar compounds was tested with a rat uterotrophic bioassay. Dietary oxidized frying oil (containing 51% polar compounds) or polar compounds isolated from it were incorporated into feed (in lieu of fresh soybean oil) and fed to ovariectomized rats, with or without treatment with exogenous ethynyl estradiol. Exogenous estrogen restored uterine weight, and caused histological abnormalities (stratified epithelia and conglomerate glands) as well as proliferation of uterine epithelial cells. However, tamoxifen or polar compounds reduced these effects. Furthermore, tamoxifen or polar compounds down-regulated uterine mRNA expression of estrogen receptor (ER)-target genes, implicating reduced ER activity in this hypo-uterotrophic effect. Inhibition of ER signaling and mitosis by polar compounds were attributed to reduced MAPK and AKT activation, as well as a reduced ligand binding domain-transactivity of ERα/β. We concluded polar compounds from frying oil are potential endocrine-disrupting chemicals, with implications for food and environmental safety.
Collapse
Affiliation(s)
- Yu-Shun Lin
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Shui-Yuan Lu
- Department of Applied Toxicology, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Taichung 413, Taiwan
| | - Hai-Ping Wu
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Yung-Tsung Chiu
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Hui-Ting Yang
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Pei-Min Chao
- Department of Nutrition, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
15
|
Kong D, Liu Y, Zuo R, Li J. DnBP-induced thyroid disrupting activities in GH3 cells via integrin α vβ 3 and ERK1/2 activation. CHEMOSPHERE 2018; 212:1058-1066. [PMID: 30286535 DOI: 10.1016/j.chemosphere.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/26/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
Di-n-butylphthalate (DnBP) exhibits alarming thyroid disrupting activities. However, the toxic mechanism of DnBP is not completely understood. In this study, we investigated the mechanism of DnBP in thyroid disruption. Rat pituitary tumor cell lines (GH3) were treated with DnBP in different scenarios, and cell viabilities, target gene transcriptions and protein levels were measured accordingly. The results showed that after treatment with DnBP (20 μmol/L), cell proliferation increased to 114.69% (p < 0.01) and c-fos gene was up-regulated by 1.57-fold (p < 0.01). Both nuclear thyroid hormone receptor β (TRβ) and membrane TR (integrin αv and integrin β3) genes were up-regulated by 1.31-, 1.08- and 2.39-fold (p < 0.01), respectively, the latter was inhibited by Arg-Gly-Asp (RGD) peptides; the macromolecular DnBP-BSA was unable to bind nuclear TRs, but still promoted cell proliferation to 104.18% and up-regulated c-fos by 2.99-fold (p < 0.01); after silencing TRβ gene, cell proliferation (106.64%, p < 0.05) and up-regulation of c-fos (1.23-fold, p < 0.01) were also observed. All of these findings indicated the existence of non-genomic pathway for DnBP-induced thyroid disruption. Finally, DnBP activated the downstream extracellular regulated protein kinases (ERK1/2) pathway, up-regulating Mapk1 (1.15-, p < 0.05), Mapk3 (1.26-fold, p < 0.01) and increasing protein levels of p-ERK (p < 0.01); notably, DnBP-induced ERK1/2 activation along with c-fos up-regulation were attenuated by PD98059 (ERK1/2 inhibitor). Taken together, it could be suggested that integrin αvβ3 and ERK1/2 pathway play significant roles in DnBP-induced thyroid disruption, and this novel mechanism warrants further investigation in living organisms.
Collapse
Affiliation(s)
- Dongdong Kong
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yun Liu
- South China Institute of Environmental Science, Ministry of Environmental Protection, No.7 West Street, Yuancun, Guangzhou 510655, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
16
|
Ogawa S, Tsukahara S, Choleris E, Vasudevan N. Estrogenic regulation of social behavior and sexually dimorphic brain formation. Neurosci Biobehav Rev 2018; 110:46-59. [PMID: 30392880 DOI: 10.1016/j.neubiorev.2018.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
It has long been known that the estrogen, 17β-estradiol (17β-E), plays a central role for female reproductive physiology and behavior. Numerous studies have established the neurochemical and molecular basis of estrogenic induction of female sexual behavior, i.e., lordosis, in animal models. In addition, 17β-E also regulates male-type sexual and aggressive behavior. In males, testosterone secreted from the testes is irreversibly aromatized to 17β-E in the brain. We discuss the contribution of two nuclear receptor isoforms, estrogen receptor (ER)α and ERβ to the estrogenic regulation of sexually dimorphic brain formation and sex-typical expression of these social behaviors. Furthermore, 17β-E is a key player for social behaviors such as social investigation, preference, recognition and memory as well as anxiety-related behaviors in social contexts. Recent studies also demonstrated that not only nuclear receptor-mediated genomic signaling but also membrane receptor-mediated non-genomic actions of 17β-E may underlie the regulation of these behaviors. Finally, we will discuss how rapidly developing research tools and ideas allow us to investigate estrogenic action by emphasizing behavioral neural networks.
Collapse
Affiliation(s)
- Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, WhiteKnights Campus, Reading, RG6 6AS, United Kingdom
| |
Collapse
|
17
|
Verderame M, Scudiero R. A comparative review on estrogen receptors in the reproductive male tract of non mammalian vertebrates. Steroids 2018; 134:1-8. [PMID: 29627338 DOI: 10.1016/j.steroids.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 01/04/2023]
Abstract
Estrogen receptors alpha (ERα) and beta (ERβ) are transcription factors known to be involved in the regulation of many complex physiological processes in mammals. They are expressed primarily in the reproductive tract of all vertebrates females, thus indicating important and conserved functions in female reproductive success. ERs are also present in physiological different tissues as bone, brain, liver, skin and adipose tissues, in both females and males. In the latter, ERs have been found also in the genital tract, supporting the findings of a complex role for estrogen in spermatogenesis and, more generally, in male reproduction. This review provides an overview and update on ERα and ERβ expression and synthesis in male reproductive tract of non-mammalian vertebrates, with focus on their role in germ cells proliferation, maturation and survival. Data from studies on fish, amphibians, reptiles and birds were collated and common or species-specific distribution highlighted. The widespread distribution of estrogen receptors in testicular cells and ducts of all vertebrates so far investigated suggests that whatever are the roles that estrogens may exert on these structures, they are phylogenetically conserved and are possibly related to the physiological support given to achieve male reproductive success.
Collapse
Affiliation(s)
- Mariailaria Verderame
- Department of Biology, University Federico II, Via Mezzocannone 8, 80134 Napoli, Italy.
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Mezzocannone 8, 80134 Napoli, Italy
| |
Collapse
|
18
|
Hadjimarkou MM, Vasudevan N. GPER1/GPR30 in the brain: Crosstalk with classical estrogen receptors and implications for behavior. J Steroid Biochem Mol Biol 2018; 176:57-64. [PMID: 28465157 DOI: 10.1016/j.jsbmb.2017.04.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 12/31/2022]
Abstract
The GPER1/GPR30 is a membrane estrogen receptor (mER) that binds 17β-estradiol (17β-E) with high affinity and is thought to play a role in cancer progression and cardiovascular health. Though widespread in the central nervous system, less is known about this receptor's function in the brain. GPER1 has been shown to activate kinase cascades and calcium flux within cells rapidly, thus fitting in with the idea of being a mER that mediates non-genomic signaling by estrogens. Signaling from GPER1 has been shown to improve spatial memory, possibly via release of neurotransmitters and generation of new spines on neurons in the hippocampus. In addition, GPER1 activation contributes to behaviors that denote anxiety and to social behaviors such as social memory and lordosis behavior in mice. In the male hippocampus, GPER1 activation has also been shown to phosphorylate the classical intracellular estrogen receptor (ER)α, suggesting that crosstalk with ERα is important in the display of these behaviors, many of which are absent in ERα-null mice. In this review, we present a number of categories of such crosstalk, using examples from literature. The function of GPER1 as an ERα collaborator or as a mER in different tissues is relevant to understanding both normal physiology and abnormal pathology, mediated by estrogen signaling.
Collapse
Affiliation(s)
- Maria M Hadjimarkou
- School of Humanities and Social Sciences, University of Nicosia, 1700 Nicosia, Cyprus.
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom RG6 6AS, United Kingdom.
| |
Collapse
|
19
|
Aleck K, Hallman K, Quigley M, Lloyd V, Szmyd M, Ruskin D, Bedgood T, Dinda S. Effects of Atrial Natriuretic Peptide on p53 and Estrogen Receptor in Breast Cancer Cells. Biores Open Access 2017; 6:141-150. [PMID: 29098120 PMCID: PMC5665415 DOI: 10.1089/biores.2017.0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The atrial natriuretic peptide (ANP) hormone is secreted by cardiac atrial myocytes and acts to regulate blood pressure homeostasis in humans. Previous research indicates ANP treatment significantly decreases the proliferation of human prostate cancer cells, pancreatic adenocarcinoma, and breast cancer cells. Minimal studies have been conducted with regard to ANP regulating tumor suppressor genes and steroid hormone receptors in breast cancer cells. Our study analyzed the effects of ANP in combination with 17β-estradiol (E2) and antiestrogen treatments on p53 and ERα levels in T-47D breast cancer cells. Preliminary studies through Western blot analysis showed that ANP treatment decreases p53 and ERα expression levels in a concentration-dependent (10-100 nM) manner. Treatment with ANP alone, at a 100 nM concentration, causes a decrease of p53 and ERα expression compared with Cs (control stripped), but with E2 and antiestrogen combinations, expression of both protein levels decreased compared with treatments without ANP. Combined treatment with E2, an estrogen antagonist, and ANP decreased cellular proliferation compared with treatments without ANP, except in the case of raloxifene (RAL). Our studies indicate that ANP has potential as a therapeutic breast cancer treatment and should inspire further studies on the molecular mechanism of ANP in T-47D breast cancer cells.
Collapse
Affiliation(s)
- Katie Aleck
- Department of Biomedical Diagnostic Therapeutic Sciences, School of Health Sciences, Institute for Stem Cell Research and Center for Biomedical Research, Oakland University, Rochester, Michigan
| | - Kelly Hallman
- Department of Biomedical Diagnostic Therapeutic Sciences, School of Health Sciences, Institute for Stem Cell Research and Center for Biomedical Research, Oakland University, Rochester, Michigan
| | - Meghan Quigley
- Department of Biomedical Diagnostic Therapeutic Sciences, School of Health Sciences, Institute for Stem Cell Research and Center for Biomedical Research, Oakland University, Rochester, Michigan
| | - Victoria Lloyd
- Department of Biomedical Diagnostic Therapeutic Sciences, School of Health Sciences, Institute for Stem Cell Research and Center for Biomedical Research, Oakland University, Rochester, Michigan
| | - Monica Szmyd
- Department of Biomedical Diagnostic Therapeutic Sciences, School of Health Sciences, Institute for Stem Cell Research and Center for Biomedical Research, Oakland University, Rochester, Michigan
| | - Dana Ruskin
- Department of Biomedical Diagnostic Therapeutic Sciences, School of Health Sciences, Institute for Stem Cell Research and Center for Biomedical Research, Oakland University, Rochester, Michigan
| | - Tyler Bedgood
- Department of Biomedical Diagnostic Therapeutic Sciences, School of Health Sciences, Institute for Stem Cell Research and Center for Biomedical Research, Oakland University, Rochester, Michigan
| | - Sumi Dinda
- Department of Biomedical Diagnostic Therapeutic Sciences, School of Health Sciences, Institute for Stem Cell Research and Center for Biomedical Research, Oakland University, Rochester, Michigan
| |
Collapse
|
20
|
Actions of Steroids: New Neurotransmitters. J Neurosci 2017; 36:11449-11458. [PMID: 27911748 DOI: 10.1523/jneurosci.2473-16.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/30/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023] Open
Abstract
Over the past two decades, the classical understanding of steroid action has been updated to include rapid, membrane-initiated, neurotransmitter-like functions. While steroids were known to function on very short time spans to induce physiological and behavioral changes, the mechanisms by which these changes occur are now becoming more clear. In avian systems, rapid estradiol effects can be mediated via local alterations in aromatase activity, which precisely regulates the temporal and spatial availability of estrogens. Acute regulation of brain-derived estrogens has been shown to rapidly affect sensorimotor function and sexual motivation in birds. In rodents, estrogens and progesterone are critical for reproduction, including preovulatory events and female sexual receptivity. Membrane progesterone receptor as well as classical progesterone receptor trafficked to the membrane mediate reproductive-related hypothalamic physiology, via second messenger systems with dopamine-induced cell signals. In addition to these relatively rapid actions, estrogen membrane-initiated signaling elicits changes in morphology. In the arcuate nucleus of the hypothalamus, these changes are needed for lordosis behavior. Recent evidence also demonstrates that membrane glucocorticoid receptor is present in numerous cell types and species, including mammals. Further, membrane glucocorticoid receptor influences glucocorticoid receptor translocation to the nucleus effecting transcriptional activity. The studies presented here underscore the evidence that steroids behave like neurotransmitters to regulate CNS functions. In the future, we hope to fully characterize steroid receptor-specific functions in the brain.
Collapse
|
21
|
Abstract
The hormone estrogen is involved in both female and male reproduction, as well as numerous other biological systems including the neuroendocrine, vascular, skeletal, and immune systems. Therefore, it is also implicated in many different diseases and conditions such as infertility, obesity, osteoporosis, endometriosis, and a variety of cancers. Estrogen works through its two distinct nuclear receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). Various transcriptional regulation mechanisms have been identified as the mode of action for estrogen, mainly the classical mechanism with direct DNA binding but also a nongenomic mode of action and one using tethered or indirect binding. The expression profiles of ERα and ERβ are unique with the primary sites of ERα expression being the uterus and pituitary gland and the main site of ERβ expression being the granulosa cells of the ovary. Mouse models with knockout or mutation of Esr1 and Esr2 have furthered our understanding of the role of each individual receptor plays in physiology. From these studies, it is known that the primary roles for ERα are in the uterus and neuroendocrine system, as female mice lacking ERα are infertile due to impaired ovarian and uterine function, whereas female mice lacking ERβ are subfertile due to ovarian defects. The development of effective therapies for estrogen-related diseases has relied on an understanding of the physiological roles and mechanistic functionalities of ERα and ERβ in human health and disease.
Collapse
Affiliation(s)
- Katherine J Hamilton
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States
| | - Sylvia C Hewitt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States
| | - Yukitomo Arao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States.
| |
Collapse
|
22
|
Madak-Erdogan Z, Kim SH, Gong P, Zhao YC, Zhang H, Chambliss KL, Carlson KE, Mayne CG, Shaul PW, Korach KS, Katzenellenbogen JA, Katzenellenbogen BS. Design of pathway preferential estrogens that provide beneficial metabolic and vascular effects without stimulating reproductive tissues. Sci Signal 2016; 9:ra53. [PMID: 27221711 PMCID: PMC4896643 DOI: 10.1126/scisignal.aad8170] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is great medical need for estrogens with favorable pharmacological profiles that support desirable activities for menopausal women, such as metabolic and vascular protection, but that lack stimulatory activities on the breast and uterus. We report the development of structurally novel estrogens that preferentially activate a subset of estrogen receptor (ER) signaling pathways and result in favorable target tissue-selective activity. Through a process of structural alteration of estrogenic ligands that was designed to preserve their essential chemical and physical features but greatly reduced their binding affinity for ERs, we obtained "pathway preferential estrogens" (PaPEs), which interacted with ERs to activate the extranuclear-initiated signaling pathway preferentially over the nuclear-initiated pathway. PaPEs elicited a pattern of gene regulation and cellular and biological processes that did not stimulate reproductive and mammary tissues or breast cancer cells. However, in ovariectomized mice, PaPEs triggered beneficial responses both in metabolic tissues (adipose tissue and liver) that reduced body weight gain and fat accumulation and in the vasculature that accelerated repair of endothelial damage. This process of designed ligand structure alteration represents a novel approach to develop ligands that shift the balance in ER-mediated extranuclear and nuclear pathways to obtain tissue-selective, non-nuclear PaPEs, which may be beneficial for postmenopausal hormone replacement. The approach may also have broad applicability for other members of the nuclear hormone receptor superfamily.
Collapse
Affiliation(s)
- Zeynep Madak-Erdogan
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ping Gong
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yiru C Zhao
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hui Zhang
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063, USA
| | - Ken L Chambliss
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063, USA
| | - Kathryn E Carlson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher G Mayne
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063, USA
| | - Kenneth S Korach
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
23
|
Madak-Erdogan Z, Gong P, Katzenellenbogen BS. Differential utilization of nuclear and extranuclear receptor signaling pathways in the actions of estrogens, SERMs, and a tissue-selective estrogen complex (TSEC). J Steroid Biochem Mol Biol 2016; 158:198-206. [PMID: 26689478 DOI: 10.1016/j.jsbmb.2015.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 02/07/2023]
Abstract
Estrogens act through nuclear and extranuclear initiated pathways involving estrogen receptors (ERs) to regulate gene expression and activate protein kinases. We investigated the involvement of extracellular signal-regulated kinase2 (ERK2) and ERα in the activities of estradiol (E2), conjugated estrogens (CEs), selective estrogen receptor modulators (SERMs), and a Tissue-Selective Estrogen Complex (TSEC), a combination of a SERM and CE that has a blended activity. We found that CE and individual CE components were generally less effective than E2 in ERK2 recruitment to chromatin binding sites of E2-regulated genes. Likewise, CE was much less agonistic than E2 in stimulation of proliferation of ERα-positive breast cancer cells. The SERM bazedoxifene (BZA) fully suppressed proliferation stimulated by E2 or CE and reversed gene stimulation by CE or E2, as did the antiestrogen Faslodex. Thus, the balance of biological activities mediated through nuclear ERα vs. ERK2-mediated activities is different for CE vs. E2, with CE showing lower stimulation of kinase activity. Furthermore, at the BZA to CE concentrations in TSEC, BZA antagonized CE stimulation of gene expression and proliferation programs in ERα-positive breast cancer cells. The studies provide molecular underpinnings of the different ways in which SERMs and estrogens support or antagonize one another in regulating the chromatin binding of ERα and ERK2, and modulating gene and cell activities. They illuminate how the combined actions of two classes of ER ligands (SERM and CE, present in TSEC) can achieve unique modes of regulation and efficacy.
Collapse
Affiliation(s)
- Zeynep Madak-Erdogan
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801, United States
| | - Ping Gong
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801, United States
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801, United States.
| |
Collapse
|
24
|
Abstract
The estrogen receptors, ERα, ERβ, and GPER, mediate the effects of estrogenic compounds on their target tissues. Estrogen receptors are located in the tissues of the female reproductive tract and breast as one would expect, but also in tissues as diverse as bone, brain, liver, colon, skin, and salivary gland. The purpose of this discussion of the estrogen receptors is to provide a brief overview of the estrogen receptors and estrogen action from perspectives such as the historical, physiological, pharmacological, pathological, structural, and ligand perspectives.
Collapse
Affiliation(s)
- Kathleen M Eyster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA.
| |
Collapse
|
25
|
Clark S, Pollard K, Rainville J, Vasudevan N. Detection of the Phosphorylation of the Estrogen Receptor α as an Outcome of GPR30 Activation. Methods Mol Biol 2016; 1366:457-470. [PMID: 26585157 DOI: 10.1007/978-1-4939-3127-9_36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phosphorylation of the serine residues in estrogen receptor (ER) α is important in transcriptional activation. Hence, methods to detect such posttranslational modification events are valuable. We describe, in detail, the analysis of the phosphorylated ERα by electrophoretic separation of proteins and subsequent immuno-blotting techniques. In particular, phosphorylation of the ERα is one possible outcome of activation of the putative membrane estrogen receptor (mER), GPR30. Hence, phosphorylation represents a cross talk event between GPR30 and ERα and may be important in estrogen-regulated physiology.
Collapse
Affiliation(s)
- Sara Clark
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA, 70118, USA
| | - Kevin Pollard
- The Neuroscience Program, Tulane University, New Orleans, LA, 70118, USA
| | - Jennifer Rainville
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA, 70118, USA
| | - Nandini Vasudevan
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA, 70118, USA.
- The Neuroscience Program, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
26
|
Gray NE, Zweig JA, Kawamoto C, Quinn JF, Copenhaver PF. STX, a Novel Membrane Estrogen Receptor Ligand, Protects Against Amyloid-β Toxicity. J Alzheimers Dis 2016; 51:391-403. [PMID: 26890746 PMCID: PMC4961356 DOI: 10.3233/jad-150756] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Because STX is a selective ligand for membrane estrogen receptors, it may be able to confer the beneficial effects of estrogen without eliciting the deleterious side effects associated with activation of the nuclear estrogen receptors. This study evaluates the neuroprotective properties of STX in the context of amyloid-β (Aβ) exposure. MC65 and SH-SY5Y neuroblastoma cell lines, as well as primary hippocampal neurons from wild type (WT) and Tg2576 mice, were used to investigate the ability of STX to attenuate cell death, mitochondrial dysfunction, dendritic simplification, and synaptic loss induced by Aβ. STX prevented Aβ-induced cell death in both neuroblastoma cell lines; it also normalized the decrease in ATP and mitochondrial gene expression caused by Aβ in these cells. Notably, STX also increased ATP content and mitochondrial gene expression in control neuroblastoma cells (in the absence of Aβ). Likewise in primary neurons, STX increased ATP levels and mitochondrial gene expression in both genotypes. In addition, STX treatment enhanced dendritic arborization and spine densities in WT neurons and prevented the diminished outgrowth of dendrites caused by Aβ exposure in Tg2576 neurons. These data suggest that STX can act as an effective neuroprotective agent in the context of Aβ toxicity, improving mitochondrial function as well as dendritic growth and synaptic differentiation. In addition, since STX also improved these endpoints in the absence of Aβ, this compound may have broader therapeutic value beyond Alzheimer's disease.
Collapse
Affiliation(s)
- Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA 97239
| | - Jonathan A. Zweig
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA 97239
| | - Colleen Kawamoto
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA 97239
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA 97239
- Department of Neurology and Parkinson’s Disease Research Education and Clinical Care Center (PADRECC), Portland Veterans Affairs Medical Center, Portland, OR, USA 97239
| | - Philip F. Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA 97239
| |
Collapse
|
27
|
Yin JJ, Shumyak SP, Burgess C, Zhou ZW, He ZX, Zhang XJ, Pan ST, Yang TX, Duan W, Qiu JX, Zhou SF. Controllable drug uptake and nongenomic response through estrogen-anchored cyclodextrin drug complex. Int J Nanomedicine 2015; 10:4717-30. [PMID: 26251594 PMCID: PMC4524457 DOI: 10.2147/ijn.s82255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Breast cancer is a leading killer of women worldwide. Cyclodextrin-based estrogen receptor-targeting drug-delivery systems represent a promising direction in cancer therapy but have rarely been investigated. To seek new targeting therapies for membrane estrogen receptor-positive breast cancer, an estrogen-anchored cyclodextrin encapsulating a doxorubicin derivative Ada-DOX (CDE1-Ada-DOX) has been synthesized and evaluated in human breast cancer MCF-7 cells. First, we synthesized estrone-conjugated cyclodextrin (CDE1), which formed the complex CDE1-Ada-DOX via molecular recognition with the derivative adamantane-doxorubicin (Ada-DOX) (Kd =1,617 M−1). The structure of the targeting vector CDE1 was fully characterized using 1H- and 13C-nuclear magnetic resonance, mass spectrometry, and electron microscopy. CDE1-Ada-DOX showed two-phase drug-release kinetics with much slower release than Ada-DOX. The fluorescence polarization analysis reveals that CDE1-Ada-DOX binds to recombinant human estrogen receptor α fragments with a Kd of 0.027 µM. Competition assay of the drug complex with estrogen ligands demonstrated that estrone and tamoxifen competed with CDE1-Ada-DOX for membrane estrogen receptor binding in MCF-7 cells. Intermolecular self-assembly of CDE1 molecules were observed, showing tail-in-bucket and wire-like structures confirmed by transmission electronic microscopy. CDE1-Ada-DOX had an unexpected lower drug uptake (when the host–guest ratio was >1) than non-targeting drugs in MCF-7 cells due to ensconced ligands in cyclodextrins cavities resulting from the intermolecular self-assembly. The uptake of CDE1-Ada-DOX was significantly increased when the host–guest ratio was adjusted to be less than half at the concentration of CDE1 over 5 µM due to the release of the estrone residues. CDE1 elicited rapid activation of mitogen-activated protein kinases (p44/42 MAPK, Erk1/2) in minutes through phosphorylation of Thr202/Tyr204 in MCF-7 cells. These results demonstrate a targeted therapeutics delivery of CDE1-Ada-DOX to breast cancer cells in a controlled manner and that the drug vector CDE1 can potentially be employed as a molecular tool to differentiate nongenomic from genomic mechanism.
Collapse
Affiliation(s)
- Juan-Juan Yin
- Xiaolan People's Hospital, Southern Medical University, Zhongshan, Guangdong, People's Republic of China ; Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Stepan P Shumyak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Christopher Burgess
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang, Guizhou
| | - Xue-Ji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing
| | - Shu-Ting Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Tian-Xin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
28
|
Colciago A, Casati L, Negri-Cesi P, Celotti F. Learning and memory: Steroids and epigenetics. J Steroid Biochem Mol Biol 2015; 150:64-85. [PMID: 25766520 DOI: 10.1016/j.jsbmb.2015.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/19/2022]
Abstract
Memory formation and utilization is a complex process involving several brain structures in conjunction as the hippocampus, the amygdala and the adjacent cortical areas, usually defined as medial temporal lobe structures (MTL). The memory processes depend on the formation and modulation of synaptic connectivity affecting synaptic strength, synaptic plasticity and synaptic consolidation. The basic neurocognitive mechanisms of learning and memory are shortly recalled in the initial section of this paper. The effect of sex hormones (estrogens, androgens and progesterone) and of adrenocortical steroids on several aspects of memory processes are then analyzed on the basis of animal and human studies. A specific attention has been devoted to the different types of steroid receptors (membrane or nuclear) involved and on local metabolic transformations when required. The review is concluded by a short excursus on the steroid activated epigenetic mechanisms involved in memory formation.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
| | - Paola Negri-Cesi
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Celotti
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
29
|
Chen S, Pu L, Xie F, Zou Z, Jiang Y, Han K, Wang Y, Zhang Z. Differential expression of three estrogen receptors mRNAs in tissues, growth development, embryogenesis and gametogenesis from large yellow croaker, Larimichthys crocea. Gen Comp Endocrinol 2015; 216:134-51. [PMID: 25863348 DOI: 10.1016/j.ygcen.2015.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/16/2015] [Accepted: 04/05/2015] [Indexed: 11/30/2022]
Abstract
The biological activity of estrogens in target organs is mainly mediated by estrogen receptors (ERs). Herein, we addressed the isolation and expression analysis of three nuclear estrogen receptors, namely LcERα, LcERβ1, and LcERβ2 from Larimichthys crocea by means of SMART-RACE, qRT-PCR, and in situ hybridization. Results in different tissues showed that both LcERα and LcERβ2 had the highest expression levels in female liver, followed by testis, but LcERβ1 expression level was significantly higher in testis and ovary than in other tissues. Expression of LcERα and LcERβ2 was significantly higher than LcERβ1 in female liver, and LcERβ2 was significantly higher than LcERα and LcERβ1 in male liver. Moreover, we analyzed the expression of LcERs in gonad and liver at three different growth stages during the same breeding season. Significant up-regulated expression of LcERα and LcERβ2 were found in female liver at 1000dph compared with at 270dph. The expression of LcERβ2 was prominently higher in male liver than LcERα, LcERβ1 and LcAR, while LcERβ1 was lower than other receptors in male and female liver at all the three stages. In ovary, LcERα at 270dph was lower than at 635dph and 1000dph, but had no significant change in testis. The two LcERβ subtypes and LcAR highly expressed in the early testis, and gradually decrease with the development of testis. In embryogenesis, a significant increase in the expression of LcERα and LcERβ2 were observed after appearance of optic vesicles phase (11.8hpf). LcERβ1 gradually decrease with the embryogenesis but increased dramatically at 1dph. Results of in situ hybridization showed that signals of LcERα and LcERβ1 mRNA were mainly detected in Stage I-Stage IV oocytes, as well as in follicle cells around the Stage II-Stage IV and degenerated oocytes. Signals of LcERβ2 were detected in the cytoplasm of Stage I and Stage II oocytes but not in the follicle cells of all oocytes stages. In parallel, LcERα and LcERβ1 were detected in all cell types of spermatogenesis, but in terms of LcERβ2, little or no signals were detected during spermatogenesis. Based on these results, we deduced that both LcERα and LcERβ2 play a major role in mediating the physiological effects of estrogen in female liver, and LcERβ2 maybe also play an important role in regulation of vitellogenesis in male liver. Differential expression of LcERs and LcAR imply their physiological functions during development and differentiation of gonad. The signals for LcERα and LcERβ1 in follicle cells suggested that the follicle cell maybe an important site of estrogen action, by which estrogens exert influences on the maturation oocytes and ovulation. Furthermore, the steroid hormones produced by follicle cells may be related to the differential distributions among ER subtypes. Besides, we deduced that LcERα and LcERβ1 rather than LcERβ2 may play a major role in spermatogenesis of croaker. However, the differential expression of LcERβ2 during gametogenesis also implicates its certain functions in mediating physiological process of estrogen action.
Collapse
Affiliation(s)
- Shihai Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Lulu Pu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Fangjing Xie
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Zhihua Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kunhuang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Large Yellow Croaker, Ningde Fufa Fisheries Company Limited, Ningde 352103, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ziping Zhang
- Department of Natural Sciences and Mathematics, State University of New York at Cobleskill, NY 12043, United States.
| |
Collapse
|
30
|
Rainville J, Pollard K, Vasudevan N. Membrane-initiated non-genomic signaling by estrogens in the hypothalamus: cross-talk with glucocorticoids with implications for behavior. Front Endocrinol (Lausanne) 2015; 6:18. [PMID: 25762980 PMCID: PMC4329805 DOI: 10.3389/fendo.2015.00018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/30/2015] [Indexed: 12/12/2022] Open
Abstract
The estrogen receptor and glucocorticoid receptor are members of the nuclear receptor superfamily that can signal using both non-genomic and genomic transcriptional modes. Though genomic modes of signaling have been well characterized and several behaviors attributed to this signaling mechanism, the physiological significance of non-genomic modes of signaling has not been well understood. This has partly been due to the controversy regarding the identity of the membrane ER (mER) or membrane GR (mGR) that may mediate rapid, non-genomic signaling and the downstream signaling cascades that may result as a consequence of steroid ligands binding the mER or the mGR. Both estrogens and glucocorticoids exert a number of actions on the hypothalamus, including feedback. This review focuses on the various candidates for the mER or mGR in the hypothalamus and the contribution of non-genomic signaling to classical hypothalamically driven behaviors and changes in neuronal morphology. It also attempts to categorize some of the possible functions of non-genomic signaling at both the cellular level and at the organismal level that are relevant for behavior, including some behaviors that are regulated by both estrogens and glucocorticoids in a potentially synergistic manner. Lastly, it attempts to show that steroid signaling via non-genomic modes may provide the organism with rapid behavioral responses to stimuli.
Collapse
Affiliation(s)
- Jennifer Rainville
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Kevin Pollard
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Nandini Vasudevan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
- *Correspondence: Nandini Vasudevan, Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA 70118, USA e-mail:
| |
Collapse
|
31
|
Abstract
Estradiol effects on memory depend on hormone levels and the interaction of different estrogen receptors within neural circuits. Estradiol induces gene transcription and rapid membrane signaling mediated by estrogen receptor-alpha (ERα), estrogen receptor-beta (ERβ), and a recently characterized G-protein coupled estrogen receptor, each with distinct distributions and ability to influence estradiol-dependent signaling. Investigations using receptor specific agonists suggest that all three receptors rapidly activate kinase-signaling and have complex dose-dependent influences on memory. Research employing receptor knockout mice demonstrate that ERα maintains transcription and memory as estradiol levels decline. This work indicates a regulatory role of ERβ in transcription and cognition, which depends on estradiol levels and the function of ERα. The regulatory role of ERβ is due in part to ERβ acting as a negative regulator of ERα-mediated transcription. Vector-mediated expression of estrogen receptors in the hippocampus provides an innovative research approach and suggests that memory depends on the relative expression of ERα and ERβ interacting with estradiol levels. Notably, the ability of estradiol to improve cognition declines with advanced age along with decreased expression of estrogen receptors. Thus, it will be important for future research to determine the mechanisms that regulate estrogen receptor expression during aging.
Collapse
Affiliation(s)
- Linda A Bean
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lara Ianov
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA Genetics and Genomics Program, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA Genetics and Genomics Program, Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|