1
|
Santos-Sánchez G, Cruz-Chamorro I. Plant-derived bioactive peptides and protein hydrolysates for managing MAFLD: A systematic review of in vivo effects. Food Chem 2025; 481:143956. [PMID: 40147387 DOI: 10.1016/j.foodchem.2025.143956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a growing health concern worldwide. Among the pursuit of therapeutic interventions, interest in natural bioactive compounds has intensified because of their potential hepatoprotective effects. This systematic review aims to evaluate the impact of plant-derived hydrolysates and peptides on MAFLD through the current literatures, encompassing their mechanisms of action. Key outcomes evaluated included changes in liver enzymes, liver lipid content, inflammation markers, and histopathological improvements. Preliminary findings suggest a potential beneficial effect of plant-derived hydrolysates and peptides on the improvement of MAFLD-related parameters, with mechanisms implicating antioxidant, anti-inflammatory, and lipid-lowering properties. This review highlights emerging evidence supporting the potential therapeutic role of plant-derived hydrolysates and peptides in the management of MAFLD. However, more well-designed clinical trials with larger sample sizes and longer durations are warranted to elucidate their efficacy, optimal dose, and long-term safety.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), 28049 Madrid, Spain.
| | - Ivan Cruz-Chamorro
- Facultad de Enfermería, Universidad de Castilla-La Mancha, 02071 Albacete, Spain.
| |
Collapse
|
2
|
Gu Q, Wang L, Xu M, Zhou W, Liu G, Tian H, Efferth T, Wang C, Fu Y. The natural dihydrochalcone phloretin reduces lipid accumulation via downregulation of IIS and sbp-1/ SREBP pathways in HepG2 cells and Caenorhabditis elegans. Food Funct 2025. [PMID: 40326995 DOI: 10.1039/d5fo01105a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Phloretin, a natural dihydrochalcone, exhibits significant potential in modulating lipid metabolism both in vitro and in vivo. This study investigated the effects of phloretin on lipid accumulation in HepG2 cells and Caenorhabditis elegans. In HepG2 cells, phloretin reduced lipid accumulation, ROS levels, and lipid peroxidation while ameliorating mitochondrial dysfunction. It downregulated lipid synthesis genes (SREBP, FASN) and upregulated PI3K-AKT pathway genes (AKT, FOXO, MTOR). In C. elegans, phloretin alleviated lipid accumulation-induced growth and locomotor impairments, reduced lipofuscin, ROS, glucose, and triglyceride levels, and modulated amino acid and lipid metabolism pathways. Gene expression analysis revealed downregulation of sbp-1, mdt-15, fat-5, fat-6, and fat-7, and upregulation of daf-16, age-1, and skn-1. Mutant studies confirmed that phloretin's lipid-lowering effects were mediated through the IIS and sbp-1/SREBP pathways. These findings suggest phloretin is a promising candidate for regulating lipid metabolism and preventing hyperlipidemia.
Collapse
Affiliation(s)
- Qi Gu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Litao Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Mingyue Xu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Wanmei Zhou
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Guosheng Liu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Haiting Tian
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Chenlu Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
- Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China
| |
Collapse
|
3
|
Leonardo J, Hertanto R, Surya R, Syahputra RA, Humayrah W, Sabrina N, Taslim NA, Tallei TE, Tjandrawinata RR, Nurkolis F. Delites™ supplementation prevents metabolic syndrome onset and modulates gut microbiome in male Sprague Dawley rats fed on cholesterol- and fat-enriched diet: a randomized preclinical trial study. Front Nutr 2025; 12:1571473. [PMID: 40331097 PMCID: PMC12052560 DOI: 10.3389/fnut.2025.1571473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Background Metabolic syndrome (MetS) is a global health concern, characterized by a combination of dyslipidemia, insulin resistance, obesity, and hypertension, significantly increasing the risk of type 2 diabetes mellitus (T2DM) and cardiovascular diseases. Gut microbiota plays a pivotal role in MetS pathophysiology, with dysbiosis exacerbating metabolic impairments. Delites™, a supplement inspired by Traditional Chinese Medicine, has shown potential in modulating gut microbiota and mitigating MetS. Objectives This study aimed to evaluate the effects of Delites™ supplementation on metabolic health and gut microbiota composition in male Sprague Dawley rats fed a cholesterol- and fat-enriched diet (CFED). Methods A randomized preclinical trial was conducted on 32 rats divided into four groups: control-normal, CFED, CFED+low-dose Delites™ (54 mg/kg), and CFED+high-dose Delites™ (108 mg/kg). Parameters including lipid profiles, enzymatic activity, molecular biomarkers, and gut microbiota composition were analyzed. Results Delites™ significantly improved lipid profiles, reduced inflammation (TNF-α), enhanced anti-inflammatory markers (IL-10), and increased energy metabolism regulator PGC-1α. Gut microbiota modulation showed increased beneficial genera (Bifidobacterium, Lactobacillus) and reduced pathogenic Proteus, improving microbial diversity. Conclusion Delites™ supplementation effectively mitigates MetS through metabolic and microbiota modulation. These findings highlight its potential for precision medicine approaches to combat metabolic disorders. Further research is needed to explore its long-term effects and translational relevance in humans.
Collapse
Affiliation(s)
| | - Robby Hertanto
- Increase Laboratorium Indonesia, Biomedical Campus BSD City, Tangerang, Banten, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, University of North Sumatra, Medan, Indonesia
| | - Wardina Humayrah
- Nutrition Study Program, Faculty of Food Technology and Health, Sahid University, Jakarta, Indonesia
| | - Nindy Sabrina
- Nutrition Study Program, Faculty of Food Technology and Health, Sahid University, Jakarta, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Raymond Rubianto Tjandrawinata
- Faculty of Biotechnology, Center for Pharmaceutical and Nutraceutical Research and Policy, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Fahrul Nurkolis
- State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
- Master of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Medical Research Center of Indonesia, Surabaya, East Java, Indonesia
| |
Collapse
|
4
|
Kong F, Lei L, Cai L, Li J, Zhao C, Liu M, Qi D, Gao J, Li E, Gao W, Du X, Song Y, Liu G, Li X. Hypoxia-inducible factor 2α mediates nonesterified fatty acids and hypoxia-induced lipid accumulation in bovine hepatocytes. J Dairy Sci 2025; 108:4062-4078. [PMID: 39890076 DOI: 10.3168/jds.2024-25839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/23/2024] [Indexed: 02/03/2025]
Abstract
Ketosis is a metabolic disorder frequently occurring in the perinatal period, characterized by elevated circulating concentrations of nonesterified fatty acids (NEFA) due to negative energy balance, resulting in fatty liver in dairy cows. However, the mechanism of hepatic steatosis induced by high concentrations of NEFA in ketosis remains unclear. Hypoxia-inducible factor 2α (HIF-2α), which mediates adaptation to hypoxic stress, plays a critical role in regulating lipid metabolism. In this study, we investigate whether HIF-2α is involved in NEFA-driven hepatic lipid accumulation in dairy cows with ketosis. Liver and blood samples were collected from 10 healthy cows (blood BHB concentration <1.2 mM) and 10 ketotic cows (blood BHB concentration >3.0 mM with clinical symptoms) with similar lactation numbers (median = 3, range = 2-4) at 3 to 9 DIM (median = 6). In cows with ketosis, serum concentrations of NEFA and BHB were greater, but serum concentrations of glucose were lower. Moreover, hepatic triglyceride content increased significantly. In the liver of ketotic cows, which was accompanied by upregulated HIF-2α expression. To determine the potential association among hypoxia, HIF-2α, and the formation of hepatocellular steatosis in vitro, we isolated hepatocytes from healthy calves for the following experiments. First, hepatocytes were treated with 0, 0.6, 1.2, or 2.4 mM NEFA (52.7 mM stock NEFA solution was diluted in RPMI-1640 basic medium supplemented with 2% fatty acid-free BSA to achieve the specified concentrations) for 18 h, showing that HIF-2α expression and cellular hypoxia occurred in a dose-dependent manner. Next, hepatocytes were infected with HIF-2α (encoded by EPAS1) small interfering RNA (Si-HIF-2α) for 48 h and then treated with 1.2 mM NEFA for 18 h. Results indicated that silencing HIF-2α decreased NEFA-induced lipid accumulation in bovine hepatocytes. Subsequently, hepatocytes treated with or without NEFA were placed in an AnaeroPack System, mimicking a hypoxic condition, for 0, 12, 18, or 24 h. Results showed that hypoxia could induce and further exacerbate lipid accumulation in bovine hepatocytes. Meanwhile, normal or NEFA-treated hepatocytes were cocultured with or without PT2385, a specific HIF-2α inhibitor, showing that hypoxia promoted steatosis through HIF-2α. Activating transcription factor 4 (ATF4) is an endoplasmic reticulum (ER) stress and hypoxia-inducible transcription factor. Here, bovine hepatocytes were treated with NEFA or hypoxia following transfecting ATF4 small interfering RNA, which demonstrated that ATF4 knockdown alleviated the extent of lipid accumulation in bovine hepatocytes. In addition, we found that ATF4 expression was correlated with HIF-2α levels in both liver tissue and cultured hepatocyte models. Moreover, overexpression of ATF4 weakened the beneficial effects of HIF-2α inhibition. Overall, these data suggest that NEFA-induced hepatic hypoxia significantly contributes to the progression of hepatic steatosis which in turn, intensifies hypoxia and leads to a self-perpetuating cycle of reciprocal causation, further exacerbating hepatic lipid deposition. Additionally, accumulated HIF-2α plays a critical role in this complex-origin steatosis, potentially through ATF4.
Collapse
Affiliation(s)
- Fanrong Kong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Cai
- College of Food and Biology of Changchun Polytechnic, Changchun 130062, China
| | - Jinxia Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chenchen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Menglin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dandan Qi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jie Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Enzhu Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Zhao L, Peng Y, Huang J, Liu N, Zou X, Li J, Fan Y, Li P, Tang L, Wang J, Zeng Y, Wu Y, Zhu G. Structural characterization of polysaccharides from Polygonatum Sibiricum and effect on alleviating hyperlipidemia in egg yolk emulsion-induced mice. Int J Biol Macromol 2025; 296:139808. [PMID: 39805457 DOI: 10.1016/j.ijbiomac.2025.139808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/18/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Polysaccharides are the major bioactive composition of Polygonatum sibiricum (P. sibiricum). However, the structural and functional identifications of these polysaccharides were still limited. Herein, we isolated a novel P. sibiricum polysaccharides (PSPF) and explored its potential function and mechanism in alleviating hyperlipidemia. PSPF were purified by diethylaminoethyl-sepharose fast flow (DEAE-Sepharose FF) and cross-linked dextran gel LH-20 (Sephadex LH-20) column chromatography, and identified by gel-permeation chromatography, methylation analysis, fourier transform infrared spectrometer (FT-IR), nuclear magnetic resonance (NMR), and gas chromatography-mass spectrometry (GC-MS). Their molecular weight (Mw), polysaccharide composition, and chemical structure were characterized. Furthermore, egg yolk emulsion-induced acute hyperlipidemia mouse model was constructed to evaluate the lipid-lowering efficacy and the underlying mechanism of PSPF. It was found that PSPF, with the Mw of 3592 Da, were prepared and mainly consisted of fructan with →1)-β-D-Fruf-(2 → main chain and →6)-β-D-Fruf-(2 → side chains. In addition, PSPF supplements efficiently reduced liver lipid accumulation, alleviated hepatocyte steatosis, and upregulated the AMP-activated protein kinase (AMPK) pathway, thereby enhancing fatty acid oxidation and decomposition. These results indicate that PSPF may serve as the potential dietary supplements for lipid reduction.
Collapse
Affiliation(s)
- Lulu Zhao
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yongbo Peng
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Huang
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Nishang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xinrong Zou
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Junnan Li
- Department of Hematology, Department of Anesthesiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yunpeng Fan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ping Li
- Department of Hematology, Department of Anesthesiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Liling Tang
- Department of Clinical Pharmacy, The Third Hospital of Mianyang and Sichuan Mental Health Center, Mianyang 621000, China
| | - Jisheng Wang
- Department of Clinical Pharmacy, The Third Hospital of Mianyang and Sichuan Mental Health Center, Mianyang 621000, China
| | - Yajun Zeng
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Gaohui Zhu
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| |
Collapse
|
6
|
Smith K, Dennis KMJH, Hodson L. The ins and outs of liver fat metabolism: The effect of phenotype and diet on risk of intrahepatic triglyceride accumulation. Exp Physiol 2025. [PMID: 39861959 DOI: 10.1113/ep092001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/22/2024] [Indexed: 01/27/2025]
Abstract
In health, the liver is a metabolically flexible organ that plays a key role in regulating systemic lipid and glucose concentrations. There is a constant flux of fatty acids (FAs) to the liver from multiple sources, including adipose tissue, dietary, endogenously synthesized from non-lipid precursors, intrahepatic lipid droplets and recycling of triglyceride-rich remnants. Within the liver, FAs are used for triglyceride synthesis, which can be oxidized, stored or secreted in very low-density lipoproteins into the systemic circulation. The processes of FA uptake, FA synthesis and the intracellular partitioning of FAs into storage, oxidation or secretory pathways are tightly regulated. An imbalance in these processes causes intrahepatic triglyceride to accumulate and is associated with the development of metabolic dysfunction-associated steatotic liver disease. It is well appreciated that many factors can influence intrahepatic FA partitioning, and although there is good evidence that both phenotype (e.g., sex, ethnicity and adiposity) and dietary macronutrient composition can play a role in intrahepatic triglyceride accumulation, their interaction remains poorly understood. The aim of this review is to explore how the respective pathways of FA delivery, synthesis and disposal are altered by phenotype and understand how dietary macronutrient composition might influence the partitioning of FAs in the liver in vivo, in humans.
Collapse
Affiliation(s)
- Kieran Smith
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Kaitlyn M J H Dennis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|
7
|
Wu Y, Ren L, Mao C, Shen Z, Zhu W, Su Z, Lin X, Lin X. Small hepatitis B virus surface antigen (SHBs) induces dyslipidemia by suppressing apolipoprotein-AII expression through ER stress-mediated modulation of HNF4α and C/EBPγ. J Virol 2024; 98:e0123924. [PMID: 39470210 PMCID: PMC11575332 DOI: 10.1128/jvi.01239-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Persistent infection with hepatitis B virus (HBV) often leads to disruptions in lipid metabolism. Apolipoprotein AII (apoAII) plays a crucial role in lipid metabolism and is implicated in various metabolic disorders. However, whether HBV could regulate apoAII and contribute to HBV-related dyslipidemia and the underlying mechanism remain unclear. This study revealed significant reductions in apoAII expression in HBV-expressing cell lines, the serum, and liver tissues of HBV-transgenic mice. The impact of HBV on apoAII is related to small hepatitis B virus surface antigen (SHBs). Overexpression of SHBs decreased apoAII levels in SHBs-expressing hepatoma cells, transgenic mice, and the serum of HBV-infected patients, whereas suppression of SHBs increased apoAII expression. Mechanistic investigations demonstrated that SHBs repressed the apoAII promoter activity through a HNF4α- and C/EBPγ-dependent manner; SHBs simultaneously upregulated C/EBPγ and downregulated HNF4α by inhibiting the PI3K/AKT signaling pathway through activating endoplasmic reticulum (ER) stress. Serum lipid profile assessments revealed notable decreases in high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), and triglycerides (TG) in SHBs-transgenic mice compared to control mice. However, concurrent overexpression of apoAII in these mice effectively counteracted these reductions in lipid levels. In HBV patients, SHBs levels were negatively correlated with serum levels of HDL-C, LDL-C, TC, and TG, whereas apoAII levels positively correlated with lipid content. This study underscores that SHBs contributes to dyslipidemia by suppressing the PI3K/AKT pathway via inducing ER stress, leading to altered expression of HNF4α and C/EBPγ, and subsequently reducing apoAII expression.IMPORTANCEThe significance of this study lies in its comprehensive examination of how the hepatitis B virus (HBV), specifically through its small hepatitis B virus surface antigen (SHBs), impacts lipid metabolism-a key aspect often disrupted by chronic HBV infection. By elucidating the role of SHBs in regulating apolipoprotein AII (apoAII), a critical player in lipid processes and associated metabolic disorders, this research provides insights into the molecular pathways contributing to HBV-related dyslipidemia. Discovering that SHBs downregulates apoAII through mechanisms involving the repression of the apoAII promoter via HNF4α and C/EBPγ, and the modulation of the PI3K/AKT signaling pathway via endoplasmic reticulum (ER) stress, adds critical knowledge to HBV pathogenesis. The research also shows an inverse correlation between SHBs expression and key lipid markers in HBV-infected individuals, suggesting that apoAII overexpression could counteract the lipid-altering effects of SHBs, offering new avenues for understanding and managing the metabolic implications of HBV infection.
Collapse
Affiliation(s)
- Yunli Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Lan Ren
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Chenglei Mao
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhiqing Shen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Wenyu Zhu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhijun Su
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Huang XX, Li L, Jiang RH, Yu JB, Sun YQ, Shan J, Yang J, Ji J, Cheng SQ, Dong YF, Zhang XY, Shi HB, Liu S, Sun XL. Lipidomic analysis identifies long-chain acylcarnitine as a target for ischemic stroke. J Adv Res 2024; 61:133-149. [PMID: 37572732 PMCID: PMC11258661 DOI: 10.1016/j.jare.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/09/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
INTRODUCTION Lipid metabolism dysfunction is widely involved in the pathological process of acute ischemic stroke (AIS). The coordination of lipid metabolism between neurons and astrocytes is of great significance. However, the full scope of lipid dynamic changes and the function of key lipids during AIS remain unknown. Hence, identifying lipid alterations and characterizing their key roles in AIS is of great importance. METHODS Untargeted and targeted lipidomic analyses were applied to profile lipid changes in the ischemic penumbra and peripheral blood of transient middle cerebral artery occlusion (tMCAO) mice as well as the peripheral blood of AIS patients. Infarct volume and neurological deficits were assessed after tMCAO. The cell viability and dendritic complexity of primary neurons were evaluated by CCK8 assay and Sholl analysis. Seahorse, MitoTracker Green, tetramethyl rhodamine methyl ester (TMRM), 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and MitoSOX were used as markers of mitochondrial health. Fluorescent and isotopic free fatty acid (FFA) pulse-chase assays were used to track FFA flux in astrocytes. RESULTS Long-chain acylcarnitines (LCACs) were the lipids with the most dramatic changes in the ischemic penumbra and peripheral blood of tMCAO mice. LCACs were significantly elevated on admission in AIS patients and associated with poor outcomes in AIS patients. Increasing LCACs through a bolus administration of palmitoylcarnitine amplified stroke injury, while decreasing LCACs by overexpressing carnitine palmitoyltransferase 2 (CPT2) ameliorated stroke injury. Palmitoylcarnitine aggravated astrocytic mitochondrial damage after OGD/R, while CPT2 overexpression in astrocytes ameliorated cocultured neuron viability. Further study revealed that astrocytes stimulated by OGD/R liberated FFAs from lipid droplets into mitochondria to form LCACs, resulting in mitochondrial damage and lowered astrocytic metabolic support and thereby aggravated neuronal damage. CONCLUSION LCACs could accumulate and damage neurons by inducing astrocytic mitochondrial dysfunction in AIS. LCACs play a crucial role in the pathology of AIS and are novel promising diagnostic and prognostic biomarkers for AIS.
Collapse
Affiliation(s)
- Xin-Xin Huang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lei Li
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Run-Hao Jiang
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Bing Yu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yu-Qin Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Jinjun Shan
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Yang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Shu-Qi Cheng
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yin-Feng Dong
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi-Yue Zhang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Hai-Bin Shi
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
9
|
Yang Z, Lu Y, Li T, Zhou X, Yang J, Yang S, Bu S, Duan Y. Osmanthus fragrans Flavonoid Extract Inhibits Adipogenesis and Induces Beiging in 3T3-L1 Adipocytes. Foods 2024; 13:1894. [PMID: 38928836 PMCID: PMC11202805 DOI: 10.3390/foods13121894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Osmanthus fragrans has a long history of cultivation in Asia and is widely used in food production for its unique aroma, which has important cultural and economic values. It is rich in flavonoids with diverse pharmacological properties, such as antioxidant, anti-tumor, and anti-lipid activities. However, little is known regarding the effects of Osmanthus fragrans flavonoid extract (OFFE) on adipogenesis and pre-adipocyte transdifferentiation. Herein, this research aimed to investigate the effect of OFFE on the differentiation, adipogenesis, and beiging of 3T3-L1 adipocytes and to elucidate the underlying mechanism. Results showed that OFFE inhibited adipogenesis, reduced intracellular reactive oxygen species levels in mature adipocytes, and promoted mitochondrial biogenesis as well as beiging/browning in 3T3-L1 adipocytes. This effect was accompanied by increased mRNA and protein levels of the brown adipose-specific marker gene Pgc-1a, and the upregulation of the expression of UCP1, Cox7A1, and Cox8B. Moreover, the research observed a dose-dependent reduction in the mRNA expression of adipogenic genes (C/EBPα, GLUT-4, SREBP-1C, and FASN) with increasing concentrations of OFFE. Additionally, OFFE activated the AMPK signaling pathway to inhibit adipogenesis. These findings elucidate that OFFE has an inhibitory effect on adipogenesis and promotes browning in 3T3-L1 adipocytes, which lays the foundation for further investigation of the lipid-lowering mechanism of OFFE in vivo in the future.
Collapse
Affiliation(s)
- Zhiying Yang
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
| | - Yuxin Lu
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineer, Nanjing Forestry University, Nanjing 210037, China;
| | - Xunyong Zhou
- HC Enzyme (Shenzhen) Biotech. Co., Ltd., Shenzhen 518112, China;
| | - Jia Yang
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
| | - Shuwen Yang
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
| | - Su Bu
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
| | - Yifan Duan
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
- International Cultivar Registration Center for Osmanthus, Nanjing 210037, China
| |
Collapse
|
10
|
Zhi N, Chang X, Wang X, Zhang X, Wang J, Zha L, Gui S. Screening of Platycodonis Radix Fractions for Antiobesity Activities and Elucidation of Its Molecular Mechanisms in High-Fat Diet-Fed C57BL/6 Mice. J Med Food 2024; 27:477-487. [PMID: 38498802 DOI: 10.1089/jmf.2023.k.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Obesity is a threat to public health and effective new medications are required. Platycodonis Radix (PR) is a traditional medicinal/dietary plant with activities against obesity. Using mice given a diet rich in fat, the antiobesity components of PR were identified and their molecular mechanisms were clarified further in this investigation. Initially, the impacts of PR fractions on liver histology and biochemical markers were assessed. Subsequently, the degrees of lipogenic and lipolytic gene and protein expressions were determined. Oral administration of PR polysaccharides (PG) (0.80 g/kg body weight) improved liver function (alanine aminotransferase and aspartate aminotransferase) and its antioxidant activities (total superoxide dismutase, glutathione peroxidase, and malondialdehyde), as well as alleviated blood lipid (total cholesterol, total triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol) values, inflammatory systemic (TNF-α and IL-1β), and histological abnormalities within the liver. Furthermore, PG administration downregulated the expression for lipogenic genes (ACC and FAS) and upregulated the expression for the lipolytic gene (PPARα, LPL, CPT1, and HSL). Importantly, PG raised AMPK phosphorylation and decreased SREBP-1c protein synthesis. Thus, it is possible that PG stimulates the AMPK-LPL/HSL path (lipolytic route) plus the AMPK-ACC/PPARα-CPT1 path (associated to β-oxidation of fatty acids), while inhibiting the AMPK/(SREBP-1c)-ACC/FAS path (lipogenic route). In summary, PG has the ability to regulate lipid metabolism, and it may be useful to pharmacologically activate AMPK with PG to prevent and cure obesity.
Collapse
Affiliation(s)
- Nannan Zhi
- Department of Food and Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiangwei Chang
- Department of Food and Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Pharmacy, Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Department of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Department of Pharmacy, Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
- Department of Traditional Chinese Medicine Resource, MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Xinrui Wang
- Department of Food and Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaobo Zhang
- Department of Traditional Chinese Medicine Resource, State Key Laboratory of Dao-di Herbs, Beijng, China
| | - Jutao Wang
- Department of Food and Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Liangping Zha
- Department of Food and Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Traditional Chinese Medicine Resource, MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shuangying Gui
- Department of Food and Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Pharmacy, Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Department of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Department of Pharmacy, Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
- Department of Traditional Chinese Medicine Resource, MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
11
|
Li J, Chen R, Liu P, Zhang X, Zhou Y, Xing Y, Xiao X, Huang Z. Association of Di(2-ethylhexyl) Terephthalate and Its Metabolites with Nonalcoholic Fatty Liver Disease: An Epidemiology and Toxicology Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8182-8193. [PMID: 38691136 DOI: 10.1021/acs.est.3c09503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
As an alternative plasticizer to conventional phthalates, di(2-ethylhexyl) terephthalate (DEHTP) has attracted considerable concerns, given its widespread detection in the environment and humans. However, the potential toxicity, especially liver toxicity, posed by DEHTP remains unclear. In this study, based on the 2017-2018 National Health and Nutrition Examination Survey, two metabolites of DEHTP, i.e., mono(2-ethyl-5-hydroxyhexyl) terephthalate (MEHHTP) and mono(2-ethyl-5-carboxypentyl) terephthalate (MECPTP), were found to be present in the urine samples of nearly all representative U.S. adults. Moreover, a positive linear correlation was observed between the concentrations of the two metabolites and the risk of nonalcoholic fatty liver disease (NAFLD) in the population. Results of weighted quantile sum and Bayesian kernel machine regression indicated that MEHHTP contributed a greater weight to the risk of NAFLD in comparison with 12 conventional phthalate metabolites. In vitro experiments with hepatocyte HepG2 revealed that MEHHTP exposure could increase lipogenic gene programs, thereby promoting a dose-dependent hepatic lipid accumulation. Activation of liver X receptor α may be an important regulator of MEHHTP-induced hepatic lipid disorders. These findings provide new insights into the liver lipid metabolism toxicity potential of DEHTP exposure in the population.
Collapse
Affiliation(s)
- Jiaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Rongbin Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P.R. China
| | - Peng Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Xin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Yan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Yudong Xing
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Xinhua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P.R. China
| | - Zhenzhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| |
Collapse
|
12
|
Chi L, YifeiYang, Bian X, Gao B, Tu P, Ru H, Lu K. Chronic sucralose consumption inhibits farnesoid X receptor signaling and perturbs lipid and cholesterol homeostasis in the mouse livers, potentially by altering gut microbiota functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:169603. [PMID: 38272087 DOI: 10.1016/j.scitotenv.2023.169603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
Sucralose has raised concerns regarding its safety and recent studies have demonstrated that sucralose consumption can disrupt the normal gut microbiome and alter metabolic profiles in mice. However, the extent to which this perturbation affects the functional interaction between the microbiota and the host, as well as its potential impact on host health, remains largely unexplored. Here, we aimed to investigate whether chronic sucralose consumption, at levels within the Acceptable Daily Intake (ADI), could disturb key gut microbial functions and lead to adverse health effects in mice. Following six-month sucralose consumption, several bacterial genera associated with bile acid metabolism were decreased, including Lactobacillus and Ruminococcus. Consequently, the richness of secondary bile acid biosynthetic pathway and bacterial bile salt hydrolase gene were decreased in the sucralose-treated gut microbiome. Compared to controls, sucralose-consuming mice exhibited significantly lower ratios of free bile acids and taurine-conjugated bile acids in their livers. Additionally, several farnesoid X receptor (FXR) agonists were decreased in sucralose-treated mice. This reduction in hepatic FXR activation was associated with altered expression of down-stream genes, in the liver. Moreover, the expression of key lipogenic genes was up-regulated in the livers of sucralose-treated mice. Changes in hepatic lipid profiles were also observed, characterized by lower ceramide levels, a decreased PC/PE ratio, and a mildly increase in lipid accumulation. Additionally, sucralose-consumed mice exhibited higher hepatic cholesterol level compared to control mice, with up-regulation of cholesterol efflux genes and down-regulation of genes associated with reverse cholesterol transport. In conclusion, chronic sucralose consumption disrupts FXR signaling activation and perturbs hepatic lipid and cholesterol homeostasis, potentially by diminishing the bile acid metabolic capacity of the gut microbiome. These findings shed light on the complex interplay between sucralose, the gut microbiota, and host metabolism, raising important questions about the safety of its long-term consumption.
Collapse
Affiliation(s)
- Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - YifeiYang
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Xiaoming Bian
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, 30602, United States of America
| | - Bei Gao
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, 30602, United States of America
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Hongyu Ru
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States; Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, NC 27599, United States.
| |
Collapse
|
13
|
Yang D, Shen J, Tang C, Lu Z, Lu F, Bie X, Meng F, Zhao H. Prevention of high-fat-diet-induced obesity in mice by soluble dietary fiber from fermented and unfermented millet bran. Food Res Int 2024; 179:113974. [PMID: 38342528 DOI: 10.1016/j.foodres.2024.113974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024]
Abstract
Obesity-related diabetes, cardiovascular disease, and hypertension pose many risks to human health. Thus, mice on a high-fat diet were gavaged with millet bran (unfermented/fermented) soluble dietary fiber (RSDF/FSDF, 500 mg·kg-1) for 10 weeks in current research, and then evaluated the various biological indicators. These findings revealed that RSDF and FSDF supplements could prevent fat synthesis by inhibiting sterol regulatory element-binding protein-1c gene expression. The RSDF supplements can also accelerate fat catabolism through enhanced the mRNA expression levels of adipose triglyceride lipase and peroxisome proliferator-activated receptor α. FSDF supplements can prevent obesity by decreasing 3-hydroxy-3-methyl-glutaryl-CoA reductase expression and increasing cholesterol 7α-hydroxylase expression. Moreover, FSDF also controls obesity development by lowering total cholesterol and low-density lipoprotein cholesterol levels in the blood, triglyceride, total cholesterol, and bile acid levels in the liver. Notably, FSDF supplements can promote Bacteroides and Prevotella propagation; excretive propionic acid binds to free fatty acid receptor 2/3 and then stimulates intestinal epithelial cells to generate glucagon-like-peptide-1 and peptide YY, which can reduce food and energy intake and ultimately prevent obesity. All evidence suggests that FSDF supplements play a crucial role in preventing obesity.
Collapse
Affiliation(s)
- Duo Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
14
|
Guo Y, Wei Z, Zhang Y, Cao J. Research Progress on the Mechanism of Milk Fat Synthesis in Cows and the Effect of Conjugated Linoleic Acid on Milk Fat Metabolism and Its Underlying Mechanism: A Review. Animals (Basel) 2024; 14:204. [PMID: 38254373 PMCID: PMC10812695 DOI: 10.3390/ani14020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Milk fat synthesis in cows mainly includes the synthesis of short- and medium-chain fatty acids, the uptake, transport, and activation of long-chain fatty acids (LCFAs), the synthesis of triglycerides, and the synthesis of the genes, transcription factors, and signaling pathways involved. Although the various stages of milk fat synthesis have been outlined in previous research, only partial processes have been revealed. CLA consists of an aggregation of positional and geometric isomers of linoleic fatty acid, and the accumulated evidence suggests that the two isomers of the active forms of CLA (cis-9, trans-11 conjugated linoleic acid and trans-10, cis-12 conjugated linoleic acid, abbreviated as c9, t11-CLA and t10, c12-CLA) can reduce the fat content in milk by regulating lipogenesis, fatty acid (FA) uptake, oxidation, and fat synthesis. However, the mechanism through which CLA inhibits milk fat synthesis is unique, with most studies focusing only on the effects of CLA on one of the genes, transcription factors, or signaling pathways involved. In this study, we summarized the structure and function of classic genes and pathways (mTOR, SREBP, AMPK, and PPARG) and new genes or pathways (THRSP, METTL3, ELOVL, and LPIN1) involved in each stage of milk fat synthesis and demonstrated the interactions between genes and pathways. We also examined the effects of other substances (melanin, nicotinic acid, SA, etc.). Furthermore, we evaluated the influence of β-sitosterol, sodium butyrate, Met arginine, and Camellia oleifera Abel on milk fat synthesis to improve the mechanism of milk fat synthesis in cows and provide a mechanistic reference for the use of CLA in inhibiting milk fat biosynthesis.
Collapse
Affiliation(s)
- Yuanyin Guo
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.G.); (Z.W.)
| | - Ziang Wei
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.G.); (Z.W.)
| | - Yi Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jie Cao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.G.); (Z.W.)
| |
Collapse
|
15
|
Zheng M, Li Y, Dong Z, Zhang Y, Xi Z, Yuan M, Xu H. Korean red ginseng formula attenuates non-alcoholic fatty liver disease in oleic acid-induced HepG2 cells and high-fat diet-induced rats. Heliyon 2023; 9:e21846. [PMID: 38027623 PMCID: PMC10658318 DOI: 10.1016/j.heliyon.2023.e21846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease. We have developed a Korean Red Ginseng Formula (KRGF) containing extracts of Korean Red Ginseng (KRG), Crataegus Fructus, and Cassiae Semen. In this study, our aims were to investigate the therapeutic potential and underpinning mechanisms of KRGF in NAFLD complicated by hyperlipidemia. Methods In the in vitro assays, HepG2 cells were treated with KRGF for 24 h in the presence or absence of oleic acid (OA). To assess the in vivo protective effect of KRGF against NAFLD, rats fed a high-fat diet (HFD) were given intragastric administration for 30 days. Results KRGF exerted protective effects against NAFLD by reducing lipid accumulation and steatosis in OA-stimulated HepG2 cells and HFD-fed rats. In HFD-fed rats, KRGF effectively decreased triglyceride levels in both blood and liver tissue and modulated the expression of key regulators of lipogenesis and fatty acid oxidation. KRGF downregulated the expression of lipogenesis factors, namely C/EBPα, FAS, SREBP-1c, and PPARγ, while upregulating the expression of PPARα and CPT-1, thus promoting fatty acid oxidation. Additionally, KRGF intensified the phosphorylation of AMPK and ACC, which are two enzymes that suppress fatty acid synthesis and promote fatty acid oxidation. KRGF effectively decreased total cholesterol (TC) levels in both blood and liver tissue, and it modulated the expression of major enzymes related to TC metabolism, namely apoB, ACAT2, CYP7A1, and HMGCR. Conclusion In conclusion, KRGF mitigated NAFLD complicated by hyperlipidemia by modulating triglyceride and cholesterol metabolism, suggesting its potential for future development in the treatment of NAFLD.
Collapse
Affiliation(s)
- Min Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Zhiying Dong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yibo Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
16
|
Zhu Y, Lei L, Wang X, Jiang Q, Loor JJ, Kong F, Chen L, Li J, Zhao C, Liu M, Liu G, Li X. Low abundance of insulin-induced gene 1 contributes to SREBP-1c processing and hepatic steatosis in dairy cows with severe fatty liver. J Dairy Sci 2023; 106:5626-5635. [PMID: 37291038 DOI: 10.3168/jds.2022-22895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/09/2023] [Indexed: 06/10/2023]
Abstract
Fatty liver is a major metabolic disorder of high-producing dairy cows during the transition period. In nonruminants, it is well established that insulin-induced gene 1 (INSIG1) plays a crucial role in regulating hepatic lipogenesis by controlling the anchoring of sterol regulatory element-binding protein 1 (SREBP-1) on the endoplasmic reticulum along with SREBP cleavage-activating protein (SCAP). Whether the INSIG1-SCAP-SREBP-1c transport axis is affected in cows experiencing fatty liver is unknown. Thus, the aim of this study was to investigate the potential role of INSIG1-SCAP-SREBP-1c axis in the progression of fatty liver in dairy cows. For in vivo experiments, 24 dairy cows at the start of their fourth lactation (median; range 3-5) and 8 d in milk (median; range 4-12 d) were selected into a healthy group [n = 12; triglyceride (TG) content <1%] and a severe fatty liver group (n = 12; TG content >10%) according to their hepatic TG content. Blood samples were collected for detecting serum concentrations of free fatty acids, β-hydroxybutyrate, and glucose. Compared with healthy cows, cows with severe fatty liver had higher serum concentrations of β-hydroxybutyrate and free fatty acids and lower concentration of glucose. Liver biopsies were used to detect the status of INSIG1-SCAP-SREBP-1c axis, and the mRNA expression of SREBP-1c-target lipogenic genes acetyl-CoA carboxylase α (ACACA), fatty acid synthase (FASN), and diacylglycerol acyltransferase 1 (DGAT1). Cows with severe fatty liver had lower protein expression of INSIG1 in the hepatocyte endoplasmic reticulum fraction, greater protein expression of SCAP and precursor SREBP-1c in the hepatocyte Golgi fraction, and greater protein expression of mature SREBP-1c in the hepatocyte nuclear fraction. In addition, the mRNA expression of SREBP-1c-target lipogenic genes ACACA, FASN, and DGAT1 was greater in the liver of dairy cows with severe fatty liver. In vitro experiments were conducted on hepatocytes isolated from 5 healthy 1-d-old female Holstein calves, and hepatocytes from each calf were run independently. First, hepatocytes were treated with 0, 200, or 400 μM palmitic acid (PA) for 12 h. Exogenous PA treatment decreased INSIG1 protein abundance, enhanced the endoplasmic reticulum to Golgi export of SCAP-precursor SREBP-1c complex and the nuclear translocation of mature SREBP-1c, all of which was associated with increased transcriptional activation of lipogenic genes and TG synthesis. Second, hepatocytes were transfected with INSIG1-overexpressing adenovirus for 48 h and treated with 400 μM PA 12 h before the end of transfection. Overexpressing INSIG1 inhibited PA-induced SREBP-1c processing, upregulation of lipogenic genes, and TG synthesis in hepatocytes. Overall, the present in vivo and in vitro results indicated that the low abundance of INSIG1 contributed to SREBP-1c processing and hepatic steatosis in dairy cows. Thus, the INSIG1-SCAP-SREBP-1c axis may be a novel target for treatment of fatty liver in dairy cows.
Collapse
Affiliation(s)
- Yiwei Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinghui Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Fanrong Kong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Linfang Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jinxia Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chenchen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Menglin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
17
|
Cao W, Wang K, Liang C, Su Y, Liu S, Li J, Qing H, Zeng Z, Dai L, Song JL. Dietary tea seed saponin combined with aerobic exercise attenuated lipid metabolism and oxidative stress in mice fed a high-fat diet (HFD). J Food Biochem 2022; 46:e14461. [PMID: 36200661 DOI: 10.1111/jfbc.14461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 01/14/2023]
Abstract
Tea seed saponins (TSS) are oleanolane-type pentacyclic triterpenoid saponin mixtures with various pharmacological effects. We aimed to explore the effects of a total of 4 weeks intragastric administration of TSS (140 mg/kg·day) combined with aerobic exercise (AE) on lipid metabolism and its associated oxidative stress in HFD-induced obese mice and to investigate the possible molecular mechanisms. TSS + AE intervention significantly reduced body weight and the adiposity index (including subcutaneous, epididymal, perirenal, and abdominal adipose) in obese mice; improved dyslipidemia by lowering serum TC, TG, and LDL-c levels; and increased HDL-c levels. TSS + AE intervention significantly improved hepatic steatosis by inhibiting lipogenetic Acc, Srebp1c, and Scd1 and upregulating lipolysis genes (Pgc1α, Pgc1β, Pparα, and Cpt1). TSS + AE intervention increased the hepatic protein expression of p-AMPK, SIRT1, and PGC-1α, as well as PPAR-γ and GLUT-4 in skeletal muscle compared with expression in the HFD group. In addition, TSS + AE also modulated oxidative stress in obese mice, which was indicated by the increased serum and liver levels of SOD, GSH, and T-AOC and decreased ROS and MDA levels. These results suggest that TSS + AE intervention can reduce fat accumulation and improve HFD-induced lipid metabolism disorders and oxidative stress. PRACTICAL APPLICATIONS: Obesity is a metabolic disease induced by excess nutritional intake and insufficient energy expenditure. Dietary modifications combined with aerobic exercise are currently an effective method for weight loss. Tea seed saponins (TSS) are a variety of biologically active oleanolane-type pentacyclic triterpenoid saponins that naturally exist in tea seeds. Few articles have focused on the effects and mechanisms of TSS combined with aerobic exercise (AE) in regulating lipid metabolism and improving oxidative damage in vivo. Using an HFD-induced obese mice model to explore the mechanism of TSS + AE in regulating lipid metabolism and its associated oxidative stress damage will help provide reliable data for the application of dietary nutrition combined with AE in anti-obesity.
Collapse
Affiliation(s)
- Wenjing Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China.,School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keying Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China
| | - Chanhua Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China.,School of Public Health, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Yanming Su
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China
| | - Shuang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China
| | - Jiali Li
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China
| | - Huishan Qing
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China
| | - Zhen Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China.,Department of Pediatrics and Maternal and Child Health, Xiangya College of Public Health, Central South University, Changsha, China
| | - Ling Dai
- Center of Mental Health Education and Counseling, Guilin Medical University, Guilin, China
| | - Jia-Le Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China.,Department of Clinical Nutrition and Obstetrics, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.,Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, China.,Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle Health, Guilin Medical University, Guilin, China
| |
Collapse
|
18
|
Fang Z, Gao W, Jiang Q, Loor JJ, Zhao C, Du X, Zhang M, Song Y, Wang Z, Liu G, Li X, Lei L. Targeting IRE1α and PERK in the endoplasmic reticulum stress pathway attenuates fatty acid-induced insulin resistance in bovine hepatocytes. J Dairy Sci 2022; 105:6895-6908. [PMID: 35840398 DOI: 10.3168/jds.2021-21754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
Endoplasmic reticulum (ER) stress can be induced by various stimuli and triggers the unfolded protein response to activate intracellular signaling pathways that are mediated by 3 ER-resident sensors: inositol requiring protein-1α (IRE1α), PKR-like ER kinase (PERK), and activating transcription factor-6 (ATF6). In nonruminants, ER stress plays a critical role in hepatic insulin resistance. However, whether ER stress plays a role in nonesterified fatty acid (NEFA)-induced hepatic insulin resistance in dairy cows is still unknown. Experiments were conducted using primary bovine hepatocytes isolated from 5 healthy calves (body weight: 30-40 kg; 1 d old). First, hepatocytes were treated with NEFA (1.2 mM) for 0.5, 1, 2, 3, 5, 7, 9, or 12 h. Treatment with NEFA elevated abundance of phosphorylated IRE1α and PERK, and cleavage of ATF6, along with the ER stress-associated genes XBP1, ATF4, and DNAJC3, resulting in both linear and quadratic effects. Furthermore, ER Tracker red staining and transmission electron microscopy results indicated that ER was dilated and degranulated in response to NEFA treatment, suggesting that ER stress was induced by NEFA treatment in bovine hepatocytes. Second, to assess the effect of ER stress on NEFA-induced insulin resistance, hepatocytes were treated with different concentrations of NEFA (0, 0.6, 1.2, or 2.4 mM) for 5 h with or without tauroursodeoxycholic acid (TUDCA, a canonical inhibitor of ER stress). Here, NEFA induced insulin resistance by increasing the abundance of insulin receptor substrate-1 (IRS1) phosphorylation at the inhibitory residue Ser 307 (S307) and decreasing the abundance of phosphorylated protein kinase B (AKT) and glycogen synthase kinase-3β (GSK3β) in a dose-dependent manner. This was accompanied by upregulation of an abundance of gluconeogenic genes [phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6-Pase)]. These detrimental effects of NEFA on insulin signaling could be reversed with TUDCA treatment, indicating a mechanistic link between ER stress and NEFA-induced insulin resistance. In a third experiment, pGPU6/GFP/Neo vectors containing short hairpin RNA targeting IRE1α were used to silence IRE1α transcription, and GSK2656157 (PERK phosphorylation inhibitor) and 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF; an inhibitor of ATF6) were used to block PERK and ATF6 branches, respectively. Notably, the silencing of the IRE1α branch improved NEFA-induced insulin resistance by decreasing phosphorylation of IRS1 (S307) and increasing phosphorylation of AKT and GSK3β, and reducing PEPCK and G6-Pase mRNA abundance, which was likely dependent on IRE1α kinase activity. Similarly, blockage of the PERK branch increased phosphorylation of AKT and GSK3β, and reduced PEPCK and G6-Pase mRNA abundance, but had no effect on phosphorylation of IRS1 (S307). However, results showed that inhibition of the ATF6 branch had no effects on phosphorylation of IRS1, AKT, and GSK3β, and instead found increasing PEPCK and G6-Pase mRNA abundance. Taken together, data in the present study found that impeding IRE1α and PERK signaling might aid in relieving hepatic insulin resistance. However, the more detailed mechanisms of how IRE1α and PERK signaling contribute to hepatic insulin resistance in dairy cows remain to be determined.
Collapse
Affiliation(s)
- Zhiyuan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Wenwen Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Chenchen Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Min Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Zhe Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Lin Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
19
|
Ethanol Extract of Pinus koraiensis Leaves Mitigates High Fructose-Induced Hepatic Triglyceride Accumulation and Hypertriglyceridemia. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pinus koraiensis is a valuable plant source of functional health foods and medicinal materials. Hypertriglyceridemia affects about 15–20% of adults and is related to stroke, metabolic syndromes, cardiovascular diseases, and diabetes mellitus. Dietary fructose, a risk factor for developing hypertriglyceridemia, significantly increases postprandial triglyceride (TG) levels and aggravates non-alcoholic fatty liver disease. In this study, we aimed to analyze the effect of ethanol extract from P. koraiensis needles (EPK) on fructose (Fr)-induced cell culture and animal models, respectively. Our team determined the bioactivity, such as anti-cancer, anti-obesity, anti-diabetic, and anti-hyperlipidemic functions, of P. koraiensis needle extract. The EPK markedly reduced TG levels in the liver and serum and enhanced TG excretion through feces in high-fructose-fed rats. Furthermore, the EPK inhibited de novo lipogenesis and its markers—carbohydrate response element-binding protein (ChREBP), sterol regulatory element-binding protein 1 (SREBP-1), fatty acid synthase (FAS), 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), and tumor necrosis factor-alpha (TNF-α), a pro-inflammatory marker. Consistent with the results of the in vivo experiment, the EPK decreased SREBP-1, ChREBP, HMGCR, FAS, TNF-α, and iNOS expression levels, resulting in slower lipid accumulation and lower TG levels in Fr-induced HepG2 cells. These findings suggest that EPK mitigates hypertriglyceridemia and hepatic TG accumulation by inhibiting de novo lipogenic and pro-inflammatory factors.
Collapse
|
20
|
Xiao H, Sun X, Lin Z, Yang Y, Zhang M, Xu Z, Liu P, Liu Z, Huang H. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism. Acta Pharm Sin B 2022; 12:2887-2904. [PMID: 35755276 PMCID: PMC9214054 DOI: 10.1016/j.apsb.2021.12.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
The obstruction of post-insulin receptor signaling is the main mechanism of insulin-resistant diabetes. Progestin and adipoQ receptor 3 (PAQR3), a key regulator of inflammation and metabolism, can negatively regulate the PI3K/AKT signaling pathway. Here, we report that gentiopicroside (GPS), the main bioactive secoiridoid glycoside of Gentiana manshurica Kitagawa, decreased lipid synthesis and increased glucose utilization in palmitic acid (PA) treated HepG2 cells. Additionally, GPS improved glycolipid metabolism in streptozotocin (STZ) treated high-fat diet (HFD)-induced diabetic mice. Our findings revealed that GPS promoted the activation of the PI3K/AKT axis by facilitating DNA-binding protein 2 (DDB2)-mediated PAQR3 ubiquitinated degradation. Moreover, results of surface plasmon resonance (SPR), microscale thermophoresis (MST) and thermal shift assay (TSA) indicated that GPS directly binds to PAQR3. Results of molecular docking and cellular thermal shift assay (CETSA) revealed that GPS directly bound to the amino acids of the PAQR3 NH2-terminus including Leu40, Asp42, Glu69, Tyr125 and Ser129, and spatially inhibited the interaction between PAQR3 and the PI3K catalytic subunit (P110α) to restore the PI3K/AKT signaling pathway. In summary, our study identified GPS, which inhibits PAQR3 expression and directly targets PAQR3 to restore insulin signaling pathway, as a potential drug candidate for the treatment of diabetes.
Collapse
Affiliation(s)
- Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaohong Sun
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Meng Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhanchi Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Corresponding authors.
| | - Zhongqiu Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Corresponding authors.
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Corresponding authors.
| |
Collapse
|
21
|
FGF21 Reduces Lipid Accumulation in Bovine Hepatocytes by Enhancing Lipid Oxidation and Reducing Lipogenesis via AMPK Signaling. Animals (Basel) 2022; 12:ani12070939. [PMID: 35405926 PMCID: PMC8996872 DOI: 10.3390/ani12070939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
During the periparturient period, dairy cows suffer drastic metabolic stress because of plasma increased non-esterified fatty acids (NEFAs) that stem from a negative energy balance. Fibroblast growth factor 21 (FGF21) is a hepatokine that activates the AMP-activated protein kinase (AMPK) signaling pathway to maintain intracellular energy balance and tissue integrity via the promotion of catabolism and the inhibition of anabolic regulation. FGF21 treatment caused a 50% reduction in triglyceride (TG) content in liver in dairy cows. However, it is not clear whether FGF21 regulates lipid metabolism in bovine liver. The purpose of this study was to evaluate the influence of FGF21 on lipid metabolism via AMPK signaling in bovine hepatocytes. The hepatocytes isolated from calves were treated with different concentrations of FGF21 or co-treated with AMPK inhibitor (BML-275). Herein, the study showed that FGF21 significantly reduced TG content in a dose–response manner and promoted very-low-density lipoprotein (VLDL) secretion via an up-regulation of the proteins (ApoB 100, ApoE and MTTP) involved in VLDL secretion. Otherwise, the genes associated with lipid transport (LDLR and CD36) and lipid oxidation (PPARGC1A, ACOX1 and CPT1A), were up-regulated following FGF21 treatment. Moreover, FGF21 treatment inhibited lipogenesis via SREBF1, ACACA, FASN and ACLY inhibition. After being co-treated with the AMPK inhibitor, FGF21-induced changes were reversed in some genes. In conclusion, these results indicate that FGF21 adaptively regulates energy metabolism for a negative impact on lipogenesis, strengthens lipid oxidation, and inhibited lipid transportation via AMPK signaling in bovine hepatocytes. The present data suggest the possibility that FGF21 has potential value in alleviating perinatal metabolic diseases in dairy cows, and specific research in vivo should be studied in more detail.
Collapse
|
22
|
Malekpour-Dehkordi Z, Nourbakhsh M, Shahidi M, Sarraf N, Sharifi R. "Silymarin diminishes oleic acid-induced lipid accumulation in HepG2 cells by modulating the expression of endoplasmic reticulum stress markers". J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Yang T, Ma X, Jiang M, Cheng Z, Datsomor O, Zhao G, Zhan K. The Role of Tea Tree Oil in Alleviating Palmitic Acid-Induced Lipid Accumulation in Bovine Hepatocytes. Front Vet Sci 2022; 8:814840. [PMID: 35127885 PMCID: PMC8814581 DOI: 10.3389/fvets.2021.814840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tea tree oil (TTO) plays an important role in lipid metabolism, alleviating the inflammatory responses. Fatty liver is associated with lipid accumulation in hepatocytes, leading to inflammation. However, there is very limited information on the effects of TTO on lipid accumulation, and inflammation in bovine hepatocytes. This study aimed to evaluate whether TTO alleviates palmitic acid (PA)-induced lipid accumulation in bovine hepatocytes. Hepatocytes isolated from mid-lactating Holstein cows were pretreated with 100 μM PA for 72 h. Cells were either pretreated with PA alone (PA group) or with PA followed by 0.00625% TTO treatment for 12 h (PT group). Expression of fatty acid oxidant genes increased (P < 0.05) while fatty acid synthesis genes decreased (P < 0.05) in the PT group compared with the PA group. PA treatment resulted in increased (P < 0.05) expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), but these increases were less in the PT group (P < 0.05). Compared to the PA group, expression of phosphorylated (p)-p65 and p-inhibitor κBα (p-IκBα) was suppressed (P < 0.05) by TTO treatment. TTO treatment limited (P < 0.05) the increase in intracellular reactive oxygen species (ROS) and prevented (P < 0.05) a reduction in mitochondrial membrane potential observed in response to PA treatment. Expression of endoplasmic reticulum (ER) stress genes was reduced (P < 0.05) in the PT group compared with the PA group. Our results suggest that TTO treatment attenuates the effects of PA in hepatocytes, leading to fatty acid oxidation, decreased fatty acid synthesis, suppressed inflammatory response, and reduced ER stress. Taken together, the results of this study suggest that TTO treatment may be a promising therapeutic approach to imbalanced lipid homeostasis, inflammation and ER stress in dairy cows shortly before and after calving.
Collapse
|
24
|
Loor JJ. Nutrigenomics in livestock: potential role in physiological regulation and practical applications. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Huang Y, Zhao C, Kong Y, Tan P, Liu S, Liu Y, Zeng F, Yuan Y, Zhao B, Wang J. Elucidation of the mechanism of NEFA-induced PERK-eIF2α signaling pathway regulation of lipid metabolism in bovine hepatocytes. J Steroid Biochem Mol Biol 2021; 211:105893. [PMID: 33819629 DOI: 10.1016/j.jsbmb.2021.105893] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
During the periparturient transition period, negative energy balance (NEB) characterized by high concentrations of non-esterified fatty acids (NEFA) may cause fatty liver and ketosis in dairy cows. Previous studies have shown that the protein kinase R-like endoplasmic reticulum kinase (PERK) branch of the endoplasmic reticulum stress (ERS) response plays an important role in lipid metabolism in hepatocytes. This study, therefore, investigated the role of the PERK-branch in NEFA-induced fatty liver. Different concentrations of NEFA or GSK2656157 (a novel catalytic inhibitor of PERK) were used to treat hepatocytes isolated from calves. The NEFA treatment significantly increased the triacylglycerol (TG) content, the phosphorylation level of PERK and eukaryotic initiation factor 2α (eIF2α), and the abundance of glucose-regulated protein 78 (Grp78), C/EBP homologous protein (CHOP), sterol regulatory element-binding protein 1c (SREBP-1c), fatty acid synthase (FASN), peroxisome proliferator-activated receptor-α (PPARα), carnitine palmitoyltransferase 1A (CPT1A), apolipoprotein B (APOB), and the low-density lipoprotein receptor (LDLR). Compared with the 1.2 mM NEFA group, inhibition of PERK activity further increased the TG content in hepatocytes, the very-low-density lipoprotein (VLDL) content in the supernatant and the protein abundance of APOB while reducing the expression and nuclear levels of SREBP-1c and PPARα, as well as the expression of CPT1A and CPT2. In conclusion, the results showed that the NEFA-induced PERK-eIF2α signaling pathway promotes lipid synthesis, lipid oxidation, but inhibits the assembly and secretion of VLDL. Therefore, during the transition period, the activation of the PERK-eIF2α signaling pathway in the liver of dairy cows could defeat the acid-induced lipotoxicity and provide energy to alleviate NEB.
Collapse
Affiliation(s)
- Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Siqi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yaoquan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fangyuan Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
26
|
Ren X, Wang L, Chen Z, Hou D, Xue Y, Diao X, Shen Q. Foxtail Millet Improves Blood Glucose Metabolism in Diabetic Rats through PI3K/AKT and NF-κB Signaling Pathways Mediated by Gut Microbiota. Nutrients 2021; 13:nu13061837. [PMID: 34072141 PMCID: PMC8228963 DOI: 10.3390/nu13061837] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Foxtail millet (FM) is receiving ongoing increased attention due to its beneficial health effects, including the hypoglycemic effect. However, the underlying mechanisms of the hypoglycemic effect have been underexplored. In the present study, the hypoglycemic effect of FM supplementation was confirmed again in high-fat diet and streptozotocin-induced diabetic rats with significantly decreased fasting glucose (FG), glycated serum protein, and areas under the glucose tolerance test (p < 0.05). We employed 16S rRNA and liver RNA sequencing technologies to identify the target gut microbes and signaling pathways involved in the hypoglycemic effect of FM supplementation. The results showed that FM supplementation significantly increased the relative abundance of Lactobacillus and Ruminococcus_2, which were significantly negatively correlated with FG and 2-h glucose. FM supplementation significantly reversed the trends of gene expression in diabetic rats. Specifically, FM supplementation inhibited gluconeogenesis, stimulated glycolysis, and restored fatty acid synthesis through activation of the PI3K/AKT signaling pathway. FM also reduced inflammation through inhibition of the NF-κB signaling pathway. Spearman’s correlation analysis indicated a complicated set of interdependencies among the gut microbiota, signaling pathways, and metabolic parameters. Collectively, the above results suggest that the hypoglycemic effect of FM was at least partially mediated by the increased relative abundance of Lactobacillus, activation of the PI3K/AKT signaling pathway, and inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (X.R.); (L.W.)
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (D.H.); (Y.X.)
| | - Linxuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (X.R.); (L.W.)
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Dianzhi Hou
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (D.H.); (Y.X.)
| | - Yong Xue
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (D.H.); (Y.X.)
| | - Xianmin Diao
- Center for Crop Germplasm Resources, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Qun Shen
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (D.H.); (Y.X.)
- Correspondence: ; Tel.: +86-10-62737524
| |
Collapse
|
27
|
Ma APY, Yeung CLS, Tey SK, Mao X, Wong SWK, Ng TH, Ko FCF, Kwong EML, Tang AHN, Ng IOL, Cai SH, Yun JP, Yam JWP. Suppression of ACADM-Mediated Fatty Acid Oxidation Promotes Hepatocellular Carcinoma via Aberrant CAV1/SREBP1 Signaling. Cancer Res 2021; 81:3679-3692. [PMID: 33975883 DOI: 10.1158/0008-5472.can-20-3944] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/24/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022]
Abstract
Lipid accumulation exacerbates tumor development, as it fuels the proliferative growth of cancer cells. The role of medium-chain acyl-CoA dehydrogenase (ACADM), an enzyme that catalyzes the first step of mitochondrial fatty acid oxidation, in tumor biology remains elusive. Therefore, investigating its mode of dysregulation can shed light on metabolic dependencies in cancer development. In hepatocellular carcinoma (HCC), ACADM was significantly underexpressed, correlating with several aggressive clinicopathologic features observed in patients. Functionally, suppression of ACADM promoted HCC cell motility with elevated triglyceride, phospholipid, and cellular lipid droplet levels, indicating the tumor suppressive ability of ACADM in HCC. Sterol regulatory element-binding protein-1 (SREBP1) was identified as a negative transcriptional regulator of ACADM. Subsequently, high levels of caveolin-1 (CAV1) were observed to inhibit fatty acid oxidation, which revealed its role in regulating lipid metabolism. CAV1 expression negatively correlated with ACADM and its upregulation enhanced nuclear accumulation of SREBP1, resulting in suppressed ACADM activity and contributing to increased HCC cell aggressiveness. Administration of an SREBP1 inhibitor in combination with sorafenib elicited a synergistic antitumor effect and significantly reduced HCC tumor growth in vivo. These findings indicate that deregulation of fatty acid oxidation mediated by the CAV1/SREBP1/ACADM axis results in HCC progression, which implicates targeting fatty acid metabolism to improve HCC treatment. SIGNIFICANCE: This study identifies tumor suppressive effects of ACADM in hepatocellular carcinoma and suggests promotion of β-oxidation to diminish fatty acid availability to cancer cells could be used as a therapeutic strategy.
Collapse
Affiliation(s)
- Angel P Y Ma
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cherlie L S Yeung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sze Keong Tey
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaowen Mao
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Samuel W K Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tung Him Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Frankie C F Ko
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ernest M L Kwong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alexander H N Tang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Irene Oi-Lin Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Shao Hang Cai
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Ping Yun
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Judy W P Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Sun F, Yang X, Ma C, Zhang S, Yu L, Lu H, Yin G, Liang P, Feng Y, Zhang F. The Effects of Diosgenin on Hypolipidemia and Its Underlying Mechanism: A Review. Diabetes Metab Syndr Obes 2021; 14:4015-4030. [PMID: 34552341 PMCID: PMC8450287 DOI: 10.2147/dmso.s326054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperlipidemia is a disorder of lipid metabolism, which is a major cause of coronary heart disease. Although there has been considerable progress in hyperlipidemia treatment, morbidity and risk associated with the condition continue to rise. The first-line treatment for hyperlipidemia, statins, has multiple side effects; therefore, development of safe and effective drugs from natural products to prevent and treat hyperlipidemia is necessary. Diosgenin is primarily derived from fenugreek (Trigonella foenum graecum) seeds, and is also abundant in medicinal herbs such as Dioscorea rhizome, Dioscorea septemloba, and Rhizoma polygonati, is a well-known steroidal sapogenin and the active ingredient in many drugs to treat cardiovascular conditions. There is abundant evidence that diosgenin has potential for application in correcting lipid metabolism disorders. In this review, we evaluated the latest evidence related to diosgenin and hyperlipidemia from clinical and animal studies. Additionally, we elaborate the pharmacological mechanism underlying the activity of diosgenin in treating hyperlipidemia in detail, including its role in inhibition of intestinal absorption of lipids, regulation of cholesterol transport, promotion of cholesterol conversion into bile acid and its excretion, inhibition of endogenous lipid biosynthesis, antioxidation and lipoprotein lipase activity, and regulation of transcription factors related to lipid metabolism. This review provides a deep exploration of the pharmacological mechanisms involved in diosgenin-hyperlipidemia interactions and suggests potential routes for the development of novel drug therapies for hyperlipidemia.
Collapse
Affiliation(s)
- Fengcui Sun
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Xiufen Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Chaoqun Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Shizhao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Lu Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Haifei Lu
- Hubei University of Traditional Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Pengpeng Liang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Yanan Feng
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
- Correspondence: Fengxia Zhang Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of ChinaTel +8653168616011 Email
| |
Collapse
|
29
|
Bionaz M, Vargas-Bello-Pérez E, Busato S. Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J Anim Sci Biotechnol 2020; 11:110. [PMID: 33292523 PMCID: PMC7667790 DOI: 10.1186/s40104-020-00512-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
High producing dairy cows generally receive in the diet up to 5-6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.
Collapse
Affiliation(s)
- Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
30
|
Zhao B, Luo C, Zhang M, Xing F, Luo S, Fu S, Sun X. Knockdown of phosphatase and tensin homolog (PTEN) inhibits fatty acid oxidation and reduces very low density lipoprotein assembly and secretion in calf hepatocytes. J Dairy Sci 2020; 103:10728-10741. [PMID: 32952018 DOI: 10.3168/jds.2019-17920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 07/08/2020] [Indexed: 12/30/2022]
Abstract
Dairy cows with fatty liver exhibit hepatic lipid accumulation and disturbances in fatty acid oxidation and lipid transport. Phosphatase and tensin homolog (PTEN), a lipid phosphatase, regulates intrahepatic fatty acid oxidation and lipid transport in mice. Whether PTEN play a role in fatty acid oxidation and very low density lipoprotein (VLDL) assembly in calf hepatocytes are unknown. Hepatocytes isolated from 3 healthy female Holstein calves (1 d old, 30-40 kg) were infected with empty adenovirus with green fluorescent protein for 48 h (Ad-GFP group) or infected with PTEN knockdown adenovirus for 48 h (Ad-shPTEN group), or cultured in RPMI-1640 without Ad-shPTEN or Ad-GFP (control group). Compared with the Ad-GFP group, PTEN knockdown decreased mRNA and protein abundance and the activity of fatty acid oxidation-related molecules, including acyl-coA synthetase long-chain 1, carnitine palmitoyltransferase 1, carnitine palmitoyltransferase 2, and 3-hydroxy acyl-coA dehydrogenase. Furthermore, PTEN knockdown decreased mRNA and protein abundance of VLDL assembly-related molecules, including apolipoprotein B100, apolipoprotein E, microsomal triglyceride transfer protein, and low density lipoprotein receptor. Importantly, PTEN knockdown promoted triglyceride accumulation in hepatocytes and reduced the VLDL content in culture medium. A subsequent study was conducted on the following 4 groups: cells infected with Ad-GFP for 48 h and then treated with 2% BSA for another 24 h (Ad-GFP + BSA); cells infected with Ad-GFP for 48 h and then treated with 1.2 mM free fatty acids (FFA) and 2% BSA for another 24 h (Ad-GFP + 1.2 mM FFA); cells infected with Ad-shPTEN for 48 h and then treated with 2% BSA for another 24 h (Ad-shPTEN + BSA); cells infected with Ad-shPTEN for 48 h and then treated with 1.2 mM FFA and 2% BSA for another 24 h (Ad-shPTEN + 1.2 mM FFA). Compared with Ad-GFP + BSA, the abundances of PTEN and of fatty acid oxidation- and VLDL assembly-related proteins were lower in the Ad-GFP + 1.2 mM FFA group. Importantly, PTEN knockdown heightened the increase in triglyceride accumulation of hepatocytes and the decrease in VLDL content in culture medium induced by FFA. Overall, these in vitro data indicate that FFA inhibits PTEN expression, leading to triglyceride accumulation and the inhibition of VLDL assembly in calf hepatocytes. These findings suggest that PTEN may be a potential therapeutic target for FFA-induced hepatic steatosis in dairy cows.
Collapse
Affiliation(s)
- Bichen Zhao
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, Heilongjiang Province 163319, China
| | - Chunhai Luo
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, Heilongjiang Province 163319, China
| | - Menglong Zhang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, Heilongjiang Province 163319, China
| | - Feifei Xing
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, Heilongjiang Province 163319, China
| | - Shengbin Luo
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, Heilongjiang Province 163319, China
| | - Shixin Fu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, Heilongjiang Province 163319, China.
| | - Xudong Sun
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, Heilongjiang Province 163319, China.
| |
Collapse
|
31
|
Abd El-Haleim EA. Molecular Study on the Potential Protective Effects of Bee Venom against Fructose-Induced Nonalcoholic Steatohepatitis in Rats. Pharmacology 2020; 105:692-704. [PMID: 32640454 DOI: 10.1159/000508511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/07/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND There is a causative relation between the increased hepatic steatohepatitis prevalence and sweeteners intake, fructose in particular. Despite an increasing understanding of the mechanisms of nonalcoholic steatohepatitis (NASH) pathogenesis, there are no drugs approved for it. OBJECTIVES Evaluate the effect of bee venom (BV) treatment on the fructose-induced NASH in rats and demonstrate its possible molecular mechanisms. METHODS NASH was induced in rats by 10% fructose in drinking water for 8 weeks. BV was administered (0.1 mg/kg, i.p.) 3 times per week during the last 2 weeks of the experiment. Sera were used for the determination of lipids, cholesterol, glucose, insulin, and liver enzymes. Hepatic gene expressions of farnesoid X receptor (FXR)α and the liver X receptor (LXR) were determined. Hepatic sterol regulatory element-binding protein (SREBP)1/2, oxidative stress, and inflammation parameters were measured. Liver parts were used for histopathological examination. Small intestine was removed for the determination of tight junction proteins. RESULTS Fructose caused overt histological damage in the liver, and this was associated with parallel changes in all parameters measured. BV effectively prevented these changes, presumably through amelioration of hepatic SREBP1/2, LXR, and FXRα expression as well as intestinal tight junction proteins. CONCLUSION These findings support the therapeutic usefulness of BV, a remedy with a favorable safety profile, in the prevention of fructose-induced NASH.
Collapse
|
32
|
Prevention of Nonalcoholic Hepatic Steatosis by Shenling Baizhu Powder: Involvement of Adiponectin-Induced Inhibition of Hepatic SREBP-1c. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9701285. [PMID: 33062150 PMCID: PMC7533788 DOI: 10.1155/2020/9701285] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/30/2022]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide, and its incidence is increasing annually, but there is currently no specific drug for treating NAFLD. Shenling Baizhu powder (SL) is a safe herbal compound commonly used in clinical practice. Our previous research has shown that SL has the effect of preventing NAFLD, but its specific mechanism has not been determined. In this study, the potential mechanism of SL on NAFLD was explored by in vivo experiments. Methods Wistar rats fed a choline-deficient amino acid-defined diet (CDAA) were treated with SL for 8 weeks. Then, serum samples were collected to obtain biochemical indicators; adipose tissue and liver samples were collected for pathological detection; a moorFLPI-2 blood flow imager was used to measure liver microcirculation blood flow, and a rat cytokine array was used to screen potential target proteins. The expression of liver adiponectin/SREBP-1c pathway-related proteins was determined by Western blotting. Results SL effectively reduced the liver wet weight, as well as the levels of total cholesterol (TC) and triglyceride (TG) in the liver, and ameliorated liver injury in CDAA-fed rats. Pathological examinations showed that SL markedly reduced liver lipid droplets and improved liver lipid accumulation. In addition, the detection of liver blood flow showed that SL increased liver microcirculation in CDAA-fed rats. Through the cytokine array, a differentially expressed cytokine, namely, adiponectin, was screened in the liver. Western blotting assays showed that SL increased the expression of adiponectin and phosphoacetyl-CoA Carboxylase (p-ACC) in the liver and decreased the expression of steroid regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase (FAS). Conclusion These results suggest that SL can increase the levels of adiponectin in the liver and serum and can inhibit the expression of SREBP-1c, thereby regulating systemic lipid metabolism and reducing liver lipid accumulation.
Collapse
|
33
|
Li T, Li X, Meng H, Chen L, Meng F. ACSL1 affects Triglyceride Levels through the PPARγ Pathway. Int J Med Sci 2020; 17:720-727. [PMID: 32218693 PMCID: PMC7085263 DOI: 10.7150/ijms.42248] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
In clinical cohort studies, high expression of long-chain acyl-coenzyme A synthetases 1 (ACSL1 gene) in peripheral white blood cells of patients with acute myocardial infarction (AMI) has been utilized as molecular markers of myocardial infarction diagnosis. The plasma triglyceride level of AMI patients is significantly higher than that of healthy individuals. We hypothesized that the high expression of ACSL1 increases the level of triglyceride, which is one of the pathogenesis of AMI promoted by ACSL1. In this report, cell culture based methods were adopted to test the hypothesis and further investigate the effect and mechanism of ACSL1 on lipid metabolism. In this study, liver cells of healthy individuals were cultured, the overexpression and the knockdown vectors of ACSL1 were constructed and transfected into liver cells. The transfection was verified at the mRNA and protein level. Intracellular triglyceride content was quantitatively analyzed using ELISA. Changes of genes related to lipid metabolism were subsequently measured through PCR array. Overexpression of ACSL1 led to higher gene expression and protein levels compared to control and the triglyceride content was significantly increased in overexpressing cells. The expression level of fatty acid oxidation pathway PPARγ was significantly down-regulated compared with the control group, as were genes associated with fatty acid synthesis pathways: SREBP1, ACC, FAS, and SCD1. ACSL1 knockdown decreased the content of triglyceride whereas PPARγ was up-regulated and SREBP1, ACC, FAS, and SCD1 were down-regulated compared with the control group. In summary, high expression of ACSL1 reduced fatty acid β-oxidation through the PPARγ pathway, thereby increasing triglyceride levels.
Collapse
Affiliation(s)
| | | | | | | | - Fanbo Meng
- Department of Cardiology China-Japan Union Hospital of Jilin University, Changchun, China 130033
| |
Collapse
|
34
|
Chen Z, Wu Y, Nagano M, Ueshiba K, Furukawa E, Yamamoto Y, Chiba H, Hui SP. Lipidomic profiling of dairy cattle oocytes by high performance liquid chromatography-high resolution tandem mass spectrometry for developmental competence markers. Theriogenology 2019; 144:56-66. [PMID: 31918070 DOI: 10.1016/j.theriogenology.2019.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 01/14/2023]
Abstract
A comparative lipidomic profiling analysis of dairy cattle oocytes with different developmental competences was performed using a combination of high performance liquid chromatography-high resolution tandem mass spectrometry and multivariate statistical analysis. Significant lipidomic changes were identified in degenerating oocytes. Total triacylglycerol in the degenerating oocytes was 1.8-fold higher than that in the normal oocytes; however, total cardiolipin was 53.5% lesser than that in the normal oocytes, which indicated attenuation of energy metabolism. Compared to those in the normal oocytes, triacylglycerols in the degenerating oocytes were composed of longer and more unsaturated acyl chains. In contrast, the acyl chains in free fatty acids present in the degenerating oocytes were shorter and with lesser degree of unsaturation compared to those in the normal oocytes. Moreover, a significant decrease in degenerating oocytes were found in total phosphatidylinositol (14.8 ± 7.6 pmol vs. 24.8 ± 5.5 pmol), total phosphatidylcholine (20.8 ± 8.7 pmol vs. 33.5 ± 7.2 pmol), and total plasmalogen ethanolamine (9.0 ± 4.7 pmol vs. 16.8 ± 5.2 pmol), which indicated dysfunction of lipid-metabolizing enzymes in oocytes during degeneration. Thus, increase of triacylglycerols together with the decrease of certain phospholipid species could be potential markers of oocyte developmental competence. In addition to providing a new approach to investigate the lipidomic changes in oocyte development, the lipidomic profiling in the present study has revealed insights that hold potential to unravel the role of lipid metabolism in oocyte developmental competence in cattle.
Collapse
Affiliation(s)
- Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Yue Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Masashi Nagano
- School of Veterinary Medicine, Koasati University, 35-1 Higashi-23, Towanda, Aomori, 034-8628, Japan; Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Kouki Ueshiba
- Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Eri Furukawa
- Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Yusuke Yamamoto
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-3-1-15, Higashi-ku, Sapporo, 007-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
35
|
Dong J, Loor JJ, Zuo R, Chen X, Liang Y, Wang Y, Shu X, Sun X, Jia H, Liu G, Wang Z, Li X, Li X. Low abundance of mitofusin 2 in dairy cows with moderate fatty liver is associated with alterations in hepatic lipid metabolism. J Dairy Sci 2019; 102:7536-7547. [PMID: 31178189 DOI: 10.3168/jds.2019-16544] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
High blood concentrations of nonesterified fatty acids (NEFA) and altered lipid metabolism are key characteristics of fatty liver in dairy cows. In nonruminants, the mitochondrial membrane protein mitofusin 2 (MFN2) plays important roles in regulating mitochondrial function and intrahepatic lipid metabolism. Whether MFN2 is associated with hepatic lipid metabolism in dairy cows with moderate fatty liver is unknown. Therefore, to investigate changes in MFN2 expression and lipid metabolic status in dairy cows with moderate fatty liver, blood and liver samples were collected from healthy dairy cows (n = 10) and cows with moderate fatty liver (n = 10). To determine the effects of MFN2 on lipid metabolism in vitro, hepatocytes isolated from healthy calves were used for small interfering RNA-mediated silencing of MFN2 or adenovirus-mediated overexpression of MFN2 for 48 h, or treated with 0, 0.6, 1.2, or 2.4 mM NEFA for 12 h. Milk production and plasma glucose concentrations in dairy cows with moderate fatty liver were lower, but concentrations of NEFA and β-hydroxybutyrate (BHB) were greater in dairy cows with moderate fatty liver. Dairy cows with moderate fatty liver displayed hepatic lipid accumulation and lower abundance of hepatic MFN2, peroxisome proliferator-activated receptor-α (PPARα), and carnitine palmitoyltransferase 1A (CPT1A). However, sterol regulatory element-binding protein 1c (SREBP-1c), acetyl CoA carboxylase 1 (ACACA), fatty acid synthase (FASN), and diacylglycerol acyltransferase 1 (DGAT1) were more abundant in the livers of dairy cows with moderate fatty liver. In vitro, exogenous NEFA treatment upregulated abundance of SREBP-1c, ACACA, FASN, and DGAT1, and downregulated the abundance of PPARα and CPT1A. These changes were associated with greater lipid accumulation in calf hepatocytes, and MFN2 silencing aggravated this effect. In contrast, overexpression of MFN2-ameliorated exogenous NEFA-induced lipid accumulation by downregulating the abundance of SREBP-1c, ACACA, FASN, and DGAT1, and upregulating the abundance of PPARα and CPT1A in calf hepatocytes. Overall, these data suggest that one cause for the negative effect of excessive NEFA on hepatic lipid accumulation is the inhibition of MFN2. As such, these mechanisms partly explain the development of hepatic steatosis in dairy cows.
Collapse
Affiliation(s)
- Jihong Dong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Rankun Zuo
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiying Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yusheng Liang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Yazhe Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xin Shu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xudong Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hongdou Jia
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guowen Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhe Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
36
|
Zhu Y, Guan Y, Loor JJ, Sha X, Coleman DN, Zhang C, Du X, Shi Z, Li X, Wang Z, Liu G, Li X. Fatty acid-induced endoplasmic reticulum stress promoted lipid accumulation in calf hepatocytes, and endoplasmic reticulum stress existed in the liver of severe fatty liver cows. J Dairy Sci 2019; 102:7359-7370. [PMID: 31155263 DOI: 10.3168/jds.2018-16015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/04/2019] [Indexed: 01/22/2023]
Abstract
Disruption of endoplasmic reticulum (ER) homeostasis, often termed ER stress, is intrinsically linked with perturbation of lipid metabolism in humans and mice. Whether ER homeostasis is affected in cows experiencing fatty liver is unknown. The aim of this study was to investigate the potential role of ER stress in hepatic lipid accumulation in calf hepatocytes and ER stress status in dairy cows with severe fatty liver. In vitro experiments were conducted in which hepatocytes were isolated from calves and treated with different concentrations of fatty acids, tauroursodeoxycholic acid (TUDCA; a canonical inhibitor of ER stress), or both. The increase in phosphorylation level of protein kinase RNA-like ER kinase (PERK) and inositol requiring protein-1α (IRE1α) proteins, and the cleavage of activating transcription factor-6 (ATF6) protein in response to increasing doses of fatty acids (which were reversed by TUDCA treatment) in primary hepatocytes underscored a mechanistic link between fatty acids and ER stress. In addition, fatty acid treatment increased the abundance of sterol regulatory element-binding protein 1c, acetyl-CoA carboxylase-α, fatty acid synthase, and diacylglycerol acyltransferase 1, and lipid accumulation in calf primary hepatocytes, whereas inhibition of ER stress by incubating with TUDCA significantly weakened these effects. Overall, results in vitro indicate that inhibition of ER stress in calf hepatocytes alleviates fatty acid-induced lipid accumulation by downregulating the expression of lipogenic genes. In vivo experiments, liver and blood samples were collected from cows diagnosed as healthy (n = 15) or with severe fatty liver (n = 15). The phosphorylation level of PERK and IRE1α, the cleavage of ATF6 protein, and the abundance of several unfolded protein response genes (78 kDa glucose-regulated protein, AMP-dependent transcription factor 4, and spliced X-box binding protein 1) were greater in liver of cows with severe fatty liver. The present in vivo study confirms the occurrence of ER stress in dairy cows with severe fatty liver. Considering the causative role of fatty acid-induced ER stress in hepatic lipid accumulation in calf hepatocytes, the existence of ER stress in the liver of severe fatty liver cows may presage its participation in fatty liver progression in dairy cows. However, the mechanistic relationship between ER stress and fatty liver in dairy cows remain to be determined.
Collapse
Affiliation(s)
- Yiwei Zhu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Yuan Guan
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Xueying Sha
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Danielle N Coleman
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Xiliang Du
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Zhen Shi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Zhe Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Guowen Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| |
Collapse
|
37
|
Wang Y, Tang K, Zhang W, Guo W, Wang Y, Zan L, Yang W. Fatty acid-binding protein 1 increases steer fat deposition by facilitating the synthesis and secretion of triacylglycerol in liver. PLoS One 2019; 14:e0214144. [PMID: 31009469 PMCID: PMC6476475 DOI: 10.1371/journal.pone.0214144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Castration is an important means of improving the beef quality via increasing fat deposition. However, little is known about the molecular mechanism underlying the fat deposition after castration. Here, the intramuscular fat (IMF) content of the steer group was shown to be much higher than the bull group. To understand transcriptional changes in the genes involved in fat deposition following castration, differential expression patterns of mRNAs in liver tissue were investigated in steers and bulls using RNA sequencing. In total, we obtained 58,282,367-54,918,002 uniquely mapped reads, which covered 90.13% of the currently annotated transcripts; 5,864 novel transcripts and optimized 9,088 known genes were determined. These results indicated that castration could change the expression patterns of mRNAs in liver tissue, and 282 differentially expressed genes (DEGs) were detected between steers and bulls. KEGG pathway analysis showed that the DEGs were mostly enriched in PPAR signaling pathway, steroid biosynthesis, steroid hormone biosynthesis, and biosynthesis of fatty acids. Furthermore, eight DEGs were corroborated via quantitative real-time PCR and we found that FABP1 gene knockdown in bovine hepatocytes prominently reduced intracellular triacylglycerol (TAG) synthesis and very low density lipoprotein (VLDL) secretion in culture medium. In summary, these results indicate that FABP1 may promote fat deposition by promoting the production and secretion of TAG and VLDL in steer liver.
Collapse
Affiliation(s)
- Yujuan Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Keqiong Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Wenli Guo
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Yaning Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Centre, Yangling, Shaanxi, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Centre, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
38
|
Yu Y, Zhen Z, Qi H, Yuan X, Gao X, Zhang M. U2AF65 enhances milk synthesis and growth of bovine mammary epithelial cells by positively regulating the mTOR-SREBP-1c signalling pathway. Cell Biochem Funct 2019; 37:93-101. [PMID: 30773658 DOI: 10.1002/cbf.3378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/14/2022]
Abstract
U2 snRNP auxiliary factor 65 kDa (U2AF65) is a splicing factor that promotes prespliceosome assembly. The function of U2AF65 in alternative splicing has been identified; however, the essential physiological role of U2AF65 remains poorly understood. In this study, we investigated the regulatory role of U2AF65 in milk synthesis and growth of bovine mammary epithelial cells (BMECs). Our results showed that U2AF65 localizes in the nucleus. Treatment with amino acids (Met and Leu) and hormones (prolactin and β-estradiol) upregulated the expression of U2AF65 in these cells. U2AF65 overexpression increased the synthesis of β-casein, triglycerides, and lactose; increased cell viability; and promoted proliferation of BMECs. Furthermore, our results showed that U2AF65 positively regulated mTOR phosphorylation and expression of mature mRNA of mTOR and SREBP-1c. Collectively, our findings demonstrate that U2AF65 regulates the mRNA expression of signalling molecules (mTOR and SREBP-1c) involved in milk synthesis and growth of BMECs, possibly via controlling the splicing and maturation of these mRNAs. U2 snRNP auxiliary factor 65 kDa (U2AF65) is a splicing factor that promotes prespliceosome assembly. The essential physiological role of U2AF65 remains poorly understood. In the present study, we confirmed that U2AF65 functions as a positive regulator of milk synthesis in and proliferation of bovine mammary epithelial cells via the mTOR-SREBP-1c signalling pathway. Therefore, our study uncovers the regulatory role of U2AF65 in milk synthesis and cell proliferation.
Collapse
Affiliation(s)
- Yanbo Yu
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Zhen Zhen
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Hao Qi
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xiaohan Yuan
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xuejun Gao
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Minghui Zhang
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| |
Collapse
|
39
|
Xu HF, Luo J, Zhang XY, Li J, Bionaz M. Activation of liver X receptor promotes fatty acid synthesis in goat mammary epithelial cells via modulation of SREBP1 expression. J Dairy Sci 2019; 102:3544-3555. [PMID: 30738675 DOI: 10.3168/jds.2018-15538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023]
Abstract
In bovine mammary tissue and cells, liver X receptor (LXR) regulates lipid synthesis mainly via transactivation of the transcription factor sterol regulatory element binding protein 1 (SREBP1). In the present work, we investigated the role of LXR in controlling lipid synthesis via transactivation of SREBP1 in goat primary mammary cells (GMEC). The GMEC were treated with a synthetic agonist of LXR, T0901317, and transactivation and transcription of SREBP1, expression of lipogenic genes, and fatty acid profiling and triacylglycerol (TAG) content of the cells were measured. A mild increase in the mRNA expression level of LXRα (NR1H3) was observed following treatment with different concentrations of T0901317, and a dose-dependent increase in mRNA and transactivation of SREBP1 was detected. Activation of LXR resulted in a significant increase in the mRNA expression of most of the measured genes related to de novo synthesis, desaturation, and transport of fatty acids; TAG synthesis; and transcription regulators. Compared with the control, total content of cellular TAG increased by more than 20% with T0901317 treatment. Furthermore, addition of T0901317 increased the proportion of unsaturated fatty acids (e.g., C16:1, C18:1, C20:1, and C22:1), and decreased the proportion of saturated fatty acids (e.g., C16:0, C18:0, C20:0, and C22:0). These results provide evidence that LXR regulates the expression and activity of SREBP1. Our results indicated that LXR participate in regulating the transcription of genes involved in milk fat synthesis in GMEC in an SREBP1-dependent fashion.
Collapse
Affiliation(s)
- H F Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, P. R. China
| | - J Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| | - X Y Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - J Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450046, P. R. China
| | - M Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331.
| |
Collapse
|
40
|
Zhu Y, Liu G, Du X, Shi Z, Jin M, Sha X, Li X, Wang Z, Li X. Expression patterns of hepatic genes involved in lipid metabolism in cows with subclinical or clinical ketosis. J Dairy Sci 2019; 102:1725-1735. [DOI: 10.3168/jds.2018-14965] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/29/2018] [Indexed: 12/29/2022]
|
41
|
Zhao X, Xue J, Xie M. Osthole inhibits oleic acid/lipopolysaccharide-induced lipid accumulation and inflammatory response through activating PPARα signaling pathway in cultured hepatocytes. Exp Gerontol 2019; 119:7-13. [PMID: 30659956 DOI: 10.1016/j.exger.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/29/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
Osthole, a coumarin derivative, can increase hepatic peroxisome proliferator-activated receptor α (PPARα) expression and reduce hepatic steatosis and inflammatory response in rats with non-alcoholic steatohepatitis (NASH). In this study, a cell model of NASH was induced with oleic acid (OA)/lipopolysaccharide (LPS) and treated for 36 h with different osthole concentrations. Results showed that intracellular lipid and inflammatory cytokine levels gradually decreased after osthole treatment. These effects, however, were abolished or attenuated after PPARα gene silencing. Accordingly, PPARα gene silencing reversed the osthole-mediated expressions of proteins involved in lipid synthesis and fatty acid oxidation. PPARα gene silencing also abrogated the inhibitory effect of osthole on nuclear factor kappa B p65 protein expression. These findings demonstrate that osthole activates PPARα signaling pathway to inhibit lipid accumulation and inflammatory response in OA/LPS-stimulated hepatocytes.
Collapse
Affiliation(s)
- Xi Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226001, Jiangsu Province, China; Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Jie Xue
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Meilin Xie
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
42
|
Jia H, Li X, Liu G, Loor JJ, Bucktrout R, Sun X, Li G, Shu X, Dong J, Wang Y, Zuo R, Wang Z, Li X. Perilipin 5 promotes hepatic steatosis in dairy cows through increasing lipid synthesis and decreasing very low density lipoprotein assembly. J Dairy Sci 2019; 102:833-845. [DOI: 10.3168/jds.2018-15208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022]
|
43
|
Sun X, Wang Y, Loor JJ, Bucktrout R, Shu X, Jia H, Dong J, Zuo R, Liu G, Li X, Li X. High expression of cell death-inducing DFFA-like effector a (CIDEA) promotes milk fat content in dairy cows with clinical ketosis. J Dairy Sci 2018; 102:1682-1692. [PMID: 30594378 DOI: 10.3168/jds.2018-15439] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/22/2018] [Indexed: 01/11/2023]
Abstract
High blood concentrations of nonesterified fatty acids (NEFA) during ketosis represent a source of fatty acids for milk fat synthesis and explain the increase in milk fat content in ketotic cows. Cell death-inducing DFFA-like effector a (CIDEA) is a lipid droplet coat protein with important roles in the regulation of milk fat synthesis and secretion in mice. Whether ketosis alters the expression of CIDEA in mammary gland tissue and the extent to which it may contribute to regulation of milk fat synthesis and secretion are unknown. Mammary gland tissue and blood samples were collected from healthy (n = 15) and clinically ketotic (n = 15) cows. Mammary epithelial cells isolated from cows were infected with CIDEA overexpression adenovirus for 48 h, treated with 0, 0.3, 0.6, or 1.2 mM NEFA for 24 h, or infected with CIDEA-silencing adenovirus for 48 h and treated with 1.2 mM NEFA for 24 h. Serum concentrations of NEFA and β-hydroxybutyrate were greater in cows with clinical ketosis, and milk production and dry matter intake were lower in cows with clinical ketosis. However, compared with healthy cows, the content of milk fat of cows with clinical ketosis was greater. Compared with healthy cows, abundance of mRNA and protein of CIDEA, fatty acid synthase (FASN), acetyl-coA carboxylase 1 (ACACA), butyrophilin (BTN1A1), and xanthine dehydrogenase (XDH) was greater in mammary tissue of cows with clinical ketosis. Overexpression of CIDEA in cultured mammary epithelial cells increased the abundance of FASN, ACACA, XDH, and BTN1A1, and increased triacylglycerol (TAG) content in mammary epithelial cells. Exogenous NEFA increased the abundance of CIDEA, FASN, ACACA, XDH, and BTN1A1, and increased TAG content in mammary epithelial cells. Importantly, knockdown of CIDEA reversed the upregulation of FASN, ACACA, XDH, and BTN1A1 abundance and TAG content induced by NEFA treatment. Overall, these data suggest that high levels of NEFA stimulate the expression of CIDEA and enhance de novo fatty acid synthesis and milk fat secretion. As such, these mechanisms explain in part the elevation of milk fat content in dairy cows with clinical ketosis.
Collapse
Affiliation(s)
- Xudong Sun
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Yazhe Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Ryan Bucktrout
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Xin Shu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Hongdou Jia
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Jihong Dong
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Rankun Zuo
- College of Veterinary Medicine, Qingdao Agriculture University, Qingdao, 266109, Shandong, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| |
Collapse
|
44
|
Rincón JAA, Pradieé J, Remião MH, Collares TV, Mion B, Gasperin BG, Tomazele Rovani M, Corrêa MN, Pegoraro LMC, Schneider A. Effect of high-density lipoprotein on oocyte maturation and bovine embryo development in vitro. Reprod Domest Anim 2018; 54:445-455. [PMID: 30417448 DOI: 10.1111/rda.13373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/04/2018] [Indexed: 11/29/2022]
Abstract
High-density lipoprotein (HDL) is the main lipoprotein in the follicular fluid, and it has anti-inflammatory, antioxidant and cryoprotectant properties. The anti-inflammatory potential and antioxidant potential are derived from its lipid composition, especially the apolipoprotein AI (ApoAI) and paraoxonase 1 (PON1). The aim of this study was to evaluate the effect of HDL during in vitro maturation (IVM) on oocyte maturation and early bovine embryo development. For this, cumulus-oocyte complexes (COCs) were obtained from bovine ovaries collected at a local slaughterhouse. COCs (n = 2,250) were allocated into three groups (n = 50 COCs/group) according to the addition of HDL protein (HDL-P) during IVM for 22 hr: 0 (control), 50 and 150 mg/dl. After IVM, COCs were inseminated (in vitro fertilization) and cultivated for 7 days. Total cholesterol concentration, total protein, triglycerides and ApoAI concentrations on IVM medium increased proportionally to HDL-P addition. However, PON1 activity was not detected in any treatment. The addition of HDL-P did not affect nuclear maturation rate, endogenous reactive oxygen species and glutathione levels in COCs (p > 0.05). The highest HDL-P concentration (150 mg/dl) decreased cleavage and blastocyst rate (p < 0.05). Moreover, the HDL-P 150 mg/dl group had lower cellular count/blastocyst than the 50 mg/dl group (p < 0.05). However, the addition of HDL-P did not affect relative gene expression of evaluated genes. In conclusion, the complex HDL/ApoAI obtained from human plasma, in the absence of PON1 activity during in vitro oocyte maturation, decreased initial embryo development.
Collapse
Affiliation(s)
| | | | | | | | - Bruna Mion
- Universidade Federal de Pelotas, Pelotas, Brasil
| | | | | | | | | | | |
Collapse
|
45
|
Meng Z, Wang D, Yan S, Li R, Yan J, Teng M, Zhou Z, Zhu W. Effects of perinatal exposure to BPA and its alternatives (BPS, BPF and BPAF) on hepatic lipid and glucose homeostasis in female mice adolescent offspring. CHEMOSPHERE 2018; 212:297-306. [PMID: 30145421 DOI: 10.1016/j.chemosphere.2018.08.076] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/19/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The widespread application of bisphenols (BPs) makes them ubiquitous in the natural environment and poses many potential risks. In this study, we examined the effects of perinatal exposure to BPA and its 3 alternatives (BPS, BPF, and BPAF) on lipid and glucose homeostasis in female mice adolescent offspring. Specifically, BPA exposure promoted the expression of hepatic lipid synthesis and fatty acid accumulation genes, resulting in a significant increase in 2 free fatty acids contents. BPS exposure caused an increase in 6 free fatty acids and triglyceride contents through promoting the expression of fatty acid synthesis, triglyceride synthesis and fatty acid accumulation genes and inhibiting the expression of fatty acid β-oxidation genes. Interestingly, BPAF exposure showed completely opposite effects on hepatic lipid metabolism compared to BPS exposure. 9 free fatty acids and triglycerides contents in the liver were significantly reduced. In particular, BPF exposure caused decreases in 2 free fatty acids contents, but no significant changes were found in the genes for lipid metabolism. In addition, unlike BPA and BPF exposure, BPS and BPAF exposure also resulted in significant increases in glucose and glycogen contents in the liver by activation of Fxr-Shp pathway and glycolysis, and inhibition of gluconeogenesis. The results showed that compared to BPA and BPF exposure, BPS and BPAF exposure significantly regulated the expression of genes related to glucose and lipid metabolism and severely interfered with hepatic lipid and glucose homeostasis. This suggested that we should thoroughly evaluate the potential health risks of BPA and its alternatives.
Collapse
Affiliation(s)
- Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Ruisheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
46
|
Xu H, Luo J, Tian H, Li J, Zhang X, Chen Z, Li M, Loor JJ. Rapid communication: lipid metabolic gene expression and triacylglycerol accumulation in goat mammary epithelial cells are decreased by inhibition of SREBP-1. J Anim Sci 2018; 96:2399-2407. [PMID: 29846631 DOI: 10.1093/jas/sky069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
In mammals, sterol regulatory element binding protein-1 (SREBP-1) is the master regulator of fatty acid and triacylglycerol synthesis. Recent gene silencing studies in mammary cells indicate that SREBP-1 has a central role in milk fat synthesis. However, SREBP-1 knockdown studies in goat mammary cells have not been performed; hence, its direct role in controlling mRNA expression of lipid metabolism genes and triacylglycerol synthesis remains unknown. Inhibition of SREBP-1 in goat mammary epithelial cells (GMEC) by small interference RNA (siRNA) markedly reduced the content of cellular triacylglycerol (~50% decrease, P < 0.05) and was partly related to downregulation of AGPAT6, LPIN1, and DGAT2 (-23%, -28% and -19%, respectively. P < 0.05), which are key enzymes involved in triacylglycerol synthesis, cellular triacylglycerol content and lipid droplet accumulation all decreased by SREBP-1 inhibition. The expression of lipid droplet formation and secretion genes was not altered in response to treatment. Although the lack of effect on expression of ACACA and FASN (rate-limiting enzymes for de novo fatty acid synthesis) with SREBP-1 knockdown was unexpected (P > 0.05), the downregulation of genes related to synthesis of acetyl-CoA and acetate activation (ACLY, ACSS2, and IDH1, P < 0.05) suggests that lipogenesis was inhibited. SREBP-1 knockdown also resulted in decreased expression of genes associated with fatty acid desaturation and elongation (SCD1 and ELOVL6, P < 0.05), long-chain fatty acid (LCFA) activation and transport (ACSL1, FABP3, and SLC27A6, P < 0.05). The results underscored the essential role of SREBP-1 not only in fatty acid synthesis but also in desaturation, elongation, and esterification in GMEC. Clearly, the lack of effect on ACACA and FASN, both of which are considered the key lipogenic enzymes, implies that there may be different regulatory mechanisms in goat compared with bovine mammary cells.
Collapse
Affiliation(s)
- Huifen Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jun Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, P.R. China
| | - Xueying Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Zhi Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Ming Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
47
|
Lee SR, Kwon SW, Kaya P, Lee YH, Lee JG, Kim G, Lee GS, Baek IJ, Hong EJ. Loss of progesterone receptor membrane component 1 promotes hepatic steatosis via the induced de novo lipogenesis. Sci Rep 2018; 8:15711. [PMID: 30356113 PMCID: PMC6200820 DOI: 10.1038/s41598-018-34148-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 08/01/2018] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) results from triglyceride accumulation within the liver and some of them advances to non-alcoholic steatohepatitis (NASH). It is important to note that in NAFLD development, hepatic de novo lipogenesis (DNL) derives from excess carbohydrates and fats under a condition of excess energy through β-oxidation. As a main regulator for DNL, sterol regulatory element-binding protein 1 (Srebp-1) forms complex with progesterone receptor membrane component 1 (Pgrmc1). To investigate whether Pgrmc1 may have a notable effect on DNL via SREBP-1 activation, we generated Pgrmc1 knockout (KO) mice and fed a high fat diet for one month. High-fat-fed Pgrmc1 KO mice showed a substantial increase in levels of hepatic TG accumulation, and they were predisposed to NAFLD when compared to WT mice. Loss of Pgrmc1 increased mature SREBP-1 protein level, suggesting that induction of hepatic steatosis in Pgrmc1 KO mice might be triggered by de novo lipogenesis. Moreover, Pgrmc1 KO mice were also more vulnerable to early stage of NASH, showing high levels of alanine aminotransferase, obesity-linked pro-inflammatory cytokines, and fibrosis markers. This is interesting because Pgrmc1 involves with the first step in regulating the hepatic de novo lipogenesis under an excess energy condition.
Collapse
Affiliation(s)
- Sang R Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sun Woo Kwon
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Pelin Kaya
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Young Ho Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jong Geol Lee
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Globinna Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - In-Jeoung Baek
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
48
|
Bai X, Xu C, Wen D, Chen Y, Li H, Wang X, Zhou L, Huang M, Jin J. Polymorphisms of peroxisome proliferator-activated receptor γ (PPARγ) and cluster of differentiation 36 (CD36) associated with valproate-induced obesity in epileptic patients. Psychopharmacology (Berl) 2018; 235:2665-2673. [PMID: 29984389 DOI: 10.1007/s00213-018-4960-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
Abstract
RATIONALE Valproate (VPA) is a choice for the treatment of primary generalized epilepsies and partial epilepsies. Unfortunately, weight gain or obesity is one of the most frequent adverse effects of VPA treatment. Genetic factors were shown to be involved in the effect. OBJECTIVE The aim of this study was to investigate the association of selected single nucleotide polymorphisms (SNPs) of cluster of differentiation 36 (CD36) and peroxisome proliferator-activated receptor γ (PPARγ) with VPA-induced weight gain and obesity in epileptic patients. METHODS A total of 225 Chinese Han epilepsy patients receiving VPA treatment were recruited in the study. Height and weight for the calculation of body mass index (BMI) were measured at the initiation of VPA therapy and in the follow-up examination. A BMI of 25 kg/m2 or higher was defined as obesity on the basis of the World Health Organization (WHO) criteria for Asian populations. Four SNPs in CD36 (rs1194197, rs7807607) and PPARγ (rs10865710, rs2920502) were genotyped using the Sequenom® MassArray iPlex platform. RESULTS About 19.6% of epileptic patients receiving VPA therapy were found to become obese. After covariate analysis of age, gender, sex, height, initial BMI, and VPA dosage, the CD36 rs1194197 C allele and rs7807607 T allele (OR, 0.31; 95%CI, 0.13-0.72; P = 0.009 and OR, 0.38; 95%CI; 0.18-0.83; P = 0.02, respectively) were identified as protective factors for VPA-induced obesity. The PPARγ rs10865710 C allele carriers were found to be less likely to suffer from VPA-induced obesity compared with GG genotype carriers (OR, 0.04; 95%CI, 0.01-0.12; P < 0.001). After a Bonferroni correction for multiple comparisons, the genotypic associations of CD36 rs1194197 and PPARγ rs10865710 and the allelic association of CD36 rs7807607 with obesity remained statistically significant. CONCLUSIONS Our data first indicated that CD36 and PPARγ polymorphisms may be associated with VPA-induced obesity and weight gain, suggesting that CD36 and PPARγ may have potential value in predicting VPA-induced obesity in Chinese Han epileptic patients.
Collapse
Affiliation(s)
- Xupeng Bai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Chuncao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Dingsheng Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yibei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Hongliang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xueding Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Liemin Zhou
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
49
|
Lee J, Kim E, Kim Y, Yoo SH. Leucrose, a Sucrose Isomer, Suppresses Hepatic Fat Accumulation by Regulating Hepatic Lipogenesis and Fat Oxidation in High-fat Diet-induced Obese Mice. J Cancer Prev 2018; 23:99-106. [PMID: 30003071 PMCID: PMC6037208 DOI: 10.15430/jcp.2018.23.2.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 11/15/2022] Open
Abstract
Obesity is currently one of the most serious public health problems and it can lead to numerous metabolic diseases. Leucrose, d-glucopyranosyl-α-(1-5)-d-fructopyranose, is an isoform of sucrose and it is naturally found in pollen and honey. The aim of this study was to investigate the effect of leucrose on metabolic changes induced by a high-fat diet (HFD) that lead to obesity. C57BL/6 mice were fed a 60% HFD or a HFD with 25% (L25) or 50% (L50) of its total sucrose content replaced with leucrose for 12 weeks. Leucrose supplementation improved fasting blood glucose levels and hepatic triglyceride content. In addition, leucrose supplementation reduced mRNA levels of lipogenesis-related genes, including peroxisome proliferator-activated receptor γ, sterol regulatory element binding protein 1C, and fatty acid synthase in HFD mice. Conversely, mRNA levels of β oxidation-related genes, such as carnitine palmitoyltransferase 1A and acyl CoA oxidase, returned to control levels with leucrose supplementation. Taken together, these results demonstrated the therapeutic potential of leucrose to prevent metabolic abnormalities by mediating regulation of plasma glucose level and hepatic triglyceride accumulation.
Collapse
Affiliation(s)
- Jihye Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Eunju Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Korea
| |
Collapse
|
50
|
Lim JY, Liu C, Hu KQ, Smith DE, Wang XD. Ablation of carotenoid cleavage enzymes (BCO1 and BCO2) induced hepatic steatosis by altering the farnesoid X receptor/miR-34a/sirtuin 1 pathway. Arch Biochem Biophys 2018; 654:1-9. [PMID: 30006135 DOI: 10.1016/j.abb.2018.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
β-Carotene-15, 15'-oxygenase (BCO1) and β-carotene-9', 10'-oxygenase (BCO2) are essential enzymes in carotenoid metabolism. While BCO1/BCO2 polymorphisms have been associated with alterations to human and animal carotenoid levels, experimental studies have suggested that BCO1 and BCO2 may have specific physiological functions beyond the cleavage of carotenoids. In the present study, we investigated the effect of ablation of both BCO1/BCO2 in the development of non-alcoholic fatty liver disease (NAFLD) and its underlying molecular mechanism(s). BCO1/BCO2 double knock out (DKO) mice developed hepatic steatosis (8/8) and had significantly higher levels of hepatic and plasma triglyceride and total cholesterol compared to WT (0/8). Hepatic changes in the BCO1/BCO2 DKO mice were associated with significant: 1) increases in lipogenesis markers, and decreases in fatty acid β-oxidation markers; 2) upregulation of cholesterol metabolism markers; 3) alterations to microRNAs related to TG accumulation and cholesterol metabolism; 4) increases in an hepatic oxidative stress marker (HO-1) but decreases in anti-oxidant enzymes; and 5) decreases in farnesoid X receptor (FXR), small heterodimer partner (SHP), and sirtuin 1 (SIRT1). The present study provided novel experimental evidence that BCO1 and BCO2 could play a significant role in maintaining normal hepatic lipid and cholesterol homeostasis, potentially through the regulation of the FXR/miR-34a/SIRT1 pathway.
Collapse
Affiliation(s)
- Ji Ye Lim
- Nutrition and Cancer Biology Lab, USA; Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chun Liu
- Nutrition and Cancer Biology Lab, USA
| | | | - Donald E Smith
- Comparative Biology Unit, JM USDA-HNRCA at Tufts University, Boston, MA, USA
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Lab, USA; Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|