1
|
Li Y, Lv B, Wu L, Xue J, He X, Li B, Huang M, Yang L. Understanding the impact of soil components on the environmental existence of Nonylphenol:From the perspective of soil aggregates. ENVIRONMENTAL RESEARCH 2024; 261:119750. [PMID: 39111649 DOI: 10.1016/j.envres.2024.119750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Nonylphenol (4-NP) has significant adverse effects on the male reproductive system. 4-NP is commonly used in agriculture as a plasticizer and pesticide emulsifier. In the current study, two soil samples with different textures were collected to evaluate the impact of soil components on the environmental existence of 4-NP among soil aggregates. It was found that the presence of soil POM resulted in 4-NP exhibiting a significantly polarized distribution in soil aggregates, instead of the expected increase in content with decreasing particle size. High levels of organic matter and metal oxides result in a high carrying capacity of small aggregates for 4-NP in both soil textures, while POM results in a higher carrying capacity of large aggregates for 4-NP in clay soil. Another important finding is that the existence of 4-NP in soil was regulated by the percentage of aggregates. The results of contribution shown that although small aggregates in sand presented stronger 4-NP carrying capacity, whereas 4-NP was mainly distributed in large aggregates in sand. For clay soil, 4-NP was predominantly located in small aggregates with the 4-NP contributions of small aggregates amounting to 63.17%, despite the highest carrying capacity of 4-NP was observed in large aggregates. These results provide a theoretical basis to investigate the transport and transformation of 4-NP in the soil environment.
Collapse
Affiliation(s)
- Yulong Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bowei Lv
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Li Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Forest System, POB 29237, Christchurch, 8440, New Zealand
| | - Xiaoman He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bolin Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Min Huang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
2
|
Ceylan T, Akin AT, Karabulut D, Tan FC, Taşkiran M, Yakan B. Therapeutic effect of thymoquinone on brain damage caused by nonylphenol exposure in rats. J Biochem Mol Toxicol 2023; 37:e23471. [PMID: 37466128 DOI: 10.1002/jbt.23471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Nonylphenol (NP), causes various harmful effects such as cognitive impairment and neurotoxicity. Thymoquinone (TQ), has antioxidant, anti-inflammatory, and neuroprotective properties. In this study, our aim is to investigate the effects of TQ on the brain damage caused by NP. Corn oil was applied to the control group. NP (100 mg/kg/day) was administered to the NP and NP + TQ groups for 21 days. TQ (5 mg/kg/day) was administered to the NP + TQ and TQ groups for 7 after 21 days. At the end of the experiment, the new object recognition test was applied to the rats and the rats were killed and their brain tissues were removed. Sections taken from brain tissues were stained with hematoxylin-eosin for histopathological evaluation. In addition, neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), Cas-3, and nerve growth factor (NGF) immunoreactivities were evaluated in brain tissue sections. In addition, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) activities were determined. Comet assay was applied to determine DNA damage in cells. The results of our study showed that NP, caused behavioral disorders and damage to the cerebral cortex in rats. This damage in the form of neuron degeneration seen in the cortex was associated with apoptosis involving Cas-3 activation, increased DNA damage, and free oxygen radicals. NP, SOD, and CAT caused a decrease in enzyme activities. In addition, the cellular protein NeuN was decreased, astrocytosis-associated GFAP was increased, and growth factor NGF was decreased. When all our evaluations are taken together, treatment with TQ showed an ameliorative effect on the behavioral impairment and brain damage caused by NP exposure.
Collapse
Affiliation(s)
- Tayfun Ceylan
- Department of Histology and Embryology, Faculty of Dentistry, Cappadocia University, Nevsehir, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ali Tuğrul Akin
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Derya Karabulut
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fazile Cantürk Tan
- Department of Biophysics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Taşkiran
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
3
|
Desai JK, Trangadia BJ, Patel UD, Patel HB, Kalaria VA, Kathiriya JB. Neurotoxicity of 4-nonylphenol in adult zebrafish: Evaluation of behaviour, oxidative stress parameters and histopathology of brain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122206. [PMID: 37473849 DOI: 10.1016/j.envpol.2023.122206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Nonylphenol and its derivatives use as plasticizer or additives in manufacturing industries. Effluents originated from industrial areas are being added to soil, ground water, river and marine water intentionally or unintentionally. Complex mixture of these contaminants enter the food chain and produce sub-lethal deleterious effects mainly on nervous and reproductive systems of aquatic animals and human beings. The information pertaining to oxidative stress-mediated alterations in brain of zebrafish would be helpful to understand the toxicity potential of such compounds in aquatic animals. The aim of the present study was to evaluate the behavioural changes, status of oxidative stress markers; sod, cat, and NF-E2-related factor 2 (nrf2) mRNA gene expression profile; and histopathological changes in the brain of adult zebrafish exposed to 4-nonylphenol (4NP) at concentration of 100 and 200 μg/L of water for 21 days. Zebrafish were divided into four groups viz; control (C1), vehicle (C2, ethanol 10 μg/L of water), treatment 1 (T1, 4-NP, 100 μg/L) and treatment 2 (T2, 4-NP, 200 μg/L). Both exposure levels of 4-NP adversely affected the exploratory behaviour of zebrafish and produced anxiety-like symptom. Concentration-dependent reduction in activity of superoxide dismutase and catalase; and glutathione level, with increased level of malondialdehyde recorded in the brain of exposed zebrafish. Gene expression analysis showed down regulation of sod, cat, nrf2 genes in brain of zebrafish from toxicity groups indicating 4-NP induced oxidative stress in brain. However, noticeable histological alterations were not observed in 4-NP exposed brain of zebrafish.
Collapse
Affiliation(s)
- Jay K Desai
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India.
| | - Bhavesh J Trangadia
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India.
| | - Urvesh D Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| | - Harshad B Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| | - Vinay A Kalaria
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| | - Jaysukh B Kathiriya
- Department of Veterinary Public Health & Epidemiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| |
Collapse
|
4
|
Pandey R, Garg A, Gupta K, Shukla P, Mandrah K, Roy S, Chattopadhyay N, Bandyopadhyay S. Arsenic Induces Differential Neurotoxicity in Male, Female, and E2-Deficient Females: Comparative Effects on Hippocampal Neurons and Cognition in Adult Rats. Mol Neurobiol 2022; 59:2729-2744. [PMID: 35175559 DOI: 10.1007/s12035-022-02770-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/03/2022] [Indexed: 02/06/2023]
Abstract
We earlier reported that arsenic induced hippocampal neuronal loss, causing cognitive dysfunctions in male rats. This neuronal damage mechanism involved an altered bone morphogenetic protein (BMP2)/Smad and brain-derived neurotrophic factor (BDNF)/TrkB signaling. Susceptibility to toxicants is often sex-dependent, and hence we studied the comparative effects of arsenic in adult male and female rats. We observed that a lower dose of arsenic reduced learning-memory ability, examined through passive avoidance and Y-maze tests, in male but not female rats. Again, male rats exhibited greater learning-memory loss at a higher dose of arsenic. Supporting this, arsenic-treated male rats demonstrated larger reduction in the hippocampal NeuN and %-surviving neurons, together with increased apoptosis and altered BMP2/Smad and BDNF/TrkB pathways compared to their female counterparts. Since the primary female hormone, estrogen (E2), regulates normal brain functions, we next probed whether endogenous E2 levels in females offered resistance against arsenic-induced neurotoxicity. We used ovariectomized (OVX) rat as the model for E2 deficiency. We primarily identified that OVX itself induced hippocampal neuronal damage and cognitive decline, involving an increased BMP2/Smad and reduced BDNF/TrkB. Further, these effects appeared greater in arsenic + OVX compared to arsenic + sham (ovary intact) or OVX rats alone. The OVX-induced adverse effects were significantly reduced by E2 treatment. Overall, our study suggests that adult males could be more susceptible than females to arsenic-induced neurotoxicity. It also indicates that endogenous E2 regulates hippocampal BMP and BDNF signaling and restrains arsenic-induced neuronal dysfunctions in females, which may be inhibited in E2-deficient conditions, such as menopause or ovarian failure.
Collapse
Affiliation(s)
- Rukmani Pandey
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Asmita Garg
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Keerti Gupta
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pallavi Shukla
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Somendu Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Reddy V, McCarthy M, Raval AP. Xenoestrogens impact brain estrogen receptor signaling during the female lifespan: A precursor to neurological disease? Neurobiol Dis 2021; 163:105596. [PMID: 34942334 DOI: 10.1016/j.nbd.2021.105596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Xenoestrogens, foreign synthetic chemicals mimicking estrogens, are lurking in our surroundings. Climate change may alter their toxicity and bioavailability. Since xenoestrogens have extremely high lipid solubility and are structurally similar to natural endogenous estrogens, they can bind to estrogen receptors (ERs) -alpha (ER-α) and -beta (ER-β). Scientific evidence accumulated over the past decades have suggested that natural 17β-estradiol (E2; a potent estrogen), via activation of its receptors, plays a pivotal role in regulation of brain development, differentiation, metabolism, synaptic plasticity, neuroprotection, cognition, anxiety, body temperature, feeding and sexual behavior. In the brain, ER-β is predominantly expressed in the various regions, including cerebral cortex and hippocampus, that have been shown to play a key role in cognition. Therefore, disturbances in function of ER-β mediated E2 signaling by xenoestrogens can lead to deleterious effects that potentiate a variety of neurological diseases starting from prenatal to post-menopause in women. The goal of this review is to identify the possible neurological effects of xenoestrogens that can alter estrogen receptor-mediated signaling in the brain during different stages of the female lifespan.
Collapse
Affiliation(s)
- Varun Reddy
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Micheline McCarthy
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Shi R, Liu Z, Liu T. The antagonistic effect of bisphenol A and nonylphenol on liver and kidney injury in rats. Immunopharmacol Immunotoxicol 2021; 43:527-535. [PMID: 34282716 DOI: 10.1080/08923973.2021.1950179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Bisphenol A (BPA) and nonylphenol (NP) are widely distributed endocrine-disrupting compounds. We aimed to estimate the combined toxicity of BPA and NP at a clinically safe dose (100 μg/kg) in rats. MATERIALS AND METHODS Liver and kidney functions were evaluated by detecting the relevant indicators. Hematoxylin and Eosin (HE) staining was performed to examine the injury in the tissue. TUNEL assay and Western blot were used to detect cell apoptosis and expressions of target factors, respectively. RESULTS The body weight of rats in the BPA + NP group was lighter than that in the BPA or NP group. BPA or NP weakened liver function through increasing levels of aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), cholesterol (CHOL), triglyceride TG, globulin (GLOB), treponemiapallidum (TP), and total bilirubin (TBIL). BPA and NP could induce kidney damage by elevating the levels of serum creatinine (Scr) and blood urea nitrogen (BUN). Moreover, the malondialdehyde (MDA) content was increased, whereas the activities of superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-PX), glutathione sulfotransferase (GSH-ST), catalase (CAT), and peroxidase (POD) were reduced in those groups exposed to BPA or NP. HE staining exhibited injuries of the liver and kidney. Furthermore, the apoptosis of liver and kidney cells was enhanced by exposure to BPA or NP. Additionally, the expressions of CYP2D6, CYP1A1, and CYP2E1 were triggered by the treatment of BPA or NP. The combined effect of BPA and NP seemed to be antagonistic at a low dose. CONCLUSION BPA and NP may have potential interactions.
Collapse
Affiliation(s)
- Rui Shi
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Tong Liu
- Department of General surgery, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Tao J, Bai C, Chen Y, Zhou H, Liu Y, Shi Q, Pan W, Dong H, Li L, Xu H, Tanguay R, Huang C, Dong Q. Environmental relevant concentrations of benzophenone-3 induced developmental neurotoxicity in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137686. [PMID: 32169642 DOI: 10.1016/j.scitotenv.2020.137686] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/04/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Benzophenone-3 (BP3 or oxybenzone) is an organic UV filter that has been widely used in personal care products. Its frequent detection in the environment and humans as well as its structural similarity to estradiol have prompted most research focus on its endocrine effect. However, these effects are usually associated with concentrations 10-100 fold higher than its environmental relevant concentrations. Few studies explore its adverse effects at environmental relevant concentrations. In the present study, we evaluated the developmental neurotoxic (DNT) effects of low concentration BP3 exposure during a sensitive developmental window in zebrafish. Our findings revealed that BP3 exposure at 10 μg/L (0.04 μM) during 6-24 h post fertilization (hpf) led to various DNT effects such as increased spontaneous movement at 21 and 24 hpf, decreased touch response at 27 hpf, heightened hyperactivity in locomotor response at 5 day post fertilization (dpf), decreased shoaling behavior at 11 dpf and decreased mirror attacks at 12 dpf. These effects were accompanied with decreased axonal growth at 27 hpf, decreased cell proliferation and increased cell apoptosis in the head region of larval zebrafish immediately after BP3 exposure at 24 hpf, and increased expression of retinoid X receptor gene rxrgb at 5 dpf. Interestingly, rxrgb knockdown through morpholino injection largely restored most of BP3-induced DNT effects, axonal growth delay, cell proliferation and cell apoptosis, suggesting that BP3-induced DNT effects are likely mediated through the Rxrgb receptor. In considering with recent findings on the endocrine effects of BP3, we conclude that BP3 at environmental relevant concentrations has limited estrogenic effect, but is neurotoxic to developing embryos in zebrafish.
Collapse
Affiliation(s)
- Junyan Tao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chenglian Bai
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuanhong Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Huanhuan Zhou
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yahui Liu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingyu Shi
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenhao Pan
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Haojia Dong
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Luyi Li
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Hui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Robyn Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331, United States of America
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Qiaoxiang Dong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China; The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
8
|
Zhang L, Yang J, Li H, You J, Chatterjee N, Zhang X. Development of the transcriptome for a sediment ecotoxicological model species, Chironomus dilutus. CHEMOSPHERE 2020; 244:125541. [PMID: 32050339 DOI: 10.1016/j.chemosphere.2019.125541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/04/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Chironomus dilutus is a prominent model species in conventional sediment toxicity testing and sediment contamination diagnosis. However, lack of genomic data significantly limited its application in identifying toxicological mode of action (MOA) and molecular biomarkers of toxicants. Here the transcriptome of C. dilutus in full life span and both sexes (1st, 2nd, 3rd and 4th instar larvae, pupae, and adults) were developed and temporal gene expression across adjacent life stages were investigated to understand the regulation of development. Furthermore, transcriptional response of Midges (the 4th instar larvae) exposed to chemicals of different MOAs (CdCl2, nonylphenol and triclosan) were profiled based on the reference transcriptome. Consequently, a complete transcriptome of 31132 unigenes with N50 of 3117bp, covering 98.8% of the arthropod single-copy orthologs were assembled. While 364 genes were differentially expressed among adjacent larval stages, 7142 and 2127 of transcripts were significantly changed for the transition of larvae-pupae and pupae-adults, respectively. Finally, chemical-specific gene expression profile were identified in the midges, showed its potential in classifying distinct contaminants. Overall, the comprehensive transcriptome of C. dilutus developed here could not only facilitate the mechanistic understanding of environmental toxicants during critical life stage of aquatic insects, but also provide molecular diagnostic tools in sediment ecotoxicology.
Collapse
Affiliation(s)
- Lijuan Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Huizhen Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Nivedita Chatterjee
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
9
|
Kosnik MB, Planchart A, Marvel SW, Reif DM, Mattingly CJ. Integration of curated and high-throughput screening data to elucidate environmental influences on disease pathways. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 12:100094. [PMID: 31453412 PMCID: PMC6709694 DOI: 10.1016/j.comtox.2019.100094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Addressing the complex relationship between public health and environmental exposure requires multiple types and sources of data. An important source of chemical data derives from high-throughput screening (HTS) efforts, such as the Tox21/ToxCast program, which aim to identify chemical hazard using primarily in vitro assays to probe toxicity. While most of these assays target specific genes, assessing the disease-relevance of these assays remains challenging. Integration with additional data sets may help to resolve these questions by providing broader context for individual assay results. The Comparative Toxicogenomics Database (CTD), a publicly available database that builds networks of chemical, gene, and disease information from manually curated literature sources, offers a promising solution for contextual integration with HTS data. Here, we tested the value of integrating data across Tox21/ToxCast and CTD by linking elements common to both databases (i.e., assays, genes, and chemicals). Using polymarcine and Parkinson's disease as a case study, we found that their union significantly increased chemical-gene associations and disease-pathway coverage. Integration also enabled new disease associations to be made with HTS assays, expanding coverage of chemical-gene data associated with diseases. We demonstrate how integration enables development of predictive adverse outcome pathways using 4-nonylphenol, branched as an example. Thus, we demonstrate enhancements to each data source through database integration, including scenarios where HTS data can efficiently probe chemical space that may be understudied in the literature, as well as how CTD can add biological context to those results.
Collapse
Affiliation(s)
- Marissa B. Kosnik
- Toxicology Program, North Carolina State University, North Carolina State University, Raleigh, NC 27695-7617, United States
- Bioinformatics Research Center, North Carolina State University, North Carolina State University, Raleigh, NC 27695-7617, United States
- Department of Biological Sciences, North Carolina State University, North Carolina State University, Raleigh, NC 27695-7617, United States
| | - Antonio Planchart
- Toxicology Program, North Carolina State University, North Carolina State University, Raleigh, NC 27695-7617, United States
- Department of Biological Sciences, North Carolina State University, North Carolina State University, Raleigh, NC 27695-7617, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695-7617, United States
| | - Skylar W. Marvel
- Bioinformatics Research Center, North Carolina State University, North Carolina State University, Raleigh, NC 27695-7617, United States
- Department of Biological Sciences, North Carolina State University, North Carolina State University, Raleigh, NC 27695-7617, United States
| | - David M. Reif
- Toxicology Program, North Carolina State University, North Carolina State University, Raleigh, NC 27695-7617, United States
- Bioinformatics Research Center, North Carolina State University, North Carolina State University, Raleigh, NC 27695-7617, United States
- Department of Biological Sciences, North Carolina State University, North Carolina State University, Raleigh, NC 27695-7617, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695-7617, United States
| | - Carolyn J. Mattingly
- Toxicology Program, North Carolina State University, North Carolina State University, Raleigh, NC 27695-7617, United States
- Department of Biological Sciences, North Carolina State University, North Carolina State University, Raleigh, NC 27695-7617, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695-7617, United States
| |
Collapse
|
10
|
Li S, You M, Chai W, Xu Y, Wang Y. Developmental exposure to nonylphenol induced rat axonal injury in vivo and in vitro. Arch Toxicol 2019; 93:2673-2687. [PMID: 31456014 DOI: 10.1007/s00204-019-02536-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/14/2019] [Indexed: 01/20/2023]
Abstract
Increasing evidence indicates that developmental exposure to nonylphenol (NP) causes damage to the central nervous system (CNS). As the most unique and primary component of neuron, axon is an essential structure for the CNS function. Here, we investigated whether developmental exposure to NP affected rat axonal development in vivo and in vitro. Our results showed that developmental exposure to NP 10, 50, and 100 mg/(kg day) caused an obvious decrease in axonal length and density in the hippocampus. Developmental exposure to NP also altered the expression of CRMP-2 and p-CRMP-2, and activated Wnt-Dvl-GSK-3β cascade in the hippocampus, the crucial signaling that regulates axonal development. Even months after the exposure, impairment of axonal growth and alteration of this cascade were not fully restored. In the primary cultured neurons, 30, 50, and 70 μM NP treatment decreased axonal length and impaired axonal function. Similar to in vivo results, it also activated Wnt-Dvl-GSK-3β cascade in cultured neurons. SB-216763, a specific GSK-3β inhibitor, recovered the shortening of axon and the impairment of axonal function induced by NP. Taken together, our results support the idea that exposure to NP induces axonal injury in the developing neurons. Furthermore, the activation of Wnt-Dvl-GSK-3β cascade contributes to the axonal injury induced by NP.
Collapse
Affiliation(s)
- Siyao Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China
| | - Wenjie Chai
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China.
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
11
|
Ji X, Li N, Yuan S, Zhou X, Ding F, Rao K, Ma M, Wang Z. A comparison of endocrine disruption potential of nonylphenol ethoxylate, vanillin ethoxylate, 4-n-nonylphenol and vanillin in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:208-214. [PMID: 30901638 DOI: 10.1016/j.ecoenv.2019.03.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 05/24/2023]
Abstract
The widely used surfactant nonylphenol ethoxylate (NPEO) and its raw material 4-n-nonylphenol (4-n-NP), as well as its degradation products, are recognized as endocrine disrupting chemicals. The USA Environmental Protection Agency (EPA) released an assessment that looked for safe alternatives to NPEO. Vanillin ethoxylate (VAEO) is a novel substitute for NPEO and is quite similar to NPEO in structure; there is a risk that it has similar endocrine disrupting effects to NPEO. However, their effects on various nuclear hormone receptors have not been thoroughly examined. In this study, the effects of NPEO, VAEO, 4-n-NP and Vanillin on the estrogen receptor α (ERα), androgen receptor (AR), thyroid hormone receptor (TR), retinoic X receptor β (RXRβ) and estrogen-related receptor γ (ERRγ) were determined and compared using a battery of recombined yeast strains expressing β-galactosidase. The results showed that NPEO and 4-n-NP acted as significant antagonists of ER, AR, TR and ERRγ. In addition, 4-n-NP also had antagonistic activity toward RXRβ. Moreover, VAEO was shown to be a very weak antagonist of TR and ERRγ, and Vanillin had no interaction with any nuclear receptors. For the first time, it was found that NPEO had AR, TR and ERRγ antagonistic effects and that 4-n-NP was an antagonist of RXRβ. The in vitro data indicated that NPEO, 4-n-NP and VAEO have the potential to act as endocrine disruptors involving more than one nuclear hormone receptor, but VAEO has much lower endocrine disrupting potential than NPEO. Thus, it is critical to find safe substitutes for NPEO and a substitute of NPEO with structural analogues should be carried out with caution. Furthermore, to look for preferable alternatives for NPEO, more in vivo and in vitro studies of the alternatives concerning endocrine disruption are needed, especially in vitro studies need to involve various target points, not only focus on their effects on ER but also take other nuclear hormone receptor pathways into consideration.
Collapse
Affiliation(s)
- Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shengwu Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaohong Zhou
- Center for Sensor Technology of Environment and Health, State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Fengmei Ding
- Institute of Chemical and Biological Engineering, Donghua University, 201620, Shanghai, China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Zijian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| |
Collapse
|
12
|
Li M, You M, Li S, Qiu Z, Wang Y. Effects of maternal exposure to nonylphenol on learning and memory in offspring involve inhibition of BDNF-PI3K/Akt signaling. Brain Res Bull 2019; 146:270-278. [PMID: 30660719 DOI: 10.1016/j.brainresbull.2019.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 12/21/2022]
Abstract
Nonylphenol (NP), a global environmental pollutant, has been found to result in impairments of neurodevelopment. However, effects of maternal exposure to NP on learning and memory and the potential mechanisms are largely unexplored. Thus, we treated dams with NP during gestation and lactation to study its effect on learning and memory in offspring. Morris water maze (MWM) task and the electrophysiological recording in the hippocampus were conducted in pups. We also investigated the activation of BDNF-PI3K/Akt signaling and the expression of its target protein PSD-95 in offspring hippocampus, which are curial for the synaptic plasticity and learning and memory. The results showed that maternal exposure to NP led to poor performance in MWM task and especially impairments of long-term potentiation (LTP), although the termination of NP exposure was at the end of lactation. Meanwhile, maternal exposure to NP also decreased the activation of BDNF-PI3K/Akt signaling and the protein level of PSD-95. Taken together, our results support the hypothesis that maternal exposure to NP during gestation and lactation causes damages to learning and memory. In addition, suppressed activation of the BDNF-PI3K/Akt signaling may contribute to these impairments caused by maternal exposure to NP.
Collapse
Affiliation(s)
- Mei Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, PR China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, PR China
| | - Siyao Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, PR China
| | - Zhenmin Qiu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, PR China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, PR China.
| |
Collapse
|
13
|
Li S, Jiang Z, Chai W, Xu Y, Wang Y. Autophagy activation alleviates nonylphenol-induced apoptosis in cultured cortical neurons. Neurochem Int 2019; 122:73-84. [DOI: 10.1016/j.neuint.2018.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/19/2023]
|
14
|
Gu W, Wang Y, Qiu Z, Dong J, Wang Y, Chen J. Maternal exposure to nonylphenol during pregnancy and lactation induces microglial cell activation and pro-inflammatory cytokine production in offspring hippocampus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:525-533. [PMID: 29635194 DOI: 10.1016/j.scitotenv.2018.03.329] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/11/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Recently, environmental nonylphenol (NP) exposure in the fetus and child has received increasing attention because of its potentially deleterious effects on the central nervous system (CNS). Microglia (MG), resident immune cells in the CNS, are vital to CNS homeostasis and defense against exogenous chemicals, which makes them a potentially sensitive target of NP. The present study aims to explore the effects of maternal NP exposure during pregnancy and lactation on MG in offspring hippocampus, the production of pro-inflammatory cytokines by MG, and associated underlying mechanisms. We found that maternal NP exposure increased the production of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in offspring hippocampus. Increases in both activation and number of MG were observed in offspring hippocampus. Increased phosphorylation of Akt was found to co-localize with hippocampal MG, while increased phosphorylation of c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) were observed in offspring hippocampus. Activator protein 1 (AP-1), an inflammatory transcription factor, was also activated in the hippocampus of pups subjected to maternal NP exposure. These results suggest that maternal NP exposure might activate MG in offspring hippocampus. This activation seems to subsequently increase the production of IL-1β, IL-6, and TNF-α. Furthermore, Akt/MAPK/AP-1 signaling may be involved in this activation of MG and increased production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Weijia Gu
- Department of Occupational and Environmental Health, School of Public Heath, China Medical University, PR China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Heath, China Medical University, PR China
| | - Zhenmin Qiu
- Department of Occupational and Environmental Health, School of Public Heath, China Medical University, PR China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Heath, China Medical University, PR China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Heath, China Medical University, PR China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Heath, China Medical University, PR China.
| |
Collapse
|
15
|
Acir IH, Guenther K. Endocrine-disrupting metabolites of alkylphenol ethoxylates - A critical review of analytical methods, environmental occurrences, toxicity, and regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1530-1546. [PMID: 29874777 DOI: 10.1016/j.scitotenv.2018.04.079] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 05/07/2023]
Abstract
Despite the fact that metabolites of alkylphenol ethoxylates (APEO) are classified as hazardous substances, they continue to be released into the environment from a variety of sources and are not usually monitored. Their wide use has led to an increase in the possible exposure pathways for humans, which is cause for alarm. Moreover, there is a lack of knowledge about the behaviour of these metabolites with respect to the environment and toxicity, and their biological effects on human health. The aim of this work is to give an overview of the APEO metabolites and their analysis, occurrences and toxicity in various environmental and human samples. APEO metabolites have adverse effects on humans, wildlife, and the environment through their release into the environment. Currently, there are some reviews available on the behaviour of alkylphenols in soil, sediments, groundwater, surface water and food. However, none of these articles consider their toxicity in humans and especially their effect on the nervous and immune system. This work summarises the environmental occurrences of metabolites of APEOs in matrices, e.g. water, food and biological matrices, their effect on the immune and nervous systems, and isomer-specific issues. With that emphasis we are able to cover most common occurrences of human exposure, whether direct or indirect.
Collapse
Affiliation(s)
- Ismail-H Acir
- University of Bonn, Institute of Nutrition and Food Sciences, Food Chemistry, Endenicher Allee 11-13, D-53115 Bonn, Germany
| | - Klaus Guenther
- University of Bonn, Institute of Nutrition and Food Sciences, Food Chemistry, Endenicher Allee 11-13, D-53115 Bonn, Germany.
| |
Collapse
|
16
|
Wnuk A, Rzemieniec J, Litwa E, Lasoń W, Kajta M. Prenatal exposure to benzophenone-3 (BP-3) induces apoptosis, disrupts estrogen receptor expression and alters the epigenetic status of mouse neurons. J Steroid Biochem Mol Biol 2018; 182:106-118. [PMID: 29704544 DOI: 10.1016/j.jsbmb.2018.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
Current evidence indicates that benzophenone-3 (BP-3) can pass through the placental and blood-brain barriers and thus can likely affect infant neurodevelopment. Despite widespread exposure, data showing the effects of BP-3 on the developing nervous system are scarce. This study revealed for the first time that prenatal exposure to BP-3 led to apoptosis and neurotoxicity, altered the levels of estrogen receptors (ERs) and changed the epigenetic status of mouse neurons. In the present study, subcutaneous injections of pregnant mice with BP-3 at 50 mg/kg, which is an environmentally relevant dose, evoked activation of caspase-3 and lactate dehydrogenase (LDH) release as well as substantial loss of mitochondrial membrane potential in neocortical cells of their embryonic offspring. Apoptosis-focused microarray analysis of neocortical cells revealed up-regulation of 22 genes involved in apoptotic cell death. This effect was supported by increased BAX and CASP3 mRNA and protein levels, as evidenced by qPCR, ELISAs and western blots. BP-3-induced apoptosis and neurotoxicity were accompanied by decreases in the mRNA and protein expression levels of ESR1 and ESR2 (also known as ERα and ERβ), with a simultaneous increase in GPER1 (also known as GPR30) expression. In addition to the demonstration that treatment of pregnant mice with BP-3 induced apoptosis, caused neurotoxicity and altered ERs expression levels in neocortical cells of their embryonic offspring, we showed that prenatal administration of BP-3 inhibited global DNA methylation as well as reduced DNMTs activity. BP-3 also caused specific hypomethylation of the genes Gper1 and Bax, an effect that was accompanied by increased mRNA and protein expression levels. In addition, BP-3 caused hypermethylation of the genes Esr1, Esr2 and Bcl2, which could explain the reduced mRNA and protein levels of the estrogen receptors. This study demonstrated for the first time that prenatal exposure to BP-3 caused severe neuronal apoptosis that was accompanied by impaired ESR1/ESR2 expression, enhanced GPER1 expression, global DNA hypomethylation and altered methylation statuses of apoptosis-related and ERs genes. We suggest that the effects of BP-3 in embryonic neurons may be the fetal basis of the adult onset of nervous system disease.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Joanna Rzemieniec
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Ewa Litwa
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Władysław Lasoń
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Małgorzata Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland.
| |
Collapse
|
17
|
Watanabe M, Kakuta H. Retinoid X Receptor Antagonists. Int J Mol Sci 2018; 19:ijms19082354. [PMID: 30103423 PMCID: PMC6121510 DOI: 10.3390/ijms19082354] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Retinoid X receptor (RXR) antagonists are not only useful as chemical tools for biological research, but are also candidate drugs for the treatment of various diseases, including diabetes and allergies, although no RXR antagonist has yet been approved for clinical use. In this review, we present a brief overview of RXR structure, function, and target genes, and describe currently available RXR antagonists, their structural classification, and their evaluation, focusing on the latest research.
Collapse
Affiliation(s)
- Masaki Watanabe
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
18
|
Michałowicz J, Włuka A, Cyrkler M, Maćczak A, Sicińska P, Mokra K. Phenol and chlorinated phenols exhibit different apoptotic potential in human red blood cells (in vitro study). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 61:95-101. [PMID: 29857326 DOI: 10.1016/j.etap.2018.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/20/2018] [Accepted: 05/21/2018] [Indexed: 05/23/2023]
Abstract
Phenol and chlorinated phenols are widely spread in the environment and human surrounding, which leads to a common environmental and occupational exposure of humans to these substances. The aim of this study was to assess eryptotic changes in human red blood cells treated with phenol, 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The erythrocytes were incubated with phenols studied in the concentrations ranging from 1 to 100 μg/mL for 24 h or 48 h. The results of the study revealed that all compounds studied caused phosphatidylserine translocation and increased cytosolic calcium ions level in human erythrocytes. It was also noticed that phenol and chlorophenols caused an increase in caspase-3 and calpain activation, which confirmed that they were capable of inducing suicidal death of erythrocytes. The results also revealed that PCP most strongly altered the parameters studied, while phenol exhibited the weakest eryptotic potential in the incubated cells.
Collapse
Affiliation(s)
- Jaromir Michałowicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland.
| | - Anna Włuka
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Monika Cyrkler
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Aneta Maćczak
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Paulina Sicińska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Katarzyna Mokra
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| |
Collapse
|
19
|
Kazemi S, Khalili-Fomeshi M, Akbari A, Kani SNM, Ahmadian SR, Ghasemi-Kasman M. The correlation between nonylphenol concentration in brain regions and resulting behavioral impairments. Brain Res Bull 2018. [DOI: 10.1016/j.brainresbull.2018.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Gu W, Wang Y, Qiu Z, Dong J, Wang Y, Chen J. Mitogen-activated protein kinase signaling is involved in nonylphenol-induced proinflammatory cytokines secretion by BV2 microglia. J Appl Toxicol 2018; 38:958-967. [DOI: 10.1002/jat.3602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Weijia Gu
- Department of Occupational and Environmental Health, School of Public Heath; China Medical University; Shenyang People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Heath; China Medical University; Shenyang People's Republic of China
| | - Zhenmin Qiu
- Department of Occupational and Environmental Health, School of Public Heath; China Medical University; Shenyang People's Republic of China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Heath; China Medical University; Shenyang People's Republic of China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Heath; China Medical University; Shenyang People's Republic of China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Heath; China Medical University; Shenyang People's Republic of China
| |
Collapse
|
21
|
Bondy SC, Campbell A. Water Quality and Brain Function. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 15:E2. [PMID: 29267198 PMCID: PMC5800103 DOI: 10.3390/ijerph15010002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
In the United States, regulations are in place to ensure the quality of drinking water. Such precautions are intended to safeguard the health of the population. However, regulatory guidelines may at times fail to achieve their purpose. This may be due to lack of sufficient data regarding the health hazards of chronic low dose exposure to contaminants or the introduction of new substances that pose a health hazard risk that has yet to be identified. In this review, examples of different sources of contaminants in drinking water will be discussed, followed by an evaluation of some select individual toxicants with known adverse neurological impact. The ability of mixtures to potentially cause additive, synergistic, or antagonistic neurotoxic responses will be briefly addressed. The last section of the review will provide examples of select mechanisms by which different classes of contaminants may lead to neurological impairments. The main objective of this review is to bring to light the importance of considering trace amounts of chemicals in the drinking water and potential brain abnormalities. There is continued need for toxicology studies to better understand negative consequences of trace amounts of toxins and although it is beyond the scope of this brief overview it is hoped that the review will underscore the paucity of studies focused on determining how long-term exposure to minute levels of contaminants in drinking water may pose a significant health hazard.
Collapse
Affiliation(s)
- Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92617-1830, USA.
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA.
| |
Collapse
|
22
|
Wnuk A, Kajta M. Steroid and Xenobiotic Receptor Signalling in Apoptosis and Autophagy of the Nervous System. Int J Mol Sci 2017; 18:ijms18112394. [PMID: 29137141 PMCID: PMC5713362 DOI: 10.3390/ijms18112394] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Apoptosis and autophagy are involved in neural development and in the response of the nervous system to a variety of insults. Apoptosis is responsible for cell elimination, whereas autophagy can eliminate the cells or keep them alive, even in conditions lacking trophic factors. Therefore, both processes may function synergistically or antagonistically. Steroid and xenobiotic receptors are regulators of apoptosis and autophagy; however, their actions in various pathologies are complex. In general, the estrogen (ER), progesterone (PR), and mineralocorticoid (MR) receptors mediate anti-apoptotic signalling, whereas the androgen (AR) and glucocorticoid (GR) receptors participate in pro-apoptotic pathways. ER-mediated neuroprotection is attributed to estrogen and selective ER modulators in apoptosis- and autophagy-related neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, stroke, multiple sclerosis, and retinopathies. PR activation appeared particularly effective in treating traumatic brain and spinal cord injuries and ischemic stroke. Except for in the retina, activated GR is engaged in neuronal cell death, whereas MR signalling appeared to be associated with neuroprotection. In addition to steroid receptors, the aryl hydrocarbon receptor (AHR) mediates the induction and propagation of apoptosis, whereas the peroxisome proliferator-activated receptors (PPARs) inhibit this programmed cell death. Most of the retinoid X receptor-related xenobiotic receptors stimulate apoptotic processes that accompany neural pathologies. Among the possible therapeutic strategies based on targeting apoptosis via steroid and xenobiotic receptors, the most promising are the selective modulators of the ER, AR, AHR, PPARγ agonists, flavonoids, and miRNAs. The prospective therapies to overcome neuronal cell death by targeting autophagy via steroid and xenobiotic receptors are much less recognized.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| | - Małgorzata Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| |
Collapse
|
23
|
Wnuk A, Rzemieniec J, Lasoń W, Krzeptowski W, Kajta M. Benzophenone-3 Impairs Autophagy, Alters Epigenetic Status, and Disrupts Retinoid X Receptor Signaling in Apoptotic Neuronal Cells. Mol Neurobiol 2017; 55:5059-5074. [PMID: 28815487 PMCID: PMC5948252 DOI: 10.1007/s12035-017-0704-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022]
Abstract
Benzophenone-3 (BP-3) is the most widely used compound among UV filters for the prevention of photodegradation. Population studies have demonstrated that it penetrates through the skin and crosses the blood-brain barrier. However, little is known about the impact of BP-3 on the nervous system and its possible adverse effects on the developing brain. We demonstrated that the neurotoxic effects of BP-3 were accompanied by the induction of apoptosis, as evidenced by apoptosis-related caspase-3 activation and apoptotic body formation as well as the inhibition of autophagy, as determined by the downregulation of autophagy-related genes, decreased autophagosome formation, and reduced LC3B-to-LC3A ratio. In this study, we showed for the first time that the BP-3-induced apoptosis of neuronal cells is mediated via the stimulation of RXRα signaling and the attenuation of RXRβ/RXRγ signaling, as demonstrated using selective antagonist and specific siRNAs as well as by measuring the mRNA and protein expression levels of the receptors. This study also demonstrated that environmentally relevant concentrations of BP-3 were able to inhibit autophagy and disrupt the epigenetic status of neuronal cells, as evidenced by the inhibition of global DNA methylation as well as the reduction of histone deacetylases and histone acetyl transferases activity, which may increase the risks of neurodevelopmental abnormalities and/or neural degenerations.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Joanna Rzemieniec
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Gronostajowa Street 9, 30-387, Krakow, Poland
| | - Małgorzata Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland.
| |
Collapse
|
24
|
Kajta M, Wnuk A, Rzemieniec J, Litwa E, Lason W, Zelek-Molik A, Nalepa I, Rogóż Z, Grochowalski A, Wojtowicz AK. Depressive-like effect of prenatal exposure to DDT involves global DNA hypomethylation and impairment of GPER1/ESR1 protein levels but not ESR2 and AHR/ARNT signaling. J Steroid Biochem Mol Biol 2017; 171:94-109. [PMID: 28263910 DOI: 10.1016/j.jsbmb.2017.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 01/01/2023]
Abstract
Several lines of evidence suggest that exposures to Endocrine Disrupting Chemicals (EDCs) such as pesticides increase the risks of neuropsychiatric disorders. Despite extended residual persistence of dichlorodiphenyltrichloroethane (DDT) in the environment, the mechanisms of perinatal actions of DDT that could account for adult-onset of depression are largely unknown. This study demonstrated the isomer-specific induction of depressive-like behavior and impairment of Htr1a/serotonin signaling in one-month-old mice that were prenatally exposed to DDT. The effects were reversed by the antidepressant citalopram as evidenced in the forced swimming (FST) and tail suspension (TST) tests in the male and female mice. Prenatally administered DDT accumulated in mouse brain as determined with gas chromatography and tandem mass spectrometry, led to global DNA hypomethylation, and altered the levels of methylated DNA in specific genes. The induction of depressive-like behavior and impairment of Htr1a/serotonin signaling were accompanied by p,p'-DDT-specific decrease in the levels of estrogen receptors i.e. ESR1 and/or GPER1 depending on sex. In contrast, o,p'-DDT did not induce depressive-like effects and exhibited quite distinct pattern of biochemical alterations that was related to aryl hydrocarbon receptor (AHR), its nuclear translocator ARNT, and ESR2. Exposure to o,p'-DDT increased AHR expression in male and female brains, and reduced expression levels of ARNT and ESR2 in the female brains. The evolution of p,p'-DDT-induced depressive-like behavior was preceded by attenuation of Htr1a and Gper1/GPER1 expression as observed in the 7-day-old mouse pups. Because p,p'-DDT caused sex- and age-independent attenuation of GPER1, we suggest that impairment of GPER1 signaling plays a key role in the propagation of DDT-induced depressive-like symptoms.
Collapse
Affiliation(s)
- Malgorzata Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland.
| | - Agnieszka Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Joanna Rzemieniec
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Ewa Litwa
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Wladyslaw Lason
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Agnieszka Zelek-Molik
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Zofia Rogóż
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Adam Grochowalski
- Department of Analytical Chemistry, Krakow University of Technology, Warszawska Street 24, 31-155 Krakow, Poland
| | - Anna K Wojtowicz
- Department of Animal Biotechnology, Faculty of Animal Sciences, University of Agriculture, Redzina Street 1B, 30-248 Krakow, Poland
| |
Collapse
|
25
|
Stengel D, Zindler F, Braunbeck T. An optimized method to assess ototoxic effects in the lateral line of zebrafish (Danio rerio) embryos. Comp Biochem Physiol C Toxicol Pharmacol 2017; 193:18-29. [PMID: 27847309 DOI: 10.1016/j.cbpc.2016.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/22/2016] [Accepted: 11/11/2016] [Indexed: 12/27/2022]
Abstract
In order to clarify the suitability of the lateral line of zebrafish (Danio rerio) embryos as a model for the screening of ototoxic (neurotoxic) effects, existing neuromast assays were adapted, improved and validated with a series of chemicals known or unknown for their ototoxic potential (caffeine copper sulfate, dichlorvos, 2.4-dinitrotoluene, neomycin, 4-nonylphenol, perfluorooctanesulfonic acid). Present methods were improved by (1) the introduction of a 4-step scoring system, (2) the selection of neuromasts from both the anterior and posterior lateral line systems, (3) a combined DASPEI/DAPI staining applied after both a continuous and pulse exposure scenario, and (4) an additional screening for nuclear fragmentation. Acute toxicities of the model substances were determined by means of the fish embryo test as specified in OECD TG 236, and EC10 concentrations were used as the highest test concentration in the neuromast assay. The enhanced neuromast assay identified known ototoxic substances such as neomycin and copper sulfate as ototoxic at sensitivities similar to those of established methods, with pulse exposure leading to stronger effects than continuous exposure. Except for caffeine, all substances tested (dichlorvos, 2.4-dinitrotoluene, 4-nonylphenol, perfluorooctanesulfonic acid) produced significant toxic effects in neuromasts at EC10 concentrations. Depending on the test substances and their location along the lateral line, specific neuromasts differed in sensitivity. Generally, neuromasts proved more sensitive in the pulse exposure scenario. Whereas for neomycin and copper sulfate neuromasts located along the anterior lateral line were more sensitive, posterior lateral line neuromasts proved more sensitive for the other test substances. Nuclear fragmentation could not only be associated with all test substances, but, albeit at lower frequencies, also with negative controls, and could, therefore, not be assigned specifically to chemical damage. The study thus documented that for a comprehensive evaluation of lateral line damage both neuromasts from the anterior and the posterior lateral line have to be considered. Given the apparently rapid regeneration of hair cells, pulse exposure seems more appropriate for the identification of lateral line neurotoxicity than continuous exposure.
Collapse
Affiliation(s)
- Daniel Stengel
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, D-69120 Heidelberg, Germany
| | - Florian Zindler
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, D-69120 Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, D-69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Tabassum H, Ashafaq M, Parvez S, Raisuddin S. Role of melatonin in mitigating nonylphenol-induced toxicity in frontal cortex and hippocampus of rat brain. Neurochem Int 2016; 104:11-26. [PMID: 28012845 DOI: 10.1016/j.neuint.2016.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 01/19/2023]
Abstract
Nonylphenol (NP), an environmental endocrine disruptor mimics estrogen and is a potential toxicant both under in vitro and in vivo conditions. In this study, the effect of melatonin on NP- induced neurotoxicity and cognitive alteration was investigated in adult male Wistar rats. Melatonin supplementation has been known to protect cells from neurotoxic injury. The animals were divided into three groups namely, control (vehicle) which received olive oil orally and treated rats received NP (25 mg/kg, per os) thrice a week for 45 days while the third group i.e., NP + melatonin, animals were co-administered melatonin (10 mg/kg, i.p.) along with NP. On the 46th day, rats were assessed for anxiety, motor co-ordination, grip strength and cognitive performance using Morris water maze test and then sacrificed for biochemical and histopathological assays in brain tissues. Melatonin improved the behavioral performance in NP exposed group. The results showed that NP significantly decreased the activity of acetylcholine esterase (AchE), monoamine oxidase (MAO) and Na+/K+-ATPase, in rat brain tissue along with other enzymes of antioxidant milieu. The outcome of the study shows that NP, like other persistent endocrine disrupting pollutants, creates a potential risk of cognitive, neurochemical and histopathological perturbations as a result of environmental exposure. Taken together, our study demonstrates that melatonin is protective against NP-induced neurotoxicity.
Collapse
Affiliation(s)
- Heena Tabassum
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| | - Mohammad Ashafaq
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India.
| |
Collapse
|
27
|
Zhang YX, Yang X, Zou P, Du PF, Wang J, Jin F, Jin MJ, She YX. Nonylphenol Toxicity Evaluation and Discovery of Biomarkers in Rat Urine by a Metabolomics Strategy through HPLC-QTOF-MS. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13050501. [PMID: 27187439 PMCID: PMC4881126 DOI: 10.3390/ijerph13050501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 02/02/2023]
Abstract
Nonylphenol (NP) was quantified using liquid chromatography tandem mass spectrometry (LC-MS/MS) in the urine and plasma of rats treated with 0, 50, and 250 mg/kg/day of NP for four consecutive days. A urinary metabolomic strategy was originally implemented by high performance liquid chromatography time of flight mass spectrometry (HPLC-QTOF-MS) to explore the toxicological effects of NP and determine the overall alterations in the metabolite profiles so as to find potential biomarkers. It is essential to point out that from the observation, the metabolic data were clearly clustered and separated for the three groups. To further identify differentiated metabolites, multivariate analysis, including principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA), high-resolution MS/MS analysis, as well as searches of Metlin and Massbank databases, were conducted on a series of metabolites between the control and dose groups. Finally, five metabolites, including glycine, glycerophosphocholine, 5-hydroxytryptamine, malonaldehyde (showing an upward trend), and tryptophan (showing a downward trend), were identified as the potential urinary biomarkers of NP-induced toxicity. In order to validate the reliability of these potential biomarkers, an independent validation was performed by using the multiple reaction monitoring (MRM)-based targeted approach. The oxidative stress reflected by urinary 8-oxo-deoxyguanosine (8-oxodG) levels was elevated in individuals highly exposed to NP, supporting the hypothesis that mitochondrial dysfunction was a result of xenoestrogen accumulation. This study reveals a promising approach to find biomarkers to assist researchers in monitoring NP.
Collapse
Affiliation(s)
- Yan-Xin Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Pan Zou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Peng-Fei Du
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Key Laboratory of Agro-Product Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Key Laboratory of Agro-Product Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Fen Jin
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Key Laboratory of Agro-Product Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Mao-Jun Jin
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Key Laboratory of Agro-Product Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Xin She
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Key Laboratory of Agro-Product Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
28
|
Maćczak A, Cyrkler M, Bukowska B, Michałowicz J. Eryptosis-inducing activity of bisphenol A and its analogs in human red blood cells (in vitro study). JOURNAL OF HAZARDOUS MATERIALS 2016; 307:328-335. [PMID: 26799224 DOI: 10.1016/j.jhazmat.2015.12.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/09/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Bisphenols are important chemicals that are widely used in the manufacturing of polycarbonates, epoxy resin and thermal paper, and thus the exposure of humans to these substances has been noted. The purpose of this study was to assess eryptotic changes in human erythrocytes exposed (in vitro) to bisphenol A (BPA) and its selected analogs, i.e.,bisphenol F (BPF), bisphenol S (BPS) and bisphenol AF (BPAF). The erythrocytes were incubated with compounds studied at concentrations ranging from 1 to 250μg/mL for 4, 12 or 24h. The results showed that BPA and its analogs increased cytosolic calcium ions level with the strongest effect noted for BPAF. It has also been revealed that all bisphenols analyzed, and BPAF and BPF in particular increased phosphatidylserine translocation in red blood cells, which confirmed that they exhibited eryptotic potential in this cell type. Furthermore, it was shown that BPA and its analogs caused significant increase in calpain and caspase-3 activities, while the strongest effect was noted for BPAF. BPS, which is the main substituent of bisphenol A in polymers and thermal paper production exhibited similar eryptotic potential to BPA. Eryptotic changes in human erythrocytes were provoked by bisphenols at concentrations, which may influence the human body during occupational exposure or subacute poisoning with these compounds.
Collapse
Affiliation(s)
- Aneta Maćczak
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Monika Cyrkler
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Bożena Bukowska
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Jaromir Michałowicz
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland.
| |
Collapse
|
29
|
Litwa E, Rzemieniec J, Wnuk A, Lason W, Krzeptowski W, Kajta M. RXRα, PXR and CAR xenobiotic receptors mediate the apoptotic and neurotoxic actions of nonylphenol in mouse hippocampal cells. J Steroid Biochem Mol Biol 2016; 156:43-52. [PMID: 26643981 DOI: 10.1016/j.jsbmb.2015.11.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/21/2015] [Accepted: 11/26/2015] [Indexed: 12/26/2022]
Abstract
In the present study, we investigated the role of the retinoid X receptor (RXR), the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), in the apoptotic and toxic effects of nonylphenol in mouse primary neuronal cell cultures. Our study demonstrated that nonylphenol activated caspase-3 and induced lactate dehydrogenase (LDH) release in hippocampal cells, which was accompanied by an increase in the mRNA expression and protein levels of RXRα, PXR and CAR. Nonylphenol stimulated Rxra, Pxr, and Car mRNA expression. These effects were followed by increase in the protein levels of particular receptors. Immunofluorescence labeling revealed the cellular distribution of RXRα, PXR and CAR in hippocampal neurons in response to nonylphenol, shortening of neurites and cytoplasmic shrinking, as indicated by MAP2 staining. It also showed NP-induced translocation of receptor-specific immunofluorescence from cytoplasm to the nucleus. The use of specific siRNAs demonstrated that Rxra-, Pxr-, and Car-siRNA-transfected cells were less vulnerable to nonylphenol-induced activation of caspase-3 and LDH, thus confirming the key involvement of RXRα/PXR/CAR signaling pathways in the apoptotic and neurotoxic actions of nonylphenol. These new data give prospects for the targeting xenobiotic nuclear receptors to protect the developing nervous system against endocrine disrupting chemicals.
Collapse
Affiliation(s)
- E Litwa
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - J Rzemieniec
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - A Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - W Lason
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - W Krzeptowski
- Department of Cell Biology and Imaging, Confocal Microscopy Laboratory, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland
| | - M Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| |
Collapse
|
30
|
The Crucial Involvement of Retinoid X Receptors in DDE Neurotoxicity. Neurotox Res 2015; 29:155-72. [PMID: 26563996 PMCID: PMC4701765 DOI: 10.1007/s12640-015-9572-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 11/25/2022]
Abstract
Dichlorodiphenyldichloroethylene (DDE) is a primary environmental and metabolic degradation product of the pesticide dichlorodiphenyltrichloroethane (DDT). It is one of the most toxic compounds belonging to organochlorines. DDE has never been commercially produced; however, the parent pesticide DDT is still used in some developing countries for disease-vector control of malaria. DDT and DDE remain in the environment because these chemicals are resistant to degradation and bioaccumulate in the food chain. Little is known, however, about DDE toxicity during the early stages of neural development. The results of the present study demonstrate that DDE induced a caspase-3-dependent apoptosis and caused the global DNA hypomethylation in mouse embryonic neuronal cells. This study also provided evidence for DDE-isomer-non-specific alterations of retinoid X receptor α (RXRα)- and retinoid X receptor β (RXRβ)-mediated intracellular signaling, including changes in the levels of the receptor mRNAs and changes in the protein levels of the receptors. DDE-induced stimulation of RXRα and RXRβ was verified using selective antagonist and specific siRNAs. Co-localization of RXRα and RXRβ was demonstrated using confocal microscopy. The apoptotic action of DDE was supported at the cellular level through Hoechst 33342 and calcein AM staining experiments. In conclusion, the results of the present study demonstrated that the stimulation of RXRα- and RXRβ-mediated intracellular signaling plays an important role in the propagation of DDE-induced apoptosis during early stages of neural development.
Collapse
|
31
|
Rzemieniec J, Litwa E, Wnuk A, Lason W, Krzeptowski W, Kajta M. Selective Aryl Hydrocarbon Receptor Modulator 3,3'-Diindolylmethane Impairs AhR and ARNT Signaling and Protects Mouse Neuronal Cells Against Hypoxia. Mol Neurobiol 2015; 53:5591-606. [PMID: 26476840 DOI: 10.1007/s12035-015-9471-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/01/2015] [Indexed: 01/01/2023]
Abstract
The neuroprotective potential of 3,3'-diindolylmethane (DIM), which is a selective aryl hydrocarbon receptor modulator, has recently been shown in cellular and animal models of Parkinson's disease and lipopolysaccharide-induced inflammation. However, there are no data concerning the protective capacity and mechanisms of DIM action in neuronal cells exposed to hypoxia. The aim of the present study was to investigate the neuroprotective potential of DIM against the hypoxia-induced damage in mouse hippocampal cells in primary cultures, with a particular focus on DIM interactions with the aryl hydrocarbon receptor (AhR), its nuclear translocator ARNT, and estrogen receptor β (ERβ). In the present study, 18 h of hypoxia induced apoptotic processes, in terms of the mitochondrial membrane potential, activation of caspase-3, and fragmentation of cell nuclei. These effects were accompanied by substantial lactate dehydrogenase release and neuronal cell death. The results of the present study demonstrated strong neuroprotective and anti-apoptotic actions of DIM in hippocampal cells exposed to hypoxia. In addition, DIM decreased the Ahr and Arnt mRNA expression and stimulated Erβ mRNA expression level. DIM-induced mRNA alterations were mirrored by changes in protein levels, except for ERβ, as detected by ELISA, Western blotting, and immunofluorescence labeling. We also demonstrated that DIM decreased the expression of AhR-regulated CYP1A1. Using specific siRNAs, we provided evidence that impairment of AhR and ARNT, but not ERβ plays a key role in the neuroprotective action of DIM against hypoxia-induced cell damage. This study may have implication for identifying new agents that could protect neurons against hypoxia by targeting AhR/ARNT signaling.
Collapse
Affiliation(s)
- J Rzemieniec
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - E Litwa
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - A Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - W Lason
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - W Krzeptowski
- Department of Cell Biology and Imaging, Confocal Microscopy Laboratory, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387, Krakow, Poland
| | - M Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland.
| |
Collapse
|
32
|
Zhang XK, Su Y, Chen L, Chen F, Liu J, Zhou H. Regulation of the nongenomic actions of retinoid X receptor-α by targeting the coregulator-binding sites. Acta Pharmacol Sin 2015; 36:102-12. [PMID: 25434990 DOI: 10.1038/aps.2014.109] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/28/2014] [Indexed: 12/31/2022]
Abstract
Retinoid X receptor-α (RXRα), a unique member of the nuclear receptor superfamily, represents an intriguing and unusual target for pharmacologic interventions and therapeutic applications in cancer, metabolic disorders and neurodegenerative diseases. Despite the fact that the RXR-based drug Targretin (bexarotene) is currently used for treating human cutaneous T-cell lymphoma and the fact that RXRα ligands (rexinoids) show beneficial effects in the treatment of cancer and diseases, the therapeutic potential of RXRα remains unexplored. In addition to its conventional transcription regulation activity in the nucleus, RXRα can act in the cytoplasm to modulate important biological processes, such as mitochondria-dependent apoptosis, inflammation, and phosphatidylinositol 3-kinase (PI3K)/AKT-mediated cell survival. Recently, new small-molecule-binding sites on the surface of RXRα have been identified, which mediate the regulation of the nongenomic actions of RXRα by a class of small molecules derived from the nonsteroidal anti-inflammatory drug (NSAID) Sulindac. This review discusses the emerging roles of the nongenomic actions of RXRα in the RXRα signaling network, and their possible implications in cancer, metabolic and neurodegenerative disorders, as well as our current understanding of RXRα regulation by targeting alternate binding sites on its surface.
Collapse
|