1
|
Galusko V, Wenzl FA, Vandenbriele C, Panoulas V, Lüscher TF, Gorog DA. Current and novel biomarkers in cardiogenic shock. Eur J Heart Fail 2025. [PMID: 39822053 DOI: 10.1002/ejhf.3531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 01/19/2025] Open
Abstract
Cardiogenic shock (CS) carries a 30-50% in-hospital mortality rate, with little improvement in outcomes in the last decade. Challenges in improving outcomes are closely linked to the frequent late presentation or diagnosis of CS where the 'point of no return' has often passed, leading to haemodynamic dysregulation, progressive myocardial depression, hypotension, and a downward spiral of hypoperfusion, organ dysfunction and decreasing myocardial function, driven by inflammation and metabolic derangements. Novel therapeutic interventions may have varying efficacy depending on the type and stage of shock in which they are applied. Biomarkers that aid prediction and early detection of CS, provide early signs of organ dysfunction and define prognosis could help optimize management. Temporal change in such biomarkers, particularly in response to pharmacological interventions and/or mechanical circulatory support, can guide management and predict outcome. Several novel biomarkers enhance the prediction of mortality in CS, compared to conventional parameters such as lactate, with some, such as adrenomedullin and circulating dipeptidyl peptidase 3, also able to predict the development of CS. Some biomarkers reflect systemic inflammation (e.g. interleukin-6, angiopoietin 2, fibroblast growth factor 23 and suppressor of tumorigenicity 2) and are not specific to CS, yet inform on the activation of important pathways involved in the downward shock spiral. Other biomarkers signal end-organ hypoperfusion and could guide targeted interventions, while some may serve as novel therapeutic targets. We critically review current and novel biomarkers that guide prediction, detection, and prognostication in CS. Future use of biomarkers may help improve management in these high-risk patients.
Collapse
Affiliation(s)
- Victor Galusko
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Florian A Wenzl
- Centre for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- National Disease Registration and Analysis Service, NHS, London, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Christophe Vandenbriele
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Heart Center, OLV Hospital, Aalst, Belgium
| | - Vasileios Panoulas
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK
| | - Thomas F Lüscher
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Centre for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK
- School of Cardiovascular Medicine and Sciences, Kings College London, London, UK
| | - Diana A Gorog
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- School of Cardiovascular Medicine and Sciences, Kings College London, London, UK
- School of Life and Medical Sciences, Postgraduate Medical School, University of Hertfordshire, Hertfordshire, UK
| |
Collapse
|
2
|
Kahan R, Cray PL, Abraham N, Gao Q, Hartwig MG, Pollara JJ, Barbas AS. Sterile inflammation in liver transplantation. Front Med (Lausanne) 2023; 10:1223224. [PMID: 37636574 PMCID: PMC10449546 DOI: 10.3389/fmed.2023.1223224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Sterile inflammation is the immune response to damage-associated molecular patterns (DAMPs) released during cell death in the absence of foreign pathogens. In the setting of solid organ transplantation, ischemia-reperfusion injury results in mitochondria-mediated production of reactive oxygen and nitrogen species that are a major cause of uncontrolled cell death and release of various DAMPs from the graft tissue. When properly regulated, the immune response initiated by DAMP-sensing serves as means of damage control and is necessary for initiation of recovery pathways and re-establishment of homeostasis. In contrast, a dysregulated or overt sterile inflammatory response can inadvertently lead to further injury through recruitment of immune cells, innate immune cell activation, and sensitization of the adaptive immune system. In liver transplantation, sterile inflammation may manifest as early graft dysfunction, acute graft failure, or increased risk of immunosuppression-resistant rejection. Understanding the mechanisms of the development of sterile inflammation in the setting of liver transplantation is crucial for finding reliable biomarkers that predict graft function, and for development of therapeutic approaches to improve long-term transplant outcomes. Here, we discuss the recent advances that have been made to elucidate the early signs of sterile inflammation and extent of damage from it. We also discuss new therapeutics that may be effective in quelling the detrimental effects of sterile inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrew S. Barbas
- Duke Ex-Vivo Organ Lab (DEVOL)—Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
3
|
Qiang R, Liu XZ, Xu JC. The Immune Pathogenesis of Acute-On-Chronic Liver Failure and the Danger Hypothesis. Front Immunol 2022; 13:935160. [PMID: 35911735 PMCID: PMC9329538 DOI: 10.3389/fimmu.2022.935160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a group of clinical syndromes related to severe acute liver function impairment and multiple-organ failure caused by various acute triggering factors on the basis of chronic liver disease. Due to its severe condition, rapid progression, and high mortality, it has received increasing attention. Recent studies have shown that the pathogenesis of ACLF mainly includes direct injury and immune injury. In immune injury, cytotoxic T lymphocytes (CTLs), dendritic cells (DCs), and CD4+ T cells accumulate in the liver tissue, secrete a variety of proinflammatory cytokines and chemokines, and recruit more immune cells to the liver, resulting in immune damage to the liver tissue, massive hepatocyte necrosis, and liver failure, but the key molecules and signaling pathways remain unclear. The “danger hypothesis” holds that in addition to the need for antigens, damage-associated molecular patterns (DAMPs) also play a very important role in the occurrence of the immune response, and this hypothesis is related to the pathogenesis of ACLF. Here, the research status and development trend of ACLF, as well as the mechanism of action and research progress on various DAMPs in ACLF, are summarized to identify biomarkers that can predict the occurrence and development of diseases or the prognosis of patients at an early stage.
Collapse
Affiliation(s)
- Rui Qiang
- The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xing-Zi Liu
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Jun-Chi Xu
- The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, Suzhou, China
- Key Laboratory of Infection and Immunity of Suzhou City, The Fifth People’s Hospital of Suzhou, Suzhou, China
- *Correspondence: Jun-Chi Xu,
| |
Collapse
|
4
|
Ali AL, Nailwal NP, Doshi GM. Emerging Role of Interleukins for the Assessment and Treatment of Liver Diseases. Endocr Metab Immune Disord Drug Targets 2021; 22:371-382. [PMID: 34819013 DOI: 10.2174/1871530321666211124102837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The most common liver diseases are fibrosis, alcoholic liver disease, non-alcoholic fatty disease, viral hepatitis, and hepatocellular carcinoma. These liver diseases account for approximately 2 million deaths per year worldwide, with cirrhosis accounting for 2.1% of the worldwide burden. The most widely used liver function tests for diagnosis are alanine transaminase, aspartate transaminase, serum proteins, serum albumin, and serum globulins, whereas antivirals and corticosteroids have been proven to be useful for the treatment of liver diseases. A major disadvantage of these diagnostic measures is the lack of specificity to a particular tissue or cell type, as these enzymes are common to one or more tissues. The major adverse effect of current treatment methods is drug resistance. To overcome these issues, interleukins have been investigated. The balance of these interleukins determines the outcome of an immune response. Interleukins are considered interesting therapeutic targets for the treatment of liver diseases. In this review, we summarize the current state of knowledge regarding interleukins in the diagnosis, treatment, and pathogenesis of different acute and chronic liver diseases. OBJECTIVE To understand the role of interleukins in the assessment and treatment of different types of liver diseases. METHODS A literature search was conducted using PubMed, Science Direct, and NCBI with the following keywords: Interleukins, Acute Liver Failure, Alcoholic Liver Disease, Non-Alcoholic Fatty Liver Disease, Liver Fibrosis, Hepatocellular Carcinoma, Inflammation, Liver injury, Hepatoprotective effect. Clinical trial data on these interleukins have been searched on Clinicaltrials.gov. RESULTS Existing literature and preclinical and clinical trial data demonstrate that interleukins play a crucial role in the pathogenesis of liver diseases. CONCLUSION Our findings indicate that IL-1, IL-6, IL-10, IL-17, IL-22, IL-35, and IL-37 are involved in the progression and control of various liver conditions via the regulation of cell signaling pathways. However, further investigation on the involvement of these interleukins is necessary for their use as a targeted therapy in liver diseases.
Collapse
Affiliation(s)
- Aaliya L Ali
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), Mumbai-400056. India
| | - Namrata P Nailwal
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), Mumbai-400056. India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), Mumbai-400056. India
| |
Collapse
|
5
|
Barbier L, Robin A, Sindayigaya R, Ducousso H, Dujardin F, Thierry A, Hauet T, Girard JP, Pellerin L, Gombert JM, Herbelin A, Salamé E. Endogenous Interleukin-33 Acts as an Alarmin in Liver Ischemia-Reperfusion and Is Associated With Injury After Human Liver Transplantation. Front Immunol 2021; 12:744927. [PMID: 34621275 PMCID: PMC8491545 DOI: 10.3389/fimmu.2021.744927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Ischemia and reperfusion injury is an early inflammatory process during liver transplantation that impacts on graft function and clinical outcomes. Interleukin (IL)-33 is a danger-associated molecular pattern involved in kidney ischemia/reperfusion injury and several liver diseases. The aims were to assess whether IL-33 was released as an alarmin responsible for ischemia/reperfusion injury in a mouse model of warm hepatic ischemia, and whether this hypothesis could also apply in the setting of human liver transplantation. First, a model of warm hepatic ischemia/reperfusion was used in wild-type and IL-33–deficient mice. Severity of ischemia/reperfusion injury was assessed with ALT and histological analysis. Then, serum IL-33 was measured in a pilot cohort of 40 liver transplant patients. Hemodynamic postreperfusion syndrome, graft dysfunction (assessed by model for early allograft scoring >6), renal failure, and tissue lesions on time-zero biopsies were assessed. In the mouse model, IL-33 was constitutively expressed in the nucleus of endothelial cells, immediately released in response to hepatic pedicle clamping without neosynthesis, and participated in the recruitment of neutrophils and tissue injury on site. The kinetics of IL-33 in liver transplant patients strikingly matched the ones in the animal model, as attested by serum levels reaching a peak immediately after reperfusion, which correlated to clinical outcomes including postreperfusion syndrome, posttransplant renal failure, graft dysfunction, and histological lesions of ischemia/reperfusion injury. IL-33 was an independent factor of graft dysfunction with a cutoff of IL-33 at 73 pg/ml after reperfusion (73% sensitivity, area under the curve of 0.76). Taken together, these findings establish the immediate implication of IL-33 acting as an alarmin in liver I/R injury and provide evidence of its close association with cardinal features of early liver injury-associated disorders in LT patients.
Collapse
Affiliation(s)
- Louise Barbier
- INSERM U1082, Poitiers, France.,FHU SUPORT, Tours-Poitiers-Limoges, France.,Department of Digestive Surgery and Liver Transplantation, University Hospital of Tours, Tours, France.,University of Tours, Tours, France
| | - Aurélie Robin
- INSERM U1082, Poitiers, France.,FHU SUPORT, Tours-Poitiers-Limoges, France.,University Hospital of Poitiers, Poitiers, France
| | - Rémy Sindayigaya
- INSERM U1082, Poitiers, France.,FHU SUPORT, Tours-Poitiers-Limoges, France.,Department of Digestive Surgery and Liver Transplantation, University Hospital of Tours, Tours, France.,University of Tours, Tours, France
| | - Héloïse Ducousso
- INSERM U1082, Poitiers, France.,University Hospital of Poitiers, Poitiers, France.,University of Poitiers, Poitiers, France.,Department of Urology, University Hospital of Poitiers, Poitiers, France
| | - Fanny Dujardin
- Department of Pathology, University Hospital of Tours, Tours, France
| | - Antoine Thierry
- INSERM U1082, Poitiers, France.,FHU SUPORT, Tours-Poitiers-Limoges, France.,University Hospital of Poitiers, Poitiers, France.,University of Poitiers, Poitiers, France.,Department of Nephrology, University Hospital of Poitiers, Poitiers, France
| | - Thierry Hauet
- INSERM U1082, Poitiers, France.,FHU SUPORT, Tours-Poitiers-Limoges, France.,University Hospital of Poitiers, Poitiers, France.,University of Poitiers, Poitiers, France.,Department of Biochemistry, Pôle BIOSPHARM, University Hospital of Poitiers, Poitiers, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Pellerin
- INSERM U1082, Poitiers, France.,FHU SUPORT, Tours-Poitiers-Limoges, France.,University of Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- INSERM U1082, Poitiers, France.,FHU SUPORT, Tours-Poitiers-Limoges, France.,University Hospital of Poitiers, Poitiers, France.,University of Poitiers, Poitiers, France.,Department of Immunology, University Hospital of Poitiers, Poitiers, France
| | - André Herbelin
- INSERM U1082, Poitiers, France.,FHU SUPORT, Tours-Poitiers-Limoges, France.,University of Poitiers, Poitiers, France
| | - Ephrem Salamé
- INSERM U1082, Poitiers, France.,FHU SUPORT, Tours-Poitiers-Limoges, France.,Department of Digestive Surgery and Liver Transplantation, University Hospital of Tours, Tours, France.,University of Tours, Tours, France
| |
Collapse
|
6
|
Wang Z, Wu L, Pan B, Chen Y, Zhang T, Tang N. Interleukin 33 mediates hepatocyte autophagy and innate immune response in the early phase of acetaminophen-induced acute liver injury. Toxicology 2021; 456:152788. [PMID: 33887374 DOI: 10.1016/j.tox.2021.152788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/28/2021] [Accepted: 04/16/2021] [Indexed: 12/08/2022]
Abstract
Despite interleukin 33 (IL-33) functions as an "alarmin" released from hepatic dead cells in response to tissue damages, the interrelationship between IL-33-mediated hepatocyte autophagy and innate immune response in the acetaminophen (APAP)-induced liver injury (AILI) process remains obscure. This study aimed to explore the regulation of IL-33 on hepatocyte autophagy and macrophage polarization after APAP challenge in vivo and vitro. We found IL-33 released from hepatic necrosis was elevated in the AILI mouse model. Blockage of IL-33 exacerbated liver injury by consuming liver-resident macrophages cells (Kupffer cells, KCs) and promoting hepatic inflammatory factors secretion, such as TNF-α, IL-6 and IL-1β in the early phase of liver injury. Interestingly, IL-33 deficiency further activated hepatocyte autophagy and disrupted M2 macrophage polarization post-APAP challenge in vivo and vitro, which can be reversed by recombinant IL-33 treatment. Mechanistically, administration of IL-33 can directly enhance M2 polarization via PI3K/Akt signaling pathway and activate protective hepatocyte autophagy via AMPKα/mTOR signaling pathway in the AILI process. In conclusion, our data firstly demonstrates that IL-33 exerts protective effects on hepatocytes through the activation of autophagy and functions as an innate immunity regulator mediating macrophage polarization in the early phase of AILI.
Collapse
Affiliation(s)
- Zengbin Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Linqing Wu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yizhong Chen
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tao Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
7
|
Nah EH, Cho S, Kim S, Cho HI. Reference interval and the role of soluble suppression of tumorigenicity 2 (sST2) in subclinical cardiac dysfunction at health checkups. J Clin Lab Anal 2020; 34:e23461. [PMID: 32638437 PMCID: PMC7676181 DOI: 10.1002/jcla.23461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023] Open
Abstract
Background Soluble ST2 (sST2) is known to predict adverse outcomes and death in individuals with established heart failure. However, the role of sST2 testing in the general population has not been established. The aims of this study were to determine the reference interval (RI) and the clinical utility of sST2 in subclinical cardiac dysfunction in general population. Methods This cross‐sectional study consecutively selected 41,806 general subjects at health checkups who underwent echocardiography and sST2 testing at 16 health promotion centers in 13 Korean cities. The reference subjects were obtained among those with normal findings in echocardiography. Sex‐specific RIs were established according to the CLSI C28‐A3 guidelines. sST2 was measured using immunoassay with the Presage ST2 assay (Critical Diagnostics). Results In the general subjects, age, sex, BMI, systolic blood pressure, blood glucose, creatinine, liver function, and triglycerides were associated with the sST2 levels. The RI for sST2 was higher in males (≤49.6 ng/mL, 95% CI = 48.5‐51.5) than in females (≤44.5 ng/mL, 95% CI = 43.5‐45.6) and higher in subjects aged < 40 years than ≥ 40 years in both sexes. The sST2 levels were 29.1 ± 10.7 (mean ± SD) and 29.1 ± 14.4 ng/mL in the groups with normal cardiac function and subclinical cardiac dysfunction, respectively. The sST2 level was not associated with subclinical cardiac dysfunction (odd ratio = 1.002, P = .13). Conclusions RIs obtained from a large and echocardiography‐proven healthy community‐based sample are presented. Subclinical cardiac dysfunction was associated with older age, male sex, and metabolic factors but not with the sST2 level.
Collapse
Affiliation(s)
- Eun-Hee Nah
- Department of Laboratory Medicine, Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, Korea
| | - Seon Cho
- Department of Laboratory Medicine, Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, Korea
| | - Suyoung Kim
- Department of Laboratory Medicine, Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, Korea
| | - Han-Ik Cho
- MEDIcheck LAB, Korea Association of Health Promotion, Cheongju, Korea
| |
Collapse
|
8
|
Zharichenko N, Njoku DB. The Role of Pro-Inflammatory and Regulatory Signaling by IL-33 in the Brain and Liver: A Focused Systematic Review of Mouse and Human Data and Risk of Bias Assessment of the Literature. Int J Mol Sci 2020; 21:ijms21113933. [PMID: 32486265 PMCID: PMC7312033 DOI: 10.3390/ijms21113933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-33 is a member of the IL-1 family of proteins that have multiple roles in organ-specific inflammation. Many studies suggest diagnostic and therapeutic implications of this cytokine. Many studies have reported pro-inflammatory roles for IL-33 in innate immune responses involving the heart and lung. Recent studies also describe pro-inflammatory and regulatory roles for IL-33 in the pathogenesis of brain and liver disorders in addition to regulatory roles for this cytokine in the heart and lung. In this focused systematic review, we will review the literature regarding pro-inflammatory and regulatory effects of IL-33 in the brain and liver. We will also assess the potential risk of bias in the published literature in order to uncover gaps in the knowledge that will be useful for the scientific community. We utilized guidelines set by preferred reporting items for systemic reviews and meta-analyses. The electronic database was PubMed. Eligibility criteria included organ-specific inflammation in mice and humans, organ-specific inflammation in the central nervous and hepatic systems, and IL-33. Outcomes were pro-inflammatory or regulatory effects of IL-33. Risk of bias in individual studies and across studies was addressed by adapting the Cochrane Rob 2.0 tool. We discovered that a source of bias across the studies was a lack of randomization in human studies. Additionally, because the majority of studies were performed in mice, this could be perceived as a potential risk of bias. Regarding the central nervous system, roles for IL-33 in the development and maturation of neuronal circuits were reported; however, exact mechanisms by which this occurred were not elucidated. IL-33 was produced by astrocytes and endothelial cells while IL-33 receptors were expressed by microglia and astrocytes, demonstrating that these cells are first responders for IL-33; however, in the CNS, IL-33 seems to induce Th1 cytokines such as IL-1β and TNF-α chemokines such as RANTES, MCP-1, MIP-1α, and IP-10, as well as nitric oxide. In the liver, similar risks of bias were determined because of the lack of randomized controlled trials in humans and because the majority of studies were performed in mice. Interestingly, the strain of mouse utilized in the study seemed to affect the role of IL-33 in liver inflammation. Lastly, similar to the brain, IL-33 appeared to have ST2-independent regulatory functions in the liver. Our results reveal plausible gaps in what is known regarding IL-33 in the pathogenesis of brain and liver disorders. We highlight key studies in the lung and heart as examples of advancements that likely occurred because of countless basic and translational studies in this area. More research is needed in these areas in order to assess the diagnostic or therapeutic potential of IL-33 in these disorders.
Collapse
Affiliation(s)
- Nika Zharichenko
- Department of Anesthesiology and Critical Care Medicine Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Dolores B. Njoku
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University, The Charlotte R. Bloomberg Childrens Center, 1800 Orleans Street, Suite 6349D, Baltimore, MD 21287, USA
- Correspondence: ; Tel.: +1-410-955-7610
| |
Collapse
|
9
|
Chen S, Wu L, Peng L, Wang X, Tang N. Hepatitis B virus X protein (HBx) promotes ST2 expression by GATA2 in liver cells. Mol Immunol 2020; 123:32-39. [PMID: 32413787 DOI: 10.1016/j.molimm.2020.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023]
Abstract
At present, most studies on the relationship between hepatitis B virus (HBV) and IL-33/ST2 axis focus on clinical detection, but the underlying molecular mechanisms of HBx and IL-33/ST2 axis regulation and Th cell function regulation have not been explored. In this study, serum samples of patients with chronic hepatitis B (CHB) and HBV-related liver cancer (HBV-HCC), and healthy controls, as well as the supernatant solutions of HL7702-WT, HL7702-NC, and HL7702-HBx cells were collected to detect the content of soluble ST2 (sST2). The contents of Th1 cytokines (TNF-α and TNF-γ) and Th2 cytokines (IL-6 and IL-10) in the supernatant of different co-culture groups were detected. The effects of GATA2 on ST2 promoter transcription were investigated by upregulation or interference with GATA2 expression, dual-luciferase reporting, and ChIP experiments. The combined detection of sST2 and FIB-4 was beneficial to the non-invasive diagnosis of liver fibrosis. HBx promotes sST2 expression in liver cells, upregulates Th2 cell function, and inhibits Th1 cell function through IL-33/ST2 axis. HBx interacts with GATA2 to influence the activity of ST2 promoter. Serum sST2 detection is an invaluable indicator for the assessment of the progress of HBV infectious diseases, and the IL-33/ST2 axis plays an important role in changing the cellular immune function caused by HBV infection.
Collapse
Affiliation(s)
- Siyan Chen
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Luxi Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lirong Peng
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqian Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
10
|
Gonzalez-Polo V, Pucci-Molineris M, Cervera V, Gambaro S, Yantorno SE, Descalzi V, Tiribelli C, Gondolesi GE, Meier D. Group 2 innate lymphoid cells exhibit progressively higher levels of activation during worsening of liver fibrosis. Ann Hepatol 2020; 18:366-372. [PMID: 31053540 DOI: 10.1016/j.aohep.2018.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The interleukin-33/interleukin-13 pathway is involved in the immunopathology of liver fibrosis and recently characterized group 2 innate lymphoid cells (ILC2) were identified as profibrotic immune cells in the liver of mouse models. Our aim was to elucidate whether ILC2 might be present in human liver tissue and whether ILC2 contribute to liver fibrosis. MATERIALS AND METHODS To identify ILC2 in liver tissue and blood, we purified mononuclear immune cells from needle biopsies, cirrhotic explant specimen, and paired peripheral blood samples. Cell suspensions were incubated with specific markers for ILC2 and analyzed by flow cytometry. The CD69 marker was included to assess the activation level of ILC2. In addition, we determined the IL-33 plasma level. RESULTS Results were correlated with the METAVIR fibrotic score of patients enrolled in this study. We detected ILC2 in a higher percentage of CD45+ cells in liver tissue than in paired peripheral blood. The number of ILC2 was significantly increased in fibrotic tissue, but only slightly increased in paired peripheral blood. A higher percentage of CD69+ ILC2 was observed in fibrotic tissue, and this increase correlates positively with aggravation of liver fibrosis measured by fibrotic METAVIR score. A higher level of plasma IL-33 was only detected in samples obtained from cirrhotic patients. CONCLUSION Our study indicates that ILC2 are present in the human liver and are activated in tissue contributing to the immunopathology of human liver fibrosis, independently of the etiology; which might be a potential new therapeutic target.
Collapse
Affiliation(s)
- Virginia Gonzalez-Polo
- Laboratorio de Investigación Traslacional e Inmunología Asociada al Trasplante, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, BA, Argentina; Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina
| | - Melisa Pucci-Molineris
- Laboratorio de Investigación Traslacional e Inmunología Asociada al Trasplante, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, BA, Argentina; Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina
| | - Victorio Cervera
- Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina
| | - Sabrina Gambaro
- Laboratorio de Investigación Traslacional e Inmunología Asociada al Trasplante, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, BA, Argentina; Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina
| | - Silvina E Yantorno
- Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina
| | - Valeria Descalzi
- Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina
| | | | - Gabriel E Gondolesi
- Laboratorio de Investigación Traslacional e Inmunología Asociada al Trasplante, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, BA, Argentina; Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina
| | - Dominik Meier
- Laboratorio de Investigación Traslacional e Inmunología Asociada al Trasplante, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, BA, Argentina; Instituto de Trasplante Multiórganico, Hospital Universitario Fundación Favaloro, Buenos Aires, BA, Argentina.
| |
Collapse
|
11
|
Hepatic ILC2 activity is regulated by liver inflammation-induced cytokines and effector CD4 + T cells. Sci Rep 2020; 10:1071. [PMID: 31974518 PMCID: PMC6978388 DOI: 10.1038/s41598-020-57985-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/07/2020] [Indexed: 01/23/2023] Open
Abstract
In immune-mediated hepatitis, type 2 innate lymphoid cells (ILC2) as well as effector CD4+ T cells have been shown to drive disease pathology. However, less is known about mechanisms involved in the regulation of ILC2 function during liver inflammation. We showed that in homeostasis, hepatic ILC2 constituted a very small population with a naive, inactive phenotype. During immune-mediated hepatitis, the cytokines IL-33 and IFNγ were expressed in liver tissue. IL-33 induced strong activation and expression of type 2 cytokines as well as IL-6 by hepatic ILC2 while IFNγ suppressed cytokine production. Interestingly, this inhibitory effect was overcome by IL-33. The phenotype of activated hepatic ILC2 were stable since they did not show functional plasticity in response to liver inflammation-induced cytokines. Moreover, hepatic ILC2 induced a Th2 phenotype in activated CD4+ T cells, which increased ILC2-derived cytokine expression via IL-2. In contrast, Th1 cells inhibited survival of ILC2 by production of IFNγ. Thus, hepatic ILC2 function is regulated by IL-33, IL-2, and IFNγ. While IL-33 and IL-2 support hepatic ILC2 activation, their inflammatory activity in immune-mediated hepatitis might be limited by infiltrating IFNγ-expressing Th1 cells.
Collapse
|
12
|
Barbier L, Ferhat M, Salamé E, Robin A, Herbelin A, Gombert JM, Silvain C, Barbarin A. Interleukin-1 Family Cytokines: Keystones in Liver Inflammatory Diseases. Front Immunol 2019; 10:2014. [PMID: 31507607 PMCID: PMC6718562 DOI: 10.3389/fimmu.2019.02014] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
The pyrogenic property being the first activity described, members of the interleukin-1 superfamily (IL-1α, IL-1β, IL-18, and the newest members: IL-33, IL-36, IL-37, and IL-38) are now known to be involved in several inflammatory diseases such as obesity, atherosclerosis, cancer, viral and parasite infections, and auto-inflammatory syndromes as well as liver diseases. Inflammation processes are keystones of chronic liver diseases, of which the etiology may be viral or toxic, as in alcoholic or non-alcoholic liver diseases. Inflammation is also at stake in acute liver failure involving massive necrosis, and in ischemia-reperfusion injury in the setting of liver transplantation. The role of the IL-1 superfamily of cytokines and receptors in liver diseases can be either protective or pro-inflammatory, depending on timing and the environment. Our review provides an overview of current understanding of the IL-1 family members in liver inflammation, highlighting recent key investigations, and therapeutic perspectives. We have tried to apply the concept of trained immunity to liver diseases, based on the role of the members of the IL-1 superfamily, first of all IL-1β but also IL-18 and IL-33, in modulating innate lymphoid immunity carried by natural killer cells, innate lymphoid cells or innate T-αβ lymphocytes.
Collapse
Affiliation(s)
- Louise Barbier
- INSERM U1082, Poitiers, France.,Department of Digestive Surgery and Liver Transplantation, Trousseau University Hospital, Tours University, Tours, France
| | | | - Ephrem Salamé
- INSERM U1082, Poitiers, France.,Department of Digestive Surgery and Liver Transplantation, Trousseau University Hospital, Tours University, Tours, France
| | - Aurélie Robin
- INSERM U1082, Poitiers University Hospital, Poitiers, France
| | | | - Jean-Marc Gombert
- INSERM U1082, Poitiers, France.,Department of Immunology and Inflammation, Poitiers University Hospital, University of Poitiers, Poitiers, France
| | - Christine Silvain
- Department of Hepatology and Gastroenterology, Poitiers University Hospital, University of Poitiers, Poitiers, France
| | | |
Collapse
|
13
|
Abstract
Since the pro-inflammatory cytokine IL-33 and its receptor (ST2) are closely involved in regulating both innate and adaptive immune responses, it is conceivable that they may play an important role in organ transplantation. IL-33 is broadly expressed by multiple cell types such as fibroblasts, epithelial cells, and endothelial cells. As a strong inducer of type 2 helper T (Th2) cellular immune responses, IL-33 can significantly prolong allograft survival in organ transplantation partially via altering gene expression profiles and increasing frequency of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Nevertheless, the IL-33 signaling pathway and its underlying mechanisms remain largely undefined in transplant biology. This present mini-review summarizes recent advances in the studies concerning the IL-33/ST2 signaling pathway and the analysis of its biological function in the field transplantation. The literature points to a deleterious role of activation of the IL-33/ST2 signaling pathway, giving rise to ischemia/reperfusion, acute kidney injury and failure, acute heart rejection, as well as liver fibrosis. Under pro-inflammatory conditions, IL-33 expression is upregulated. Alteration of IL-33 levels has been suggested as a biomarker for predicting organ injury and ongoing allogeneic transplant outcome. These studies have deepened our understanding of immunobiological role of IL-33 and its receptor in organ transplantation. Modulation of the IL-33/ST2 signaling pathway might be utilized as a therapeutic target in the clinic.
Collapse
Affiliation(s)
- Ying Jin
- Zhejiang University, Second Affiliated Hospital of School of Medicine, Department of Traditional Chinese Medicine & Rehabilitation, Hangzhou City, People's Republic of China
| | - Deqiang Kong
- Zhejiang University, Second Affiliated Hospital of School of Medicine, Department of General Surgery, Hangzhou City, People's Republic of China
| | - Chen Liu
- Zhejiang University, Second Affiliated Hospital of School of Medicine, Department of General Surgery, Hangzhou City, People's Republic of China
| | - Weihua Gong
- Zhejiang University, Second Affiliated Hospital of School of Medicine, Department of General Surgery, Hangzhou City, People's Republic of China
| |
Collapse
|
14
|
Jin Z, Lei L, Lin D, Liu Y, Song Y, Gong H, Zhu Y, Mei Y, Hu B, Wu Y, Zhang G, Liu H. IL-33 Released in the Liver Inhibits Tumor Growth via Promotion of CD4 + and CD8 + T Cell Responses in Hepatocellular Carcinoma. THE JOURNAL OF IMMUNOLOGY 2018; 201:3770-3779. [PMID: 30446569 DOI: 10.4049/jimmunol.1800627] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/17/2018] [Indexed: 12/28/2022]
Abstract
IL-33 released by epithelial cells and immune cells functions as an alarmin and can induce both type 1 and type 2 immune responses. However, the role of IL-33 release in tumor development is still not clear. In this study, we examined the function of released IL-33 in murine hepatocellular carcinoma (HCC) models by hydrodynamically injecting either IL-33-expressing tumor cells or IL-33-expressing plasmids into the liver of tumor-bearing mice. Tumor growth was greatly inhibited by IL-33 release. This antitumor effect of IL-33 was dependent on suppression of tumorigenicity 2 (ST2) because it was diminished in ST2-/- mice. Moreover, HCC patients with high IL-33 expression have prolonged overall survival compared with the patients with low IL-33 expression. Further study showed that there were increased percentages and numbers of activated and effector CD4+ and CD8+ T cells in both spleen and liver in IL-33-expressing tumor-bearing mice. Moreover, IFN-γ production of the CD4+ and CD8+ T cells was upregulated in both spleen and liver by IL-33. The cytotoxicity of CTLs from IL-33-expressing mice was also enhanced. In vitro rIL-33 treatment could preferentially expand CD8+ T cells and promote CD4+ and CD8+ T cell activation and IFN-γ production. Depletion of CD4+ and CD8+ T cells diminished the antitumor activity of IL-33, suggesting that the antitumor function of released IL-33 was mediated by both CD4+ and CD8+ T cells. Taken together, we demonstrated in murine HCC models that IL-33 release could inhibit tumor development through its interaction with ST2 to promote antitumor CD4+ and CD8+ T cell responses.
Collapse
Affiliation(s)
- Ziqi Jin
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Lei Lei
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Dandan Lin
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Yonghao Liu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Yuan Song
- Immunology Program, Department of Microbiology and Immunology, National University of Singapore, Singapore 117456, Singapore.,Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Huanle Gong
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Ying Zhu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Yu Mei
- Immunology Program, Department of Microbiology and Immunology, National University of Singapore, Singapore 117456, Singapore.,Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Yan Wu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University-, Medical College, Soochow University, Suzhou 215123, China
| | - Guangbo Zhang
- Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; and.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Haiyan Liu
- Immunology Program, Department of Microbiology and Immunology, National University of Singapore, Singapore 117456, Singapore; .,Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
15
|
NLRP3 Inflammasome and IL-33: Novel Players in Sterile Liver Inflammation. Int J Mol Sci 2018; 19:ijms19092732. [PMID: 30213101 PMCID: PMC6163521 DOI: 10.3390/ijms19092732] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
In sterile liver inflammation, danger signals are released in response to tissue injury to alert the immune system; e.g., by activation of the NLRP3 inflammasome. Recently, IL-33 has been identified as a novel type of danger signal or “alarmin”, which is released from damaged and necrotic cells. IL-33 is a pleiotropic cytokine that targets a broad range of immune cells and exhibits pro- and anti-inflammatory properties dependent on the disease. This review summarizes the immunomodulatory roles of the NLRP3 inflammasome and IL-33 in sterile liver inflammation and highlights potential therapeutic strategies targeting these pathways in liver disease.
Collapse
|
16
|
Cottagiri M, Nyandjo M, Stephens M, Mantilla JJ, Saito H, Mackay IR, Rose NR, Njoku DB. In drug-induced, immune-mediated hepatitis, interleukin-33 reduces hepatitis and improves survival independently and as a consequence of FoxP3+ T-cell activity. Cell Mol Immunol 2018; 16:706-717. [PMID: 30030493 DOI: 10.1038/s41423-018-0087-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/06/2018] [Indexed: 01/13/2023] Open
Abstract
Immune-mediated, drug-induced hepatitis is a rare complication of halogenated volatile anesthetic administration. IL-4-regulated Th2-polarized reactions initiate this type and other types of hepatitis, while the mechanisms that regulate the severity remain elusive. IL-33 is an innate, IL-4-inducing, Th2-polarizing cytokine that has been detected in patients with liver failure and has been associated with upregulated ST2+Foxp3+CD4+CD25+ T cells; however, roles for IL-33 in drug-induced hepatitis are unclear. We investigated IL-33 in an anesthetic, immune-mediated hepatitis modeled in BALB/c, IL-33-/- and ST2-/- mice, as well as in patients with anesthetic hepatitis. The hepatic IL-33 and ST2 levels were elevated in BALB/c mice (p < 0.05) with hepatitis, and anti-IL-33 diminished hepatitis (p < 0.05) without reducing IL-33 levels. The complete absence of IL-33 reduced IL-10 (p < 0.05) and ST2+Foxp3+CD4+CD25+ T cells (p < 0.05), as well as reduced the overall survival (p < 0.05), suggesting suppressive roles for IL-33 in anesthetic, immune-mediated hepatitis. All of the mice demonstrated similar levels of CD4+ T-cell proliferation following direct T-cell receptor stimulation, but we detected splenic IL-33 and ST2-negative Foxp3+CD4+CD25+ T cells in ST2-/- mice that developed less hepatitis than BALB/c mice (p < 0.05), suggesting that ST2-negative Foxp3+CD4+CD25+ T cells reduced hepatitis. In patients, serum IL-33 and IPEX levels were correlated in controls (r2 = 0.5, p < 0.05), similar to the levels in mice, but not in anesthetic hepatitis patients (r2 = 0.01), who had elevated IL-33 (p < 0.001) and decreased IPEX (p < 0.01). Our results suggest that, in anesthetic, immune-mediated hepatitis, IL-33 does not regulate the CD4+ T-cell proliferation that initiates hepatitis, but IL-33, likely independent of ST2, reduces hepatitis via upregulation of Foxp3+CD4+CD25+ T cells. Further studies are needed to translate the role of IL-33 to human liver disease.
Collapse
Affiliation(s)
- Merylin Cottagiri
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 1800 Orleans Street, Suite 6349, Baltimore, MD, 21287, USA
| | - Maeva Nyandjo
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 1800 Orleans Street, Suite 6349, Baltimore, MD, 21287, USA
| | - Matthew Stephens
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 1800 Orleans Street, Suite 6349, Baltimore, MD, 21287, USA
| | - Joel J Mantilla
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 1800 Orleans Street, Suite 6349, Baltimore, MD, 21287, USA
| | - Hirohisa Saito
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, Japan, 650-0047
| | - Ian R Mackay
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA
| | - Dolores B Njoku
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 1800 Orleans Street, Suite 6349, Baltimore, MD, 21287, USA. .,Department of Pathology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| |
Collapse
|
17
|
Shen Y, Li J, Wang SQ, Jiang W. Ambiguous roles of innate lymphoid cells in chronic development of liver diseases. World J Gastroenterol 2018; 24:1962-1977. [PMID: 29760540 PMCID: PMC5949710 DOI: 10.3748/wjg.v24.i18.1962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/25/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023] Open
Abstract
Innate lymphoid cells (ILCs) are defined as a distinct arm of innate immunity. According to their profile of secreted cytokines and lineage-specific transcriptional factors, ILCs can be categorized into the following three groups: group 1 ILCs (including natural killer (NK) cells and ILC1s) are dependent on T-bet and can produce interferon-γ; group 2 ILCs (ILC2s) are dependent on GATA3 and can produce type 2 cytokines, including interleukin (IL)-5 and IL-13; and, group 3 ILCs (including lymphoid tissue-like cells and ILC3s) are dependent on RORγt and can produce IL-22 and IL-17. Collaborative with adaptive immunity, ILCs are highly reactive innate effectors that promptly orchestrate immunity, inflammation and tissue repair. Dysregulation of ILCs might result in inflammatory disorders. Evidence regarding the function of intrahepatic ILCs is emerging from longitudinal studies of inflammatory liver diseases wherein they exert both physiological and pathological functions, including immune homeostasis, defenses and surveillance. Their overall effect on the liver depends on the balance of their proinflammatory and antiinflammatory populations, specific microenvironment and stages of immune responses. Here, we review the current data about ILCs in chronic liver disease progression, to reveal their roles in different stages as well as to discuss their therapeutic potency as intervention targets.
Collapse
Affiliation(s)
- Yue Shen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Gastroenterology, Tongji Hospital, Tongji University, Shanghai 200000, China
| | - Si-Qi Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Yazdani HO, Chen HW, Tohme S, Tai S, van der Windt DJ, Loughran P, Rosborough BR, Sud V, Beer-Stolz D, Turnquist HR, Tsung A, Huang H. IL-33 exacerbates liver sterile inflammation by amplifying neutrophil extracellular trap formation. J Hepatol 2017; 68:S0168-8278(17)32291-2. [PMID: 28943296 PMCID: PMC5862757 DOI: 10.1016/j.jhep.2017.09.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Neutrophils and liver sinusoidal endothelial cells (LSECs) both contribute to sterile inflammatory injury during ischemia/reperfusion (I/R), a well-known liver surgical stress. Interleukin-33 (IL-33) has been shown to drive neutrophil infiltration during inflammatory responses through its receptor ST2. We recently reported that infiltrating neutrophils form neutrophil extracellular traps (NETs), which exacerbate sterile inflammatory injury in liver I/R. Here, we sought to determine the role of IL-33 in NET formation during liver sterile inflammation. METHODS Evaluation of IL-33 forming NETs was investigated using a partial liver I/R model to generate sterile injury in healthy WT, IL-33 and ST2 knockouts. Serum levels of IL-33 and myeloperoxidase (MPO)-DNA complex were measured in both humans and mice after the first surgery. Liver damage was assessed. Mouse neutrophil depletion was performed by intraperitoneal injection of anti-Ly6G antibody before I/R. RESULTS Patients undergoing liver resection showed a significant increase in serum IL-33 compared to healthy volunteers. This coincided with higher serum MPO-DNA complexes. NET formation was decreased in IL-33 and ST2 knockout mice compared with control mice, after liver I/R. IL-33 or ST2 deficiency protected livers from I/R injury, whereas rIL-33 administration during I/R exacerbated hepatotoxicity and systemic inflammation. In vitro, IL-33 is released from LSECs to promote NET formation. IL-33 deficient LSECs failed to induce NETs. ST2 deficient neutrophils limited their capacity to form NETs in vitro and adoptive transfer of ST2 knockout neutrophils to neutrophil-depleted WT mice significantly decreased NET formation. CONCLUSIONS Data establish that IL-33, mainly released from LSECs, causes excessive sterile inflammation after hepatic I/R by inducing NET formation. Therapeutic targeting of IL-33/ST2 might extend novel strategies to minimize organ damage in various clinical settings associated with sterile inflammation. LAY SUMMARY Liver ischemia and reperfusion injury results in the formation of neutrophil extracellular traps, which contribute to organ damage in liver surgeries. Herein, we show that IL-33 is released from liver sinusoidal endothelial cells to promote NET formation during liver I/R, which exacerbates inflammatory cascades and sterile inflammation.
Collapse
Affiliation(s)
- Hamza O Yazdani
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hui-Wei Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sheng Tai
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | | | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian R Rosborough
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vikas Sud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donna Beer-Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Heth R Turnquist
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hai Huang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
19
|
Wang M, Shen G, Xu L, Liu X, Brown JM, Feng D, Ross RA, Gao B, Liangpunsakul S, Ju C. IL-1 receptor like 1 protects against alcoholic liver injury by limiting NF-κB activation in hepatic macrophages. J Hepatol 2017; 68:S0168-8278(17)32263-8. [PMID: 28870670 DOI: 10.1016/j.jhep.2017.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIM Alcohol consumption increases intestinal permeability and causes damage to hepatocytes, leading to the release of pathogen- and damage-associated molecular pattern molecules (PAMPs and DAMPs), stimulating hepatic macrophages and activating NF-κB. The resultant inflammation exacerbates alcoholic liver disease (ALD). However, much less is known about the mechanisms attenuating inflammation and preventing disease progression in most heavy drinkers. Interleukin (IL)-33 is a DAMP (alarmin) released from dead cells that acts through its receptor, IL-1 receptor like 1 (ST2). ST2 signaling has been reported to either stimulate or inhibit NF-κB activation. The role of IL-33/ST2 in ALD has not been studied. METHODS Serum levels of IL-33 and its decoy receptor, soluble ST2 (sST2) were measured in ALD patients. Alcohol-induced liver injury, inflammation and hepatic macrophage activation were compared between wild-type, IL-33-/- and ST2-/- mice in several models. RESULTS Elevation of serum IL-33 and sST2 were only observed in patients with severe decompensated ALD. Consistently, in mice with mild ALD without significant cell death and IL-33 release, IL-33 deletion did not affect alcohol-induced liver damage. However, ST2-deletion exacerbated ALD, through enhancing NF-κB activation in liver macrophages. In contrast, when extracellular IL-33 was markedly elevated, liver injury and inflammation were attenuated in both IL-33-/- and ST2-/- mice compared to wild-type mice. CONCLUSION Our data revealed a dichotomous role of IL-33/ST2 signaling during ALD development. At early and mild stages, ST2 restrains the inflammatory activation of hepatic macrophages, through inhibiting NF-κB, and plays a protective function in an IL-33-independent fashion. During severe liver injury, significant cell death and marked IL-33 release occur, which triggers IL-33/ST2 signaling and exacerbates tissue damage. LAY SUMMARY In mild ALD, ST2 negatively regulates the inflammatory activation of hepatic macrophages, thereby protecting against alcohol-induced liver damage, whereas in the case of severe liver injury, the release of extracellular IL-33 may exacerbate tissue inflammation by triggering the canonical IL-33/ST2L signaling in hepatic macrophages.
Collapse
Affiliation(s)
- Meng Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, USA
| | - Guannan Shen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, USA
| | - Liangguo Xu
- School of Life Science, Jiangxi Normal University, China
| | - Xiaodong Liu
- Department of Pharmacy, Shengjing Hospital, China Medical University, China
| | - Jared M Brown
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, NIAAA, NIH, USA
| | - Ruth Ann Ross
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bin Gao
- Laboratory of Liver Diseases, NIAAA, NIH, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Cynthia Ju
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, USA.
| |
Collapse
|
20
|
Endogenous IL-33 Deficiency Exacerbates Liver Injury and Increases Hepatic Influx of Neutrophils in Acute Murine Viral Hepatitis. Mediators Inflamm 2017; 2017:1359064. [PMID: 28607531 PMCID: PMC5457781 DOI: 10.1155/2017/1359064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 12/28/2022] Open
Abstract
The alarmin IL-33 has been described to be upregulated in human and murine viral hepatitis. However, the role of endogenous IL-33 in viral hepatitis remains obscure. We aimed to decipher its function by infecting IL-33-deficient mice (IL-33 KO) and their wild-type (WT) littermates with pathogenic mouse hepatitis virus (L2-MHV3). The IL-33 KO mice were more sensitive to L2-MHV3 infection exhibiting higher levels of AST/ALT, higher tissue damage, significant weight loss, and earlier death. An increased depletion of B and T lymphocytes, NKT cells, dendritic cells, and macrophages was observed 48 h postinfection (PI) in IL-33 KO mice than that in WT mice. In contrast, a massive influx of neutrophils was observed in IL-33 KO mice at 48 h PI. A transcriptomic study of inflammatory and cell-signaling genes revealed the overexpression of IL-6, TNFα, and several chemokines involved in recruitment/activation of neutrophils (CXCL2, CXCL5, CCL2, and CCL6) at 72 h PI in IL-33 KO mice. However, the IFNγ was strongly induced in WT mice with less profound expression in IL-33 KO mice demonstrating that endogenous IL-33 regulated IFNγ expression during L2-MHV3 hepatitis. In conclusion, we demonstrated that endogenous IL-33 had multifaceted immunoregulatory effect during viral hepatitis via induction of IFNγ, survival effect on immune cells, and infiltration of neutrophils in the liver.
Collapse
|
21
|
Mouse Hepatitis Virus Infection Induces a Toll-Like Receptor 2-Dependent Activation of Inflammatory Functions in Liver Sinusoidal Endothelial Cells during Acute Hepatitis. J Virol 2016; 90:9096-113. [PMID: 27489277 DOI: 10.1128/jvi.01069-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/23/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Under physiological conditions, the liver sinusoidal endothelial cells (LSECs) mediate hepatic immune tolerance toward self or foreign antigens through constitutive expression of anti-inflammatory mediators. However, upon viral infection or Toll-like receptor 2 (TLR2) activation, LSECs can achieve proinflammatory functions, but their role in hepatic inflammation during acute viral hepatitis is unknown. Using the highly virulent mouse hepatitis virus type 3 (MHV3) and the attenuated variants 51.6-MHV3 and YAC-MHV3, exhibiting lower tropism for LSECs, we investigated in vivo and in vitro the consequence of LSEC infection on their proinflammatory profiles and the aggravation of acute hepatitis process. In vivo infection with virulent MHV3, in comparison to attenuated strains, resulted in fulminant hepatitis associated with higher hepatic viral load, tissue necrosis, and levels of inflammatory mediators and earlier recruitment of inflammatory cells. Such hepatic inflammatory disorders correlated with disturbed production of interleukin-10 (IL-10) and vascular factors by LSECs. We next showed in vitro that infection of LSECs by the virulent MHV3 strain altered their production of anti-inflammatory cytokines and promoted higher release of proinflammatory and procoagulant factors and earlier cell damage than infection by attenuated strains. This higher replication and proinflammatory activation in LSECs by the virulent MHV3 strain was associated with a specific activation of TLR2 signaling by the virus. We provide evidence that TLR2 activation of LSCEs by MHV3 is an aggravating factor of hepatic inflammation and correlates with the severity of hepatitis. Taken together, these results indicate that preservation of the immunotolerant properties of LSECs during acute viral hepatitis is imperative in order to limit hepatic inflammation and damage. IMPORTANCE Viral hepatitis B and C infections are serious health problems affecting over 350 million and 170 million people worldwide, respectively. It has been suggested that a balance between protection and liver damage mediated by the host's immune response during the acute phase of infection would be determinant in hepatitis outcome. Thus, it appears crucial to identify the factors that predispose in exacerbating liver inflammation to limit hepatocyte injury. Liver sinusoidal endothelial cells (LSECs) can express both anti- and proinflammatory functions, but their role in acute viral hepatitis has never been investigated. Using mouse hepatitis virus (MHV) infections as animal models of viral hepatitis, we report for the first time that in vitro and in vivo infection of LSECs by the pathogenic MHV3 serotype leads to a reversion of their intrinsic anti-inflammatory phenotype toward a proinflammatory profile as well to as disorders in vascular factors, correlating with the severity of hepatitis. These results highlight a new virus-promoted mechanism of exacerbation of liver inflammatory response during acute hepatitis.
Collapse
|
22
|
Parikh RH, Seliger SL, Christenson R, Gottdiener JS, Psaty BM, deFilippi CR. Soluble ST2 for Prediction of Heart Failure and Cardiovascular Death in an Elderly, Community-Dwelling Population. J Am Heart Assoc 2016; 5:e003188. [PMID: 27481133 PMCID: PMC5015272 DOI: 10.1161/jaha.115.003188] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Soluble ST2 (sST2), a marker of myocyte stretch and fibrosis, has prognostic value in many cardiovascular diseases. We hypothesized that sST2 levels are associated with incident heart failure (HF), including subtypes of preserved (HFpEF) and reduced (HFrEF) ejection fraction, and cardiovascular death. METHODS AND RESULTS Baseline serum sST2 was measured in 3915 older, community-dwelling subjects from the Cardiovascular Health Study without prevalent HF. sST2 levels were associated with older age, male sex, black race, traditional cardiovascular risk factors, other biomarkers of inflammation, cardiac stretch, myocardial injury, and fibrosis, and abnormal echocardiographic parameters. In longitudinal analysis, greater sST2 was associated with a higher risk of incident HF and cardiovascular death; however, in multivariate models adjusting for other cardiac risk factors and the cardiac-specific biomarker, N-terminal pro-type B natriuretic peptide, these associations were attenuated. In these models, an sST2 level above the US Food and Drug Administration-approved cut-off value (>35 ng/mL) was significantly associated with incident HF (hazard ratio [HR], 1.20; 95% CI, 1.02-1.43) and cardiovascular death (HR, 1.21; 95% CI, 1.02-1.44), and greater sST2 was continuously associated with cardiovascular death (per 1-ln increment: HR, 1.24; 95% CI, 1.02-1.50). sST2 was not associated with the HF subtypes of HFpEF and HFrEF in adjusted analysis. Addition of sST2 to existing risk models of HF and cardiovascular death modestly improved discrimination and reclassification into a higher risk. CONCLUSIONS The predictive value of sST2 for HF of all subtypes and cardiovascular death is modest in an elderly population despite strong cross-sectional associations with risk factors and underlying cardiac pathology.
Collapse
Affiliation(s)
- Ravi H Parikh
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Stephen L Seliger
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Robert Christenson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - John S Gottdiener
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA
| | | |
Collapse
|
23
|
Mehraj V, Ponte R, Routy JP. The Dynamic Role of the IL-33/ST2 Axis in Chronic Viral-infections: Alarming and Adjuvanting the Immune Response. EBioMedicine 2016; 9:37-44. [PMID: 27397514 PMCID: PMC4972565 DOI: 10.1016/j.ebiom.2016.06.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/25/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022] Open
Abstract
Interleukin 33 (IL-33), a member of the IL-1 family, is constitutively expressed in epithelial and in endothelial cells at barrier sites, acting as a danger signal and adjuvanting the immune response following tissue damage and infection. Originally implicated in allergy, IL-33 is also known to be involved in innate and adaptive immune responses by enhancing natural killer, Th1, and CD4 and CD8 T-cell functions. The nature of the antiviral immune response orchestrated by IL-33 depends on the site of infection, the duration of the disease and the cytokine milieu. In this review, we focus on the distinctive contribution of IL-33 as an anti-infective and proinflammatory cytokine in response to cell death and viral infections. The dynamic role of IL-33 in the acute and chronic phases of infection with HIV, hepatitis B and C viruses, and with CMV is highlighted. This review will also discuss the potential immunotherapeutic and adjuvant roles of IL-33. Search Strategy and Selection Criteria English language, indexed publications in PubMed were searched using combinations of following key words: “interleukin-33”, “IL-33”, “suppression of tumorigenicity 2”, ST2”, “sST2”, “HIV”, “HBV”, “HCV”, “CMV”, “HPV”, “immunotherapy” and “vaccine”. Except for seminal studies, only articles published between 2010 and 2016 were included. IL-33, a guardian of barriers, acts as an alarmin and as an enhancer of immune responses following injury or infection. sST2, the IL-33 decoy receptor, is considered as a biomarker for allergies, cardiac conditions and infections. IL-33 has immunotherapeutic and/or adjuvant potential.
Collapse
Affiliation(s)
- Vikram Mehraj
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montréal, Québec, Canada.
| | - Rosalie Ponte
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montréal, Québec, Canada.
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montréal, Québec, Canada; Division of Hematology, McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
24
|
Huan SL, Zhao JG, Wang ZL, Gao S, Wang K. Relevance of serum interleukin-33 and ST2 levels and the natural course of chronic hepatitis B virus infection. BMC Infect Dis 2016; 16:200. [PMID: 27180842 PMCID: PMC4868038 DOI: 10.1186/s12879-016-1543-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/06/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Interleukin-33 (IL-33) and ST2 have been demonstrated to be associated with liver damage. However, their potential value in hepatitis B virus (HBV) infection remains unknown. This study was designed to investigate the change of serum IL-33 and ST2 levels in the natural course of chronic HBV infection. METHODS A total of 120 patients with chronic hepatitis B (CHB), 20 chronic hepatitis B virus carriers in immunotolerant phase and 28 healthy controls were enrolled in this study. All patients with CHB were divided into four groups according to their serum ALT levels. The serum levels of IL-33 and ST2 of all participants were determined by enzyme-linked immunosorbent assay, and compared between each two out of those six groups. RESULTS No significant differences were found in serum levels of IL-33 and ST2 between the group of CHB with ALT 1-2 upper limit of normal and the healthy controls (P = 0.354 for IL-33 and P = 0.815 for ST2). Other than that, there were significant differences when serum levels of IL-33 and ST2 were compared between any other two out of those six groups (P < 0.05, respectively). The overall correlation analysis indicated that changes of serum IL-33 and ST2 levels were positively associated with ALT levels in patients with chronic HBV infection (rs = 0.879, P < 0.001 for IL-33 and rs = 0.923, P < 0.001 for ST2). No significant differences were found when the serum levels of ALT, IL-33 and ST2 were compared between patients with HBeAg-positive CHB and HBeAg-negative CHB. CONCLUSIONS Our study revealed that the serum levels of IL-33 and ST2 varied in different courses of chronic hepatitis B virus infection. The serum levels of IL-33 and ST2 elevated as serum ALT levels increased in patients with CHB. They might indicate liver damage for patients with CHB, just like ALT.
Collapse
Affiliation(s)
- Shu-Ling Huan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Ji-Guang Zhao
- Department of clinical laboratory, Qingdao Municipal Infectious Disease Hospital, Qingdao, 266033, Shandong, China
| | - Zhen-Li Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
- Institute of Hepatology, Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, China.
| |
Collapse
|
25
|
Xu D, Li S, Lin L, Qi F, Hang X, Sun Y. Gene expression profiling to identify the toxicities and potentially relevant disease outcomes due to endosulfan exposure. Toxicol Res (Camb) 2016; 5:621-632. [PMID: 30090376 PMCID: PMC6062354 DOI: 10.1039/c5tx00332f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/20/2016] [Indexed: 11/21/2022] Open
Abstract
Endosulfan, one of the most toxic organochlorine pesticides, belongs to a group of persistent organic pollutants. Gene expression profiling offers a promising approach in health hazard identification of chemicals. The aim of this study was to use gene expression profiling to identify the toxicities and potentially relevant human diseases due to endosulfan exposure. We performed DNA microarray analysis to analyze gene expression profiles in human endothelial cells exposed to 20, 40 and 60 μM endosulfan in combination with an endothelial phenotype. Microarray results showed that endosulfan increased the number of altered genes in a dose-dependent manner, and changed the expression of 161 genes across all treatment groups. qRT-PCR closely matched the microarray data for the genes tested. Significantly enriched biological processes for overlapping down-regulated genes include the neurological system process, signal transduction, and homeostatic process in all the dose groups. These down-regulated genes were associated with cytoskeleton organization and DNA repair at low doses, and involved in cell cycle, apoptosis, p53 pathway and carcinogenesis at high doses. Those up-regulated genes were linked to the inflammatory response and transcriptional misregulation in cancer at higher doses. These findings are consistent with our established endothelial phenotypes. Endosulfan may be relevant to human diseases including liver cancer, prostate cancer and leukemia using the NextBio Human Disease Atlas. These results provide molecular evidence supporting the toxicities and carcinogenic potential of endosulfan in humans.
Collapse
Affiliation(s)
- Dan Xu
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| | - Shuai Li
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| | - Limei Lin
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| | - Fei Qi
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| | - Xiaoming Hang
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| | - Yeqing Sun
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| |
Collapse
|
26
|
Oztas E, Kuzu UB, Zengin NI, Kalkan IH, Saygili F, Yildiz H, Celik HT, Akdogan M, Kilic MY, Koksal AS, Odemis B, Suna N, Kayacetin E. Can Serum ST2 Levels Be Used as a Marker of Fibrosis in Chronic Hepatitis B Infection? Medicine (Baltimore) 2015; 94:e1889. [PMID: 26632683 PMCID: PMC5058952 DOI: 10.1097/md.0000000000001889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/27/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022] Open
Abstract
Interleukin 33 (IL-33) is a cytokine belonging to the IL-1 superfamily. Soluble ST2 (sST2) binds to IL-33 and by functioning as trap receptor inhibits signal sending to Th2 via transmembrane ST2. Because Th2-type cytokines play an important role in fibrosis, the aim of this study is to determine whether sST2 can be used as a marker of fibrosis in chronic hepatitis B (CHB) patients or not.The study included 19 healthy controls, 54 patients with CHB, and 14 patients with cirrhosis because of CHB. The aspartate aminotransferase-to-platelet ratio index (APRI) and fibrosis index based on the 4 factors (FIB-4) scores also calculated, and correlations between liver biopsies, sST2 levels, and these scores were analyzed in CHB and cirrhosis patients.The sST2 levels in patients with CHB were significantly higher than those in the control group subjects (median: 1133 pg/mL vs 762.5 pg/mL, respectively [P = 0.035]). In CHB patients, the METAVIR fibrosis score (stages from 0 to 4) showed a moderate correlation with serum sST2 level (r = 0.396, P = 0.004) and a weak correlation with FIB-4 score (r = 0.359, P = 0.008), but no correlation with APRI score (r = 0.253, P = 0.06). The under the curve value of serum sST2 was 0.68, and its prediction of significant fibrosis (METAVIR score ≥2) in values >674 pg/mL had a sensitivity of 91.7% and specificity of 40% (P = 0.009). According to multiple logistic regression analysis, only METAVIR fibrosis stage was found to be an independent predictor of serum sST2 elevation in CHB patients (P = 0.04).The sST2 level can be used for differentiating significant fibrosis from mild fibrosis in CHB patients. However, the efficacy of this marker should be verified by larger studies in the future.
Collapse
Affiliation(s)
- Erkin Oztas
- From the Department of Gastroenterology (EO, UBK, IHK, FS, FOO, HY, MA, MYK, AŞK, SK, BO, NS, EK), Turkiye Yuksek Ihtisas Education and Research Hospital; Department of Pathology (NIZ), Turkiye Yuksek Ihtisas Education and Research Hospital; and Department of Biochemistry (HTÇ), Turgut Ozal University, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gao S, Huan SL, Han LY, Li F, Ji XF, Li XY, Fan YC, Wang K. Overexpression of serum sST2 is associated with poor prognosis in acute-on-chronic hepatitis B liver failure. Clin Res Hepatol Gastroenterol 2015; 39:315-323. [PMID: 25481239 DOI: 10.1016/j.clinre.2014.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/08/2014] [Accepted: 10/16/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Interleukin-33 (IL-33) and soluble ST2 (sST2) have been demonstrated to be involved in liver injury. The present study aims to evaluate serum IL-33 and sST2 level in acute-on-chronic hepatitis B liver failure (ACHBLF) and determine their predictive value for prognosis. METHODS Serum IL-33 and sST2 level in patients with ACHBLF, chronic hepatitis B (CHB) and healthy controls (HCs) were determined by enzyme-linked immunosorbent assay (ELISA). Clinical and laboratory parameters were obtained. RESULTS Serum IL-33 was significantly higher in patients with ACHBLF (313.10±419.97pg/ml) than those with CHB (97.25±174.67pg/ml, P<0.01) and HCs (28.39±6.53pg/ml, P<0.01). Serum sST2 was significantly higher in patients with ACHBLF (1545.87±1135.70pg/ml) than those with CHB (152.55±93.28pg/ml, P<0.01) and HCs (149.27±104.90pg/ml, P<0.01). In all participants, serum IL-33 was significantly correlated with sST2 (r=0.43, P<0.01). In patients with ACHBLF, serum IL-33 was significantly correlated with alanine aminotransferase (ALT; r=0.26, P=0.04). Serum sST2 was significantly correlated with total bilirubin (TBIL; r=0.59, P<0.01), Log10 [HBV DNA] (r=-0.47, P<0.01) and model for end-stage liver diseases (MELD; r=0.28, P=0.03). Serum sST2 had an area under the receiver operating characteristic curve (AUC) of 0.81 in predicting 3-month mortality of ACHBLF. Patients with ACHBLF who had sST2 >1507pg/ml showed significantly poorer survival than those who had sST2 ≤1507pg/ml (P<0.01). Moreover, measurement of sST2 and MELD together significantly improved the diagnostic value of MELD alone (P<0.05). CONCLUSIONS Our study showed that serum IL-33 and sST2 were overexpressed in ACHBLF and sST2 might potentially serve as a prognostic marker for it.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Shu-Ling Huan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Li-Yan Han
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China; Institute of Hepatology, Shandong University, Jinan 250012, Shandong, China
| | - Feng Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Xiang-Fen Ji
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Xin-You Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China; Institute of Hepatology, Shandong University, Jinan 250012, Shandong, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China; Institute of Hepatology, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
28
|
Abstract
Suppression of tumorigenicity 2 (ST2, also known as interleukin [IL]-1 receptor-like-1) is an IL-1 receptor family member with transmembrane (ST2L) and soluble isoforms (sST2). ST2L is a membrane-bound receptor, and IL-33 is the functional ligand for ST2L. sST2, a soluble truncated form of ST2L, is secreted into the circulation and functions as a "decoy" receptor for IL-33, inhibiting IL-33/ST2L signaling. Blood concentrations of sST2 are increased in inflammatory diseases and heart disease and are considered a valuable prognostic marker in both conditions. In multiple clinical trials, sST2 has emerged as a clinically useful prognostic biomarker in patients with cardiac diseases. Interestingly, sST2 even provides prognostic information in low-risk community-based populations. In this review, we will discuss analytical considerations of measuring circulating sST2 including pre-analytical issues, such as in vitro stability of sST2, biological variation of sST2, and postanalytical issues, such as reference ranges and comparisons to diseased cohorts.
Collapse
|
29
|
The sterile inflammation in the exacerbation of HBV-associated liver injury. Mediators Inflamm 2015; 2015:508681. [PMID: 25892853 PMCID: PMC4393905 DOI: 10.1155/2015/508681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022] Open
Abstract
Exacerbation of hepatitis B virus-associated liver injury is characterized by abnormal immune response which not only mobilizes specific antiviral effects but also poses a potentially lethal nonspecific sterile inflammation to the host. How nonspecific sterile inflammation is triggered after the preexisting injury caused by specific immune injury remains elusive. In the setting of sterile inflammation, endogenous damage-associated molecular patterns are released by stressed and dying hepatocytes, which alarm the immune system through their potential pattern recognition receptors and related signaling pathways, orchestrate the influx of diverse cytokines, and ultimately amplify liver destruction. This review highlights current knowledge about the sterile hepatic inflammation in the exacerbation of chronic hepatitis B.
Collapse
|
30
|
Lei Z, Mo Z, Zhu J, Pang X, Zheng X, Wu Z, Wang K, Li X, Xie D, Gao Z. Soluble ST2 plasma concentrations predict mortality in HBV-related acute-on-chronic liver failure. Mediators Inflamm 2015; 2015:535938. [PMID: 25892854 PMCID: PMC4393901 DOI: 10.1155/2015/535938] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/31/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a rapidly progressing and frequently fatal condition. The aim of this study was to determine whether interleukin- (IL-) 33 and soluble ST2 (sST2) were associated with disease severity and mortality in HBV-ACLF. We found that plasma levels of sST2 but not IL-33 were higher in HBV-ACLF patients compared with chronic hepatitis B (CHB) patients and healthy controls. However, plasma levels of IL-33, TNF-α, IFN-γ, and IL-10 did not correlate with sST2 levels. Similarly, immunohistochemistry revealed low IL-33 expression and high ST2 expression in liver sections of patients with HBV-ACLF. Evaluation of dynamic changes of sST2 in HBV-ACLF showed that plasma sST2 levels increased over time in patients who died during the 180-day follow-up but decreased in those who survived. In addition, plasma sST2 level after week 1 correlated with disease severity, as assessed by total bilirubin, prothrombin time, and model for end-stage liver disease score. Results of Kaplan-Meier survival analysis showed that higher sST2 concentration (≥87 ng/mL) at week 3 was associated with poor survival. These findings indicate the potential usefulness of sST2 as a predictor of disease severity and in making treatment decisions for patients with HBV-ACLF.
Collapse
Affiliation(s)
- Ziying Lei
- Department of Infectious Disease, The Third Affiliated Hospital of Sun-Yet-Sen University, Guangzhou, Guangdong 510630, China
- Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Zhishuo Mo
- Department of Infectious Disease, The Third Affiliated Hospital of Sun-Yet-Sen University, Guangzhou, Guangdong 510630, China
- Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Jianyun Zhu
- Department of Infectious Disease, The Third Affiliated Hospital of Sun-Yet-Sen University, Guangzhou, Guangdong 510630, China
- Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Xiuqing Pang
- Department of Infectious Disease, The Third Affiliated Hospital of Sun-Yet-Sen University, Guangzhou, Guangdong 510630, China
- Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Xingrong Zheng
- Department of Infectious Disease, The Third Affiliated Hospital of Sun-Yet-Sen University, Guangzhou, Guangdong 510630, China
- Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Zhebin Wu
- Department of Infectious Disease, The Third Affiliated Hospital of Sun-Yet-Sen University, Guangzhou, Guangdong 510630, China
- Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Ke Wang
- Department of Infectious Disease, The Third Affiliated Hospital of Sun-Yet-Sen University, Guangzhou, Guangdong 510630, China
- Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Xinhua Li
- Department of Infectious Disease, The Third Affiliated Hospital of Sun-Yet-Sen University, Guangzhou, Guangdong 510630, China
- Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Dongying Xie
- Department of Infectious Disease, The Third Affiliated Hospital of Sun-Yet-Sen University, Guangzhou, Guangdong 510630, China
- Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Zhiliang Gao
- Department of Infectious Disease, The Third Affiliated Hospital of Sun-Yet-Sen University, Guangzhou, Guangdong 510630, China
- Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| |
Collapse
|
31
|
Bessa J, Meyer CA, de Vera Mudry MC, Schlicht S, Smith SH, Iglesias A, Cote-Sierra J. Altered subcellular localization of IL-33 leads to non-resolving lethal inflammation. J Autoimmun 2014; 55:33-41. [DOI: 10.1016/j.jaut.2014.02.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 01/21/2023]
|
32
|
Dieplinger B, Mueller T. Soluble ST2 in heart failure. Clin Chim Acta 2014; 443:57-70. [PMID: 25269091 DOI: 10.1016/j.cca.2014.09.021] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 12/12/2022]
Abstract
In addition to routine clinical laboratory tests (including natriuretic peptides and cardiac troponins), other biomarkers are gaining attention for their utility in heart failure (HF) management. Among them, soluble ST2 (sST2) a novel biomarker integrating inflammation, fibrosis, and cardiac stress has been included in the 2013 ACCF/AHA guideline for additive risk stratification of patients with acute and chronic HF. sST2 is an interleukin-1 (IL-1) receptor family member, is secreted into the circulation and functions as a "decoy" receptor for IL-33, inhibiting IL-33/ST2 signaling. Blood concentrations of sST2 are increased in various diseases such as inflammatory diseases and heart diseases and are considered a valuable prognostic marker in both conditions. sST2 lacks disease specificity and, therefore, is not a valuable marker for the diagnosis of HF. In acute and chronic HF, however, sST2 is strongly associated with measures of HF severity and poor outcome. Several studies in patients with HF indicate that serial measurement of sST2 has prognostic value and could have a potential role in future biomarker-directed therapy. In this review, the role of sST2 as a HF biomarker will be discussed, specifically addressing analytical considerations of measuring sST2 as well as the clinical applications of measurement of sST2 for the diagnosis, prognosis and monitoring of acute and chronic HF.
Collapse
Affiliation(s)
- Benjamin Dieplinger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder, Linz, Austria.
| | - Thomas Mueller
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder, Linz, Austria
| |
Collapse
|
33
|
Wei H, Zhang J, Li H, Ren H, Hao X, Huang Y. GP73, a new marker for diagnosing HBV-ACLF in population with chronic HBV infections. Diagn Microbiol Infect Dis 2014; 79:19-24. [PMID: 24560809 DOI: 10.1016/j.diagmicrobio.2014.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 12/17/2022]
Abstract
Although Golgi protein 73 (GP73) has been widely evaluated for diagnosing hepatocellular carcinoma (HCC) and other liver diseases in recent decade, its serum profile of patients with hepatitis B virus (HBV)-associated acute-on-chronic liver failure (HBV-ACLF) is still unknown. This study was designed to evaluate the serum levels of GP73 in patients with HBV-ACLF. The participants included 200 apparently healthy controls; 200 patients with chronic hepatitis B (CHB); 200 patients with HCC; 210 patients with HBV-ACLF, in which 29 HBV-ACLF patients were followed up for 3 months. All patients were Hepatitis B virus surface antigen (HBsAg) positive. The concentrations of GP73 in patients with HBV-ACLF (285.3 ± 128.5 ng/mL) were markedly higher than those HCC patients (159.1 ± 105.8 ng/mL), CHB patients (64.65 ± 44.99 ng/mL), and healthy controls (35.37 ± 12.41 ng/mL). When the cut-off value was set at 182.1 ng/mL, the sensitivity and specificity of HBV-ACLF diagnosis were 77.62% (95% confidence interval [CI]: 71.37%-83.07%) and 95.50% (95% CI: 92.27%-98.26%), respectively. If serum GP73 concentration was still above 361.6 ng/mL after 14 days of follow-up, the patient's prognosis may be depressed. Serum GP73 may be used to diagnosis HBV-ACLF in population with chronic HBV infections.
Collapse
Affiliation(s)
- Hongshan Wei
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
| | - Jing Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing 100039, China
| | - Hongmin Li
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Hui Ren
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiaohua Hao
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yubo Huang
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
34
|
Pathogenic mouse hepatitis virus or poly(I:C) induce IL-33 in hepatocytes in murine models of hepatitis. PLoS One 2013; 8:e74278. [PMID: 24058536 PMCID: PMC3772926 DOI: 10.1371/journal.pone.0074278] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/30/2013] [Indexed: 02/07/2023] Open
Abstract
The IL-33/ST2 axis is known to be involved in liver pathologies. Although, the IL-33 levels increased in sera of viral hepatitis patients in human, the cellular sources of IL-33 in viral hepatitis remained obscure. Therefore, we aimed to investigate the expression of IL-33 in murine fulminant hepatitis induced by a Toll like receptor (TLR3) viral mimetic, poly(I:C) or by pathogenic mouse hepatitis virus (L2-MHV3). The administration of poly(I:C) plus D-galactosamine (D-GalN) in mice led to acute liver injury associated with the induction of IL-33 expression in liver sinusoidal endothelial cells (LSEC) and vascular endothelial cells (VEC), while the administration of poly(I:C) alone led to hepatocyte specific IL-33 expression in addition to vascular IL-33 expression. The hepatocyte-specific IL-33 expression was down-regulated in NK-depleted poly(I:C) treated mice suggesting a partial regulation of IL-33 by NK cells. The CD1d KO (NKT deficient) mice showed hepatoprotection against poly(I:C)-induced hepatitis in association with increased number of IL-33 expressing hepatocytes in CD1d KO mice than WT controls. These results suggest that hepatocyte-specific IL-33 expression in poly(I:C) induced liver injury was partially dependent of NK cells and with limited role of NKT cells. In parallel, the L2-MHV3 infection in mice induced fulminant hepatitis associated with up-regulated IL-33 expression as well as pro-inflammatory cytokine microenvironment in liver. The LSEC and VEC expressed inducible expression of IL-33 following L2-MHV3 infection but the hepatocyte-specific IL-33 expression was only evident between 24 to 32h of post infection. In conclusion, the alarmin cytokine IL-33 was over-expressed during fulminant hepatitis in mice with LSEC, VEC and hepatocytes as potential sources of IL-33.
Collapse
|
35
|
Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol 2013; 59:583-94. [PMID: 23567086 DOI: 10.1016/j.jhep.2013.03.033] [Citation(s) in RCA: 758] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/20/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023]
Abstract
Inflammation can be either beneficial or detrimental to the liver, depending on multiple factors. Mild (i.e., limited in intensity and destined to resolve) inflammatory responses have indeed been shown to exert consistent hepatoprotective effects, contributing to tissue repair and promoting the re-establishment of homeostasis. Conversely, excessive (i.e., disproportionate in intensity and permanent) inflammation may induce a massive loss of hepatocytes and hence exacerbate the severity of various hepatic conditions, including ischemia-reperfusion injury, systemic metabolic alterations (e.g., obesity, diabetes, non-alcoholic fatty liver disorders), alcoholic hepatitis, intoxication by xenobiotics and infection, de facto being associated with irreversible liver damage, fibrosis, and carcinogenesis. Both liver-resident cells (e.g., Kupffer cells, hepatic stellate cells, sinusoidal endothelial cells) and cells that are recruited in response to injury (e.g., monocytes, macrophages, dendritic cells, natural killer cells) emit pro-inflammatory signals including - but not limited to - cytokines, chemokines, lipid messengers, and reactive oxygen species that contribute to the apoptotic or necrotic demise of hepatocytes. In turn, dying hepatocytes release damage-associated molecular patterns that-upon binding to evolutionary conserved pattern recognition receptors-activate cells of the innate immune system to further stimulate inflammatory responses, hence establishing a highly hepatotoxic feedforward cycle of inflammation and cell death. In this review, we discuss the cellular and molecular mechanisms that account for the most deleterious effect of hepatic inflammation at the cellular level, that is, the initiation of a massive cell death response among hepatocytes.
Collapse
|
36
|
Mueller T, Dieplinger B. The Presage(®) ST2 Assay: analytical considerations and clinical applications for a high-sensitivity assay for measurement of soluble ST2. Expert Rev Mol Diagn 2013; 13:13-30. [PMID: 23256700 DOI: 10.1586/erm.12.128] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Presage(®) ST2 Assay (Critical Diagnostics, CA, USA) is an in vitro diagnostic device that quantitatively measures soluble suppression of tumorigenicity 2 (sST2) in serum and plasma by ELISA. This assay is US FDA approved and is indicated to be used in conjunction with clinical evaluation as an aid in assessing the prognosis of patients diagnosed with chronic heart failure. sST2 binds to IL-33 and functions as a 'decoy' receptor for IL-33, thereby attenuating the systemic effects of IL-33. Due to the role of IL-33/transmembrane isoform of suppression of tumorigenicity 2 signaling in cardiac remodeling, sST2 has emerged as a novel cardiovascular biomarker. In recent studies, it was shown that sST2 is a valuable predictor of several end points in heart failure, in acute coronary syndromes and in critically ill patients. In this review, analytical considerations and clinical applications of the Presage ST2 Assay will be discussed, as well as probable future concepts for adoption of sST2 measurements into clinical practice.
Collapse
Affiliation(s)
- Thomas Mueller
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder, Seilerstaette 2-4, A-4020 Linz, Austria.
| | | |
Collapse
|
37
|
Arshad MI, Piquet-Pellorce C, L'Helgoualc'h A, Rauch M, Patrat-Delon S, Ezan F, Lucas-Clerc C, Nabti S, Lehuen A, Cubero FJ, Girard JP, Trautwein C, Samson M. TRAIL but not FasL and TNFα, regulates IL-33 expression in murine hepatocytes during acute hepatitis. Hepatology 2012; 56:2353-62. [PMID: 22961755 DOI: 10.1002/hep.25893] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/28/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Interleukin (IL)-33, a member of the IL-1 cytokine family, positively correlates with acute hepatitis and chronic liver failure in mice and humans. IL-33 is expressed in hepatocytes and is regulated by natural killer T (NKT) cells during concanavalin A (ConA)-induced acute liver injury. Here, we investigated the molecular mechanisms underlying the expression of IL-33 during acute hepatitis. The expression of IL-33 and its regulation by death receptor pathways was investigated after the induction of ConA-acute hepatitis in wildtype (WT), perforin(-/-) , tumor necrosis factor related apoptosis inducing ligand (TRAIL)(-/-) , and NKT cell-deficient (CD1d(-/-) ) mice. In addition, we used a model of acute liver injury by administering Jo2/Fas-antibody or D-galactosamine-tumor necrosis factor alpha (TNFα) in WT mice. Finally, the effect of TRAIL on IL-33 expression was assessed in primary cultured murine hepatocytes. We show that IL-33 expression in hepatocytes is partially controlled by perforin during acute liver injury, but not by TNFα or Fas ligand (FasL). Interestingly, the expression of IL-33 in hepatocytes is blocked during ConA-acute hepatitis in TRAIL-deficient mice compared to WT mice. In contrast, administration of recombinant murine TRAIL associated with ConA-priming in CD1d-deficient mice or in vitro stimulation of murine hepatocytes by TRAIL but not by TNFα or Jo2 induced IL-33 expression in hepatocytes. The IL-33-deficient mice exhibited more severe ConA liver injury than WT controls, suggesting a protective effect of IL-33 in ConA-hepatitis. CONCLUSION The expression of IL-33 during acute hepatitis is dependent on TRAIL, but not on FasL or TNFα.
Collapse
Affiliation(s)
- Muhammad Imran Arshad
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Milovanovic M, Volarevic V, Radosavljevic G, Jovanovic I, Pejnovic N, Arsenijevic N, Lukic ML. IL-33/ST2 axis in inflammation and immunopathology. Immunol Res 2012; 52:89-99. [PMID: 22392053 DOI: 10.1007/s12026-012-8283-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interleukin-33 (IL-33), a member of the IL-1 family of cytokines, binds to its plasma membrane receptor, heterodimeric complex consisted of membrane-bound ST2L and IL-1R accessory protein, inducing NFkB and MAPK activation. IL-33 exists as a nuclear precursor and may act as an alarmin, when it is released after cell damage or as negative regulator of NFκB gene transcription, when acts in an intracrine manner. ST2L is expressed on several immune cells: Th2 lymphocytes, NK, NKT and mast cells and on cells of myeloid lineage: monocytes, dendritic cells and granulocytes. IL-33/ST2 axis can promote both Th1 and Th2 immune responses depending on the type of activated cell and microenvironment and cytokine network in damaged tissue. We previously described and discuss here the important role of IL-33/ST2 axis in experimental models of type 1 diabetes, experimental autoimmune encephalomyelitis, fulminant hepatitis and breast cancer. We found that ST2 deletion enhance the development of T cell-mediated autoimmune disorders, EAE and diabetes mellitus type I. Disease development was accompanied by dominantly Th1/Th17 immune response but also higher IL-33 production, which suggest that IL-33 in receptor independent manner could promote the development of inflammatory autoreactive T cells. IL-33/ST2 axis has protective role in Con A hepatitis. ST2-deficient mice had more severe hepatitis with higher influx of inflammatory cells in liver and dominant Th1/Th17 systemic response. Pretreatment of mice with IL-33 prevented Con A-induced liver damage through prevention of apoptosis of hepatocytes and Th2 amplification. Deletion of IL-33/ST2 axis enhances cytotoxicity of NK cells, production of IFN-γ in these cells and systemic production of IFN-γ, IL-17 and TNF-α, which leads to attenuated tumor growth. IL-33 treatment of tumor-bearing mice suppresses activity of NK cells, dendritic cell maturation and enhances alternative activation of macrophages. In conclusion, we observed that IL-33 has attenuated anti-inflammatory effects in T cell-mediated responses and that both IL-33 and ST2 could be further explored as potential therapeutic targets in treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Marija Milovanovic
- Faculty of Medicine, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | | | | | | | | | | | | |
Collapse
|
39
|
Arshad MI, Piquet-Pellorce C, Samson M. IL-33 and HMGB1 alarmins: sensors of cellular death and their involvement in liver pathology. Liver Int 2012; 32:1200-10. [PMID: 22530772 DOI: 10.1111/j.1478-3231.2012.02802.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/12/2012] [Indexed: 12/20/2022]
Abstract
'Alarmins' are a group of proteins or molecules that are released from cells during cellular demise to alert the host immune system. Two of them, Interleukin-33 (IL-33) and high-mobility group box-1 (HMGB1), share many similarities of cellular localization, functions and involvement in various inflammatory pathologies including hepatitis. The expressions of IL-33 and HMGB1, and their receptors ST2 and receptor for advanced glycation end products (RAGE), are substantially up-regulated during acute and chronic hepatitis. Recent data evidence a possible protective role of IL-33/ST2 axis during liver injury. A contrast in expression of IL-33 and HMGB1 alarmins were associated with type of hepatocellular death mediated by immune cells or hepato-toxic agents. The massive release of active form of IL-33 from hepatocytes may affect the recruitment and activation of its ST2-positive target immune cells in the liver to confer its alarmin functions. This review highlights the emerging roles of alarmin proteins in various liver pathologies, by focusing on classical HMGB1 and a newly discovered alarmin, the IL-33.
Collapse
Affiliation(s)
- Muhammad I Arshad
- Institut de Recherche Santé Environnement & Travail, Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Rennes, France
| | | | | |
Collapse
|
40
|
Prognostic value of soluble ST2 in an unselected cohort of patients admitted to an intensive care unit — The Linz Intensive Care Unit (LICU) study. Clin Chim Acta 2012; 413:587-93. [DOI: 10.1016/j.cca.2011.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/06/2011] [Accepted: 11/28/2011] [Indexed: 12/21/2022]
|
41
|
Wang J, Cai Y, Ji H, Feng J, Ayana DA, Niu J, Jiang Y. Serum IL-33 levels are associated with liver damage in patients with chronic hepatitis B. J Interferon Cytokine Res 2012; 32:248-53. [PMID: 22304300 DOI: 10.1089/jir.2011.0109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This aim of this study was to assess the potential role of IL-33 in the pathogenic process of chronic hepatitis B (CHB). The levels of serum IL-33 and soluble ST2 (sST2) in CHB patients and healthy controls (HC) were determined using enzyme-linked-immunosorbent serologic assay, and the Th1 (IFN-γ, TNF-α, IL-2) and Th2 (IL-4, IL-6, IL-10) cytokines by cytometric bead array. It was found that the levels of serum IL-33 in CHB patients were significantly higher than that of HC at the base line, but decreased after treatment with adefovir dipivoxil for 12 weeks. The levels of serum sST2, as a decoy receptor of IL-33, were significantly higher in CHB patients than the HC. There was no correlation between the levels of serum sST2 and IL-33. The concentrations of serum Th1 (IFN-γ, IL-2) and Th2 (IL-6, IL-10) cytokines in CHB patients significantly increased after treatment compared to the baseline. These results suggest that IL-33 is involved in the pathogenesis of CHB and that adefovir dipivoxil therapy can attenuate the production of IL-33 in patients with CHB.
Collapse
Affiliation(s)
- Juan Wang
- Department of Central Laboratory, the Second Part of First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Erhardt A, Tiegs G. IL-33--a cytokine which balances on a knife's edge? J Hepatol 2012; 56:7-10. [PMID: 21703171 DOI: 10.1016/j.jhep.2011.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 01/01/2023]
|
43
|
Wang J, Zhao P, Guo H, Sun X, Jiang Z, Xu L, Feng J, Niu J, Jiang Y. Serum IL-33 levels are associated with liver damage in patients with chronic hepatitis C. Mediators Inflamm 2012; 2012:819636. [PMID: 22315510 PMCID: PMC3270460 DOI: 10.1155/2012/819636] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 12/31/2022] Open
Abstract
Interleukin-33 (IL-33) is associated with the development of Th2 responses. This study examined the potential role of IL-33 in the pathogenic process of chronic hepatitis C (CHC) in Chinese patients. The levels of serum IL-33 and sST2 in 154 patients with CHC, 24 with spontaneously resolved HCV (SR-HCV) infection and 20 healthy controls (HC), were analyzed by ELISA. The concentrations of serum IL-2, IFN-γ, TNF-α, IL-4, IL-6, and IL-10, HCV loads, ALT, AST, and HCV-Ab were measured. We found that the levels of serum IL-33 in CHC patients were significantly higher than those of SR-HCV and HC but decreased after treatment with interferon for 12 weeks. More importantly, the levels of serum IL-33 were correlated with the concentrations of ALT and AST in CHC patients. The levels of serum sST2, as a decoy receptor of IL-33, were significantly higher in CHC and SR-CHC patients than those in HC, and there was no correlation between the levels of serum sST2 and IL-33. The concentrations of serum IFN-γ and IL-6 in CHC patients were significantly lower than those of SR-HCV. These data suggest that IL-33 may be a pathogenic factor contributing to CHC-related liver injury.
Collapse
Affiliation(s)
- Juan Wang
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
| | - Pingwei Zhao
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
| | - Hui Guo
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
| | - Xiguang Sun
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
| | - Zhenyu Jiang
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
| | - Lijun Xu
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
| | - Junyan Feng
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
| | - Junqi Niu
- Department of Hepatology, First Hospital, Jilin University, Changchun 130032, China
- *Junqi Niu: and
| | - Yanfang Jiang
- Department of Central Laboratory, The Second Part of First Hospital, Jilin University, Changchun 130032, China
- *Yanfang Jiang:
| |
Collapse
|
44
|
Abstract
Interleukin 33 (IL-33) is a recently discovered cytokine member of the IL-1 superfamily that is widely expressed in fixed tissue cells, including endothelial and epithelial cells. IL-33 induces helper T cells, mast cells, eosinophils, and basophils to produce type-2 cytokines through binding to the ST2/IL-1 receptor accessory protein complex. Recent studies have shown IL-33 to be upregulated in intestinal parasite infection and in epithelial cells and myofibroblasts in ulcerative colitis (UC). The findings point to a role for IL-33 in directing the T(H)2-type immune responses in these types of mucosal inflammation. As the IL-33/ST2 receptor axis can be manipulated by various blocking antibodies, this could be a potential therapeutic target in the future treatment of UC.
Collapse
|
45
|
Arshad MI, Rauch M, L'helgoualc'h A, Julia V, Leite-de-Moraes MC, Lucas-Clerc C, Piquet-Pellorce C, Samson M. NKT cells are required to induce high IL-33 expression in hepatocytes during ConA-induced acute hepatitis. Eur J Immunol 2011; 41:2341-8. [PMID: 21557213 DOI: 10.1002/eji.201041332] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/14/2011] [Accepted: 05/05/2011] [Indexed: 11/06/2022]
Abstract
Interleukin-33 (IL-33) is thought to be released during cellular death as an alarming cytokine during the acute phase of disease, but its regulation in vivo is poorly understood. We investigated the expression of IL-33 in two mouse models of acute hepatitis by administering either carbon tetrachloride (CCl(4) ) or concanavalin A (ConA). IL-33 was overexpressed in both models but with a stronger induction in ConA-induced hepatitis. IL-33 was weakly expressed in vascular and sinusoidal endothelial cells from normal liver and was clearly induced in CCl(4) -treated mice. Surprisingly, we found that hepatocytes strongly expressed IL-33 exclusively in the ConA model. CD1d knock-out mice, which are deficient in NKT cells and resistant to ConA-induced hepatitis, no longer expressed IL-33 in hepatocytes following ConA administration. Interestingly, invariant NKT (iNKT) cells adoptively transferred into ConA-treated CD1d KO mouse restored IL-33 expression in hepatocytes. This strongly suggests that NKT cells are responsible for the induction of IL-33 in hepatocytes.
Collapse
|